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ABSTRACT
Mobile advertising is an increasingly important driver in the Inter-
net economy. We point out fundamental trade-offs between impor-
tant variables in the mobile advertisement ecosystem. In order to
increase relevance, ad campaigns tend to become more targeted and
personalized by using context information extracted from user’s in-
teractions and smartphone’s sensors. This raises privacy concerns
that are hard to overcome due to the limited resources (energy and
bandwidth) available on the phones. We point out that in the ab-
sence of a trusted third party, it is impossible to maximize these
three variables—ad relevance, privacy, and efficiency—in a single
system. This leads to the natural question: can we formalize a com-
mon framework for personalized ad delivery that can be instanti-
ated to any desired trade-off point? We propose such a flexible
ad-delivery framework where personalization is done jointly by the
server and the phone. We show that the underlying optimization
problem is NP-hard and present an efficient algorithm with a tight
approximation guarantee.

Since tuning personalization rules requires implicit user feed-
back, such as clicks, we ask how can we, in an efficient and privacy-
preserving way, gather statistics over a dynamic population of mo-
bile users? This is needed for end-to-end privacy of an ad system.
We propose the first differentially-private distributed protocol that
works even in the presence of a dynamic and malicious set of users.

We evaluate our methods with a large click log of location-aware
searches in Microsoft Bing for mobile. Our experiments show that
our framework can simultaneously achieve reasonable levels of pri-
vacy, efficiency, and ad relevance and can efficiently support a high
churn rate of users during the gathering statistics that are required
for personalization.

1. INTRODUCTION
Mobile advertising is an increasingly important driver in the In-

ternet economy. Experts project that US mobile advertising spend-
ing, which increased 41.2% to $1.2 billion in 2011 compared with
2010, will ‘explode’ in coming years due to prevalence of smart-
phones, geolocation, and increasingly tech-savvy consumers [11].
To maximize the return of this huge advertisement spending, Inter-
net advertisers increasingly work to provide more targeted and per-
sonalized advertising. Online ads can be personalized on desktops
as well [30, 44]; however, the potential is significantly greater for
mobile advertisement, thanks to modern smartphone’s capability
of inferring users activities and context such as location and trans-
portation mode from various sensors [34]. An online advertiser can
use users’ contexts and activities, along with their browsing and
click history, to show ads preferentially to the users who are more
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likely to be influenced by the ads. If a user who likes Italian food
(inferred from her past browsing history) is found to be walking
(inferred from the accelerometer sensor data) alone (inferred from
the audio data) around lunch time, she can be shown ads of popular
(inferred from other users’ past locations) Italian restaurants within
walking distance of her current location (inferred from the GPS).
Such highly targeted advertising can significantly increase the suc-
cess of an ad campaign in terms of the number of resulting views,
clicks or purchases on an advertised web page.

However, such personalization raises serious privacy concerns.
Personalized services rely on private and possibly sensitive infor-
mation about a user’s preferences and current and past activities.
Such information might allow for identification of the user and her
activities. Current advertisement systems require users to com-
pletely trust these systems to not do anything bad with the infor-
mation. This trust can easily be violated, as for instance in a con-
firmed case where a Google employee spied on the accounts of four
underage teens for months before the company was notified of the
abuses [6]. Hence, a user may not be willing to share information
useful for personalization. In the previous example, the user may
not be willing to reveal the fact that she is out of the office during
business hours. Clicks on ads personalized based on private data
can also leak information about the user [21, 29].

A personalized ad delivery system has three main components
involving private user data: statistics gathering to learn personal-
ization rules by interpreting users’ contexts and clicks as implicit
relevance feedback, ad delivery to select the best ad for a user based
on her current context, and billing advertisers to collect money for
impressions or clicks. Each component leads to privacy concerns
that must be addressed to ensure end-to-end privacy. In this paper,
we focus on the first two components. (We refer readers to [42] for
a private billing component.)

Privacy-Aware Ad Delivery. Current advertising systems such
as Google, Yahoo!, and Microsoft as well as many research pro-
posals efficiently personalize ads by collecting personal data at a
server [30, 44]. To address the privacy concerns of such server-
only personalization, several prior work proposed client-only solu-
tions that keeps personal information at the client device and per-
forms personalization at the client [39]. Several recently proposed
systems such as Privad [22] and Repriv [15] started to explore
the interesting space between server-only and client-only solutions.
Repriv [15] allows users to control how much data is shared with
the server. The personalization is carried out based on this limited
information at the server-side. Privad [22] places a proxy between
server and client to achieve anonymity of personalization requests.

The above systems optimize for various design goals and raise
one natural question: are there any fundamental trade-offs in the
design space of personalized ad delivery that these systems present?



We answer this by formalizing the task of delivering personalized
ads from a server to a client as an optimization problem with three
important variables: (1) privacy, i.e., how much information about
the user’s context is shared with the server, (2) communication ef-
ficiency, i.e., how few ads are sent to the client, and (3) utility, i.e.,
how useful the displayed ads are to the user in terms of revenue and
relevance. We show in Section 3 that, in the absence of any trusted
third party, it is impossible to maximize all three design goals si-
multaneously. The aforementioned previous works on personalized
ad delivery present various discrete points in the trade-off space: a
server-only solution achieves optimal efficiency at the cost of pri-
vacy or utility, while a client-only solution ensures optimal privacy
but sacrifices efficiency or utility.

This fundamental trade-off leads to another important question:
can we formalize a common framework for personalized ad deliv-
ery that can be instantiated to any desired trade-off point? We
provide an affirmative answer to the above question with a hy-
brid framework where the personalization is done jointly by the
ad server and the client. In our framework, we formalize the task
of ad delivery as an optimization problem involving the three vari-
ables between a user and the ad server. Users can decide how much
information about their sensor readings or inferred contexts they
are willing to share with the server. Based on this limited informa-
tion, the server selects a set of ads or search results, with bounded
communication overhead, and sends them to the client. The client
then picks and displays the most relevant ad based on all the private
information. A key challenge in this framework is to choose the set
of ads sent by the server and the ad displayed at the client in a
way that maximizes utility (i.e., revenue) given constraints on effi-
ciency (i.e., maximum communication cost) and privacy (i.e., max-
imum information disclosure). In other instantiations, our frame-
work can optimize a combination of revenue and efficiency given a
constraint on privacy. Such a flexible framework is extremely use-
ful in practice as different systems may have different priorities on
these variables. We show that the optimization problem is NP-hard
and present an efficient greedy algorithm for hybrid personalization
with tight approximation guarantees.

Note that several existing advertising systems such as Privad
and location based services [10, 28, 47] use a similar principle
as our framework: the client releases limited information (e.g.,
broad interest category, cloaked region), the server chooses a set
of ads/results to disseminate to the client, and finally the client
chooses the most suitable ad/result based on private information.
Our contribution is to formally analyze the framework and to show
how to operate in a desired point in the vast trade-off space of pri-
vacy, efficiency, and utility. We achieve the latter by letting the
user and server flexibly choose constraints on privacy, efficiency,
and utility. In doing so, existing personalization solutions become
special cases of our flexible framework; and the framework can be
configured to explore other attractive points in the trade-off space.

Privacy-Preserving Statistics Gathering. Personalized ads are
chosen based on historical information about which ads users in a
context clicked on i.e., context-dependent click-through rates (CTRs)
of ads. However, estimating CTRs constitutes a big privacy chal-
lenge: users are often unwilling to reveal their exact contexts and
even their clicks as they leak information about their contexts. We
need to address this challenge in order to ensure end-to-end pri-
vacy of the overall ad service. One might use a distributed privacy-
preserving aggregation protocol [1, 12, 37, 40] to compute such
statistics. However, these are unsuitable for a large population of
mobile users where a small fraction of users can become unavail-
able during the course of computing CTRs. For example, a user
may turn off her mobile device any time or may want to answer

an aggregation query only at a convenient time when her phone is
being charged and connected through a local WiFi network. An-
other user might decline to participate in the exchange of certain
messages in the protocol. Yet another user might leave or join
the community of mobile users. Existing protocols [1, 12, 37,
40] do not efficiently handle such dynamics (more details in Sec-
tion 5.5), making them unsuitable for estimating CTRs from mo-
bile users. Then, how can we, in an efficient and privacy-preserving
way, gather statistics over a dynamic population?

We answer this with a novel aggregation protocol to compute
CTRs from a highly dynamic population without a trusted server.
To the best of our knowledge, this is the first differentially-private
protocol that computes accurate aggregations efficiently even when
a fraction of participants become unavailable or behave maliciously.

Note that our results can be applied to personalize not just on-
line advertising but also other online services based on users’ fine-
grained contextual information including local search. For con-
creteness, we consider advertising throughout the paper.

We have evaluated our algorithm with a large trace of location-
aware searches in Microsoft Bing for mobile. To the best of our
knowledge, this is the first empirical study of ad-serving trade-offs
between privacy, efficiency, and utility with real trace. Our results
show that the trade-offs between privacy, efficiency, and utility are
not very strong in practice and reasonable levels of all these three
goals can be achieved simultaneously. Results also show that hy-
brid personalization achieves much better trade-offs than server-
only and client-only personalization. Finally, our statistics gather-
ing algorithm efficiently handles large churns of users.

In summary, we make the following contributions:
! We formalize a hybrid personalization framework with three op-
timization variables: privacy, efficiency, and utility. We show that
the optimization problem of personalizing ads based on private con-
texts is NP-hard and present an efficient greedy algorithm with a
tight approximation guarantee (Sec. 3).
! We develop a differentially-private protocol for estimating statis-
tics required for personalization without a trusted server. In contrast
to existing protocols, our protocol can efficiently handle a dynamic
set of participating users (Sec. 4).
! We evaluate effectiveness and robustness of our solution on a
large click log of location-aware searches in Microsoft Bing for
mobile. Our results illustrate trade-offs between privacy, commu-
nication efficiency and utility in personalized ad delivery (Sec. 5).

2. THE FRAMEWORK AND DESIDERATA

2.1 The Framework
Our framework has three classes of participants: The users who

are served ads (also referred to as clients) in their mobile contexts,
the advertisers who pay for clicks on their ads, and the ad service
provider (also referred to as the server) who decides which ads to
display and is paid for clicks by the advertisers. The framework
works in two (potentially parallel) phases.
! Statistics Gathering. In this phase, the server gathers vari-
ous statistics (e.g., click-through-rates of various ads) from clients.
This phase happens periodically in the background. (Sec. 4.)
! Ad-delivery. In this phase, the server uses statistics gathered in
the previous phase and user’s current context to select and deliver
personalized ads to the user. We allow users to decide how much
information about their sensor readings or inferred contexts they
are willing to share with the server. Based on this limited informa-
tion, the server selects a set of ads or search results, with bounded
communication overhead, and sends them to the user. The user then
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Figure 1: Framework.

picks and displays the most relevant ad based on all the private in-
formation. (Sec. 3.)
Privacy Guarantee. Statistics gathering and ad delivery use pri-
vate data differently—statistics gathering uses historical context
and click data from many users, while ad delivery uses a user’s
current context. Therefore, we use different, but state of the art,
privacy guarantees for them. For the gathering of statistics, a user
can decide whether or not to participate. If she decides to partic-
ipate then she is guaranteed differential privacy [13], i.e., that her
data will hardly affect the statistics. Such a strong privacy guaran-
tee is needed in practice since statistics are often shared and used
extensively. Differential privacy has been widely used (see for in-
stance [23, 24, 31, 33, 37, 40, 43]). However, it seems to be in-
compatible with personalization that requires a single user’s current
context (instead of aggregate statistics). Therefore, in the spirit of
many existing personalization systems and the modus operandi in
many mobile applications [15, 26, 30, 44], we ensure user privacy
through limited information disclosure. The information disclosure
about a user in context c can be limited by generalizing the user’s
context obtaining ĉ and only sending ĉ to the server, e.g. instead of
revealing that the user is doing Yoga in Dolores Park, the user only
discloses to be exercising. The generalization of context is done
over a hierarchy described later. For a context c that can be gener-
alized to ĉ we write c → ĉ. The question is what is the right level of
generalization of a context? We can let the user decide how to gen-
eralize her context with the help of existing tools from the UI com-
munity (e.g. [41]). Alternatively, we can guarantee !-diversity [32]
to protect the privacy of a user’s sensitive contexts. !-diversity has
been used in location-based systems [3, 9, 45] to protect location
privacy. The privacy of a generalized context is measured as (1)
its number of descendants and (2) its ratio of non-sensitive descen-
dants to sensitive descendants. The user can specify a minimum
privacy requirement and we choose an appropriate cut in the con-
text hierarchy so that (1) and (2) are satisfied and each leaf node has
exactly one ancestor on the cut to which it is generalized, before it
is sent off to the server. This introduces uncertainty of an adversary
about whether the user is in a sensitive context or not.

Figure 1 illustrates our framework. The server periodically com-
putes various click-through-rates (CTRs) over the entire population
offline. A CTR of an ad is defined as the number of clicks on the
ad divided by the number of times it is shown (impressions). These
CTR values are used to estimate relevance of ads to various con-
texts. During ad-delivery time, the user’s phone determines her
context to be doing Yoga in Dolores Park in San Francisco. How-
ever, the user decides to share only the fact that she is exercising.
Based on this limited information and CTR values, the ad server
selects and returns two ads. The more relevant one is chosen by the
phone based on user’s private information (doing Yoga in Dolores
Park in San Francisco) and displayed to the user.

2.2 Desiderata

Our desiderata include goals of the individual participants as
well as general system requirements. Informally, we want the ad-
vertising system to provide good privacy, utility (revenue/relevance),
and performance (communication efficiency/scalability/robustness).
Since ad delivery and statistics gathering phases are different in na-
ture, we have slightly different desiderata for them.

2.2.1 Desiderata for Ad Delivery
We have three design goals for ad delivery: Privacy, efficiency,

and revenue/relevance (utility).

! Privacy. In order to protect privacy of sensitive contexts, the
user would like to limit the amount of information about her mobile
context that is sent to the server.

! Efficiency. The ad serving system should be efficient both in
terms of communication and computational cost—the user wants
ads fast and without draining much battery power on her mobile
device, while the ad service provider wants to run his system at low
operating cost. For simplicity, we focus on communication cost
between the server and a client since it is the most dominant cost
of serving ads to mobile devices. Our results can be extended to
consider computational cost of the server and the client as well.

! Revenue and Relevance. The ad service provider seeks to max-
imize revenue. The user is only interested in relevant ads. The goal
of the ad service provider is to display an ad from a given set of ads
A that maximizes the expected revenue. For a click on ad a, the
ad service provider is being paid pa from the advertiser. Clearly,
not all users click on an ad. We denote by CTR(a|c) the context-
dependent click-through-rate, i.e., the fraction of users who actu-
ally clicked on it in context c among those who were served the ad
in context c. The expected revenue of displaying an ad a to a user
in context c is pa · CTR(a|c). We view clicks as an indicator for
relevance: users who are interested in an ad click on it. Maximiz-
ing relevance means maximizing the expected number of clicks by
displaying to a user in context c the ad a with the highest context-
dependent CTR(a|c).

2.2.2 Desiderata for Statistic Gathering
We have following goals in the statistics gathering phase.

! Privacy in the Absence of a Trusted Server. We do not as-
sume the availability of a trusted server to collect all user data to
compute statistics. Without a trusted server, we need a distributed
aggregation protocol that protects user privacy, even under adver-
sarial scenarios such as when a fraction of the participants behave
maliciously, send bogus messages, or collude with each other. This
requirement sets our work apart from previous work on publishing
privacy-preserving statistics that all assume a trusted third party
(see [4] and the references therein).

! Scalability. We need to scale the computation to a large number
of users and contexts.

! Robustness to a Dynamic User Population. With a large num-
ber of transient mobile phone users, not all of them are available
and willing to engage in all rounds of our protocol. Users decide
which queries they are willing to answer and when (e.g., when the
phone is being charged and connected through a WiFi network).
Therefore, our protocol should be able to deal with a dynamic user
population without sacrificing privacy or scalability.

With the above desiderata in mind, rest of the paper answers the
following questions mentioned in Introduction:

• What are the trade-offs in the design space of personalized
ad delivery? How can we instantiate the above framework to
any desired optimal trade-off point?



• How can we, in an efficient and privacy-preserving way, gather
required statistics over a dynamic population?

3. PRIVACY-AWARE AD DELIVERY
In this section, we investigate a fundamental trade-off between

our goals and show how to deliver ads with a desired trade-off.

3.1 The P-E-R Trade-offs
Our three design variables—Privacy, Efficiency, and Relevance—

are conflicting. Without a trusted third party, optimizing all three
design goals simultaneously is impossible. Consider the task of
showing only one ad to the user. Then, in case of minimum in-
formation disclosure (i.e., the user does not send any information
about her context) and highest communication efficiency (i.e., the
server may only return a single ad), the server needs to choose the
ad without any knowledge of user’s context. Whatever the server
does yields suboptimal relevance and revenue, as long as there is
an ad whose CTR depends on the context. If we want to improve
the relevance, either the user needs to send some information to the
server, or the server needs to send more than one ad for the user to
perform local personalization.

If we drop any of our three design goals the problem becomes
easy. If there were no concerns about privacy, we could use a
server-only scheme, where the user sends her context c to the ad
service provider, who serves the ad that maximizes the expected
revenue, i.e., pa · CTR(a|c). This is a very efficient scheme that
maximizes revenue. If there were no efficiency concerns, we could
use a client-only scheme, where the server simply sends all ads A
so that the user can pick the ad that maximizes expected revenue.1

It has been estimated that due to ad churn this requires sending
2GB of compressed ads per month [22]. Alternatively, we could
use expensive cryptographic protocols for private information re-
trieval [16]. No user information is disclosed to the server and
optimal revenue is achieved, but performance is bad. Finally, if
there were no financial incentive and no interest in relevant ads,
one could stop serving ads altogether to avoid any concerns regard-
ing efficiency and privacy. In practice, one has to find reasonable
trade-offs between the three design goals.

3.2 Optimizing Ad Delivery
In our framework, the user gets to decide what information about

her context to share with the server. Based on this information the
server selects some k ads A ⊂ A that are sent to the user. Here,
the parameter k determines the communication cost. Computation
cost can also be included in k if needed. The user then picks one
ad from A to display. The set of ads and the ad to display should
be chosen in a way that maximizes revenue.

Our flexible framework can be optimized for various objective
functions over privacy, efficiency, and revenue. For concreteness,
we now assume that there are constraints on both information dis-
closure (determined by users) and communication cost (determined
based on current network load); we seek to maximize revenue un-
der these constraints. We will discuss alternative objective func-
tions in Sec. 3.3.2.

3.2.1 Client-Side Computation
For a given set of ads A chosen by the server, a client in context

c maximizes the revenue by selecting the ad

a∗ = argmax
a∈A

pa · CTR(a|c).
1If we had a trusted third party, it could collect private information
from the client and all ads from the server, and send the best ad
to the client. This would maximize all three variables, ignoring
communication overhead between the server and the third party.

3.2.2 Server-Side Computation
The server needs to determine the best k ads to send to the user

given only the partial information ĉ it has. Suppose that the server
has information not only on click-through-rates, but also on the
frequency of each context. If this is all the information the server
has, then from its point of view the expected revenue of sending a
set A of ads to the user depends on the user’s true context c; it is
maxa∈A pa · CTR(a|c). Since the server knows only the general-
ized context ĉ, it considers the probability of each of the possible
contexts c′ → ĉ and the expected revenue of A in this context c′.
With this limited information the expected revenue of a set of ads
A for a generalized context ĉ is

E[Revenue(A|ĉ)] =
∑

c:c→ĉ

Pr[c|ĉ] ·max
a∈A

pa · CTR(a|c).

It is the server’s task to select the set A∗ of k ads from A that max-
imizes the expected revenue, given only the generalized context ĉ
of the user, i.e.,

A∗ = arg max
A⊂A:|A|=k

E[Revenue(A|ĉ)]

Finding these k ads is NP hard as we will show in the next section.
However, we can employ approximation techniques to efficiently
select a set of k ads with revenue close to the optimal revenue.

3.2.3 Instantiations of the Framework
Our framework encompasses client-side personalization by set-

ting ĉ to the most generalized context that does not leak any infor-
mation about the client’s true context. In this case the personaliza-
tion takes place exclusively on the client side. Our framework also
encompasses server-side personalization by setting k = 1 in which
case the client simply displays the ad sent by the server without
further personalization. However, higher revenue can be achieved
in our framework when the server sends back k > 1 results.

Additional Constraints. While high revenue and high relevance of
ads are related goals, they are not the same. Suppose the ad service
provider receives a request from a user in context c. Suppose fur-
ther there are two ads a1, a2 with CTR(a1|c) = 0.1,CTR(a2|c) =
0.9 and pa1 = $0.1, pa2 = $0.01. Ad a1 has the higher expected
revenue but a2 is more relevant. While displaying a1 maximizes
short-term revenue it might not be the best long-term strategy. Re-
cent work has found that the time users spend viewing ads depends
on the predictability of the quality of the ads [5]. Our framework
can reconcile relevance and short-term and long-term revenue goals
by adding a constraint on CTR.

3.3 Ad Selection Algorithms
We now explain how client and server can efficiently compute

their parts of the optimization to jointly choose the best set of ads
that achieve a desired trade-off. We consider a specific instantia-
tion of the optimization problem where the user fixes her privacy
requirement; the client and the server then try to maximize revenue
for a given bounded communication complexity k. At the end of
the section we discuss extensions and alternatives.

The client can quickly compute the equation in Sec. 3.2.1, since
the number of ads from which the client picks one is small (≤ k).

However, the server’s task—to select a set of k ads from A that
maximize the expected revenue given only the generalized context
ĉ of the user—is much more demanding. In fact, a reduction from
the maximum coverage problem shows:

PROPOSITION 3.1. For a generalized context ĉ it is NP-hard to



Algorithm 1 Greedy algorithm for selecting ads maximizing the
expected revenue.

Greedy(ads A, generalized context ĉ, threshold k)
Init A = ∅
while |A| < k do

for a ∈ A do
ba ← E[Revenue(A ∪ {a}|ĉ)]− E[Revenue(A|ĉ)]

A ← A ∪ {argmaxaba}
return A.

select the revenue-maximizing set of k ads A∗ such that:

A∗ = arg max
A⊂A:|A|=k

∑

c:c→ĉ

Pr[c|ĉ] ·max
a∈A

pa · CTR(a|c)

Moreover, the maximum coverage problem cannot be approximated
within e

e−1 − o(1) assuming P *= NP [14].

3.3.1 Approximation Algorithm
Algorithm 1 shows a greedy algorithm, called Greedy, that con-

structs a set A of k ads incrementally. It starts with A empty and in
each round, the ad that increases the expected revenue the most is
added to A.

Interestingly, the output of this simple greedy algorithm approx-
imates the optimal value to within a factor of (1− 1/e). Although
the greedy algorithm is known to provide such a guarantee for
the maximum coverage problem [25], our problem is considerably
more complex: In the coverage problem a set either fully covers an
element or not. In our case an ad a can partially “cover” a context
c that can be generalized to ĉ. Thus a new analysis is required. We
first define a benefit function of adding a set A′ to a set A:

B(A,A′) = E[Revenue(A ∪A′|ĉ)]− E[Revenue(A|ĉ)].

The benefit function has the nice property (proved in page 99 of
[18]):

FACT 3.2. The benefit function is submodular, i.e., for all sets
of ads A1 ⊆ A2 and for all A, B(A1, A) ≥ B(A2, A).

However, due to the complex nature of our problem, the submodu-
larity property alone does not imply our approximation guarantee.

Let a1, . . . , ak be the k ads chosen by Greedy in the order they
were chosen. To simplify the analysis, we define the benefit of the
ith ad to be bi and the expected revenue after adding the first l ads to
be b(l) =

∑l
i=1 bi. Similarly, let a∗

1, . . . , a
∗
k be the k optimal ads

in any fixed order. We define the benefit of the ith ad to be b∗i and the
expected revenue after adding the first l ads to be b∗(l) =

∑l
i=1 b

∗
i .

LEMMA 3.3. ∀l ∈ [k]: bl ≥ b∗(k)−b(l−1)
k .

PROOF. The benefit of adding a∗
1, . . . , a

∗
k to a1, . . . , al−1 is at

least b∗(k)− b(l − 1):

B({a1, . . . , al−1}, {a∗
1, . . . , a

∗
k}) ≥ b∗(k)− b(l − 1)

It is also equal to
∑k

i=0 B({a1, . . . , al−1}∪{a∗
1, . . . , a

∗
i−1}, {a∗

i }).
Thus, it follows from an averaging argument that ∃i, 1 ≤ i ≤ k :

B({a1, . . . , al−1} ∪ {a∗
1, . . . , a

∗
i−1}, {a∗

i }) ≥ b∗(k)−b(l−1)
k . By

submodularity this implies that
∃i, 1 ≤ i ≤ k : B({a1, . . . , al−1}, {a∗

i }) ≥
b∗(k)− b(l − 1)

k
.

Since the greedy algorithm in round l selected the ad al that max-
imizes B({a1, . . . , al−1}, ·), the benefit of that ad, bl, has to be at
least b∗(k)−b(l−1)

k which completes the proof.

We use this lemma to prove the following by induction.

LEMMA 3.4. ∀l ∈ [k]: b(l) ≥ (1− (1− 1/k)l)b∗(k).

PROOF. Proof by induction on l.
l = 1. Lemma 3.3 tells us that b1 ≥ b∗(k)

k = (1−(1−1/k)1)b∗(k).
l → l + 1.

b(l + 1) = b(l) + bl+1 ≥ b(l) +
b∗(k)− b(l)

k

=
b∗(k)
k

− b(l)(1− 1/k) ≥ b∗(k)
k

− (1− (1− 1/k)l)b∗(k)(1− 1/k)

= (1− (1− 1/k)l+1)b∗(k)

The first inequality follows from Lemma 3.3 and the second follows
from the induction hypothesis.

The main theorem on the approximation guarantee follows.

THEOREM 3.5. The greedy algorithm approximates the opti-
mal value to within a factor of (1− 1/e).

PROOF. By Lemma 3.4 we have that

b(k) ≥ (1− (1− 1/k)k)b∗(k) ≥ (1− 1/e)b∗(k)

3.3.2 Extensions
Alternate Objective Function. So far, we tried to maximize rev-
enue under hard constraints on both the amount of information dis-
closure and the communication cost k. Instead, one might consider
the communication cost as a variable and include it in an objective
function that maximizes the value of (revenue −αk).

Consider an alternate objective function that maximizes the value
of (revenue −αk). A simple solution is to run Greedy for all val-
ues of k and pick the outcome that maximizes our new objective
function. However, by exploiting the submodularity of the ben-
efit function, we can maximize the new objective function more
efficiently. All we have to do is to replace the while condition in
Algorithm 1 by a new one that checks whether the current value of
E[Revenue(A)]− α · |A| is increasing.

This modification works correctly because the following argu-
ment shows that as we increase k, our new objective function in-
creases until at some point it starts to decrease and never increases
again. Suppose in round k′ the expected revenue ofA = {a1, . . . , ak′}
minus α · k′ is not increasing any longer, i.e.,

Revenue({a1, . . . , ak′})− αk′

≤Revenue({a1, . . . , ak′−1})− α(k′ − 1).

At this point the benefit of adding ak′ is at most α. Due to sub-
modularity, the benefit of any future ad being added to A can only
be smaller and thus will never lead to an increase of the objective
function.
Additional Constraints. We can incorporate a constraint on ad
relevance by setting the CTR to zero whenever it is below a certain
threshold. Then, no ad with CTR below this threshold will ever be
displayed at the client.
Advertisers’ Control. Our algorithm can incorporate additional
restrictions posed by advertisers on the contexts in which their ads
are being displayed. Very much like advertisers for sponsored re-
sults in Web search can bid on keywords in a query, our advertisers
can bid on contexts of users. To make sure the ad is only displayed
on these contexts, we can make the payment pa context-dependent
and set it to 0 for all but the contexts the advertiser bids on.



4. PRIVATE STATISTICS GATHERING
The optimization framework described in previous section uses

various statistics; in this section we describe how to obtain those
in a private way with the desiderata mentioned in Section 2.2.2.
The main mechanism we employ to build a scalable and robust
protocol is to use a server and a proxy: The server is responsible
for key distribution and the computation of the final result while
the proxy is responsible for aggregation and anonymization. For
example, the ad network server can employ Verisign as the proxy.
The idea of using two servers to build secure protocols has been
used previously [2, 16, 22] in different applications; we use it here
for privacy-preserving aggregation.

In our setting, each user keeps a history of what ads she has
viewed/clicked that, for privacy reason, is stored on user’s local
device. The server then, with the help of the proxy, uses our proto-
col to compute statistics necessary for ad delivery: the probability
distribution over contexts, Pr[c], and the context-dependent click-
through rates, CTR(a|c). Both can be estimated by counting how
many users were in a specific context c and viewed / clicked on a
specific ad a. Hence we start with privacy-preserving computation
of count queries.

4.1 Assumptions and Privacy Preliminaries
We assume secure, reliable, and authenticated communication

channels between servers and users. In addition, we make the fol-
lowing two key assumptions, similar to those made in previous
works [8, 37, 40].
1. Honest-but-Curious Servers. Server and proxy honestly follow
the protocol. They are curious but do not collude with anyone.2

2. Honest Fraction of Users. At most a t fraction of users are
malicious or unavailable during the protocol. This means, at least
a fraction of 1 − t users honestly follow the protocol. The honest
users can be curious but they do not collude with anyone.

We aim to ensure user privacy with respect to all participants in
the distributed protocol. There are many different ways to define
privacy in data publishing. We refer the reader to an excellent sur-
vey [7]. For the purpose of this paper, we work with ε-differential
privacy [13]. The idea behind this strong guarantee is that whether
or not the contexts and clicks of a single user were used in the
computation hardly affects the released outcome. Therefore, a user,
given the choice of whether or not to supply her data has hardly any
incentive to withhold it. The parameter ε determines how much the
outcome may be affected.

In the absence of a trusted server, we need to generate noise re-
quired to ensure differential privacy in a distributed manner. In this
paper we adopt the probabilistic relaxation (ε, δ)-differential pri-
vacy [31], for which noise can be generated in a distributed way.
The parameter δ bounds the probability that a privacy breach (ac-
cording to ε-differential privacy) occurs. For δ = 0 this definition
is equivalent to ε-differential privacy. (ε, δ)-differential privacy of a
count query can be realized by adding Gaussian noise and Gaussian
noise with variance σ2 can be generated in a distributed manner by
N parties, by summing up N independent random samples from
the Gaussian distribution with variance σ2/N . More recently, Ács
et al. [1] have shown how to generate Laplace noise in fully dis-
tributed way, by constructing Laplace distribution as the sum over
i.i.d. samples from the Gamma distribution. Our protocol can eas-
ily adopt this technique and ensure ε-differential privacy as well.
Notation. Consider a user activity log L containing the data of a
set of users U . We can restrict the log L to the data of a subset of
the users U ′ ⊂ U , denoted by LU′ . If U ′ contains users not in U ,
2The assumption may be relaxed by using trusted hardware [8].

we define LU′ to be LU∩U′ . Consider a distributed protocol M in-
volving a set of participants P . Note that the set of users and the set
of participants can be overlapping. We define the view of a subset
of participants P ′ ⊂ P in the execution of M on input L, denoted
by VP ′ , to be a random variable for all messages received and sent
by a participant in P ′. For a non-participant we define the view
to be the output of the distributed protocol. The set of participants
can be partitioned into two sets: Pm of malicious participants and
Ph of honest but possibly unavailable participants. We have that
P = Ph ∪ Pm and Ph ∩ Pm = ∅.

DEFINITION 1. A distributed protocol M with participants P
satisfies (ε, δ)-distributed probabilistic differential privacy of the
users if for all user activity logs L and all (non-) participants p
the following holds. In case p is malicious let P ′

m denote the set
of malicious participant colluding with p which are a subset of the
malicious participants Pm. Otherwise let P ′

m be {p}. There exist
randomized algorithms M ′ and R so that (a) M ′(LU\(Pm∪{p}))
preserves (ε, δ)-probabilistic differential privacy and (b) R gen-
erates the distribution of the view VP ′

m
given M ′(LU\(Pm∪{p}))

and LPm∪{p}, i.e., VP ′
m

and R(M ′(LU\(Pm∪{p})), LPm∪{p}) are
identically distributed.

The definition considers the view of a (non-)participant p. This
view contains messages sent and received by any participant col-
luding with p, denoted by P ′

m. In case p is not malicious P ′
m

is {p}. Privacy means that this view can be simulated from an
output that preserves probabilistic differential privacy of the users
who are not malicious. This output is generated by some algo-
rithm M ′ from the users’ input that are neither malicious nor equal
to p (LU\(Pm∪{p})). We do not attempt to protect the privacy of
malicious participants. This is indeed impossible, since the adver-
sary controlling them could always send a message containing LPm

which breaches their privacy. Moreover, we do not protect p’s pri-
vacy against herself. The simulation takes this output as well as
the input from all malicious participants to produce the same view.
The second input is necessary for a simulation to be possible at all.

A central building block of our protocol is a procedure for com-
puting a sum over user values. We will use it to compute how many
users clicked on an ad a in context c.

4.2 A Privacy-Preserving, Distributed Count

4.2.1 Our counting protocol
Protocol 1 describes our protocol Count(t,σ2). Each user ui

for i = 1, . . . , N holds a bit bi. The protocol computes a noisy
version of the sum

∑
bi. The parameter p is a sufficiently large

prime number, t is an upper bound on the fraction of malicious
or unavailable users, and σ2 is the amount of noise. If more than t
fraction of users turn out to be malicious or unavailable, the privacy
guarantee degrades and/or the protocol needs to be aborted before
Step 4 and restarted (with a larger value for t). As t increases, the
share of noise each participant adds to his or her bit increases.
Efficiency. The number of messages exchanged in Count is linear
in the number of users, as in the most efficient previous solutions [1,
37, 40]. Messages across Count computations can be batched.
Robustness. Unlike previous protocols [37, 40], Count success-
fully terminates as long as at least (1 − t)N users send messages
to server and proxy. Unlike these previous protocols, our proto-
col does not expect the secrets of participating users to add up to
a predefined constant. Rather, it lets users independently choose
their own secrets ki (Step 1) and uses secrets of only the users who
have participated throughout the entire protocol. Unlike [1], our



Protocol 1 Robust, distributed count computing a privacy-
preserving version of the sum over all private user bits bi.
Count(σ2, t)

1. Each user i with bit bi samples ki ∈ {0, . . . , p− 1} i.i.d.

2. Each user i samples ri from N (σ2/((1− t)N − 1)).

3. Each user i uses 2-Phase-Commit to atomically send ki to
the server and mi=bi+0ri1+ki mod p to the proxy.

4. The proxy sums up all incoming messages mi. It forwards
s =

∑
mi mod p to the server.

5. The server subtracts from s the random numbers ki (
mod p) it received and releases the result

∑
bi + ri.

protocol can tolerate failures of users during its execution. When
Count is executed multiple times, it suffices that for each execu-
tion, at least (1 − t)N possibly different users participate. Thus,
our protocol can deal with unavailable users much more efficiently
than previous protocols.

4.3 Privacy
Following Definition 1, the protocol preserves privacy.3

THEOREM 4.1. For users with real values b(1)i , . . . , b(d)i Proto-
col Count(σ2, t) can be used repeatedly to compute

∑
b(1)i , . . . ,

∑
b(d)i

with noise added to protect privacy. Let s denote the L2-sensitivity
of

∑
b(1)i , . . . ,

∑
b(d)i . Consider ε ≤ 1 and σ2 ≥ 2s2 ln(4/δ)/ε2.

The protocol guarantees (ε, δ)-probabilistic differential privacy in
the presence of up to a fraction of t unavailable or malicious users.

The proof relies on Gaussian noise to protect the privacy. In the
case of a trusted server, it is well know that adding Gaussian noise
protects privacy. In particular, we can sanitize the output of any
real-valued function f : ad logs → Rd by adding Gaussian noise
to f(L). The standard deviation of the noise depends on the L2-
sensitivity of f which describes how much the value of the function
can change if a single user’s data is deleted from the input. This
change is measured by the L2-norm.

PROPOSITION 4.2. For ε ≤ 1 and σ2 ≥ s22 ln(4/δ)/ε2, adding
Gaussian noise with variance σ2 to a function f with L2-sensitivity
s gives (ε, δ)-probabilistic differential privacy.

This theorem has been established for δ-approximate ε-indistin-
guishability [12] and extends to our definition, which is stronger [19].
Now, when we consider all the participants of the protocol we use
the addition of Gaussian noise as M ′ in Definition 1 and show that
their view can be generated from it. Details can be found in [18].
Additional Guarantees. Our protocol also provides some guaran-
tees in case either server or proxy (but not both) are corrupted by
an adversary (but not colluding with any user or the other server).
If the proxy is corrupted by an adversary, we guarantee that the
adversary will not be able to learn information that breaches pri-
vacy. This guarantee holds since the proxy sends only the very
last message of the protocol upon which no further action is taken.
Similarly, if the server is corrupted we guarantee that the adversary
will not be able to learn information that breaches privacy. The
adversary may send any value to the proxy from which

∑
ki will

be subtracted. The output will be random in case the value is not
a sum that contains exactly one term for each received message
3Our protocol can also guarantee ε-differential privacy if Laplace
noise is generated in a distributed way, following techniques de-
scribed in [1].

Count ≥ 
min_support 

Count  <  
min_support 

Figure 2: Hierarchy H over contexts.

mi. In this case privacy is trivially preserved. Otherwise the value
contains sufficient noise to preserve privacy. These guarantees are
meaningful with regard to adversaries who want to learn private
information. We do not guarantee that a malicious adversary can-
not breach privacy: an adversary corrupting the proxy could release
the keys, which would allow the honest-but-curious server to learn
bi + ri, which would breach privacy.

4.4 Employing Count to compute CTRs
Given Count, the above statistics can be estimated well for con-

texts with a lot of user data (e.g., clicks). However, for a large
number of contexts sufficient click data may not be available. For
such rare or new contexts, the estimates can be noisy or not even
be defined. We suggest estimating Pr[c] and CTR(a|c) for a rare
context c based on contexts similar to c for which we have enough
click data. Coming back to our example from Section 2, if we do
not have enough click data for users who were skating in Central
Park, we might use clicks from users in close-by locations who
were doing some sort of physical activity (c̃) to estimate the statis-
tics for the context c. This helps us increase coverage of targeted
ads, albeit at the possible cost of lower quality ads. To define simi-
larity over contexts, we reuse the hierarchies over which users gen-
eralize their context attributes. The context hierarchy is built by
merging various attribute hierarchies; a concrete example will be
shown in Section 5.1. This hierarchy tells us, for each general-
ized context, which attribute to generalize next.4 Given some rare
context, we can generalize it until we have a sufficient number of
clicks for the generalized context. With these clicks we estimate
the CTRs. The parameter min_support specifies how many clicks
are sufficient for robust estimates. Figure 2 shows a hierarchy H
over contexts with leaf nodes being exact contexts and intermediate
nodes being generalized contexts. It shows a cut-off through the hi-
erarchy so that all (generalized) contexts above the cut-off have at
least min_support many clicks in the training data for descendant
contexts. The contexts below the threshold need to be generalized
before estimating their CTRs.5

Possible Solutions. One possible way to employ Count to ob-
tain privacy-preserving statistics for various contexts is to compute
noisy counts for all possible contexts and all possible ads. Another
alternative approach, with better utility, would be to use multi-
dimensional histograms [43, 23]. However, all these approaches
have a running time at least linear in the number of possible con-
texts, rendering them infeasible. Moreover, a large part of the
computation is wasteful, since, as mentioned before, statistics com-
puted for rare contexts are almost meaningless.

To address this problem, we opt for a simple top-down approach

4It is recommend but not required that users generalize the contexts
they send to the server to a node in the hierarchy.
5Note that there are other ways to define similarity, for example
using the lattice structure imposed by the attributes’ hierarchies.
Our experimental results show only a minor effect on quality when
using a fixed combined hierarchy as opposed to a lattice structure.



Algorithm 2 Privacy-preserving Estimates.
Estimates(context-driven ad log, noise scale λ, threshold
min_support, contribution bound m, hierarchy H)
for each user do

Delete all but m views or clicks on ads and their contexts of
this user from the ad log.

return TopDown(ad log, root(H), λ, min_support)

Algorithm 3 Top-Down computation of noisy statistics.
TopDown(context-driven ad log, node v in the hierarchy, noise
scale λ, threshold min_support)
A′ = set of ads with bids on context of v
for a ∈ A′ do
clicksa,v = Count (# of clicks on a in v in ad log)
no_clicksa,v = Count (# of views of a w/o clicks in v)
release ĈTR(a|v) = clicksa,v

clicksa,v+no_clicksa,v

countv = Count (# of appearances of node v appears)
release countv
if countv > min_support then

for each child w of v do
return TopDown(ad log, w , λ, min_support)

that can efficiently deal with sparse data by identifying and pruning
the computations for rare contexts. The solution requires using a
context hierarchy that specifies similarity of contexts. Such a top-
down algorithm has been used recently to find frequent signatures
by gradually expanding the prefix of signatures with high noisy
counts [33]. We adapt it to compute CTRs over a context hierarchy.

A Top-Down Algorithm. To compute privacy-preserving CTRs
for the generalized contexts in the hierarchy H , algorithm TopDown
starts at the root and moves down the hierarchy. For each traversed
node v and for each ad a, it estimates CTR(a|v) by calling Count
to compute how often users in a descendant context of v have
clicked (or only viewed) a. The results of this computation is re-
ferred to as clicksa,v (no_clicksa,v , resp.). The estimated click-
through-rate is then simply ĈTR(a|v) = clicksa

clicksa,v+no_clicksa,v
.

TopDown also computes the total number of times a descendant
of v appears in the ad log and adds noise to this count. If the count
is above min_support then the algorithm recurses on v’s children,
otherwise all descendants are pruned. We note that the accuracy
of Estimates can be further improved by using the post-processing
techniques of Hay et al. to make sure the counts of all children add
up to the parent’s count [24]. To bound the sensitivity and to guar-
antee differential privacy, we limit the number of entries per user
in the ad log. Estimates deletes from the ad log all but m random
entries per user and then calls TopDown.

We now analyze the privacy and efficiency of our algorithm.
Let a denote the maximum number of ads bidding on the same
context. We denote by height(H) the height of the hierarchy and
by branch(H) the maximum number of children for a node in H .
Estimates makes O(a+branch(H))·height(H)·N ·m/min_support)
calls to Count with high probability and is thus independent of the
number of contexts. Moreover, when we use Count in Estimates
we can batch all the messages in one level in the hierarchy.

In Estimates we employ Count to obtain noisy estimates of
clicksa,v , no_clicksa,v , and countv .

COROLLARY 4.3 (PRIVACY). Consider any ε ≤ 1. Let σ2 be
at least 6 ·height(H) ·m2 · log(4/δ)/ε2. When Estimates employs
Count(t,σ2) as a subroutine for counting clicksa,v , no_clicksa,v ,

countv , it guarantees (ε, δ)-probabilistic differential privacy. A
fraction of t unavailable or malicious users during each call of
Count(t,σ2) can be tolerated.

A proof and a utility analysis can be found in Appendices A.1, A.2.
This completes our discussion of the statistics gathering in our

framework. Next, we illustrate with an example, how it fits together
with the online component of ad targeting described in Section 3.

EXAMPLE 4.4. The server has a list of all users, all contexts
c, a hierarchy of these contexts, and all ads a. It periodically es-
timates the values of Pr[c] and ĈTR(a|c), for all c and a, by exe-
cuting the Estimates algorithm. While doing so, it walks top-down
through the context hierarchy. Whenever Count is invoked, it asks
all users to submit their counts (either views or clicks of a in v or
simply appearances of v) to the proxy. The proxy does not need to
know (but may know) what is being counted. Note that Estimates

might not be able to compute ĈTR(a|c), for all c → ĉ. Some
contexts, like skating in Central Park, might be to sparse in which
case they we will be substituted by the lowest ancestor for which an
estimate is available (such as exercising in Central Park).

Now suppose the ad server wants to deliver ads to a user who
is currently running in Central Park of New York. Due to privacy
concerns, the user discloses to the server only that she is exercising
in New York City ĉ. The server then uses Algorithm 1 (Greedy) to
decide which ads to send to this user. For this, it uses precomputed
values of Pr[c] and ĈTR(a|c), for all c → ĉ and all ads a that are
displayed in such contexts. Finally the client device selects the best
ad based on the user’s actual context (running in Central Park).

5. EXPERIMENTS
We now empirically answer the following important questions

with a real trace: (1) How strong are the trade-offs between privacy,
efficiency, and utility in practice? (i.e., is it possible to achieve
reasonable levels all three design goals simultaneously?) (2) How
does our client-server joint optimization compare with client-only
or server-only personalization? and (3) How robust is our statistics
gathering algorithm with dynamic population? Before answering
the questions, we first describe our experimental setup.

5.1 Experimental Setup
Dataset. Ideally, we would like to evaluate our algorithms with
real usage traces from a context-aware ad service. However, since
no such real systems exist, we emulate such a system by using a
trace of location-aware searches in Microsoft Bing for mobile.6

The trace has a schema: 〈user-ID, query, user-location, business-
ID〉. Each record in the trace describes an event of a user issuing
a query from a location and then clicking on a business. The trace
consists of 1,519,307 records. In our evaluation we focus on clicks
to “Food & Dining” businesses, which constitute the largest cate-
gory of business in the trace. We also filter out any user with fewer
than three clicks in the trace, as we cannot generate an interest pro-
file for such a user. This leaves us with 116,432 unique user-IDs.
We use the first 90% of the trace as training data and the remain-
der to evaluate our framework and to compute targeted ads (i.e.,
businesses).
Context. We use the above trace to emulate a context-aware ad
service as follows. We assume that each business with id i has an ad
with the same id i, and hence our goal is to deliver target business-
IDs to the users. Ideally, we would like to use context based on the
sensor readings of smart phones for personalization. However, this
6http://m.bing.com
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information is not present in our trace and we therefore limit our
evaluation to contexts consisting of the following set of attributes.
! Location: The user’s location as latitude and longitude.
! Interest: A multi-set of business-IDs the user clicked on before.
! Query: The search query the user sends.
Attribute Generalization. To limit information disclosure, we let
users generalize context attributes according to fixed hierarchies.
! Location: We use five levels of generalization for user loca-
tion, depending on how many decimal points we truncate from
her latitude and longitude. More specifically, Level-i location,
0 ≤ i ≤ 5 of a user is her latitude and longitude, after keeping all,
4, 3, 2, 1, and 0 decimal points respectively.
! Interest: We generalize user interest using a fixed hierarchy for
the businesses, as shown in Figure 3. In Level-0, Level-1,
and Level-2, the interest set contains business categories, gen-
eralized business categories, and only the most general business
category (“Food and Dining”), respectively, of the user’s clicks.
! Query: Again, we use the business hierarchy to generalize the
query at three levels. Level-0 is the exact query issued by the
user, Level-1 is the business category of the clicked business,
and Level-2 is the generalized category of the business.

For all attributes, Level-i is more general, and hence more
privacy-preserving, than Level-j for i > j. As a short-hand,
we use (x, y, z) to denote (Level-x location, Level-y interest,
Level-z query).
Context Hierarchy. We combine the attribute hierarchies into
a context hierarchy. We generalize one attribute at a time using
the following sequence: (0, 0, 0) → (0, 0, 1) → (0, 1, 1) →
(1, 1, 1) → (1, 2, 1) → (2, 2, 1) → (3, 2, 1) → (3, 2, 2) →
(4, 2, 2). As an example, consider the context at level (0, 0, 0)

〈(61.22913, -149.912044), [B-ID2011, B-ID124], “Starbucks”〉.

Generalizing each attribute one level yields, at level (1, 1, 1),
〈(61.2291, -149.9120), [Peruvian Restaurants, Wine], “Coffee”〉.

Generalization does not just provide privacy, but also helps per-
sonalization with sparse data. For example, in our dataset there are
≈ 100,000 queries that appear only once. It is impossible to per-
sonalize search results for these queries because we have not seen
the same query before. With generalization, we reduce the number
of such queries by an order of magnitude. We address the sparsity
of other context attributes similarly. This increases the coverage.
Metrics. We use the following two metrics for our prediction.
! Precision: The fraction of targeted ads in our framework on
which users actually click. Precision is an indicator of relevance.
! Coverage: The fraction of contexts for which our framework
computes and displays a targeted business.

The higher the precision and coverage values, the better the per-
formance of our framework. We report average precision and cov-
erage for 1,000 random contexts from the testing data; the averages
become fairly stable after 1,000 predictions.

Parameters. Unless otherwise stated, we use the following default
configuration. For limited information disclosure, we use (4, 2, 2)
generalization. We set the upper bound on communication com-
plexity, k, to be 10, the threshold on click-through rate to be 0.3,
and the threshold on support to be 2.

5.2 Evaluating Trade-offs
Effect of CTR Threshold. The CTR threshold trades off precision
and coverage, see Figure 4. For a high value of the CTR threshold,
an ad will be shown only if it is highly relevant. Thus, this increases
the precision of our algorithm and improves the relevance of the
displayed ads. On the other hand, a high threshold reduces the
number of ads displayed and with that the number of clicks and the
revenue. Interestingly, as we can see, high levels of both precision
(0.48) and coverage (0.47) can be achieved simultaneously.7

Effect of Communication Complexity. Figure 5 shows the ef-
fect of increasing the communication complexity k (i.e. having
the server return more ads to the client) on precision and cover-
age. We expect both to improve with increasing k since the client
can choose an ad from a larger set. The graph shows further that
increasing k has diminishing returns. In the beginning the preci-
sion and coverage increase quickly with every additional ad being
sent, however, as more ads are sent, the increase in precision and
coverage becomes smaller.
Effect of Information Disclosure. Figure 6 shows the precision
and coverage (for various CTR thresholds) of our framework with
various levels of generalization. As expected, precision and cov-
erage of our framework increases as more specific context infor-
mation is sent to the server. Interestingly, limited privacy does not
hurt utility in a significant way; as shown in the graph, precision
and coverage values are very close for limited privacy (shown as
(1, 1, 1)) and no privacy (shown as (0, 0, 0)).
Trading-off Constraints. To see how communication overhead
affects the performance of our framework, we increase k from 10
to 50 in Figures 6(a) and (b). The graphs show that privacy can
be improved without hurting utility by a small increase in the com-
munication cost. For example, when k = 10, a privacy level of
(4, 2, 2) does not achieve a precision of at least 0.85 and a cover-
age of at least 0.3. But it does, when increasing k to 50. Overall,
we conclude that reasonable levels of limited information disclo-
sure, efficiency, and relevance can be achieved simultaneously.

5.3 Comparison with Other Strategies
Server-only Personalization. Here, the server performs person-
alization based on the limited private information it has and sends
only one ad to the client. As shown in Figure 5, this strategy gives
a precision of 0.12. We can do much better with our optimization:
When instead sending 5 ads and letting the client pick the most
relevant one, the precision rises by 35%.
7Precisions and coverages close to 0.5 are considered high in pre-
dicting user clicks. Our numbers are higher than the ones reported
for other personalization techniques [46].



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Coverage

Client side
(4,2,2)
(1,1,1)
(0,0,0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Coverage

Client side
(4,2,2)
(1,1,1)
(0,0,0)

(a) k = 10 (b) k = 50
Figure 6: Varying information disclosure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Coverage

ε=∞

ε=1.0
ε=0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Coverage

t=0.00
t=0.20
t=0.75

(a) Effect of noise ε (b) Effect of robustness t
Figure 7: Differentially-private estimates.

Client-only Personalization. Here, the client sends only the query
to the server, which then sends k ads matching the query to the
client. The client chooses the best ad based on the exact user con-
text. Precision and coverage of this strategy are also shown in Fig-
ure 6 with the label "Client-side". As shown, our optimization can
provide better utility than the client-only strategy. For example, for
a target precision of 0.75, the client-side strategy can achieve cov-
erage of 0.2, while our framework with (1, 1, 1) generalization can
achieve a coverage of 0.4, an increase of 2×.

5.4 Privacy-Preserving CTRs
In the following experiments, we fix the maximum number of

contributions per user, m = 4. Moreover, we found it beneficial
to limit how far TopDown goes down in the hierarchy. Such a
limit reduces the amount of noise added to each count. This is
important for training data as small as ours. Therefore, we chose
an aggressive limit of 1.
Efficiency. When we run Estimates on our trace, a user has to
send roughly 1MB on average. Many of the count queries can be
batched. On average, a user participates in two batches for all CTR
computations. We feel this communication cost is acceptable.
Accuracy. Figure 7(a) shows how precision and coverage of our
framework degrades when we increase the differential privacy guar-
antee (by decreasing ε). We fixed δ = 0.01. As a point of compar-
ison, the figure also draws the precision and coverage curve when
using the exact, non-private statistics (ε = ∞). We can see that
to achieve a precision of 0.6, the coverage of our framework us-
ing non-private statistics is much higher than the coverage of our
framework using the ε-differentially private statistics (i.e., 0.3 vs
0.1). This is the price we have to pay for a privacy guarantee. The
exact value of the privacy parameter ε (1 vs. 0.5) has a minor effect
on the utility. We expect the cost of privacy to decrease with a larger
user population. Moreover, we can avoid such negative impact on
utility by paying the price of privacy in terms of communication
overhead k—as shown in Figure 6, the utility can be improved by
using a higher value of k.

5.5 Robustness of Statistics Gathering
Figure 7(b) shows the effect of varying t (fraction of malicious

or unavailable users) on precision and coverage for ε = 1.0. We
see that the parameter t has only a mild effect. Even when 75% of
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Figure 8: Varying user population.

the users could be unavailable or malicious (t = 0.75) the utility is
almost the same as when all users are available and honest.

We compare our Count protocol with three existing distributed,
differentially-private count protocols: RASTOGI [37], SHI [40],
and ÁCS [1]. Briefly, RASTOGI [37] and SHI [40] start with a setup
phase in which an honest server generates secrets and distributes
them to users such that the secrets of all users add up to a constant.
After this setup phase, a series of count queries can be computed
in a privacy-preserving manner assuming that all available users
in the setup phase participate in the aggregation phase. However,
when a single user becomes unavailable, no further queries can be
answered until a new setup is performed or the user returns. Thus,
for a query to be successfully answered, the setup phase followed
by the aggregation phase must be repeated until they both run on
the same stable set of users. Recently, Ács et al. [1] proposed an
efficient protocol that can tolerate failures of up to a predefined
number of users before running the aggregation phase; however,
the phase must be repeated if any user fails during its execution.

We compare the robustness by modeling users’ unavailability as
a simple random process. Suppose a phase denotes the time it takes
for the server to send a message to all users or for all users to send
messages to the server. Let p denote the probability that a user is
unavailable to participate in a given phase. We measure the average
number of phases required to complete a query, as it indicates the
latency and communication complexity of a protocol.

It should be pointed out, though, that this compares only one as-
pect of these protocols. They also widely differ in the assumptions
they make. Our protocol requires two honest-but-curious servers.
RASTOGI and SHI require an honest server for the key set-up, while
ÁCS provides privacy without any such assumptions.

Figure 8 illustrates the effects of unavailability on communica-
tion complexity. We run 1000 queries and report the average num-
ber of phases per query for different protocols. As shown, all the
protocols cost close to their optimal number of phases when the
probability of being unavailable (p) and the number of users (N )
are small. However, unlike our protocol, the costs for all three pro-
tocols increase exponentially with N and p (note the log scale of
the graphs). For p ≥ 0.0001 (corresponding to less than only 10
seconds a day) in (a) or N ≥ 1000 (much fewer than users of pop-
ular online services) in (b) the protocols become impractical. This
shows that unlike our protocol, the three protocols are impractical
for online services with dynamic users.

6. RELATED WORK
Targeted Advertising. Closest to our privacy-aware ad serving
framework are the works of [15, 22, 27]. Repriv [15] verifies that
applications only access the limited information about a user that
was granted and proposes techniques for client only personaliza-
tion. Privad [22] and the work by Juels [27] anonymize user pro-
files. Neither work explains how ads should be chosen based on
limited user information by the ad server and based on more pri-
vate information on the client. Thus, there is a potential benefit of



integrating our framework into these systems to trade off privacy,
efficiency and utility.
Location-Based Services. Several location-based services (LBS)
protect anonymity of users and privacy of their locations [26]. A
user’s location in the query is replaced by a broader region [20]
with at least k users in it [38]. This approach is extended to gen-
eral contexts beyond location [36]. Following the principles of !-
diversity [32] a region is broad enough if it’s area is large enough
and its ratio of sensitive area to total area is low enough (see for
instance [9]). Most solutions (e.g., [35]) follow a hybrid approach
in which, given a generalized context, the server returns a super-
set of the results [26], which can lead to high communication cost.
Notable exceptions approximate the results and allow to trade off
efficiency and accuracy [10, 28, 47]. We follow the same goals of
LBS: privacy, utility and efficiency. While LBS focus on nearest
neighbor queries measuring utility as proximity, our work focuses
on target advertisements measuring utility as revenue or ad rele-
vance. Previous techniques cannot be applied to this problem.
Privacy-Preserving Distributed Count Protocols.Previous work
on distributed counting protocols [1, 12, 37, 40] provides strong
privacy guarantees. Early work by Dwork et al. [12] required the
exchange of a number of messages quadratic in the number of
users. This is prohibitively expensive in our setting. Follow-up
work by Rastogi et al. [37], Shi et al. [40], and Ács et al. [1] re-
duced the number of messages to be linear in the number of users.
In Section 5.5, we empirically showed that even under modest as-
sumptions on user dynamics, all these existing protocols need to
repeat various phases impractically high numbers of times. This is
problematic in our setting with a large number of transient mobile
users.

Follow-up work by Chen et al. [8] extended our Count pro-
tocol in order to guarantee accuracy and prevent malicious users
from arbitrarily altering the result. This is achieved by using the
Goldwasser-Micali bit encryption scheme [17] and adding noise at
the proxy.

7. CONCLUSION
We have addressed the problem of personalizing ad delivery to

a smart phone, without violating user privacy. We showed that the
problem of selecting the most relevant ads under constraints on pri-
vacy and efficiency is NP-hard and proposed a solution with a tight
approximation guarantee. We also proposed the first differentially-
private distributed protocol to compute various statistics required
for our framework even in the presence of a dynamic and malicious
set of participants. Our experiments on real click logs showed that
reasonable levels of privacy, efficiency, and ad relevance can be
achieved simultaneously.
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APPENDIX
A. PROOFS
A.1 Proof of Corollary 4.3

PROOF. Consider two neighboring click logs L,L′ where L′ is ob-
tained from L by adding or deleting the data of a single user. Consider
the hierarchy H consisting of height(H) levels where level i contains 2i

many nodes. We denote by cl,j (c′l,j , respectively) the count of the jth

node at level l in L (L′, respectively). We denote by cl,j,a,1 (c′l,j,a,1) the
count of the clicks on a in the jth node at level l and by cl,j,a,0 (c′l,j,a,0)
the count of the views of a in the jth node at level l that did not result in
clicks in L (L′, respectively).

Within a level of the hierarchy the L2-sensitivity of each count is at most
m. Overall the square of the L2-sensitivity is at most

height(H)−1∑

l=0

2l∑

j=1

(cl,j − c′l,j)
2 (1)

+
∑

a

(cl,j,a,1 − c′l,j,a,1)
2 + (cl,j,a,0 − c′l,j,a,0)

2 (2)

≤
height(H)−1∑

l=0

3 ·m2 (3)

= 3height(H)m2 (4)

Thus, the L2-sensitivity is bounded by
√

(3height(H)m. From Theo-
rem 4.1 it follows that choosing σ2 ≥ 3height(H)m22 log(4/δ)/ε2 guar-
antees (ε, δ) probabilistic differential privacy.

A.2 Utility Analysis of Algorithm 2
We define the utility of an estimate ĈTR(a|v) by comparing it to the

true click-through-rate:

clicks_truea,v
clicks_truea,v + no_clicks_truea,v

We say the estimate is (α,β)-accurate if with probability at least β:

ĈTR(a|v) ≥
clicks_truea,v − α

clicks_truea,v + no_clicks_truea,v + 2α
(5)

ĈTR(a|v) ≤
clicks_truea,v + α

clicks_truea,v + no_clicks_truea,v − 2α
(6)

Consider our protocol Estimates (and its parameters N, t,σ as in Corol-
lary 4.3) and suppose all users respond truthfully. Then the computed esti-
mates are (α,β)-accurate for

β ≤ 1−3/(2πα)σ
√

(N/((1−t)N−1)) exp−α2((1−t)N−1)/(2Nσ2) .

The proof follows from a Gaussian tail bound that we can use to bound the
probabilities of

|clicks_truea,v − clicksa,v | > α and (7)
|no_clicks_truea,v − no_clicksa,v | > α (8)

However, it may happen that the algorithm does not output an estimate
ĈTR(a|v) for some a, v if the noisy count of context v or some ancestor in
the context hierarchy is less than the min_support.


