
Embedded Function Composition

Turner Whitted Jim Kajiya Erik Ruf Ray Bittner

Microsoft Research∗

Abstract

A low-level graphics processor is assembled from a collection of
hardwired functions of screen coordinates embedded directly in the
display. Configuration of these functions is controlled by a buffer
containing parameters delivered to the processor on-the-fly during
display scan. The processor is modular and scalable in keeping with
the demands of large, high resolution displays.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors

Keywords: display processor, large display, representation

1 Introduction

For the past few decades the output target for graphics processors
has been a frame buffer memory intimately connected to the dis-
play processor and less intimately connected to the display device.
As others have pointed out [Watson and Luebke 2005] large, dense
displays place a strain on this arrangement. Matching copies of the
entire conventional apparatus of CPU/Memory/GPU to tiled dis-
plays has been tried in numerous forms [Li et al. 2000] but that
may not be the most economical solution for future applications.

In this paper we describe a display processor embedded in the dis-
play and dedicated to low level functions which can be inserted
into the video refresh path. The display is assembled from tiles
with one processor module attached to each tile so that the process-
ing scales with the display as tiles are added. As with all display
processors, memory access and locality are the foremost consid-
erations affecting performance. In our case each module includes
graphics memory along with the low level graphics processor. We
propose a partitioning of display functions between the embedded
back end and a more conventional front end that delivers high per-
formance with modest additional bandwidth between the front end
and the embedded processors.

Before examining the low level implementation of the embed-
ded processor it is essential to establish the high level framework.
Two factors, the modularity of a tiled display and the interface to
DRAM, play the central role in determining the high level structure.
First we recognize the necessity of locality for communications and
storage within the processor. Second, we dispense with the notion
of random access to DRAM. Because the processor is intimately
connected to the refresh operation of the display we treat its em-
bedded main memory as a unidirectional buffer.

Since the processor resides at the back end of the graphics pipeline
it is primarily an engine for 2D graphics and imaging functions.
While the general purpose programmable elements of 3D GPUs

∗{jtw, kajiya, erikruf, raybit}@microsoft.com

have been successfully employed for 2D graphics and image de-
coding, we seek a more direct implementation for these common
features. The ideas may extend to more complex 3D applications,
but we have not yet attempted them. With the processor placed
between graphics memory and the display pixel stream, graphics
rendering is synchronized with video refresh. In other words, video
pixel coordinates are fed to the processor along with function spec-
ification and a pixel stream is emitted at the output. Unlike typical
GPU methods, the processing is limited to a single pass and graph-
ics representations must be implicit functions of screen coordinates.

2 Modularity, Scalability, Partitioning

Tiling remains the most economical means of assembling large area
displays and tiling of display processors keeps communications be-
tween processor and display local. While communications among
separate display processors is useful, it must be limited to some-
thing as simple as near neighbor links if operation of the embedded
processors is to scale. For small scale experiments utilizing a single
front end processor we have found it sufficient to use an even sim-
pler common bus broadcasting all function parameters to all tiles.

As shown in figure 1, the embedded processor is placed in the re-
fresh path downstream of graphics memory. A conventional general
purpose processor (e.g. CPU/GPU) transmits data and addresses
to DRAM main memory; a dispatching processor steers memory
reads to specific processor elements; outputs of processor elements
are composed into pixels. The simplicity of our partitioning scheme
allows us to use FIFOs for all buffering of main memory accesses.

The front end graphics process sorts collections of functions into an
array of bins (non-overlapping rectangular subregions of a tile) and
forwards the array to the embedded DRAM. Note that each pro-
cessor tile need only store the bins local to its region of the global
display. The embedded processor is a simple pipelined array, pro-
grammed via configuration and parameters. As with general pur-
pose dataflow machines, there is no instruction fetch overhead.

Dispatcher DDR DRAM

Write

Address

Write

Data

Read Address Read

Data

fcn0()

fcnn()

<x,y,t> <r,g,b>

Arithmetic

Composition

Network

Logical

Composition

NetworkFixed Function

Array

Front End Processor

Figure 1: Embedded function array and datapaths.

3 Function Composition

Function composition is central to graphics and imaging in forms as
complex as realistic shaders or geometry definition or as simple as
linear interpolation for pixel compositing. Designing the functions
themselves is a subject of continuing research, but the graphics lit-
erature is full of references to rich, reusable functions such as linear
expression evaluators, quadratic expression evaluators, pixel com-
position functions, etc. The final stage of decoding compressed im-
ages via sum of products is a simple example. Our current function
repertoire includes all of these plus flexible arithmetic and logical
interfaces for composition. In all these cases function composition
lends itself easily to parallel implementations in dataflow proces-
sors such as the one described here.

As an illustration, the function shown in figure 2 computes a signed
distance function for the second order Bezier curves utilized in
TrueType fonts as described in [Loop and Blinn 2005]. While the
first two transformation stages can be easily replaced by a single
stage, there are situations in which the first transformation is con-
stantly updated while the second is fixed. Keeping the transforma-
tions separate facilitates this. The third stage produces a signed dis-
tance function, but it is not normalized to screen coordinates. The
normalization stage requires operations which would be slow and
expensive if implemented directly. We utilize a bipartite approxi-
mation [Ercegovac and Lang 2004] containing small lookup tables
and an adder. At the output of each stage intermediate results are
stored in a pipeline register. Discounting the initial transformation,
latency in the example shown is three clock stages (pixels) while
the latency of simpler linear functions is only one cycle. Latency
matching is achieved by offsetting the x input. Many other exam-
ples are simpler, but this one illustrates most of the elements of an
individual graphics function.

As screen size increases the range of x and y coordinate values in-
creases without bound. To restrict the growth of datapath widths,
function coordinates must be translated to local tile coordinates.
Since this places an additional load on the front end, an alterna-
tive for small arrays is to use 12 or 16 bit global coordinates and
translate local coordinates to the global space.

Screen coordinates of each pixel are updated at the video rate,
but other parameters may change much more slowly. For exam-
ple, three linear expression functions can provide a gradient screen
background with function coefficient updated once per frame. As
we shall see with text examples, binning of parameters dramatically
reduces the size of a function tree. Time is also an input to function
units, but we have not exploited it except to apply simple transfor-
mations to functions.

3.1 Configuring Composition

As seen in the example of figure 2 composition may be as simple as
cascading stages of an integrated function. Composing a set of such
functions to render a font, for example, can be as simple as AND-
ing the sign bits of signed distance functions as in figure 3. Other
specific examples include finding a minimum of several signed dis-
tance functions. This is most easily done in a tree of pairwise adder
and multiplexer stages. One possibility is to embed a fixed tree with
fixed connections to individual function units. Specific subsets of
minima can be obtained by tapping the tree at the appropriate node.
Collections of functions are defined simply by steering coefficients
to neighboring function units. Since most shapes require a mix of
functions, the array is overprovisioned with a mix of function types.
This is a straightforward tradeoff between area devoted to function
evaluation and area devoted to configuration switching.

In the absence of limits on circuit costs, arbitrarily complex compo-

x’ = a11x + a12y + a13
y’ = a21x + a22y + a23

u = b11x’ + b12y’

v = b21x’ + b22y’

F(u,v) = u
2
- v

<x,y>

Normalize

signed distance

Figure 2: Four stage signed distance function for second order
Bezier curve.

sition can be accomplished with exhaustive (crossbar) connection.
One goal of this project is to see how much flexibility and utility can
be obtained from more constrained connectivity. A traditional re-
configurable array processor would embed all functions into an ar-
ray overlaid with one or more flexible interconnection paths. What
we have described so far is an array of specialized graphics func-
tions connected to a second array of composition functions. Note
that elements such as pairwise minimum adder/multiplexers are
functions themselves. In fact, given that functions compose to gen-
erate a single output we have adopted these piecewise tree struc-
tures as building blocks of the datapaths.

quadratic expression

linear expression

linear expression

quadratic expression

linear expression

linear expression

quadratic expression

linear expression

linear expression

linear expression

linear expression

linear expression

linear expression

quadratic expression

linear expression

linear expression

p
a
ra
m
e
te
r
re
g
is
te
rs

le
tt
e
r
“v
”

Figure 3: Glyph constructed by logical composition of signed
distance functions.

A third class of functions includes simple logical operators. For ex-
ample, determining whether a pixel is inside or outside any closed
shape is determined by the AND of sign bits of the signed distance
function. Since single bit logical signals comprise the data to be
composed in this case, a rich logical composition network is rela-
tively inexpensive.

What we have implemented for graphics computation, then, is a
standalone array of parameterized fixed functions feeding a mod-
estly flexible network of composition functions and a third richly
reconfigurable array of logical functions. This heterogeneously
configurable arrangement is dictated by both cost and performance

Figure 4: Rear view of physical apparatus including one of the
six LCD panels with power supply (left) and FPGA development kit
(lower right) attached.

considerations. Note that a conventional graphics processor em-
ploys generic functions whose inputs and outputs are addressable
memory locations. Our scheme employs addressable functions con-
nected via (mostly) fixed data paths and the experiments examine
the utility and flexibility of this alternative arrangement.

4 Experimental Apparatus

The experimental apparatus is a desktop array of six tiled LCD pan-
els, each driven by a Xilinx ML501 prototyping board containing
a Virtex-5 field programmable gate array and 256MB of attached
DDR2 DRAM. Even this modest number of modules forces us to
address scalability.

For the sake of simplicity the function composition network pro-
duces a single real time pixel stream. At SXGA resolution of
1280x1024 the pixel clock runs at 120 MHz. The function units
within the network are pipelined and utilize both rising and falling
edges of the pixel clock. Implementing multiple parallel networks
with lower clock rates and less pipelining is straightforward, but
without interfacing to the LCD panel at the row (gate) and column
(data) level, it is not possible to explore pixel level parallelism other
than along a scan line.

FPGA programming is specified in Verilog using the Xilinx ISE
tools which are provided with the development kits. Since the par-
allelism of the hardware is expressed directly in the hardware de-
scription language it is a natural choice for experimentation.

5 Performance

A limited collection of examples is shown in figure 5 includ-
ing a bitmapped background, a PowerPoint overlay, and miscella-
neous shapes. The background bitmapped images are sprites routed
through the same function array as other objects, although arbi-
trary transformations of sprites (texture mapping) is not yet imple-
mented.

Clocked at 140MHz the DRAM interface provides a peak through-
put of 2.24 GB/s. In the worst case we assume that the images may
be written from the front end and immediately read by the display
at the frame rate, consuming 960 MB/s with raw pixel transfer. The
remaining 1.28 GB/s is available for writing and reading function

parameters and configurations as well as locally stored image data.

Since the embedded array runs at constant video rate, performance
is measured purely in terms of image complexity versus memory
bandwidth and circuit area. As shown in table 1, dividing the im-
age into bins reduces the required number of function units at the
added cost of higher bandwidth for memory writes from the front
end processor. Since typical memory modules have become large
and inexpensive, memory capacity is a secondary issue.

Bin Maximum Memory Input
Content Size Number Bandwidth

(pixels) of Functions (MB/sec)
unbinned 2088 3.4

large 64x64 19 3.6
text 32x32 11 5.3

16x16 9 9.7
unbinned 3449 5.6

small 64x64 59 6.6
text 32x32 26 7.9

16x16 18 10.5
unbinned 2016 1.9

teapot 64x64 16 4.6
line drawing 32x32 16 6.7

16x16 16 11.9

Table 1: Area and bandwidth costs versus bin size.

While the examples above as well as those included in figure 5 are
sparse, they demonstrate that moderate binning clearly offers a dra-
matic reduction in circuit area for an acceptable increase in memory
bandwidth. Not shown in the table is the additional cost of front end
sorting for smaller bins.

6 Related Work

Accelerating image computation with reconfigurable dataflow ar-
chitectures is an old idea. Acosta et al [Acosta et al. 1995] de-
scribe a standalone reconfigurable image processor. Their approach
is to identify specialized components and flexibly compose them
through a switch. More recently GPUs have been programmed to
perform image decoding operations [Han and Zhou 2006] .

Alternatively, Pixel Planes was devised as a special purpose ras-
terizer which was later discovered to have hidden flexibility [Fuchs
et al. 1985]. Pixel Planes’ core element was a parallel linear expres-
sion evaluator distributed throughout frame memory. In multiple
passes the function evaluator was re-parameterized and composed
sequentially with previous passes. The range of applications ex-
tended well beyond polygon rasterization. A thorough explanation
of the use of signed distance functions for rasterization and other
graphics uses can be found in [Frisken et al. 2000].

Our approach is a mix of these ideas in which a reconfigurable
platform is used to implement a variety of specialized functions to
better understand which ones support the broadest range of media
applications. However, our implementation is markedly different
in that the image generation circuitry produces its pixel stream di-
rectly from parameters stored in memory rather than accumulating
pixels in a frame buffer. For image decoding operations the em-
bedded processor employs a more direct implementation than those
proposed for programmable shaders in GPUs.

In most instances, rendering for large displays continues to be lim-
ited to multiple projection systems coupled to multiple graphics
computers [Li et al. 2000], a configuration which is acknowledged
to be expensive [Kurtenbach and Fitzmaurice 2005]. Finally we

Figure 5: Multipanel desktop display. (Worldwide Telescope image courtesy of Curtis Wong, Microsoft Research.)

note that the notion of embedding a processor in the display is not
novel [Myer and Sutherland 1968], but there has been little work
specifically targeting circuitry for tiled flat panel displays.

7 Summary

A large, tiled display has been enhanced with the addition of simple
function composition trees and a simple memory interface. The use
of reconfigurable logic gives us great latitude to explore architec-
tural tradeoffs, but the constraints of scalability and operation as an
embedded graphics processor have led us to a simple design. Nev-
ertheless, we have found the function composition array processor
to be remarkably flexible as well as effective in moving a significant
amount of common graphics and image processing to the back end
of the display pipeline.

References

ACOSTA, F. K., BOVE, JR., V. M., WATLINGTON , J. A., AND
YU, R. A. 1995. Reconfigurable processor for a data-flow
video processing system. InField Programmable Gate Arrays
(FPGAs) for Fast Board Development and Reconfigurable Com-
puting, Proc. SPIE 2607, SPIE – The International Society for
Optical Engineering, Bellingham, WA, J. Schewel, Ed., 83–91.

ERCEGOVAC, M. D., AND LANG, T. 2004. Digital Arithmetic.
Morgan Kaufmann.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: A general
representation of shape for computer graphics. InSiggraph
2000, Computer Graphics Proceedings, ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, K. Akeley, Ed., 249–254.

FUCHS, H., GOLDFEATHER, J., HULTQUIST, J. P., SPACH, S.,
AUSTIN, J. D., FREDERICK P. BROOKS, J., EYLES, J. G.,
AND POULTON, J. 1985. Fast spheres, shadows, textures,
transparencies, and imgage enhancements in pixel-planes. In
SIGGRAPH ’85: Proceedings of the 12th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 111–120.

HAN , B., AND ZHOU, B. 2006. Efficient video decoding on
gpus by point based rendering. InGH ’06: Proceedings of the
21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware, ACM, New York, NY, USA, 79–86.

KURTENBACH, G., AND FITZMAURICE , G. W. 2005. Guest ed-
itors’ introduction: Applications of large displays.IEEE Com-
puter Graphics and Applications 25, 4, 22–23.

L I , K., CHEN, H., CHEN, Y., CLARK , D. W., COOK,
P. R., DAMIANAKIS , S. N., ESSL, G., FINKELSTEIN, A.,
FUNKHOUSER, T. A., HOUSEL, T. C., KLEIN , A., L IU , Z.,
PRAUN, E., SAMANTA , R., SHEDD, B., SINGH, J. P., TZANE-
TAKIS , G., AND ZHENG, J. 2000. Building and using a scalable
display wall system.IEEE Computer Graphics and Applications
20, 4, 29–37.

LOOP, C., AND BLINN , J. 2005. Resolution independent curve
rendering using programmable graphics hardware. InSIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New York,
NY, USA, 1000–1009.

MYER, T. H., AND SUTHERLAND, I. E. 1968. On the design of
display processors.Commun. ACM 11, 6, 410–414.

WATSON, B., AND LUEBKE, D. 2005. The ultimate display:
Where will all the pixels come from?Computer 38, 8, 54–61.

