
1

Anemone: Edge-based network management
Richard Mortier*, Rebecca Isaacs, Austin Donnelly, Paul Barham

Microsoft Research, 7, JJ Thomson Ave, Cambridge, CB3 0FB, UK.
Tel. +44 (0)1223 479000. Fax. +44 (0)1223 479999.

{mort,risaacs,austind,pbar}@microsoft.com

Abstract— This proposal describes theAnemone project and
a demonstration of the work so far. The project is developing
an edge-based IP network management platform which utilises
only information collected at the edges of the network, eschewing
the need to collect data in the network core. Devoting a small
fraction of hosts’ idle cycles, disk space, and network bandwidth
to network management allows inference of network-wide traffic
patterns by synthesising end-system flow statistics with dynamic
topology information obtained through passive snooping of IP
routeing protocols. We claim that this approach will provide a
more complete view of the network that supports sophisticated
traffic engineering queries to supply the global statistics necessary
to automate network control, and is future-proofed against
increasing deployment of encrypting and tunnelling protocols.

I. I NTRODUCTION

The Anemone project is addressing the challenge of IP
network management, andenterprise IP network management
in particular. Large IP networks are highly complex, largely
due to the conjunction of two factors: the dynamic nature of
the IP routeing protocols, and the size of such networks. The
former means that it takes time for network devices to reach a
‘converged’ state even in a completely static network; the latter
means that events such as link failure, recovery and device
reconfiguration occur continuously, making such a converged
state practically unattainable in any case. The resulting com-
plexity makes managing such networks expensive, requiring
manual intervention by skilled human operators.

Existing management tools for large IP networks tend to
ignore the global dynamics of network behaviour, concen-
trating on centrally unifying potentially conflicting data taken
locally from individual network devices. They make it difficult
for operators to perform a variety of useful tasks such as
discovering the path a particular set of traffic takes through
the network, investigating the behaviour of the network in
‘what-if’ scenarios, or monitoring the evolution of the network
as failures and recoveries occur. This situation is likely to
become worse in the future, as protocols like IPSec or PPTP
become widely deployed: these make traffic opaque to network
devices, making untenable traditional approaches such as in-
specting port numbers to infer application traffic distributions.

Even where such tools are available1, operators will often
fall back on a variety ofad hoc approaches usingtraceroute,
ping, and so on. Indeed, much research work concerning
network performance, reliability, and provisioning [7], [5], [8]2

* Corresponding author.
1And their prohibitive cost often prevents their purchase and installation.
2See also, for example, the ACM SIGCOMM Internet Measurement Work-

shops and Network Troubleshooting Workshops,http://www.sigcomm.
org/.

Control

Packets
at hosts

Flows

Routeing
protocol

Topology

Visualize
Simulate

Simulator

Anemone
platform

Traffic matrix Routes

srcs

dsts

routes

DEMO

1

2

73

4

55

6

Fig. 1. Diagram of logical system architecture. On the left, packet activity is
monitored at end-systems (1) to recover flows (2). On the right, the link-state
routeing protocol is passively monitored (3) to recover the current topology
(4). These two data sets contain the traffic matrix and the current routes
from sources to destinations. They are then combined and aggregated in a
distributed database (5), to be queried by applications for visualization and
simulation (6). Finally, results from simulation or other prediction process can
be fed back into the routeing protocol to control the network (7).

relies entirely on a variety ofad hoc edge-based approaches.
The general goal of theAnemone system is to bring some co-
herence to these approaches; the specific goal is to implement
the system in an enterprise network context.

As a concrete example, consider an IT manager asked to
consolidate their company’s email servers at a single site.
Very few tools exist to help them predict the impact on
their network and the necessary reconfiguration resulting from
changed traffic patterns. Most likely they would have to build
ad hoc simulations of their network using generic traffic
and failure distributions, possibly estimating parameters from
measurement samples if these were available.

II. A NEMONE

The system architecture is shown in Figure 1. The core
contribution of the project is to leverage control of the end-
system to monitor traffic entering and exiting the network,
and to combine this with knowledge of the dynamic topology
gathered by passively monitoring routeing protocols. The
combined data set (effectively, the traffic matrix, annotated
with source-destination routes) can then be queried, forming a



2

platform for building network management applications. This
contrasts with current approaches which rely on extensive
device support in the core of the network. TheAnemone
platform will combine these two data sources to support
network tools providing features such as:

Visualization and logging, giving real-time and historical
views of network topology and current traffic distribution
on that topology. Such a tool would also enable facilities
such as traceback (allowing traffic flows to be traced back to
their entry points), and anomaly detection (allowing detection
of worms, denial-of-service and other malicious behaviour
through the anomalous traffic patterns they generate). Mis-
configured servers, routers, and infected machines all generate
peculiar traffic patterns which could be tracked through this
system [3], [4].

Analysis and simulation, enabling ‘what-if’ analysis of
the network to investigate andpredict potential changes in
topology, configuration, and traffic distribution. This would
be a powerful tool for answering questions such as that posed
above (“what happens to the network if we consolidate all the
mail servers?”), or concerning network response to failures
or planning decisions. For example, by feeding live flow
and topology information into a flow-optimization solver the
current network configuration could be evaluated for efficiency
and robustness. Additionally proposed network modifications
or potential failure scenarios could also be tested against
current flow statistics in near real-time and hence over a period
of days or weeks, avoiding reliance on sampled statistics such
as ‘busy hours.’

Traffic engineering, where network configuration is au-
tomatically modified to control the flow of traffic through
the network to meet imposed cross-network latency targets,
link utilization targets, and so on. This would allow high-
level policies requiring dynamic network reconfiguration to be
applied automatically and corrected as the network configura-
tion changes. For example, the network could be dynamically
reconfigured as capacity is added so that service level agree-
ments are always met in the most efficient way possible. It
might also be possible to actively respond to detected traffic
anomalies to reconfigure the network to contain the effects of
malicious traffic.

III. B ENEFITS

A network management platform that unifies flow data from
the end-systems and topology data from the routeing protocol
appears to have three main benefits over traditional SNMP-
based solutions: (i) ability to inspect tunnelled/encrypted
protocols, widely deployed in IP networks and especially
enterprise IP networks, (ii) access to the plentiful resources at
the network edge in contrast to core routers which are often
resource starved, and (iii) lack of reliance on particular features
of or support from the many makes and models of device found
in a modern network.

The first of these benefits is perhaps the most important. It
arises due to the requirement that enterprise networks cheaply
support many remote sites while remaining secure, giving rise
to use of protocols such as IPSec and PPTP. These protocols

prevent network devices easily examining and managing traffic
from the centre of the network; in contrast the end-system
has all the information required to decrypt and de-encapsulate
traffic it transmits and receives. Similarly, the end-system is
capable of directly tieing traffic to application without recourse
to port numbers and other inference techniques.

The second arises because core routers must deal with
processing high packet volumes and the many protocols that
impact router behaviour (not least the routeing protocols!),
while often having older CPUs which lack sufficient process-
ing power. As a result, solutions such as NetFlow must often
be deployed in a sampling mode due to the CPU cost at
the monitoring router and the load generated by the NetFlow
measurements themselves [1].

Finally, modern networks tend to be evolutionary in nature:
it is difficult to perform complete network-wide upgrades of
hardware due to the significant disruption in service this would
cause. An end-system based approach means that heterogene-
ity of network devices is no longer a problem: no device
manufacturer support is required beyond correct implementa-
tions of the routeing protocol and IP packet forwarding. Since
these are critical for correct functioning of any router device,
they are likely to be less buggy than non-critical SNMP MIB
implementations. In fact, it is not necessary for devices within
this system to support SNMP at all!

Furthermore, the structure of the proposed system has two
additional benefits. First, decoupling basic traffic monitoring
from flow accounting permits the definition of flow to be
modifiable without requiring widespread software deployment
each time it changes. Second, decoupling the data collection
from the query system permits the use of techniques from
semi-structured databases such as PIER [2] or SOPHIA [9]
providing a genuinely flexible platform on which to build
applications.

IV. STATUS

We are in the process of prototyping and simulating the
system described in Section II. We have prototypes of the
flow monitors and route collectors, and we are simulating the
platform itself using route data collected using our prototype
and flow data generated from packet traces collected on our
corporate network.

A. Flow collection

The prototype flow monitor is a simple device driver in-
terposed in the network stack. This acts as an ETW (Event
Tracing for Windows)3 producer, posting events as packets
enter, traverse, and leave the stack. An ETWconsumer then
runs in user-space and synthesises flow data using the packet
data events from the provider. The ETW subsystem is quite
efficient, imposing a CPU load of around 5% when posting
20,000 events per second4. Furthermore, by restricting kernel-
space instrumentation to posting events based on packet head-
ers, the definition of a flow resides solely in the user-space

3A low overhead event posting infrastructure [6].
4It is quite capable of posting an event for every context switch without

crippling performance for example.



3

component where the flow data is synthesised. Decoupling the
basic traffic monitoring facility from the flow data collection
allows the definition of flow to be easily modified, potentially
even on a per-query basis.

B. Route collection

Large enterprise IP networks typically manage routes within
the network using a link-state routeing protocol as they are
widely supported, well-understood, and relatively easy to
manage. Link-state routeing protocols operate by having each
router advertise its adjacent neighbours to all other routers,
collect the corresponding adverts from the other routers, and
then run a shortest path algorithm across the resulting database
of links to determine routes to all destinations. As LSAs are
flooded to all local routers5, our prototype passive collector
simply snoops the OSPF protocol, building and maintaining
the current network topology.

C. Data aggregation

Flow and topology information are to be aggregated to
construct a complete view of the traffic in the network, and
made available to applications built over the platform. The
aggregated dataset logically contains the traffic flow matrix
Aij = {bandwidth from srci to dst j}, each entry annotated
with the current route from source to destination. Note that
the size of most enterprise networks makes such a dataset too
large and dynamic to simply backhaul all the collected data
to a single point.

To investigate the various trade-offs in this part of the
system we have begun to simulate the distribution of flow and
route data over a dynamic topology, and to investigate appro-
priate API support for applications built over the platform.
Among the trade-offs to explore here are:

• The tension between efficient resource usage by the
platform (probably best achieved by making use of the
natural hierarchy in the network’s design), and a self-
organizing robust data store (as provided by a DHT for
example).

• Which datasets should be distributed, and how much
distribution is appropriate. For example, in a very sta-
ble network with changeable flow dynamics, it would
probably be better to distribute the topology to all nodes
rather than try to distribute flow data widely. Current
data suggests that some middle way is probably sensible:
centralize flow data for the local area at a machine in
the local area, and distribute topology data to all such
machines.

• How accurate the system can be made, given the prob-
lems of lack of coverage (it will be impossible to instru-
ment all traffic sources in the network), lag (it takes time
for changes in flow and especially topology to percolate
through the system), and so on.

This simulator forms the basis of the demonstrator, de-
scribed below.

5Non-local routers learn of each other through summarization mechanisms
not detailed here; in the face of such mechanisms, it is necessary to monitor
the routeing protocol from many network vantage points.

emulates real-time per-host monitoring

Link events

Per-flow statistics
Sample management 

application

r e
 s

 u
 l 

t s

OSPF packets 
captured from 

corporate network

Synthetic
traffic traces

Load model

Subnet list

Continuous queries

One-shot queries

(topology, failure, recovery)

(data transmitted)

Anemone platformAnemone platform

flow data from hosts

+
topology data from OSPF

=
distributed database

computing load 
throughout network

simulated for demo

Fig. 2. Outline flowchart for demo. Pre-prepared traces (generated from
live data) are fed through a simulation of theAnemone platform, which is
interrogated by a simple sample management application.

V. DEMONSTRATION

We demonstrate a network management application running
over a simulation of theAnemone platform, providing a variety
of visualizations of a running network. Topological data is
taken from traces of OSPF data collect by our prototype
running in our corporate network; flow data is synthesised
based on traces collected from both client and server machines
in our network.

The initial visualization presented is an animated topology
of the network, with line thickness proportional to link load.
Aspects of the platform are demonstrated by enabling: (i)
views of the top-N loaded links and communicating hosts;
and (ii) click-through on links for a breakdown of the link’s
load in terms of the neighbours sourcing and sinking the link’s
load. The simulator also monitors and displays the inaccuracy
in its calculated traffic matrix that results from instrumenta-
tion of only a fraction of the end-systems in the network.
The accompanying poster summarizes the information in this
proposal concerning the problem space, state of the art, and
proposed solution, in addition to describing the design space
and challenges of this approach.

REFERENCES

[1] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better NetFlow.
In Proceedings of ACM SIGCOMM 2004, Portland, OR, Aug. 2004.

[2] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. Yumerefendi. The architecture of PIER: an
Internet-scale query processor. InCIDR, Jan. 2005.

[3] A. Hussain, J. Heidemann, and C. Papadopoulos. A framework for
classifying denial of service attacks.Computer Communication Review
(CCR), 33(4):99–110, Oct. 2003.

[4] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava, and V. Kumar. A
comparative study of anomaly detection schemes in network intrusion
detection. InProceedings of Third SIAM Conference on Data Mining,
San Francisco, CA, May 2003.

[5] C. Logg, L. Cottrell, and J. Navratil. Experiences in traceroute and
available bandwidth change analysis. InNetT ’04: Proceedings of the
ACM SIGCOMM Workshop on Network Troubleshooting, pages 247–252.
ACM Press, 2004.

[6] Microsoft. Event tracing. http://msdn.microsoft.com/
library/, 2002. Platform SDK: Performance Monitoring, Event
Tracing.

[7] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with Rocketfuel. IEEE/ACM Transactions on Networking
(TON), 12(1):2–16, 2004.

[8] R. Teixeira and J. Rexford. A measurement framework for pin-pointing
routing changes. InNetT ’04: Proceedings of the ACM SIGCOMM
Workshop on Network Troubleshooting, pages 313–318. ACM Press,
2004.

[9] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information
plane for networked systems. InProceedings of the Second Workshop on
Hot Topics in Networking (HotNets-II), Cambridge, MA, Nov. 2003.


