
Formal Certification of Code-Based

Cryptographic Proofs

GILLES BARTHE and SANTIAGO ZANELLA BEGUELIN

IMDEA Software, Madrid, Spain

and

BENJAMIN GREGOIRE

INRIA Sophia Antipolis - Méditerranée, France

As cryptographic proofs have become essentially unverifiable, cryptographers have argued in favor
of developing techniques that help tame the complexity of their proofs. The game-based approach
is a popular method in which proofs are structured as sequences of games and in which proof
steps establish the validity of transitions between successive games. Game-based proofs can be
rigorously formalized by taking a code-centric view of games as probabilistic programs and relying
on programming language theory to justify proof steps. While this code-based view contributes to
formalize the security statements precisely and to carry out proofs systematically, typical proofs are
so long and involved that formal verification is necessary to achieve a high degree of confidence. We
present CertiCrypt, a framework that enables the machine-checked construction and verification
of game-based proofs. CertiCrypt is built upon the general-purpose proof assistant Coq, and
draws on many areas, including probability and complexity theory, algebra, and semantics of
programming languages. The framework provides certified tools to reason about the equivalence
of probabilistic programs, including a relational Hoare logic, a theory of observational equivalence,
verified program transformations, and ad-hoc techniques such as reasoning about failure events.
We demonstrate the usefulness of CertiCrypt through various examples, including proofs of the
security of OAEP against adaptive chosen-ciphertext attacks (with a bound that improves upon
previously published results) and of the existential unforgeability of FDH signatures. Our work
constitutes a first yet significant step towards Halevi’s ambitious program of providing tool support
for cryptographic proofs.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.4 [Programming Languages]: Processors—Compilers, Optimization; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Denota-

tional semantics; Program analysis

General Terms: Languages, Security, Verification

Additional Key Words and Phrases: Coq proof assistant, cryptographic proofs, observational
equivalence, program transformations, relational Hoare logic

1. INTRODUCTION

Designing secure cryptographic systems is a notoriously difficult task. Indeed, the
history of modern cryptography is fraught with examples of cryptographic systems
that had been thought secure for a long time before being broken and with flawed

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–47.

2 · Gilles Barthe et al.

security proofs that stood unchallenged for years. Provable security [Goldwasser
and Micali 1984; Stern 2003] is an approach that aims to establish the security of
cryptographic systems through a rigorous analysis in the form of a mathematical
proof, borrowing techniques from complexity theory. In a typical provable security
argument, security is proved by reduction, showing that any attack against the
security of the system would lead to an efficient way to solve some computationally
hard problem.
Provable security holds the promise of delivering strong guarantees that crypto-

graphic schemes meet their goals and is becoming unavoidable in the design and
evaluation of new schemes. Yet provable security per se does not provide spe-
cific tools for managing the complexity of proofs and as a result several purported
security arguments that followed the approach have been shown to be flawed. Con-
sequently, the cryptographic community is increasingly aware of the necessity of
developing methodologies that systematize the type of reasoning that pervade cryp-
tographic proofs, and that guarantee that such reasoning is applied correctly. One
prominent method for achieving a high degree of confidence in cryptographic proofs
is to cast security as a program verification problem: this is achieved by formulat-
ing goals and hypotheses in terms of probabilistic programs, and defining the ad-
versarial model in terms of complexity classes, e.g. probabilistic polynomial-time
programs. This code-centric view leads to statements that are unambiguous and
amenable to formalization. However, standard methods to verify programs (e.g. in
terms of program logics) are ineffective to directly address the kind of verification
goals that arise from cryptographic statements. The game-based approach [Shoup
2004; Halevi 2005; Bellare and Rogaway 2006] is an alternative to standard pro-
gram verification methods that establishes the verification goal through successive
program transformations. In a nutshell, a game-based proof is structured as a
sequence of transformations of the form G,A→hG′, A′, where G and G′ are prob-
abilistic programs, A and A′ are events, and h is a monotonic function such that
Pr [G : A] ≤ h(Pr [G′ : A′]). When the security of a scheme is expressed as an
inequality Pr [G0 : A0] ≤ p, it can be proved by exhibiting a sequence of transfor-
mations

G0, A0 →
h1 G1, A1 → · · · →

hn Gn, An

and proving that h1 ◦ · · · ◦ hn(Pr [Gn : An]) ≤ p. Reductionist arguments can
be naturally formulated in this manner by exhibiting a sequence of games where
Pr [Gn : An] encodes the probability of success of some efficient algorithm in solv-
ing a problem believed to be hard. Under this code-centric view of games, game
transformations become program transformations and can be justified rigorously
by semantic means; in particular, many transformations can be viewed as common
program optimizations.
Whereas Bellare and Rogaway [2006] already observed that code-based proofs

could be more easily amenable to machine-checking, Halevi [2005] argued that
formal verification techniques should be used to improve trust in cryptographic
proofs, and set up a program for building a tool that could be used by the crypto-
graphic community to mechanize their proofs. We take a first step towards Halevi’s
ambitious program by presenting CertiCrypt [Barthe et al. 2009b], a fully machine-
checked framework for constructing and verifying game-based cryptographic proofs.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 3

CertiCrypt builds on top of the Coq proof assistant [The Coq development team
2009] a broad set of reasoning principles used by cryptographers, drawing on pro-
gram verification, algebraic reasoning, and probability and complexity theory. The
framework features:

. Faithful and rigorous encoding of games. In order to be readily accessible to
cryptographers, we adopt a formalism that is commonly used to describe games.
Concretely, the lowest layer of CertiCrypt is an imperative programming language
with probabilistic assignments, structured datatypes, and procedure calls. We for-
malize the syntax and semantics of programs; the latter uses the measure monad
of Audebaud and Paulin-Mohring [2009]. (For the connoisseur, we provide a deep
and dependently-typed embedding of the syntax; thanks to dependent types, the
typeability of programs is obtained for free.) The semantics is instrumented to
calculate the cost of running programs; this offers the means to define complexity
classes, and in particular to define formally the notion of effective (probabilistic
polynomial-time) adversary. We provide in addition a precise formalization of the
adversarial model that captures many assumptions left informal in proofs, notably
including policies on memory access.

. Exact security. Many security proofs only show that the advantage of any ef-
fective adversary against the security of a cryptographic system is asymptotically
negligible w.r.t. a security parameter (which typically determines the length of keys
or messages). However, the cryptographic community is increasingly focusing on
exact security, a more useful goal since it gives hints as to how to choose system
parameters in practice to satisfy a security requirement. The goal of exact security
is to provide a concrete upper bound for the advantage of an adversary executing
in a given amount of time. This is in general done by reduction, constructing an
algorithm that solves a problem believed to be hard and giving a lower bound for
its success probability and an upper bound for its execution time in terms of the
advantage and execution time of the original adversary. We focus on bounding
the success probability (and only provide automation to bound the execution time
asymptotically) since it is arguably where lies most of the difficulty of a crypto-
graphic proof.

. Full and independently verifiable proofs. We adopt a formal semanticist per-
spective and go beyond Halevi’s vision in two respects. First, we provide a uni-
fied framework to carry out full proofs; all intermediate steps of reasoning can be
justified formally, including complex side conditions that justify the correctness
of transformations (about probabilities, algebra, complexity, etc.). Second, one
notable feature of Coq, and thus CertiCrypt, is to deliver independently verifiable
proofs, an important motivation behind the game-based approach. More concretely,
every proof yields a proof object that can be checked automatically by a (small and
trustworthy) proof checking engine. In order to trust a cryptographic proof, one
only needs to check its statement and not its details.

. Powerful and automated reasoning methods. We formalize a relational Hoare
logic and a theory of observational equivalence, and use them as stepping stones to
support the main tools of code-based reasoning. In particular, we prove that many
transformations used in code-based proofs, including common optimizations, are
semantics-preserving. In addition, we mechanize reasoning patterns used ubiqui-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Gilles Barthe et al.

tously in cryptographic proofs, such as reasoning about failure events (the so-called
fundamental lemma of game-playing), and a logic for interprocedural code-motion
(used to justify the eager/lazy sampling of random values).

Organization of the Article. This article is a revised and extended version of
[Barthe et al. 2009b], and builds on [Zanella Béguelin et al. 2009; Barthe et al.
2009a; 2010a; 2010b]. Its purpose is to provide a high-level description of the
CertiCrypt framework, overview the case studies formalized so far, and stir further
interest in machine-checked cryptographic proofs. The rest of the article is orga-
nized as follows: we begin in Section 2 with two introductory examples of game-
based proofs, namely the semantic security of the ElGamal and Hashed ElGamal
encryption schemes; Section 3 describes the mathematical tools that we use in our
formalization of games; in Section 4 we introduce the language used to represent
games and its semantics and discuss the notions of complexity and termination;
Section 5 presents the probabilistic relational Hoare logic that forms the core of
the framework; in Sections 6 and 7 we overview the formulation and automation of
game transformations; Section 8 reports on some significant case studies formalized
in CertiCrypt. We conclude with a survey of related work and a discussion of lessons
learned and perspectives to further this line of research.

2. BASIC EXAMPLES

This section illustrates the principles of the CertiCrypt framework on two elemen-
tary examples of game-based proofs: the semantic security of ElGamal encryption
under the Decision Diffie-Hellman assumption, and the semantic security of Hashed
ElGamal encryption in the Random Oracle Model under the Computational Diffie-
Hellman assumption. The language used to represent games will be formally intro-
duced in the next sections; an intuitive understanding should suffice to grasp the
meaning of the games appearing here.
We begin with some background on encryption schemes and their security. An

asymmetric encryption scheme is composed of a triple of algorithms:

Key generation: Given a security parameter η, the key generation algorithm KG(η)
returns a public/secret key pair (pk, sk);

Encryption: Given a public key pk and a plaintext m, the encryption algorithm
E(pk,m) computes a ciphertext corresponding to the encryption
of m under pk;

Decryption: Given a secret key sk and a ciphertext c, the decryption algorithm
D(sk, c) returns either the plaintext corresponding to the decryp-
tion of c, if it is a valid ciphertext, or a distinguished value ⊥
otherwise.

Key generation and encryption may be probabilistic, while decryption is determin-
istic. We require that decryption undo encryption: for every pair of keys (pk, sk)
that can be output by the key generation algorithm, and every plaintext m, it must
be the case that D(sk, E(pk,m)) = m.
An asymmetric encryption scheme is said to be semantically secure if it is unfea-

sible to gain significant information about a plaintext given only a corresponding

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 5

ciphertext and the public key. Goldwasser and Micali [1984] showed that seman-
tic security is equivalent to the property of ciphertext indistinguishability under
chosen-plaintext attacks (IND-CPA, for short). This property can be formally de-
fined in terms of a game played between a challenger and an adversary A, repre-
sented as a pair of procedures (A1,A2) that may share state:

Game IND-CPA :
(pk, sk)← KG(η);
(m0,m1)← A1(pk);
b $← {0, 1}; c← E(pk,mb);
b̄← A2(c)

In this game, the challenger first generates a new key pair and gives the public key
pk to the adversary, who returns two plaintextsm0,m1 of his choice. The challenger
then tosses a fair coin b and gives the encryption of mb back to the adversary, whose
goal is to guess which message has been encrypted. The advantage of an adversary
A in the above experiment is defined as

AdvIND-CPA
A =

∣

∣

∣

∣

Pr
[

IND-CPA : b = b̄
]

−
1

2

∣

∣

∣

∣

The scheme is said to be IND-CPA secure if the advantage of any effective adversary
is a negligible function of the security parameter η, i.e. the adversary cannot do
much better than a blind guess. Recall that a function ν : N → R is said to be
negligible if it decreases faster than the inverse of any polynomial:

∀c ∈ N. ∃nc ∈ N. ∀n ∈ N. n ≥ nc =⇒ |ν(n)| ≤ n−c

2.1 The ElGamal Encryption Scheme

Let {Gη} be a family of cyclic prime-order groups indexed by a security parameter
η ∈ N. For a specific value of the security parameter, which we leave implicit, let q
denote the order of the corresponding group in the family and let g be a generator.
ElGamal encryption is defined by the following triple of algorithms:

KG(η) def

= x $← Zq; return (gx, x)
E(α,m) def

= y $← Zq; return (gy, αy ×m)
D(x, (β, ζ)) def

= return (ζ × β−x)

We prove the IND-CPA security of ElGamal encryption under the assumption that
the Decision Diffie-Hellman (DDH) problem is hard. Intuitively, for a family of
finite cyclic groups, the DDH problem consists in distinguishing between triples
of the form (gx, gy, gxy) and triples of the form (gx, gy, gz), where the exponents
x, y, z are uniformly sampled from Zq. One characteristic of game-based proofs is to
formulate computational assumptions using games; the assumption that the DDH
problem is hard can be formulated as follows:

Definition 2.1 Decision Diffie-Hellman assumption. Consider the games

Game DDH0 : x, y $← Zq; d← B(gx, gy, gxy)
Game DDH1 : x, y, z $← Zq; d← B(gx, gy, gz)

and define the DDH-advantage of an adversary B as

AdvDDH
B

def

= |Pr [DDH0 : d = 1]− Pr [DDH1 : d = 1]|

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Gilles Barthe et al.

We say that the DDH assumption holds for the family of groups {Gη} when the
advantage of any effective adversary B in the above experiment is a negligible
function of the security parameter. Note that the semantics of the games (and in
particular the order q of the group) depends on the security parameter η.

ElGamal is an emblematic example of game-based proofs. The proof of its se-
curity, which follows the proof by Shoup [2004], embodies many of the techniques
described in subsequent sections. The proof is done by reduction and shows that
every adversary A against the chosen-plaintext security of ElGamal that achieves
a given advantage can be used to construct a distinguisher B that solves DDH with
the same advantage and in roughly the same amount of time. We exhibit a concrete
construction of this distinguisher:

Adversary B(α, β, γ) :
(m0,m1)← A1(α);
b $← {0, 1};
b̄← A2(β, γ ×mb);
return b = b̄

and we prove that AdvDDH
B = AdvIND-CPA

A for any given adversary A. To conclude
the proof (i.e. to show that the advantage of any efficient adversaryA is negligible),
we show that the reduction is efficient: the adversary B executes in probabilistic
polynomial-time provided the IND-CPA adversary A does—we do not show a con-
crete bound for the execution time of B, although it is evident that it incurs only
a constant overhead.
Figure 1 gives a high-level view of the reduction: games appear inside white

background boxes, whereas gray background boxes contain the actual proof scripts
used to prove observational equivalence between consecutive games. A proof script
is simply a sequence of tactics, each intermediate tactic transforms the current goal
into a simpler one, whereas the last tactic in the script ultimately solves the goal.
The tactics that appear in the figure hopefully have self-explanatory names, but
are explained cursorily below and in more detail in Section 6. The proof proceeds
by constructing an adversary B against DDH such that the distribution of b = b̄
(equivalently, d) after running the IND-CPA game for ElGamal is exactly the same
as the distribution obtained by running game DDH0. In addition, we show that
the probability of d being true in DDH1 is exactly 1/2 for the same adversary B.
The remaining gap between DDH0 and DDH1 is the DDH-advantage of B. The
reduction is summarized by the following equations:

∣

∣Pr
[

IND-CPA : b = b̄
]

− 1/2
∣

∣ = |Pr [G1 : d]− 1/2| (1)

= |Pr [DDH0 : d]− 1/2| (2)

= |Pr [DDH0 : d]− Pr [G3 : d]| (3)

= |Pr [DDH0 : d]− Pr [G2 : d]| (4)

= |Pr [DDH0 : d]− Pr [DDH1 : d]| (5)

Equation (1) holds because games IND-CPA and G1 induce the same distribution on
d. We specify this as an observational equivalence judgment as IND-CPA ≃{d} G1,
and prove it using certified program transformations and decision procedures. We

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 7

(1)

(2)

(4)

(5)

≃{d}

≃{d} ≃{d}

≃{d}

inline KG
inline E
ep
deadcode

swap
eqobs in

inline B
ep

deadcode
eqobs in

inline B
ep
deadcode

swap
eqobs in

swap

eqobs hd 4
eqobs tl 2
apply otp

Game IND-CPA :
(α, x)← KG(η);
(m0, m1)← A1(α);
b $← {0, 1};
(β, ζ)← E(α,mb);
b̄← A2(β, ζ);
d← b = b̄

Game G1 :
x, y $← Zq ;
(m0, m1)← A1(gx);
b $← {0, 1};
ζ ← gxy×mb;
b̄← A2(gy , ζ);
d← b = b̄

Game DDH0 :
x, y $← Zq ;
d← B(gx, gy, gxy)

Adversary B(α, β, γ) :
(m0, m1)← A1(α);
b $← {0, 1};
b′ ← A2(β, γ×mb);
return b = b′

Game DDH1 :
x, y, z $← Zq;
d← B(gx, gy , gz)

Game G2 :
x, y $← Zq;
(m0, m1)← A1(gx);
b $← {0, 1};
z $← Zq ; ζ ← gz×mb;
b̄← A2(gy , ζ);
d← b = b̄

Game G3 :
x, y $← Zq;
(m0, m1)← A1(gx);
z $← Zq ; ζ ← gz ;
b̄← A2(gy , ζ);
b $← {0, 1};
d← b = b̄

Fig. 1. Code-based proof of ElGamal semantic security.

first inline the procedure calls to KG and E in the IND-CPA game and simplify
the resulting games by propagating assignments and eliminating dead code (ep,
deadcode). At this point we are left with two games almost identical, except that
y is sampled later in one game than in the other. The tactic swap hoists instructions
in one game whenever is possible in order to obtain a maximal common prefix with
another game, and allows us to hoist the sampling of y in the program on the left
hand side. A graphical representation of this sequence of program transformations
is given in Figure 2. We conclude the proof by applying the tactic eqobs in that
decides observational equivalence of a program with itself.
Equations (2) and (5) are obtained similarly, while (3) is established by simple

probabilistic reasoning because in game G3 the bit b̄ is independent from b. Finally,
to prove Equation (4) we begin by removing the part the two games have in common
with the exception of the instruction z $← Zq (swap, eqobs hd, eqobs tl) and then
apply an algebraic property of cyclic groups that we have proved as a lemma (otp):
if one applies the group operation to an uniformly distributed element of the group
and some other constant element, the result is uniformly distributed—a random
element acts as a one-time pad. This allows to prove that z $← Zq; ζ ← gz ×mb

and z $← Zq; ζ ← gz induce the same distribution on ζ, and thus remove the
dependence of b̄ on b.
The proof concludes by applying the DDH assumption to show that the IND-CPA

advantage of A is negligible. For this, and in view that AdvIND-CPA
A = AdvDDH

B , it
suffices to prove that the adversary B is probabilistic polynomial-time (under the
assumption that the procedures A1 and A2 are so); the proof of this latter fact is

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Gilles Barthe et al.

≃{d} ≃{d} ≃{d}≃{d}

(α, x)← KG(η);
(m0,m1)← A1(α);
b $← {0, 1};
(β, ζ)← E(α,mb);
b̄← A2(β, ζ);
d← b = b̄

x, y $← Zq;
(m0,m1)← A1(gx);
b $← {0, 1};
ζ ← gxy×mb;
b̄← A2(gy, ζ);
d← b = b̄

inline KG; inline E

x $← Zq; α← gx;
(m0,m1)← A1(α);
b $← {0, 1};
y $← Zq ; β ← gy;
ζ ← αy×mb;
b̄← A2(β, ζ);
d← b = b̄

x, y $← Zq ;
(m0,m1)← A1(gx);
b $← {0, 1};
ζ ← gxy×mb;
b̄← A2(gy, ζ);
d← b = b̄

ep; deadcode

x $← Zq ;
(m0, m1)← A1(gx);
b $← {0, 1};
y $← Zq;
b̄← A2(gy ,gxy×mb);
d← b = b̄

x, y $← Zq ;
(m0, m1)← A1(gx);
b $← {0, 1};
b̄← A2(gy ,gxy×mb);
d← b = b̄

swap

x, y $← Zq ;
(m0,m1)← A1(gx);
b $← {0, 1};
b̄← A2(gy,gxy×mb);
d← b = b̄

x, y $← Zq ;
(m0,m1)← A1(gx);
b $← {0, 1};
b̄← A2(gy,gxy×mb);
d← b = b̄

Fig. 2. Sequence of transformations in the proof of IND-CPA ≃{d} G1.

entirely automated in CertiCrypt.

2.2 The Hashed ElGamal Encryption Scheme

Hashed ElGamal is a variant of the ElGamal public-key encryption scheme that does
not require plaintexts to be members of the underlying group G. Instead, plaintexts
in Hashed ElGamal are just bitstrings of certain length ℓ and group elements are
mapped into bitstrings using a hash functionH : G→ {0, 1}ℓ. Formally, the scheme
is defined by the following triple of algorithms:

KG(η) def

= x $← Zq; return (gx, x)
E(α,m) def

= y $← Zq; h← H(αy); return (gy, h⊕m)
D(x, (β, ζ)) def

= h← H(βx); return (ζ ⊕ h)

Hashed ElGamal encryption is semantically secure in the random oracle model un-
der the Computational Diffie-Hellman (CDH) assumption on the underlying group
family {Gη}. This is the assumption that it is hard to compute gxy given only gx

and gy where x and y are uniformly sampled from Zq. Clearly, the DDH assumption
implies the CDH assumption, but the converse need not necessarily hold.1

Definition 2.2 Computational Diffie-Hellman assumption. Consider the game

Game CDH : x, y $← Zq; γ ← B(gx, gy)

and define the CDH-advantage of an adversary B as

AdvCDH
B

def

= Pr [CDH : γ = gxy]

We say that the CDH assumption holds for the family of groups {Gη} when the
advantage of any probabilistic polynomial-time adversary B is a negligible function
of the security parameter.

1Groups where DDH is easy and CDH is believed to be hard are of practical importance in
cryptography and are called Diffie-Hellman gap groups [Okamoto and Pointcheval 2001].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 9

We show that any adversary A against the IND-CPA security of Hashed ElGamal
that makes at most qH queries to the hash oracle H can be used to construct
an adversary B that achieves an advantage q−1

H AdvIND-CPA
A in solving the CDH

problem. The reduction is done in the random oracle model, where hash functions
are modeled as truly random functions. We represent random oracles using stateful
procedures; queries are answered consistently: if some value is queried twice, the
same response is given. For instance, we code the hash function H as follows:

Oracle H(λ) :
if λ /∈ dom(L) then
h $← {0, 1}ℓ;
L← (λ, h) :: L
else h← L[λ]
return h

The proof is sketched in Figure 3. We follow the convention of typesetting global
variables in boldface. The figure shows the sequence of games used to relate the
success of the IND-CPA adversary in the original attack game to the success of the
CDH adversary B; the definition of the hash oracle is shown alongside each game.
As in the proof of the semantic security of ElGamal, we begin by inlining the calls
to KG and E in the IND-CPA game to obtain an observationally equivalent game
G1 such that

Pr
[

IND-CPA : b = b̄
]

= Pr
[

G1 : b = b̄
]

(6)

We then fix the value ĥ that the hash oracle gives in response to gxy. This is an
instance of the lazy sampling transformation: any value that is randomly sampled
at some point in a program can be sampled in advance, somewhere earlier in the
program. This transformation is automated in CertiCrypt and is described in greater
detail in Section 6. We get

Pr
[

G1 : b = b̄
]

= Pr
[

G2 : b = b̄
]

(7)

We can then modify the hash oracle so that it does not store in L the response
given to a gxy query; this will later let us remove ĥ altogether from the code of
the hash oracle. We prove that games G2 and G3 are equivalent by considering the
following relational invariant:

φ23
def

= (Λ ∈ dom(L) =⇒ L[Λ] = ĥ)〈1〉 ∧ ∀λ.λ 6= Λ〈1〉 =⇒ L[λ]〈1〉 = L[λ]〈2〉

where e〈1〉 (resp. e〈2〉) denotes the value that expression e takes in the left hand
side (resp. right hand side) program. Intuitively, this invariant shows that the
association list L, which represents the memory of the hash oracle, coincides in
both programs, except perhaps on an element Λ, which the list in the program
on the left hand side (G2) necessarily maps to ĥ. It is easy to prove that the
implementations of oracle H in games G2 and G3 are semantically equivalent under
this invariant and preserve it. Since φ23 is established just before calling A and is
preserved throughout the games, we can prove by inlining the call to H in game
G2 that

Pr
[

G2 : b = b̄
]

= Pr
[

G3 : b = b̄
]

(8)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Gilles Barthe et al.

Game IND-CPA :
L← nil;
(α, x)← KG(η);
(m0,m1)← A1(α);
b $← {0, 1};
(β, v)←E(α,mb);
b̄← A2(β, v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) :: L

else h← L[λ]
return h

≃{b,b̄}

Game G1 :
L← nil;
x, y $← Zq ;
(m0,m1)← A1(gx);
b $← {0, 1};
h← H(gxy);

v ← h⊕mb;
b̄← A2(gy, v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) :: L

else h← L[λ]
return h

≃{b,b̄}

Game G2 :

ĥ $← {0, 1}ℓ;
L← nil;
x, y $← Zq ;
Λ← gxy;
(m0,m1)← A1(gx);
b $← {0, 1};
h← H(Λ);
v ← h⊕mb;
b̄← A2(gy, v)

Oracle H(λ) :
if λ 6∈ dom(L) then

if λ = Λ then

h← ĥ

else h $← {0, 1}ℓ

L← (λ, h) :: L
else h← L[λ]
return h

∼{b,b̄}∧φ23

Game G3 :

ĥ $← {0, 1}ℓ;
L← nil;
x, y $← Zq ;
Λ← gxy;
(m0,m1)← A1(gx);
b $← {0, 1};

h← ĥ;
v ← h⊕mb;
b̄← A2(gy, v)

Oracle H(λ) :
if λ = Λ then

h← ĥ

else

if λ 6∈ dom(L) then

h $← {0, 1}ℓ

L← (λ, h) :: L
else h← L[λ]

return h

Game G4 G5 :
bad← false;

ĥ $← {0, 1}ℓ;
L← nil;
x, y $← Zq;
Λ← gxy;
(m0,m1)← A1(gx);
b $← {0, 1};

v ← ĥ⊕mb;
b̄← A2(gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

if λ = Λ then

bad← true;

h← ĥ

h $← {0, 1}ℓ

else h $← {0, 1}ℓ

L← (λ, h) :: L
else h← L[λ]
return h

∼{L,Λ,b,b̄}∧(bad=⇒Λ∈dom(L))〈1〉

Game G6 :
L← nil;
x, y $← Zq;
Λ← gxy;
(m0,m1)← A1(gx);
b $← {0, 1};
v $← {0, 1}ℓ;

ĥ← v ⊕mb;
b̄← A2(gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) :: L

else h← L[λ]
return h

≃{L,x,y}

Game CDH :
x, y $← Zq;
γ ← B(gx, gy)

Adversary B(α, β) :
L← nil;

(m0,m1)← A1(α);
v $← {0, 1}ℓ;
b̄← A2(β, v);
γ $← dom(L);
return γ

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) :: L

else h← L[λ]
return h

Fig. 3. Game-based proof of semantic security of Hashed ElGamal encryption in the Random
Oracle Model.

We then undo the previous modification to revert to the previous implementation
of the hash oracle and prove that games G3 and G4 are observationally equivalent,
from which we obtain

Pr
[

G3 : b = b̄
]

= Pr
[

G4 : b = b̄
]

(9)

Let us now introduce a Boolean flag bad that is set at program points where the
code of G4 and G5 differ. We argue that the difference in the probability of any
event in those games is bounded by the probability of bad being set in G5, and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 11

therefore
∣

∣Pr
[

G4 : b = b̄
]

− Pr
[

G5 : b = b̄
]∣

∣ ≤ Pr [G5 : bad] (10)

This form of reasoning is pervasive in game-based cryptographic proofs and is an
instance of the so-called Fundamental Lemma that we discuss in detail in Section 7.
In addition, we establish that bad =⇒ Λ ∈ dom(L) is a post-condition of game G5

and thus

Pr [G5 : bad] ≤ Pr [G5 : Λ ∈ dom(L)] (11)

Since now both branches in the innermost conditional of the hash oracle are equiv-
alent, we coalesce them to recover the original random oracle implementation of H
in G6. We can now use the swap tactic to defer the sampling of ĥ to the point just
before computing v, and substitute

v $← {0, 1}ℓ; ĥ← v ⊕mb for ĥ $← {0, 1}ℓ; v ← ĥ⊕mb

The semantic equivalence of these two program fragments can be proved using the
probabilistic relational Hoare logic presented in Section 5.1—a proof is given in
Section 6. Hence,

Pr
[

G5 : b = b̄
]

= Pr
[

G6 : b = b̄
]

(12)

and

Pr [G5 : Λ ∈ dom(L)] = Pr [G6 : Λ ∈ dom(L)] (13)

Observe that b̄ does not depend anymore on b in G6 (ĥ← v⊕mb is dead code), so

Pr
[

G6 : b = b̄
]

=
1

2
(14)

We finally construct an adversary B against CDH that interacts with the adversary
A playing the role of an IND-CPA challenger. It returns a random element sampled
from the list of queries that adversary A made to the hash oracle. Observe that
B does not need to know x or y because it gets gx and gy as parameters. If the
correct answer Λ = gxy to the CDH challenge appears in the list of queries L when
the experiment terminates, adversary B has probability |L|−1 of returning it as an
answer. Since we know that A does not make more than qH queries to the hash
oracle, we finally have that

Pr [G6 : Λ ∈ dom(L)] = Pr [G6 : gxy ∈ dom(L)] ≤ qH Pr [CDH : γ = gxy] (15)

To summarize, from Equations (6)—(15) we obtain
∣

∣Pr
[

IND-CPA : b = b̄
]

− 1/2
∣

∣ =
∣

∣Pr
[

G4 : b = b̄
]

− 1/2
∣

∣

=
∣

∣Pr
[

G4 : b = b̄
]

− Pr
[

G6 : b = b̄
]∣

∣

=
∣

∣Pr
[

G4 : b = b̄
]

− Pr
[

G5 : b = b̄
]∣

∣

≤ Pr [G5 : bad]

≤ Pr [G6 : Λ ∈ dom(L)]

≤ qH Pr [CDH : γ = gxy]

For any adversary A that executes in polynomial time, we can assume that the
bound qH on the number of queries is polynomial on the security parameter. Un-
der the CDH assumption, the IND-CPA advantage of adversary A must then be

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Gilles Barthe et al.

negligible. Otherwise, the adversary B that we constructed would solve CDH with
non-negligible probability, contradicting our computational assumption. To see
this, we need to verify that adversary B runs in probabilistic polynomial time, but
this is the case because procedures A1,A2 do, and B does not perform any addi-
tional costly computations. As in the previous example, the proof of this latter fact
is completely automated in CertiCrypt.
Hashed ElGamal can also be proved semantically secure in the standard model,

but under the stronger DDH assumption. The security reduction can be made
under the assumption that the family of hash functions H is entropy smoothing—
such a family of hash functions can be built without additional assumptions using
the Leftover Hash Lemma [H̊astad et al. 1999].

3. MATHEMATICAL PRELIMINARIES

3.1 The Unit Interval

The starting point of our formalization is the ALEA Coq library, developed by
Paulin-Mohring and described in [Audebaud and Paulin-Mohring 2009]. It provides
an axiomatization of the unit interval [0, 1], with the following operations:

Addition: (x, y) 7→ min(x+ y, 1), where + denotes addition over reals;

Inversion: x 7→ 1− x, where − denotes subtraction over reals;

Multiplication: (x, y) 7→ x× y, where × denotes multiplication over reals;

Division: (x, y 6= 0) 7→ min(x/y, 1), where / denotes division over reals; more-
over, if y = 0, for convenience division is defined to be 0.

Other useful operations can be derived from these basic operations; for instance
the absolute value of the difference of two values x, y ∈ [0, 1] can be obtained by
computing (x − y) + (y − x) and their maximum by computing (x− y) + y.
The unit interval can be given an ω-complete partial order (cpo) structure. Recall

that an ω-cpo consists of a partially ordered set such that any monotonic sequence
has a least upper bound. The unit interval [0, 1] can be given the structure of a
ω-cpo by taking as order the usual ≤ relation and by defining an operator sup that
computes the least upper bound of a monotonic sequence f : N→ [0, 1] as follows:

sup f = max
n∈N

f(n)

3.2 Distributions

Programs are interpreted as functions from initial memories to sub-distributions
over final memories. To give semantics to most programs used in cryptographic
proofs, it would be sufficient to consider sub-distributions with a countable support,
which admit a very direct formalization as functions of the form

µ : A→ [0, 1] such that
∑

x∈A

µ(x) ≤ 1

However, it is convenient to take a more general approach and represent instead a
distribution over a set A as a probability measure, by giving a function that maps
a [0, 1]-valued random variable (a function in A → [0, 1]) to its expected value,
i.e. the integral of the random variable with respect to the probability measure.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 13

This view of distributions eliminates the need of cluttered definitions and proofs
involving summations, and allows us to give a continuation-passing style semantics
to programs by defining a suitable monadic structure on distributions. Formally,
we represent a distribution on A as a function µ of type

D(A) def

= (A→ [0, 1])→ [0, 1]

satisfying the following properties:

Monotonicity: f ≤ g =⇒ µ f ≤ µ g;

Compatibility with inverse: µ (1− f) ≤ 1− µ f ;

Additive linearity: f ≤ 1− g =⇒ µ (f + g) = µ f + µ g;

Multiplicative linearity: µ (k × f) = k × µ f ;

Continuity: if f : N→ (A→ [0, 1]) is monotonic, then µ (sup f) ≤
sup (µ ◦ f)

Distributions can be interpreted as a monad whose unit and bind operators are
defined as follows:

unit : A→ D(A) def

= λx. λf. f x
bind : D(A)→ (A→ D(B))→ D(B) def

= λµ. λF. λf. µ (λx. (F x) f)

These operators satisfy the usual monadic laws

bind (unit x) F = F x
bind µ unit = µ
bind (bind µ F) G = bind µ (λx. bind (F x) G)

The monad D was proposed by Audebaud and Paulin-Mohring [2009] as a variant
of the expectation monad used by Ramsey and Pfeffer [2002], and builds on earlier
work by Kozen [1981]. It is, in turn, a specialization of the continuation monad
(A→ B)→ B, with result type B = [0, 1].

3.3 Lifting Predicates and Relations to Distributions

For a distribution µ : D(A) over a countable set A, we let support(µ) denote the set
of values in A with positive probability, i.e. its support:

support(µ) def

=
{

x ∈ A | 0 < µ I{x}

}

where IX denotes the indicator function of set X ,

IX
def

=

{

1 if x ∈ X
0 otherwise

To lift relations to probability distributions we follow the early work of Jonsson
et al. [2001] on probabilistic bisimulations.

Definition 3.1 Lifting predicates to distributions. Let µ be a distribution on a
set A, and P be a predicate on A. We define the lifting of P to µ as follows:

range P µ def

= ∀f. (∀x. P x =⇒ f x = 0) =⇒ µ f = 0

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Gilles Barthe et al.

Definition 3.2 Lifting relations to distributions. Let µ1 be a probability distri-
bution on a set A and µ2 a probability distribution on a set B. We define the
lifting of a relation R ⊆ A×B to µ1 and µ2 as follows:

µ1 L(R)µ2
def

= ∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range R µ (16)

where range R µ stands for the lifting of R, seen as a predicate on pairs in A×B,
to distribution µ, and the projections π1(µ), π2(µ) of µ are given by

π1(µ)
def

= bind µ (unit ◦ fst) π2(µ)
def

= bind µ (unit ◦ snd)

In contrast to the definition given by Jonsson et al. [2001], the definition above
makes sense even when the distributions do not have a countable support. When
they do, both definitions coincide; in this case, µ1 L(R)µ2 amounts to saying that
the probability of each element a in the support of µ1 can be divided among the
elements related to it in such a way that when summing up over these probabilities
for an element b ∈ B, one obtains µ2 I{b}.
Let us give an example that conveys a better intuition; suppose one wants to

prove UA L(R)UB , where UX stands for the uniform probability distribution on
a finite set X . When A and B have the same size, proving this is equivalent to
exhibiting a bijection f : A → B such that for every a ∈ A, R(a, f(a)) holds.
Indeed, using such f it is easy to build a distribution µ on A×B that satisfies the
condition in (16):

µ def

= bind UA (λa.unit (a, f(a)))

This example, as trivial as it may seem, shows that probabilistic reasoning can
sometimes be replaced by simpler forms of reasoning. In typical cryptographic
proofs, purely probabilistic reasoning is seldom necessary and most mundane steps
in proofs can be either entirely automated or reduced to verifying simpler condi-
tions, much like in the above example, e.g. showing the existence of a bijection
with particular properties.
The way we chose to lift relations over memories to relations over distributions is

a generalization to arbitrary relations of the definition of Sabelfeld and Sands [2001]
that applies only to equivalence relations. Indeed, there is a simpler but equivalent
(see [Jonsson et al. 2001]) way of lifting an equivalence relation to distributions:
if R is an equivalence relation on A, then µ1 L(R)µ2 holds if and only if for all
equivalence classes [a] ⊆ A, µ1 I[a] = µ2 I[a].
Define two functions f and g to be equal modulo a relation Φ iff

f =Φ g def

= ∀x y. x Φ y =⇒ f(x) = g(y)

It can be easily shown that the above general definition of lifting satisfies

µ1 L(Φ)µ2 ∧ f =Φ g =⇒ µ1 f = µ2 g

and analogously for ≤. We use this property to prove rules relating observational
equivalence to probability in Section 5. It can also be shown that lifting preserves
the reflexivity and symmetry of the lifted relation, but proving that it preserves
transitivity is not as straightforward. Ideally, one would like to have for probability
measures µ1 : D(A), µ2 : D(B), µ3 : D(C) and relations Ψ ⊆ A×B, Φ ⊆ B × C

µ1 L(Ψ)µ2 ∧ µ2 L(Φ)µ3 =⇒ µ1 L((Ψ ◦ Φ))µ3

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 15

Proving this for arbitrary distributions requires proving Fubini’s theorem for prob-
ability measures, which allows to compute integrals with respect to a product mea-
sure in terms of iterated integrals with respect to the original measures. Since in
practice we consider distributions with a countable support, we do not need the full
generality of this result, and we prove it under the assumption that the distribution
µ2 has a countable support, i.e. there exist coefficients ci : [0, 1] and points bi : B
such that

µ2 f =
∞
∑

i=0

cif(bi)

Lemma 3.3. Consider d1 : D(A), d2 : D(B), d3 : D(C) such that d2 has count-
able support. Suppose there exist distributions µ12 : D(A×B) and µ23 : D(B × C)
that make µ1 L(Ψ)µ2 and µ2 L(Φ)µ3 hold. Then, the following distribution over
A× C is a witness for the existential in µ1 L((Ψ ◦ Φ))µ3:

µ13 f def

= µ2

(

λb. µ12

(

λp.
(

1snd(p)=b/µ2 I{b}

)

µ23

(

λq.
(

1fst(q)=b/µ2 I{b}

)

f(fst p, snd q)
)))

Proof. The difficult part of the proof is to show that the projections of this
distribution coincide with µ1 and µ2. For this, we use the fact that µ2 is discrete to
prove that iterative integration with respect to µ2 and another measure commutes,
because we can write integration with respect to µ2 as a summation and we only
consider measures that are continue and linear. For instance, to see that the first
projection of µ13 coincides with µ1:

π1(µ13) f =
∞
∑

i=0

ci µ12

(

λp.
(

1snd(p)=bi/ci
)

µ23

(

λq.
(

1fst(q)=bi/ci
)

f(fst p)
))

= µ12

(

λp.

∞
∑

i=0

1snd(p)=bi µ23

(

λq.
(

1fst(q)=bi/ci
)

f(fst p)
)

)

= µ12

(

λp. f(fst p)

∞
∑

i=0

1snd(p)=bi

)

= µ12 (λp. f(fst p)) = µ1 f

4. GAMES AS PROGRAMS

We describe games as programs in the pWhile language, a probabilistic extension
of an imperative language with procedure calls. This language can be regarded
as a mild generalization of the language proposed by Bellare and Rogaway [2006],
in that it allows while loops whereas they only consider bounded for loops. The
formalization of pWhile is carefully crafted to exploit key features of Coq: it
uses modules to support an extensible expression language that can be adapted
according to verification goal, dependent types to ensure that programs are well-
typed and have a total semantics, and monads to give semantics to probabilistic
programs and capture the cost of executing them.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Gilles Barthe et al.

4.1 The pWHILE Language

We formalize programs in a deep-embedding style, i.e. the syntax of the language is
encoded within the proof assistant. Deep embeddings offer one tremendous advan-
tage over shallow embeddings, in which the language used to represent programs is
the same as the underlying language of the proof assistant. Namely, a deep embed-
ding allows to manipulate programs as syntactic objects. This permits to achieve
a high level of automation in reasoning about programs through certified tactics
that implement syntactic program transformations. Additionally, a deep embed-
ding allows to formalize complexity issues neatly and to reason about programs by
induction on the structure of their code.
Given a set V of variable identifiers, a set P of procedure identifiers, a set E of

deterministic expressions, and a set DE of distribution expressions, the instructions
I and commands C of the language can be defined inductively by the clauses:

I ::= V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| assert E runtime assertion

C ::= skip nop
| I; C sequence

This inductive definition suffices to understand the remainder of the presentation
and the reader may prefer to retain it for further reference. In practice, however,
variable and procedure identifiers are annotated with their types, and the syntax
of programs is dependently-typed:

Inductive I : Type :=
| Assign : ∀t. Vt → Et → I
| Rand : ∀t. Vt → DE t → I
| Cond : EB → C → C → I
| While : EB → C → I
| Call : ∀l t. P(l,t) → Vt → El

∗ → I
where C := I∗

Thus, the assignment x ← e is well-formed only if the types of x and e coincide,
and if e then c1 else c2 is well-formed only if e is a Boolean expression and c1 and
c2 are themselves well-formed. An immediate benefit of using dependent types is
that the type system of Coq ensures for free the well-typedness of expressions and
commands.

Definition 4.1 Program. A program is a pair consisting of a command c ∈ C
and an environment E : ∀l t. P(l,t) → decl(l,t), which maps procedure identifiers to
their declaration. The declaration of a procedure p ∈ P(l,t) consists of its formal
parameters, its body, and a return expression,

decl(l,t)
def

= {args : Vl
∗; body : C; re : Et}

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 17

This formalization only allows single-exit procedures. For the sake of readability,
we present all examples in a more traditional style, using explicit return statements.

In a typical formalization, the environment will map procedures to closed com-
mands, with the exception of adversaries whose code is unknown, and thus modeled
by variables of type C. This is a standard trick to deal with uninterpreted functions
in a deep embedding. In the remainder, we will use the terms program and game
indistinctly and will sometimes omit environments when they do not add anything
to the presentation.

4.2 Semantics of pWHILE Programs

The semantics of commands and expressions depends on a natural number repre-
senting the security parameter, which we leave implicit; the interpretation of types
may depend on this parameter. Semantics is defined relative to a given memory,
i.e. a mapping from variables to values. We let M denote the set of memories.
Since variables are partitioned into local and global variables, we will sometimes
represent a memory m ∈ M as a pair of mappings (m.loc,m.glob) for local and
global variables, respectively. We let ∅ denote a mapping associating variables to
default values of their respective types. Expressions are deterministic; their se-
mantics is standard and given by a function J·KE , that evaluates an expression in
a given memory and returns a value. The semantics of distribution expressions is
given by a function J·KDE . For a distribution expression d of type T , we have that
JdKDE : M → D(X), where X is the interpretation of type T . For instance, in
Section 2.2 we have used {0, 1}ℓ to denote the uniform distribution on bitstrings of
a certain length ℓ, formally, we have

J{0, 1}ℓKDE m : D
(

{0, 1}ℓ
)

def

= λf.
∑

x∈{0,1}ℓ

2−ℓf(x)

Thanks to dependent types, the semantics of expressions and distribution expres-
sions is total. In the following, and whenever there is no confusion, we will drop
the subscripts in J·KE and J·KDE .
Figure 4 summarizes the denotational semantics of commands. The denotation

of a program relates an initial memory to a (sub-)probability distribution over
memories using the measure monad presented in the previous section:

JcK :M→ D(M)

Note that the function J·K mapsM to D(M), but it is trivial to define a semantic
function from D(M) to D(M) using the bind operator of the monad.
We have shown that the semantics of programs maps memories to discrete dis-

tributions, provided expressions in DE evaluate to distributions with countable
support. We use this together with Lemma 3.3 to prove the soundness of some
relational Hoare logic rules (namely, [Comp] and [Trans]) in Section 5.

Computing probabilities. The advantage of using this monadic semantics is that,
if we use an arbitrary function as a continuation to the denotation of a program,
what we get (for free) as a result is its expected value w.r.t. the distribution of final
memories. In particular, we can compute the probability of an event A (represented

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Gilles Barthe et al.

JskipK m = unit m

Ji; cK m = bind (JiK m) JcK

Jx← eK m = unit m {JeKE m/x}

Jx $← dK m = bind (JdKDE m) (λv. unit m {v/x})

Jx← p(~e)K m = bind (Jp.bodyK (∅ {J~eKE m/p.args} , m.glob)
(λm′. (m.loc,m′.glob) {Jp.reKE m′/x})

Jif e then c1 else c2K m =

{

Jc1K m if JeKE m = true

Jc2K m if JeKE m = false

Jwhile e do cK m = λf. sup (λn. J[while e do c]nK m f)
where
[while e do c]0 = assert ¬e
[while e do c]n+1 = if e then c; [while e do c]n

Fig. 4. Denotational semantics of pWhile programs.

as a function in M→ B) in the distribution obtained after executing a command
c in an initial memory m by measuring its characteristic function 1A:

Pr [c,m : A] def

= JcK m 1A

For instance, one can verify that the denotation of x $← {0, 1}; y $← {0, 1} in an
initial memory m is

λf.
1

4
(f(m {0, 0/x, y}) + f(m {0, 1/x, y}) + f(m {1, 0/x, y}) + f(m {1, 1/x, y}))

and conclude that the probability of the event (x⇒ y) after executing the command
above is 3/4.

4.3 Probabilistic Polynomial-Time Programs

In general, cryptographic proofs reason about effective adversaries, that consume
polynomially bounded resources. The complexity notion that captures this intu-
ition, and which is pervasive in cryptographic proofs, is that of strict probabilistic
polynomial-time [Goldreich 2001]. Concretely, a program is said to be strict proba-
bilistic polynomial-time (PPT) whenever there exists a polynomial bound (in some
security parameter η) on the cost of each possible execution, regardless of the
outcome of its random choices. Said otherwise, a probabilistic program is PPT
whenever the same program seen as a non-deterministic program terminates and
the cost of each possible run is bounded by a polynomial.
Termination and efficiency are orthogonal. Consider, for instance, the following

two programs:

c1
def

= b← true; while b do b $← {0, 1}
c2

def

= b $← {0, 1}; if b then while true do skip

The former terminates with probability 1 (it terminates within n iterations with
probability 1 − 2−n), but may take an arbitrarily large number of iterations to
terminate. The latter terminates with probability 1/2, but when it does, it takes
only a constant time. We deal with termination and efficiency separately.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 19

Definition 4.2 Termination. The probability that a program c terminates start-
ing from an initial memory m is Pr [c,m : true] = JcK m 1. We say that a program
c is absolutely terminating, and note it lossless(c), iff it terminates with probability
1 in any initial memory,

lossless(c) def

= ∀m. Pr [c,m : true] = 1

To deal with efficiency, we non-intrusively instrument the semantics of our language
to compute the cost of running a program. The instrumented semantics ranges over
D(M×N) instead of D(M). We recall that our semantics is implicitly parametrized
by a security parameter η, on which we base our notion of complexity. Our charac-
terization of PPT programs relies on an axiomatization of the execution time and
memory usage of expressions:

—We postulate the execution time of each operator, in the form of a function
that depends on the inputs of the operator—which corresponds to the so-called
functional time model;

—We postulate for each datatype a size measure, in the form of a function that
assigns to each value its memory footprint.

We stress that making complexity assumptions on operators is perfectly legitimate.
It is a well-known feature of dependent type theories (as is the case of the calcu-
lus of Coq) that they cannot express the cost of the computations they purport
without using computational reflection, i.e. formalizing an execution model (e.g.
probabilistic Turing machines) within the theory itself and proving that functions
in type theory denote machines that execute in polynomial time. In our opinion,
such a step is overkill. A simpler solution to the problem is to restrict in as much
as possible the set of primitive operators, so as to minimize the set of assumptions
upon which the complexity proofs rely.

Definition 4.3 Polynomially bounded distribution. We say that a family of dis-
tributions {µη : D(M × N)} is (p, q)-bounded, where p and q are polynomials,
whenever for every value of the security parameter η and any pair (m,n) occurring
with non-zero probability in µη, the size of values in m is bounded by p(η) and the
cost n is bounded by q(η). This notion can be formally defined by means of the
range predicate introduced in Section 3.3:

bounded(p, q, µ) def

= ∀η. range (λ(m,n). ∀x ∈ V . |m(x)| ≤ p(η) ∧ n ≤ q(η)) µη

Definition 4.4 Strict probabilistic polynomial-time program. We say that a pro-
gram c is strict probabilistic polynomial-time (PPT) iff it terminates absolutely,
and there exist polynomial transformers F,G such that for every (p, q)-bounded
distribution family µη, (bind µη JcK) is (F (p), q +G(p))-bounded.

We can recover some intuition by taking µ = unit (m, 0) in the above definition. In
this case, we may paraphrase the condition as follows: if the size of values in m is
bounded by some polynomial p, and an execution of the program in m terminates
with non-zero probability in memorym′, then the size of values in m′ is bounded by
the polynomial F (p), and the cost of the execution is bounded by the polynomial
G(p). It is in this latter polynomial that bounds the cost of executing the program
that we are ultimately interested. The increased complexity in the definition is

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Gilles Barthe et al.

needed for proving compositionality results, such as the fact that PPT programs
are closed under sequential composition.
Although our formalization of termination and efficiency relies on semantic def-

initions, it is not necessary for users to reason directly about the semantics of a
program to prove it meets those definitions. CertiCrypt implements a certified al-
gorithm showing that every program without loops and recursive calls terminates
absolutely.2 We also provide another algorithm that, together with the first, es-
tablishes that a program is PPT provided that, additionally, the program does not
contain expressions that might generate values of super-polynomial size or take a
super-polynomial time when evaluated in a polynomially bounded memory.

Exact bounds on execution time. Extracting an exact security result from a re-
ductionist game-based proof requires to lower bound the success probability of the
reduction and to upper bound the overhead incurred in execution time. Computing
a bound on the success probability is what takes most of the effort since it requires
examining the whole sequence of games and a careful bookkeeping of the proba-
bility of events. On the other hand, bounding the overhead of a reduction only
requires examining the last game in the sequence. While we have put a great effort
in automating the computation of probability bounds and we developed an auto-
mated method to obtain asymptotic polynomial bounds on the execution time of
reductions, we did not bother to provide a method to compute exact time bounds.
To do so, we would need an alternative cost-instrumented semantics that does not
take into account the time spent in evaluating calls to oracles, but instead just
records the number of queries that have been made. Assume that an adversary
A executes within time t (without taking into account oracle calls) and makes at
most qOi

queries to oracle Oi. Suppose we have a reduction where an adversary
B uses A as a sub-procedure; assume wlog that B only calls A once and does not
make any additional oracle calls. Then, we can argue that if B executes within time
t′ without taking into account the cost of evaluating calls to A (this could easily
be computed by considering A as an oracle for B), then B executes within time
t+ t′ +

∑

i qOi
tOi

where tOi
upper bounds the cost one query to oracle Oi.

4.4 Adversaries

In order to reason about games in the presence of unknown adversaries, we must
specify an interface for adversaries and construct proofs under the assumption that
adversaries are well-formed against their specification. Assuming that adversaries
respect their interface provides us with an induction principle to reason over all
(well-formed) adversaries. We make an extensive use of this induction principle:
each time a proof system is introduced, the principle allows us to establish proof
rules for adversaries. Likewise, each time we implement a program transformation,
the induction principle allows us to prove the correctness of the transformation for
programs that contain procedure calls to adversaries.
Formally, the interface of an adversary consists of a triple (O,RW ,R), where O

is the set of procedures that the adversary may call, RW the set of variables that it

2It is of course a weak result in terms of termination of probabilistic programs, but neverthe-
less sufficient as regards cryptographic applications. Extending our formalization to a certified
termination analysis for loops is interesting, but orthogonal to our main goals.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 21

I ⊢ skip :I
I ⊢ i :I′ I′ ⊢ c :O

I ⊢ i; c :O

writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}

writable(x) fv(d) ⊆ I

I ⊢ x $← d :I ∪ {x}

fv(e) ⊆ I I ⊢ c1 :O1 I ⊢ c2 :O2

I ⊢ if e then c1 else c2 :O1 ∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I

fv(~e) ⊆ I writable(x) p ∈ O

I ⊢ x← p(~e) :I ∪ {x}

fv(~e) ⊆ I writable(x) ⊢wf B

I ⊢ x← B(~e) :I ∪ {x}

RW ∪R ∪A.args ⊢ A.body :O fv(A.re) ⊆ O

⊢wf A

writable(x) def
= local(x) ∨ x ∈ RW

Fig. 5. Rules for well-formedness of an adversary against interface (O,RW,R). A judgment of the
form I ⊢ c :O can be interpreted as follows: assuming variables in I may be read, the adversarial
code fragment c respects the interface and after its execution variables in O may be read. Thus,
if I ⊢ c :O, then I ⊆ O.

may read and write, and R the set of variables that it may only read. We say that
an adversaryA with interface (O,RW ,R) is well-formed if the judgment ⊢wf A can
be derived from the rules in Fig. 5. Note that the rules are generic, only making
sure that the adversary makes a correct use of variables and procedures. These
rules guarantee that a well-formed adversary always initializes local variables before
using them, only writes global variables in RW and only reads global variables in
RW ∪R. For convenience, we allow adversaries to call procedures outside O, but
these procedures must themselves respect the same interface.
Additional constraints may be imposed on adversaries. For example, exact secu-

rity proofs usually impose an upper bound to the number of calls adversaries can
make to a given oracle, while some properties, such as IND-CCA (see §8.2), restrict
the parameters with which oracles may be called at different stages in an experi-
ment. Likewise, some proofs impose extra conditions such as forbidding repeated
or malformed queries. These kinds of properties can be formalized using global
variables that record calls to oracles and verifying as post-condition that all calls
were legitimate.

5. RELATIONAL HOARE LOGIC

Shoup [2004] classifies steps in cryptographic proofs into three categories:

(1) Transitions based on indistinguishability, which are typically justified by ap-
pealing to a decisional assumption (e.g. the DDH assumption);

(2) Transitions based on failure events, where it is argued that two games behave
identically unless a failure event occurs;

(3) Bridging steps, which correspond to refactoring the code of games in a way
that is not observable by adversaries. This is in general done to prepare the
ground for applying a lossy transition of one of the above two classes.

A bridging step from a gameG1 to a gameG2 typically replaces a program fragment
c1 by an observationally equivalent fragment c2. In general, however, c1 and c2 are
observationally equivalent only in the particular context where the substitution is
done. We justify such transitions through a relational Hoare logic that generalizes

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Gilles Barthe et al.

observational equivalence through pre- and post-conditions that characterize the
context where the substitution is valid. This relational Hoare logic may as well be
used to establish (in)equalities between the probability of events in two games (as
shown by the rules [PrEq] and [PrLe] below) and to establish program invariants
that serve to justify other program transformations or more complex probabilistic
reasoning.

5.1 Probabilistic Relational Hoare Logic (pRHL)

The relational Hoare logic that we propose elaborates on and extends to probabilis-
tic programs Benton’s [2004] relational Hoare logic. Benton’s logic uses judgments
of the form ⊢ c1 ∼ c2 : Ψ ⇒ Φ, that relate two programs, c1 and c2, w.r.t. a
pre-condition Ψ and a post-condition Φ, both defined as relations on deterministic
states. Such a judgment states that for every pair of initial memories m1,m2 sat-
isfying the pre-condition Ψ, if the evaluations of c1 in m1 and c2 in m2 terminate
with final memories m′

1 and m′
2 respectively, then m′

1 Φ m′
2 holds. In a proba-

bilistic setting, the evaluation of a program in an initial memory yields instead a
(sub-)probability distribution over program memories. In order to give a meaning
to a judgment like the above one, we therefore need to lift relations over memories
to relations over distributions.3 We use the mechanism presented in Section 3.

Definition 5.1 pRHL judgment. We say that two programs c1 and c2 are equiv-
alent with respect to pre-condition Ψ and post-condition Φ iff

|= c1 ∼ c2 : Ψ⇒ Φ def

= ∀m1 m2. m1 Ψ m2 =⇒ (Jc1K m1)L(Φ) (Jc2K m2)

We say that two programs c1 and c2 are semantically equivalent, and note it as
|= c1 ≡ c2, if they are equivalent w.r.t equality on memories as pre- and post-
condition.
Rather than defining the rules for pRHL and proving them sound in terms of

the meaning of judgments, we place ourselves in a semantic setting and derive the
rules as lemmas. This allows to easily extend the system by deriving extra rules, or
even to resort to the semantic definition if the system turns out to be insufficient.
Figure 6 gathers some representative derived rules. Most rules admit, in addition
to their symmetrical version of Fig. 6, one-sided (left and right) variants, e.g. for
assignments

m1 Ψ m2 = (m1 {Je1Km1/x1}) Φ m2

|= x1 ← e1 ∼ skip : Ψ⇒ Φ
[Assn1]

The rule [Case] allows to reason by case analysis on the evaluation of an arbitrary
relation in the initial memories. Together with simple rules in the spirit of

|= c1 ∼ c : Ψ ∧ e〈1〉 ⇒ Φ

|= if e then c1 else c2 ∼ c : Ψ ∧ e〈1〉 ⇒ Φ
[Cond1T]

it subsumes [Cond] and allows to prove judgments that otherwise would not be
derivable, such as the semantic equivalence of the programs (if e then c1 else c2)

3An alternative would be to develop a logic in which Ψ and Φ are relations over distributions.
However, we do not believe such a logic would allow a similar level of proof automation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 23

|= skip ∼ skip : Φ⇒ Φ [Skip]
|= c1 ∼ c2 : Ψ⇒ Θ |= c′1 ∼ c′2 : Θ⇒ Φ

|= c1; c′1 ∼ c2; c′2 : Ψ⇒ Φ
[Seq]

m1 Ψ m2 = (m1 {Je1Km1/x1}) Φ (m2 {Je2Km2/x2})

|= x1 ← e1 ∼ x2 ← e2 : Ψ⇒ Φ
[Assn]

m1 Ψ m2 =⇒ (Jd1K m1)L(Θ) (Jd2K m2) where v1 Θ v2 = (m1 {v1/x1}) Φ (m2 {v2/x2})

|= x1
$← d1 ∼ x2

$← d2 : Ψ⇒ Φ
[Rnd]

m1 Ψ m2 =⇒ Je1K m1 = Je2K m2

|= c1 ∼ c2 : Ψ ∧ e1〈1〉 ⇒ Φ |= c′1 ∼ c′2 : Ψ ∧ ¬e1〈1〉 ⇒ Φ

|= if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Ψ⇒ Φ
[Cond]

m1 Φ m2 =⇒ Je1K m1 = Je2K m2 |= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Φ

|= while e1 do c1 ∼ while e2 do c2 : Φ⇒ Φ ∧ ¬e1〈1〉
[While]

Ψ ⊆ Ψ′ |= c1 ∼ c2 : Ψ′ ⇒ Φ′ Φ′ ⊆ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[Sub]

|= c1 ∼ c2 : Ψ⇒ Φ SYM(Ψ) SYM(Φ)

|= c2 ∼ c1 : Ψ⇒ Φ
[Sym]

|= c ≡ c [Refl]
|= c1 ∼ c2 : Ψ⇒ Φ |= c2 ∼ c3 : Ψ⇒ Φ PER(Ψ) PER(Φ)

|= c1 ∼ c3 : Ψ⇒ Φ
[Trans]

|= c1 ∼ c2 : Ψ ∧Ψ′ ⇒ Φ |= c1 ∼ c2 : Ψ ∧ ¬Ψ′ ⇒ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[Case]

Fig. 6. Selection of derived rules of pRHL.

and (if ¬e then c2 else c1):

|= c1 ∼ c1 : = ∧¬¬e〈2〉 ⇒ =
[Sub,Refl]

|= c1 ∼ if ¬e then c2 else c1 : = ∧¬¬e〈2〉 ⇒ =
[Cond2F]

|= c1 ∼ if ¬e then c2 else c1 : = ∧ e〈1〉 ⇒ =
[Sub]

|= if e then c1 else c2 ∼ if ¬e then c2 else c1 : = ∧ e〈1〉 ⇒ =
[Cond1T] · · ·

|= if e then c1 else c2 ≡ if ¬e then c2 else c1
[Case]

We use [Case] as well to justify the correctness of dataflow analyses that exploit
the information provided by entering branches.
The rule [Sym] can be generalized by taking the inverse of the relations instead

of requiring that pre- and post-condition be symmetric:

|= c1 ∼ c2 : Ψ⇒ Φ

|= c2 ∼ c1 : Ψ−1 ⇒ Φ−1 [Inv]

The rule [Trans], although appealing, is of limited practical use. Consider, for
instance, “independent” pre- and post-conditions of the form

m1 Ψ m2
def

= Ψ1 m1 ∧Ψ2 m2 m1 Φ m2
def

= Φ1 m1 ∧ Φ2 m2

In order to apply the rule [Trans], we are essentially forced to have Ψ1 = Ψ2

and Φ1 = Φ2, and we must also choose the same pre- and post-condition for the
intermediate game c2. This constraints make the rule [Trans] impractical in some

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Gilles Barthe et al.

cases; we use instead the rule [Comp] to introduce intermediate games:

|= c1 ∼ c2 : Ψ⇒ Φ |= c2 ∼ c3 : Ψ′ ⇒ Φ′

|= c1 ∼ c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′ [Comp]

The soundness of this rule relies on Lemma 3.3 and on the fact that the denotation of
a program maps an initial memory to a distribution with countable support. This is
true if we only allow values to be sampled from distributions with countable support,
a reasonable restriction that does not affect our application to cryptographic proofs.
We can specialize rule [Rnd] when the distributions from where random values

are sampled have countable support. In this case, there is a simpler condition that
makes the hypothesis of the rule hold. We say that two distributions µ1 : D(A) and
µ2 : D(B) with countable support are equivalent modulo a relation R ⊆ A × B,
and note it µ1 ≃R µ2, when there exists a bijection f : support(µ1) → support(µ2)
such that

∀a ∈ support(µ1). µ1 I{a} = µ2 I{f(a)} ∧ R(a, f(a))

We can prove that the following rule is sound:

m1 Ψ m2 =⇒ Jd1Km1 ≃Θ Jd2Km2 v1 Θ v2 = (m1 {v1/x1}) Φ (m2 {v2/x2})

|= x1
$← d1 ∼ x2

$← d2 : Ψ⇒ Φ
[Perm]

If d1 and d2 are both interpreted as uniform distributions over some set of values,
the premise of the rule boils down to exhibiting a bijection f between the supports
of (Jd1Km1) and (Jd2Km2) such that Θ(v, f(v)) holds for any v in the support of
Jd1Km1. To see that the rule is sound, note that µ1 ≃R µ2 implies µ1 L(R)µ2; it
suffices to take the following distribution as a witness for the existential:

µ def

= bind µ1 (λv. unit(v, f(v)))

Hence, the soundness of the above rule is immediate from the soundness of rule
[Rnd]. Section 6.2 shows that rule [Perm] is enough to prove several program
equivalences appearing in cryptographic proofs. However, observe that rule [Perm]
is far from being complete as shown by the following program equivalence that
cannot be derived using only this rule:

|= a $← [0..1] ∼ b $← [0..3]; a← b mod 2 : true⇒ ={a}

One cannot use the above rule to prove such a equivalence because the supports
of the distributions from where random values are sampled in the programs do not
have the same size and hence it is not possible to find a bijection relating them. We
can further generalize the rule to prove the above equivalence by requiring instead
the existence of a bijection between the support of one distribution and a partition
of the support of the other, as in the following rule:

m1 Ψ m2 =⇒ let S1 = support(Jd1K m1), S2 = support(Jd2K m2) in

∃f : S1 → P(S2).
⋃

v∈S1

f(v) = S2 ∧ (∀v1, v2 ∈ S1. f(v1) ∩ f(v2) = ∅) ∧

(

∀v ∈ S1. µ1 I{v} = µ2 If(v) ∧ ∀w ∈ f(v). (m1 {v/x1}) Φ (m2 {w/x2})
)

|= x1
$← d1 ∼ x2

$← d2 : Ψ⇒ Φ

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 25

The following two rules allow to fall back from the world of pRHL into the world
of probabilities, in which security statements are expressed:

m1 Ψ m2 |= c1 ∼ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉 ⇐⇒ B〈2〉)

Pr [c1,m1 : A] = Pr [c2,m2 : B]
[PrEq]

and analogously,

m1 Ψ m2 |= c1 ∼ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉 =⇒ B〈2〉)

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]
[PrLe]

By taking A = B = true we can observe that observational equivalence enjoys some
form of termination sensitivity:

(|= c1 ∼ c2 : Ψ⇒ Φ) ∧m1 Ψ m2 =⇒ Jc1K m1 1 = Jc2K m2 1

We conclude with an example that nicely illustrates some of the intricacies of
pRHL. Let c = b $← {0, 1} and Φ = (b〈1〉 = b〈2〉). We have for any pair of initial
memories (JcK m1)L(Φ) (JcK m2). Indeed, the following distribution is a witness for
the existential of the lifting:

µ f =
1

2
f(m1 {0/b} ,m2 {0/b}) +

1

2
f(m1 {1/b} ,m2 {1/b})

Perhaps more surprisingly, we also have (JcK m1)L(¬Φ) (JcK m2), for which it suf-
fices to take the following distribution as a witness for the existential:

µ′(f) =
1

2
f(m1 {0/b} ,m2 {1/b}) +

1

2
f(m1 {1/b} ,m2 {0/b})

Thus, we have at the same time |= c ∼ c : true⇒ Φ and |= c ∼ c : true⇒ ¬Φ (but
of course not |= c ∼ c : true⇒ false) and as a consequence the “obvious” rule

|= c1 ∼ c2 : Ψ⇒ Φ |= c1 ∼ c2 : Ψ⇒ Φ′

|= c1 ∼ c2 : Ψ⇒ Φ ∧ Φ′

is unsound. While this example may seem unintuitive or even inconsistent if one
reasons in terms of deterministic states, its intuitive significance in a probabilistic
setting is that observing either Φ or ¬Φ is not enough to tell apart the distributions
resulting from two executions of c. This example shows why lifting a relation
to distributions involves an existential quantification, and why it is not possible
to always use the product distribution as a witness (one cannot establish neither
of the above judgments using the product distribution). This interpretation of
pRHL judgments is strongly connected to the relation between relational logics
and information flow [Amtoft et al. 2006; Benton 2004]—formally characterized for
instance by Benton’s embedding of a type system for secure information flow into
RHL.
As an additional example, observe that we have

|= x $← {0, 1}; y $← {0, 1} ∼ x $← {0, 1}; y ← x : true⇒ ={x}

|= x $← {0, 1}; y $← {0, 1} ∼ x $← {0, 1}; y ← x : true⇒ ={y}

but clearly the following judgment does not hold

|= x $← {0, 1}; y $← {0, 1} ∼ x $← {0, 1}; y ← x : true⇒ ={x,y}

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Gilles Barthe et al.

since after executing the program on the right-hand side the values of x and y
always coincide while this happens only with probability 1/2 for the program on
the left-hand side.

5.2 Observational Equivalence

Observational equivalence is derived as an instance of relational Hoare judgments
in which pre- and post-conditions are restricted to equality over a subset of pro-
gram variables. Observational equivalence of programs c1, c2 w.r.t. an input set of
variables I and an output set of variables O is defined as

|= c1 ≃
I
O c2

def

= |= c1 ∼ c2 : =I ⇒ =O

The rules of pRHL can be specialized to the case of observational equivalence. For
example, for conditional statements we have

m1 =I m2 =⇒ Je1K m1 = Je2K m2 |= c1 ≃I
O c2 |= c′1 ≃

I
O c′2

|= if e1 then c1 else c′1 ≃
I
O if e2 then c2 else c′2

It follows that observational equivalence is symmetric and transitive, although it is
not reflexive. Indeed, observational equivalence can be seen as a generalization of
probabilistic non-interference: if we take I = O = L, the set of low variables, then
c is non-interferent iff |= c ≃L

L c.
Observational equivalence is more amenable to mechanization than full-fledged

pRHL. To support automation, CertiCrypt implements a calculus of variable depen-
dencies and provides a function eqobs in, that given a program c and a set of output
variables O, computes a set of input variables I such that |= c ≃I

O c. Analogously,
it provides a function eqobs out, that given a set of input variables I, computes a
set of output variables O such that |= c ≃I

O c. This allows a simple procedure to
establish a self-equivalence of the form |= c1 ≃I

O c2: just compute a set I ′ such that

|= c ≃I′

O c using eqobs in and check whether I ′ ⊆ I, or equivalently, compute a set
O′ such that |= c ≃I

O′ c using eqobs out and check whether O ⊆ O′.
CertiCrypt provides as well a (sound, but incomplete) relational weakest pre-

condition calculus that can be used to automate proofs of program invariants; it
deals with judgments of the form

|= c1 ∼ c2 : Ψ⇒ =O ∧ Φ

and requires that the programs have (almost) the same control-flow structure.

6. PROOF METHODS FOR BRIDGING STEPS

CertiCrypt provides a powerful set of tactics and algebraic equivalences to automate
bridging steps in proofs. Most tactics rely on an implementation of a certified
optimizer for pWhile. Algebraic equivalences are provided as lemmas that follow
from algebraic properties of the interpretation of language constructs.

6.1 Certified Program Transformations

We automate several transformations that consist in applying compiler optimiza-
tions. More precisely, we provide support for a rich set of transformations based
on dependency and dataflow analyses, and for inlining procedure calls in programs.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 27

Each transformation is implemented as a function in CertiCrypt that performs the
transformation itself, together with a rule that proves its correctness and a tactic
that applies the rule backwards.

Transformations based on dependencies. The functions eqobs in and eqobs out
and the relational Hoare logic presented in Section 5.1 provide the foundations to
support transformations such as dead code elimination and code reordering.
We write and prove the correctness of a function context that strips off two

programs c1 and c2 their maximal common context relative to sets I and O of input
and output variables. The correctness of context is expressed by the following rule

context(I, c1, c2, O) = (I ′, c′1, c
′
2, O

′) |= c′1 ≃
I′

O′ c′2

|= c1 ≃
I
O c2

The tactic eqobs ctxt applies this rule backwards. Using the same idea, we im-
plement tactics that strip off two programs only their common prefix (eqobs hd)
or suffix (eqobs tl).
We provide a tactic (swap) that given two programs tries to hoist their common

instructions to obtain a maximal common prefix4, which can then be eliminated
using the above tactics. Its correctness is based on the rule

|= c1 ≃
I1
O1

c1 |= c2 ≃
I2
O2

c2 mod(c1, O1) mod(c2, O2)

O1 ∩O2 = ∅ I1 ∩O2 = ∅ I2 ∩O1 = ∅

|= c1; c2 ≡ c2; c1

where mod(c,X) is a semantic predicate expressing that program c only modifies
variables in X . This is formally expressed by

∀m. range (λm′. m =V\X m′) (JcK m)

which ensures that reachable final memories coincide with the initial memory except
maybe on variables inX . The tactic swap uses an algorithm that over-approximates
the set of modified variables to decide whether two instructions can be swapped.
We provide a tactic (deadcode) that performs dead code elimination relative to

a set O of output variables. The corresponding transformation behaves more like
an aggressive slicing algorithm, i.e., it removes portions of code that do not affect
variables in O and performs at the same time branch prediction (substituting c1
for if true then c1 else c2), branch coalescing (substituting c for if e then c else c),
and self-assignment elimination. Its correctness relies on the rule

mod(c,X) lossless(c) fv(Φ) ∩X = ∅

|= c ∼ skip : Φ⇒ Φ

Optimizations based on dataflow analyses. CertiCrypt has built-in, generic, sup-
port for such optimizations: given an abstract domain D (a semi-lattice) for the
analysis, transfer functions for assignment and branching instructions, and an op-
erator that optimizes expressions in the language, we construct a certified opti-
mization function optimize : C → D → C × D. When given a command c and an

4One could also provide a complementary tactic that hoists instructions to obtain a maximal
common suffix.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Gilles Barthe et al.

element δ ∈ D, this function transforms c into its optimized version c′ assuming the
validity of δ. In addition, it returns an abstract post-condition δ′ ∈ D, valid after
executing c (or c′). We use these abstract post-conditions to state the correctness of
the optimization and to apply it recursively. The correctness of optimize is proved
using a mixture of the techniques of [Benton 2004] and [Bertot et al. 2006; Leroy
2006]: we express the validity of the information contained in the analysis domain
using a predicate valid(δ,m) that states the agreement between the compile time
abstract values in δ and the run time memory m. Correctness is expressed in terms
of a pRHL judgment:

let (c′, δ′) := optimize(c, δ) in |= c ∼ c′ : ≍δ ⇒ ≍δ′

where m1 ≍δ m2
def

= m1 = m2 ∧ valid(δ,m1). The following useful rule is derived
using [Comp]:

m1 Ψ m2 =⇒ valid(δ,m1) optimize(c1, δ) = (c′1, δ
′) |= c′1 ∼ c2 : Ψ⇒ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[Opt]

Our case studies extensively use instantiations of [Opt] to perform expression prop-
agation (tactic ep). In contrast, we found that common subexpression elimination
is seldom used.

6.2 Algebraic Equivalences

Bridging steps frequently make use of algebraic properties of language constructs.
The proof of semantic security of ElGamal uses the fact that in a cyclic multiplicative
group, multiplication by a uniformly sampled element acts as a one-time pad:

|= x $← Zq; α← gx × β ≃{α} y $← Zq; α← gy

In the proof of IND-CCA security of OAEP described in Section 8.2 we use the
equivalences

|= x $← {0, 1}k; y ← x⊕ z ≃
{z}
{x,y,z} y $← {0, 1}k; x← y ⊕ z

and (for a permutation f):

|= x $← {0, 1}k−ρ; y $← {0, 1}ρ; z ← f(x‖y) ≃{z} z $← {0, 1}k

We show the usefulness of rule [Perm] by proving the first of these two equivalences,
known as optimistic sampling. Define

Ψ def

= z〈1〉 = z〈2〉
Φ def

= x〈1〉 = x〈2〉 ∧ y〈1〉 = y〈2〉 ∧ z〈1〉 = z〈2〉
Θ def

= m1{x〈1〉 ⊕ z〈1〉/y} Φ m2{y〈2〉 ⊕ z〈2〉/x}
= x〈1〉 = y〈2〉 ⊕ z〈2〉 ∧ z〈1〉 = z〈2〉

By rule [Assn] we have

|= y ← x⊕ z ∼ x← y ⊕ z : Θ⇒ Φ (17)

We apply rule [Perm] to prove

|= x $← {0, 1}k ∼ y $← {0, 1}k : Ψ⇒ Θ (18)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 29

For doing so we must show that for any pair of memories m1,m2 that coincide on
z there exists a permutation f on {0, 1}k such that

∀v ∈ {0, 1}k. v = f(v)⊕m2(z) ∧m1(z) = m2(z)

Take f(v) def

= v ⊕m2(z) to be such a permutation. Conclude from (17) and (18)
by a final application of rule [Seq].

6.3 Interprocedural Code Motion

Game-based proofs commonly include bridging steps consisting in a semantics-
preserving reordering of instructions. When the reordering is intraprocedural, the
tactic swap presented in the previous section generally suffices to justify the trans-
formation. However, proofs in the random oracle model (see §2.2 for an example
of a random oracle) often include transformations where random values used inside
oracles are sampled beforehand, or conversely, where sampling a random value at
some point in a game is deferred to a later point, possibly in a different procedure.
The former type of transformation, called eager sampling, is useful for moving
random choices upfront: a systematic application of eager sampling transforms a
probabilistic game G that samples a fixed number of values into a semantically
equivalent game S;G′, where S samples the values that might be needed in G, and
G′ is a completely deterministic program to the exception of adversaries that may
still make their own random choices.5 The dual transformation, called lazy sam-
pling, can be used to postpone sampling random values until they are actually used
for the first time—thus, one readily knows the exact distribution of these values
by reasoning locally, without the need to maintain and reason about probabilistic
invariants. In this section, we present a general method to prove the correctness of
interprocedural code motion. The method is based on a logic for swapping state-
ments that generalizes our earlier lemma reported in [Barthe et al. 2009b].

A logic for swapping statements. The primary tool for performing eager/lazy
sampling is an extension of the relational Hoare logic with rules for swapping state-
ments. As the goal is to move code across procedures, it is essential that the logic
considers two potentially different environments E and E′. The logic deals with
judgments of the form

|= E, (c;S) ∼ E′, (S; c′) : Ψ⇒ Φ

In most cases, the logic will be applied with S being a sequence of (guarded)
sampling statements; however, we do not constrain S and merely require that it
satisfies three basic properties for some sets of variables X and I:

mod(E, S,X) mod(E′, S,X) |= E, S ≃I∪X
X E′, S

Some rules of the logic are given in Fig. 7; for the sake of readability all rules are
specialized to ≡, although we formalized more general versions of the rules, e.g. for

5Making adversaries deterministic is the goal of the coin fixing technique, as described by Bellare
and Rogaway [2006].

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Gilles Barthe et al.

x 6∈ I ∪X fv(e) ∩X = ∅

|= E, (x← e;S) ≡ E′, (S;x← e)
[S-Assn]

x 6∈ I ∪X fv(d) ∩X = ∅

|= E, (x $← d;S) ≡ E′, (S;x $← d)
[S-Rnd]

|= E, (c1;S) ≡ E′, (S; c′1) |= E, (c2;S) ≡ E′, (S; c′2)

|= E, (c1; c2;S) ≡ E′, (S; c′1; c
′
2)

[S-Seq]

|= E, (c1;S) ≡ E′, (S; c′1) |= E, (c2;S) ≡ E′, (S; c′2) fv(e) ∩X = ∅

|= E, (if e then c1 else c2;S) ≡ E′, (S; if e then c′1 else c′2)
[S-Cond]

|= E, (c;S) ≡ E′, (S; c′) fv(e) ∩X = ∅

|= E, (while e do c;S) ≡ E′, (S;while e do c′)
[S-While]

|= E, (f.body;S) ≡ E′, (S; f.body) E(f).args = E′(f).args E(f).re = E′(f).re
fv(E(f).re) ∩X = ∅ x 6∈ I ∪X fv(~e) ∩X = ∅

|= E, (x← f(~e);S) ≡ E′, (S;x← f(~e))
[S-Call]

⊢wf A X ∩ (RW ∪R) = ∅ I ∩RW = ∅ ∀f 6∈ O. E(f) = E′(f)
∀f ∈O.E(f).args =E′(f).args ∧E(f).re =E′(f).re ∧ |= E, (f.body;S) ≡ E′, (S; f.body)

|= E, (x← A(~e);S) ≡ E′, (S;x← A(~e))
[S-Adv]

Fig. 7. Selected rules of a logic for swapping statements.

Game Glazy :
L← nil; b← A()

Oracle Olazy(x) :
if x /∈ dom(L) then

y $← {0, 1}ℓ;
L← (x, y) :: L

else y ← L[x]
return y

Game Geager :
L← nil; ŷ $← {0, 1}ℓ; b← A()

Oracle Oeager(x) :
if x /∈ dom(L) then

if x = 0k then y ← ŷ else y $← {0, 1}ℓ;
L← (x, y) :: L

else y ← L[x]
return y

Fig. 8. An example of eager sampling justified by interprocedural code motion.

conditional statements,

|= E, (c1;S) ∼ E′, (S; c′1) : P ∧ e〈1〉 ⇒ Q P =⇒ e〈1〉 = e′〈2〉
|= E, (c2;S) ∼ E′, (S; c′2) : P ∧ ¬e〈1〉 ⇒ Q fv(e′) ∩X = ∅

|= E, (if e then c1 else c2;S) ∼ E′, (S; if e′ then c′1 else c′2) : P ⇒ Q
[S-Cond]

An application. Consider the games Glazy and Geager in Fig. 8. Both games define
an oracle O : {0, 1}k → {0, 1}ℓ. While in game Glazy the oracle is implemented
as a typical random oracle that chooses its answers on demand, in Geager we use a
fresh variable ŷ to fix in advance the response to a query of the form 0k. We can
prove that both games are perfectly indistinguishable from the point of view of an
adversary A (who cannot write L). Define

c def

= b← A() S def

= if 0k 6∈ dom(L) then ŷ $← {0, 1}ℓ else ŷ ← L[0k]

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 31

and take I = {L}, X = {ŷ}. We introduce an intermediate game using rule [Trans],

|= Glazy ≃V
{b} Elazy, (L← nil; c;S) |= Elazy, (L← nil; c;S) ≃V

{b} Geager

|= Glazy ≃V
{b} Geager

[Trans]

We prove the premise on the left by eliminating S as dead code, since it does not
modify variable b. To prove the other premise, we introduce an intermediate game
(Eeager, (L ← nil;S; c)). Its equivalence with Geager is direct by propagating the
initial assignment to L to the condition in S and then simplifying the conditional
to its first branch. Its equivalence to (Elazy, (L← nil; c;S)) is justified by appealing
to rule [S-Adv],

|= L← nil ≡ L← nil
[Refl]

|= Elazy, (Olazy;S) ≡ Eeager, (S;Oeager)

|= Elazy, (c;S) ≡ Eeager, (S; c)
[S-Adv]

|= Elazy, (L← nil; c;S) ≃V
{b} Eeager, (L← nil;S; c)

[Seq]

We are thus left to show

|= Elazy, (Olazy.body;S) ≡ Eeager, (S;Oeager.body)

The proof of this latter judgment starts by an application of the generalized rule
for conditionals of the logic for swapping statements. Let

e = e′ = x /∈ dom(L)
c1 = y $← {0, 1}ℓ; L← (x, y) :: L
c2 = c′2 = y ← L[x]
c′1 = (if x = 0k then y ← ŷ else y $← {0, 1}ℓ); L← (x, y) :: L

There are two non-trivial proof obligations:

(1) |= c2;S ∼ S; c′2 : =V ∧ (x ∈ dom(L))〈1〉 ⇒ =V

This corresponds to showing that the code in the else branch in the conditional
of each implementation of O commutes with S, and follows from [S-Assn];

(2) |= c1;S ∼ S; c′1 : =V ∧ (x /∈ dom(L))〈1〉 ⇒ =V

By case analysis on x = 0k:
(a) If x = 0k, we can invoke certified program transformations—using the pre-

condition that x /∈ dom(L)—to simplify the goal to the following easily
provable form:

|= y $← {0, 1}ℓ;L← (x, y) :: L; ŷ ← y ≡ ŷ $← {0, 1}ℓ; y ← ŷ;L← (x, y) :: L

(b) Otherwise, we do a further case analysis on 0k ∈ dom(L)
i. If 0k∈ dom(L), we have to prove that |= c1; ŷ ← L[0k] ≡ ŷ ← L[0k]; c1

which is trivial;
ii. Otherwise, the goal simplifies to |= c1; ŷ $← {0, 1}ℓ ≡ ŷ $← {0, 1}ℓ; c1

which is also trivial.

7. PROOF METHODS FOR FAILURE EVENTS

One common technique to justify a lossy transformation G,A → G′, A, where
Pr [G : A] 6= Pr [G′ : A] is based on what cryptographers call failure events. This
technique relies on a fundamental lemma that allows to bound the difference in

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Gilles Barthe et al.

the probability of an event in two games: one identifies a failure event and argues
that both games behave identically until failure occurs. One can then bound the
difference in probability of another event by the probability of failure in either game.
Consider for example the following two program snippets and their instrumented
versions:

s def

= if e then c1; c else c2 sbad
def

= if e then c1;bad← true; c else c2
s′ def

= if e then c1; c
′ else c2 s′

bad

def

= if e then c1;bad← true; c′ else c2

If we ignore variable bad, s and sbad, and s′ and s′
bad

, respectively, are observa-
tionally equivalent. Moreover, sbad and s′

bad
behave identically unless bad is set.

Thus, the difference of the probability of an event A in a game G containing the
program fragment s and a game G′ containing instead s′ can be bounded by the
probability of bad being set in either G or G′.

Lemma 7.1 Fundamental Lemma. Let G1, G2 be two games and let A,B, and
F be events. If Pr [G1 : A ∧ ¬F] = Pr [G2 : B ∧ ¬F], then

|Pr [G1 : A]− Pr [G2 : B] | ≤ max(Pr [G1 : F] ,Pr [G2 : F])

To apply this lemma, we developed a syntactic criterion to discharge its hypothesis
for the case where A = B and F = bad. The hypothesis can be automatically
established by inspecting the code of both games: it holds if their code differs
only after program points setting the flag bad to true and bad is never reset to
false afterwards. Note also that if both games terminate with probability 1, then
Pr [G1 : bad] = Pr [G2 : bad], and that if, for instance, only game G2 terminates
with probability 1, it must be the case that Pr [G1 : bad] ≤ Pr [G2 : bad].

7.1 A Logic for Bounding the Probability of Events

Many steps in game-based proofs require to provide an upper bound for the measure
of some function g after the execution of a command c (throughout this section,
we assume a fixed environment E that we omit from the presentation). This is
typically the case when applying the Fundamental Lemma presented in the previous
section: we need to bound the probability of the failure event bad (equivalently,
the expected value of its characteristic function 1bad). A function f is an upper
bound of (λm. JcK m g) when

� JcKg � f def

= ∀m. JcK m g ≤ f m

Figure 9 gathers some rules for proving the validity of such triples. The rule for
adversary calls assumes that f depends only on variables that the adversary can-
not modify directly (but may modify indirectly through oracle calls, of course).
The correctness of this rule is proved using the induction principle for well-formed
adversaries together with the rest of the rules of the logic. The rules bear some
similarity with the rules of (standard) Hoare logic. However, there are some subtle
differences. For example, the premises of the rules for branching statements do not
consider guards. The rule

⊢ Jc1Kg � f|e ⊢ Jc2Kg � f|¬e

⊢ Jif e then c1 else c2Kg � f

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 33

⊢ JskipKf � f
f = λm. g(m {JeK m/x})

⊢ Jx← eKg � f

f = λm. JdK m (λv. g(m {v/x}))

⊢ Jx $← dKg � f

⊢ Jc1Kg � f Jc2Kh � g

⊢ Jc1; c2Kh � f

⊢ Jc1Kg � f Jc2Kg � f

⊢ Jif e then c1 else c2Kg � f

⊢ JcKf � f

⊢ Jwhile e do cKf � f

⊢ g ≤ g′ JcKg′ � f ′ f ′ ≤ f

⊢ JcKg � f

⊢ Jp.bodyKg � f f =X f g =Y g x 6∈ (X ∪ Y)

⊢ Jx← p(~e)Kg � f

⊢wf A ∀p ∈ O. ⊢ Jp.bodyKf � f f =X f X ∩ ({x} ∪ RW) = ∅

⊢ Jx← A(~e)Kf � f

f =I f |= c ≃I
O c′ g =O g ⊢ Jc′Kg � f

⊢ JcKg � f

Fig. 9. Selected rules of a logic for bounding the probability of events.

where f|e is defined as (λm. if JeKm then f(m) else 0) can be derived from the rule
for conditionals in the figure by two simple applications of the “rule of consequence”.
Moreover, the rule for conditional statements (and its variant above) is incomplete:
consider a statement of the form Jif true then c1 else c2Kg � f such that Jc1Kg � f
is valid, but not Jc2Kg � f ; the triple Jif true then c1 else c2Kg � f is valid, but to
derive it one needs to resort to observational equivalence. More general rules exist,
but we have not formalized them since we did not need them in our proofs.6

Discussion. The differences between the above triples and those of Hoare logic
are inherent to their definition, which is tailored to establish upper bounds for the
probability of events. Nevertheless, the validity of a Hoare triple {P} c {Q} (in
which pre- and post-conditions are Boolean-valued predicates) is equivalent to the
validity of the triple JcK1¬Q � 1¬P . We can consider dual triples of the form
JcKg � f whose validity is defined as:

� JcKg � f def

= ∀m. JcK m g ≥ f m

This allows to express termination of a program as JcK1 � 1 and admits an em-
bedding of Hoare triples, mapping {P} c {Q} to JcK1Q � 1P . However, this
embedding does not preserve validity for non-terminating programs under the par-
tial correctness interpretation. Consider a program c that never terminates: we
have {true} c {false}, but clearly not JcK1false � 1.

7.2 Automation

In most applications of Lemma 7.1, failure can only be triggered by oracle calls.
Typically, the flag bad that signals failure is set in the code of an oracle for which
an upper bound for the number of queries made by the adversary is known. The
following lemma provides a general method for bounding the probability of failure
under such circumstances.

6More generally, it seems possible to make the logic complete, at the cost of considering more
complex statements with pre-conditions on memories.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Gilles Barthe et al.

Lemma 7.2 Failure Event Lemma. Consider an event F and a game G that
gives adversaries access to an oracle O. Let cntr : EN, h : N → [0, 1] be such that
cntr and F do not depend on variables that can be written outside O, and for any
initial memory m,

¬F (m) =⇒ Pr [O.body,m : F] ≤ h(JcntrK m)

and

range (JO.bodyK m) (λm′. JcntrK m < JcntrK m′) ∨
range (JO.bodyK m) (λm′. JcntrK m = JcntrK m′ ∧ F m′ = F m)

Then, for any initial memory m satisfying ¬F (m) and JcntrK m = 0,

Pr [G,m : F ∧ cntr ≤ q] ≤

q−1
∑

i=0

h(i)

Proof. Define f :M→ [0, 1] as follows

f(m) def

=

0 if JcntrK m > q

1F (m) + 1¬F (m)

q−1
∑

i=JcntrKm

h(i) if JcntrK m ≤ q

We show JGKf � f by structural induction on the code of G using the rules of the
logic presented in the previous section. We first prove that O satisfies the triple
JO.bodyKf � f . We must show that for every m, JO.bodyK m f ≤ f(m). This is
trivial when cntr is not incremented, because we have

JO.bodyK m f = f(m) (JO.bodyK m 1) ≤ f(m)

When cntr is incremented and JcntrK m ≥ q, this is trivial too, because the left
hand side becomes 0. We are left with the case where O.body increments cntr and
JcntrK m < q. If F (m), the right hand side is equal to 1 and the inequality holds.
Otherwise, we have from the hypotheses that

JO.bodyK m f ≤ JO.bodyK m

λm′.1F (m
′) + 1¬F (m

′)

q−1
∑

i=JcntrKm′

h(i)

≤ Pr [O.body,m : F] + Pr [O.body,m : ¬F]

q−1
∑

i=JcntrKm+1

h(i)

≤ h(JcntrK m) +

q−1
∑

i=JcntrKm+1

h(i) =

q−1
∑

i=JcntrKm

h(i) = f(m)

Using the rules in Fig. 9, we can then extend this result to adversary calls and to
the rest of the game, showing that JGKf � f .
Finally, let m be a memory such that ¬F (m) and JcntrK m = 0. It follows

immediately from JGKf � f that

Pr [G,m : F ∧ cntr ≤ q] ≤ JGK m f ≤ f(m) =

q−1
∑

i=0

h(i)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 35

When failure is defined as the probability of a flag bad being set by an oracle
and the number of queries the adversary makes to this oracle is upper bounded
by q, the above lemma can be used to bound the probability of failure by taking
F = bad and defining h suitably. In most practical applications the probability
of an oracle call raising failure is history-independent and hence h is a constant
function. The proof of Lemma 8.6 given in Section 8.3.2 is an exception for which
the full generality of the lemma is needed.

8. CASE STUDIES

In this Section we overview four significant case studies that have been verified
in CertiCrypt: the existential unforgeability of Full-Domain Hash signatures under
adaptive chosen-message attacks [Zanella Béguelin et al. 2009], the indistinguisha-
bility under adaptive chosen-ciphertext attacks of OAEP ciphertexts, two compact
proofs of the PRP/PRF switching lemma [Barthe et al. 2010a], and a formalization
of a large class of zero-knowledge protocols [Barthe et al. 2010b].

8.1 Existential Unforgeability of FDH

Full-Domain Hash (FDH) was proposed by Bellare and Rogaway [1996] as an effi-
cient RSA-based signature scheme, but is in fact an instance of an earlier construc-
tion described by the same authors in [1993]. We consider this latter, more general
construction, which is based on a family of trapdoor permutations—RSA being just
one possible choice.

Definition 8.1 Trapdoor permutation. A family of trapdoor permutations is a
triple of algorithms (KG, f, f−1). For a given value of the security parameter η, the
key generator KG(η) randomly selects a pair of keys (pk, sk) such that f(pk, ·) is a
permutation on its domain and f−1(sk, ·) is its inverse.

Definition 8.2 FDH signature scheme. Let (KGf , f, f−1) be a family of trapdoor
permutations on cyclic groups Gη and let H be a family of hash functions from bit-
strings of arbitrary length onto the domain of the permutation. The FDH signature
scheme is composed of the following triple of algorithms:

KG(η) def

= (pk, sk)← KGf (η); return (pk, sk)
Sign(sk,m) def

= return f−1(sk,H(m))
Verify(pk,m, σ) def

= return (f(pk, σ) = H(m))

The signature of a message m ∈ {0, 1}∗ is simply f−1(sk,H(m)), the preimage of
its digest under f . To verify a purported signature σ on a message m, it suffices to
check whether H(m) and f(pk, σ) coincide.

We prove in the random oracle model that if the underlying trapdoor permu-
tation is homomorphic and one-way (i.e. difficult to invert), then FDH is secure
against existential forgery under adaptive chosen-message attacks. This means that
modeling H as a truly random function, an efficient adversary that can ask for sig-
natures of messages of its choice, can only succeed with negligible probability in
forging a signature for a fresh message. We give a game-based proof of an exact
security bound that relates the problem of forging a signature to the problem of
inverting the trapdoor permutation. The initial and final games encoding both
problems appear in Figure 10; the proof in CertiCrypt is about 3,500 lines long.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Gilles Barthe et al.

Theorem 8.3 Existential unforgeability of FDH. Assume the underly-
ing trapdoor permutation (KGf , f, f−1) is homomorphic with respect to the group
operation in its domain, i.e. for every (pk, sk) that might be output by KGf , and
every x, y, f(pk, x × y) = f(pk, x) × f(pk, y). Let A be an adversary against the
existential unforgeability of FDH that makes at most qH and qS queries to the hash
and signing oracles respectively. Suppose A succeeds in forging a signature for a
fresh message within time t with probability ǫ during experiment GEF. Then, there
exists an inverter B that finds the preimage of an element uniformly drawn from
the range of f with probability ǫ′ within time t′ during experiment GOW, where

t′ ≤ t+ (qH + qS + 1) O(tf) ǫ′ ≥ p (1− p)qS ǫ

and tf is an upper bound for the time needed to compute the image of a group
element under f .

The inverter first selects qH + qS +1 bits at random, choosing true with probability
p and false with probability (1 − p), and stores them in a list T . It then runs
A simulating the hash and signing oracles. It answers to the i-th hash query as
follows: it picks uniformly a value r from the domain of f and stores it in a list P ,
then replies according to the i-th entry in T : if it is true, answers with y× f(pk, r)
where y is its challenge, if it is false answers with simply f(pk, r). In both cases
the answers are indistinguishable from those of a random oracle. When A asks for
the signature of a message m, the inverter makes the corresponding hash query
itself and then answers with P [m]. The simulation is correct provided the entries
in T corresponding to messages appearing in a sign query are false, because in this
case the respective entries in P coincide with the preimage of their hash value;
this happens with probability (1 − p)qS . When A halts returning a pair (m,σ), B
returns σ × P [m]−1. For a valid forgery, this value is a preimage of y when the
entry corresponding to m in T is true; this happens with probability p. Thus, we
have

Pr
[

GOW : x = f−1(sk, y)
]

≥ p (1− p)qS Pr [GEF : h = f(pk, σ)]

The aim of the inverter is to inject its challenge y in as many hash queries as possible,
while at the same time maximizing the probability of the simulation being correct.
The value p = (qS + 1)−1 maximizes the factor p (1− p)qS and thus maximizes the
success probability of the reduction. For this value of p, the factor approximates
exp(−1) q−1

S for large values of qS. This reduction is optimal [Coron 2002] and
its success probability is independent of the number of hash queries. This is of
much practical significance since the number of hash values a real-world forger can
compute is only limited by the time and computational resources it invests, whereas
the number of signatures it gets could be limited by the owner of the private key.

8.2 Ciphertext Indistinguishability of OAEP under Chosen-Ciphertext Attacks

Optimal Asymmetric Encryption Padding (OAEP) [Bellare and Rogaway 1994] is
a prominent public-key encryption scheme based on trapdoor permutations, most
commonly used in combination with the RSA and Rabin functions. OAEP is widely
deployed; many variants of OAEP are recommended by several standards, including
IEEE P1363, PKCS, ISO 18033-2, ANSI X9, CRYPTREC and SET. Yet, the his-
tory of OAEP security is fraught with difficulties. The original paper of Bellare and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 37

Game GEF :
(pk, sk)← KGf ();
L← nil;
(m, σ)← A(pk);
h← H(m)

Oracle H(m) :
if m 6∈ dom(L) then

h $← G;
L← (m, h) :: L

return L[m]

Oracle Sign(m) :
h← H(m);
return f−1(sk, h)

Game GOW :
(pk, sk)← KGf ();
y $← G;
x← B(pk, y)

Adversary B(pk, y) :

p̂k← pk; ŷ ← y;
i← 0; T ,P ,L← nil;
while |T | ≤ qH + qS do

b $← true ⊕p false;
T ← b :: T

(m, σ)← A(pk);
h← H(m);
return σ × P [m]−1

Oracle H(m) :
if m /∈ dom(L) then

r $← G;
if T [i] then

h← ŷ × f(p̂k, r)

else h← f(p̂k, r)
P ← (m, r) :: P ;
L← (m, h) :: L;
i← i+ 1

return L[m]

Oracle Sign(m) :
h← H(m);

return P [m]

Fig. 10. Initial and final games in the proof of security of FDH. We use (true ⊕p false) to denote
a Bernoulli distribution with success probability p, i.e. the discrete distribution that takes value
true with probability p and false with probability (1 − p).

Rogaway [1994] proves that, under the hypothesis that the underlying trapdoor per-
mutation family is one-way, OAEP is semantically secure under chosen-ciphertext
attacks. Shoup [2001] discovered later that this proof only established the security of
OAEP against non-adaptive chosen-ciphertext attacks (IND-CCA), and not, as was
believed at that time, against the stronger version of ciphertext indistinguishability
that allows the adversary to adaptively obtain the decryption of ciphertexts of her
choice (IND-CCA). In response, Shoup suggested a modified scheme, secure against
adaptive attacks under the one-wayness of the underlying permutation, and gave a
proof of the adaptive security of the original scheme when it is used in combination
with RSA with public exponent e = 3. Simultaneously, Fujisaki et al. [2004] proved
that OAEP in its original formulation is indeed secure against adaptive attacks, but
under the assumption that the underlying permutation family is partial-domain
one-way. Since for the particular case of RSA this latter assumption is no stronger
than (full-domain) one-wayness, this finally established the adaptive IND-CCA se-
curity of RSA-OAEP. Unfortunately, when one takes into account the additional
cost of reducing the problem of inverting RSA to the problem of partially-inverting
it, the security bound becomes less attractive. We note that there exist variants of
OAEP that admit more efficient reductions when used in combination with the RSA
and Rabin functions, notably SAEP, SAEP+ [Boneh 2001], and alternative schemes
with tighter generic reductions, e.g. REACT [Okamoto and Pointcheval 2001b].

Here we report on a machine-checked proof of the IND-CCA security of generic
OAEP in the random oracle model. We use as a starting point the proof of
Pointcheval [2005], which fills several gaps in the reduction of Fujisaki et al. [2004],
resulting in a weaker security bound. Our proof unveils minor glitches in the proof
of Pointcheval [2005] and marginally improves on its exact security bound (reduc-
ing the coefficients) by performing an aggressive analysis of oracle queries earlier
in the sequence of games. The initial and final games of the reduction appear in
Figure 11; the proof in CertiCrypt is about 10,000 lines long.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Gilles Barthe et al.

Game GINDCCA :
LG,LH ,LD ← nil;
(pk, sk)← KG(η);
(m0,m1)← A1(pk);
b $← {0, 1};
c∗ ← E(mb);
γdef ← true;
b̄← A2(c∗)

Oracle G(r) :
if r 6∈ dom(LG) then

g $← {0, 1}k−k0 ;
LG ← (r, g) :: LG

return LG[r]

Oracle H(s) :
if s 6∈ dom(LH) then

h $← {0, 1}k0 ;
LH ← (s, h) :: LH

return LH [s]

Oracle D(c) :
LD ← (γdef , c) :: LD ;
(s, t)← f−1(sk, c);
h← H(s);
r ← t⊕ h;
g ← G(r);
if [s⊕ g]k1 = 0k1 then

return [s⊕ g]k−k0−k1

else return ⊥

Game GPDOW :
(pk, sk)← KGf (η);
s $← {0, 1}k−k0 ;
t $← {0, 1}k0 ;
s̄← B(pk, f(pk, s‖ t))

Adversary B(pk, y) :
LG,LH ← nil;

p̂k← pk;
(m0,m1)← A1(pk);
b̄← A2(y);
s $← dom(LH);
return s

Oracle G(r) :
if r 6∈ dom(LG) then

g $← {0, 1}k−k0 ;
LG ← (r, g) :: LG

return LG[r]

Oracle H(s) :
if s 6∈ dom(LH) then

h $← {0, 1}k0 ;
LH ← (s, h) :: LH

return LH [s]

Oracle D(c) :
if ∃(s, h) ∈ LH , (r, g) ∈ LG.

c = f(p̂k, s‖(r ⊕ h)) ∧
[s⊕ g]k1 = 0k1

then return [s⊕ g]k−k0−k1

else return ⊥

Fig. 11. Initial and final games in the reduction of the IND-CCA security of OAEP to the problem
of partially inverting the underlying permutation. We exclude cheating adversaries who query
the decryption oracle with the challenge ciphertext during the second phase of the experiment by
requiring (true, c∗) /∈ LD to be a post-condition of the initial game.

Definition 8.4 OAEP encryption scheme. Let (KGf , f, f−1) be a family of trap-
door permutations on {0, 1}k, and let

G : {0, 1}k0 → {0, 1}k−k0 H : {0, 1}k−k0 → {0, 1}k0

be two hash functions, with k > k0 + k1. The OAEP scheme is composed of the
following triple of algorithms:

KG(η) def

= (pk, sk)← KGf (η); return (pk, sk)
E(pk,m) def

= r $← {0, 1}k0; s←G(r)⊕(m‖0k1); t←H(s)⊕ r; return f(pk, s‖t)
D(sk, c) def

= (s‖ t)← f−1(sk, c); r ← t⊕H(s); m← s⊕G(r);
if [m]k1

= 0k1 then return [m]k−k0−k1 else return ⊥

where [x]n (resp. [x]n) denotes the n least (resp. most) significant bits of x.

Theorem 8.5 Ciphertext Indistinguishability of OAEP. Let A be an
adversary against the ciphertext indistinguishability of OAEP under an adaptive
chosen-ciphertext attack that makes at most qG and qH queries to the hash oracles
G and H, respectively, and at most qD queries to the decryption oracle D.7Suppose

7The machine-checked proof slightly relaxes this condition; it requires that the length of LG

be less than qD + qG + 1 (the 1 accounting for the call to G needed to compute the challenge
ciphertext), so that the adversary could trade calls to D for calls to G.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 39

A achieves an advantage ǫ within time t during game GINDCCA. Then, there exists
an inverter B that finds a partial preimage (the k − k0 most significant bits of a
preimage) of an element uniformly drawn from the range of f with probability ǫ′

within time t′ during experiment GPDOW, where

t′ ≤ t+ qG qH qD O(tf) ǫ′ ≥
1

qH

(

ǫ−
3qDqG + q2D + 4qD + qG

2k0
−

2qD
2k1

)

8.3 The PRP/PRF Switching Lemma

Suppose you give an adversary black-box access to either a random function or a
random permutation, and you ask her to tell you which is the case. For the sake
of concreteness let us assume the domain of the permutation (and the domain and
range of the function) is {0, 1}ℓ. No matter what strategy the adversary follows,
due to the birthday problem, after roughly 2ℓ/2 queries to the oracle she will be able
to tell in which scenario she is with a high probability. If the oracle is a random
function, a collision is almost sure to occur, whereas it could not occur when the
oracle is a random permutation. The birthday problem gives a lower bound for
the advantage of the adversary. The PRP/PRF Switching Lemma gives an upper
bound. In a code-based setting, its formulation is given in terms of two games
GRP and GRF, that give the adversary access to an oracle that represents a random
permutation and a random function, respectively:

Game GRP :
L← nil; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}
ℓ \ ran(L);

L← (x, y) :: L
return L[x]

Game GRF :
L← nil; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}
ℓ;

L← (x, y) :: L
return L[x]

where the instruction y $← {0, 1}ℓ \ ran(L) samples uniformly a bitstring of length
ℓ that is not in the range of the association list L, thus ensuring that oracle O in
GRP implements an injective—and therefore bijective—function.

Lemma 8.6 PRP/PRF switching lemma. Suppose A makes at most q > 0
queries to oracle O. Then,

|Pr [GRP : b = 1]− Pr [GRF : b = 1]| ≤
q(q − 1)

2ℓ+1
(19)

The standard proof of the PRP/PRF Switching Lemma is due to Impagliazzo and
Rudich [1989, Theorem 5.1]. Bellare and Rogaway [2006] report a subtle error in the
reasoning and give another game-based proof under the additional assumption that
the adversary never asks the same query twice. Their proof uses the Fundamental
Lemma (see §7) to bound the advantage of the adversary by the probability of
a failure event, but their justification of the bound on the probability of failure
remains informal. Shoup [2004, §5.1] gives another game-based proof of the lemma
under the assumption that the adversary makes exactly q distinct queries. In his
proof, the challenger acts as an intermediary between the oracle and the adversary:
rather than the adversary calling the oracle at her discretion, it is the challenger

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Gilles Barthe et al.

Game Gbad

RP
:

L← nil; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ;
if y ∈ ran(L) then

bad← true;
y $← {0, 1}ℓ \ ran(L)

L← (x, y) :: L
return L[x]

Game Gbad

RF
:

L← nil; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ;
if y ∈ ran(L) then

bad← true

L← (x, y) :: L
return L[x]

Game G
eager
RF

:
L← nil; S; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

if 0 < |Y | then
y ← hd(Y);
Y ← tl(Y)

else y $← {0, 1}ℓ

L← (x, y) :: L
return L[x]

S def
= Y ← nil; while |Y | < q do

(

y $← {0, 1}ℓ; Y ← y :: Y
)

Fig. 12. Games used in the proofs of the PRP/PRF Switching Lemma.

who calls the adversary to get a query and who forwards it to the oracle. The
PRP/PRF Switching Lemma has been formalized previously. Affeldt et al. [2007]
present a Coq proof of a variant of the lemma that only holds for non-adaptive and
deterministic adversaries; Barthe et al. [2009b] report on a formalization of the full
result in CertiCrypt. Here we overview two significantly shorter proofs that better
exploit the code-based techniques presented in earlier sections. Both proofs use the
Fundamental Lemma to bound the advantage of the adversary by the probability
of a failure event. The first proof uses the eager sampling technique of Section 6.3
to bound the probability of failure, whereas the second one relies on Lemma 7.2.
We begin by introducing in Fig. 12 annotated versions Gbad

RP and Gbad

RF of the games
GRP and GRF. From Lemma 7.1, we readily have

|Pr [GRP : b = 1]− Pr [GRF : b = 1]| ≤ Pr
[

Gbad

RF : bad
]

8.3.1 A Proof Based on Eager Sampling. We make a first remark: the prob-
ability of bad being set in game Gbad

RF is bounded by the probability of having a
collision in ran(L) at the end of the game; let us write this latter event as col(L).
We prove this by showing that bad =⇒ col(L) is an invariant of the game.
Using the logic for swapping statements, we then modify the oracle in Gbad

RF so
that the responses to the first q queries are instead chosen at the beginning of the
game and stored in a list Y , thus obtaining the equivalent eager version Geager

RF

shown in Fig. 12. Each time a query is made, the oracle pops a value from list Y
and gives it back to the adversary as the response.
Since the initialization code S terminates and does not modify L, we can have

that

Pr [GRF : col(L)] = Pr [GRF; S : col(L)] = Pr [Geager
RF : col(L)]

We prove using the relational Hoare logic that having a collision in the range of
L at the end of this last game is the same as having a collision in Y immediately
after executing S. We conclude that the bound in (19) holds by analyzing the loop
in S. Observe that if there are no collisions in Y in a memory m, we can prove
by induction on (q − |Y |) that the probability of sampling a colliding value in the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 41

Prover Verifier

knows (x, w) knows only x

computes r

chooses c

accepts/rejectscomputes s

r

c

s

Protocol(x,w) :
(r, state)← P1(x,w);
c $← C;
s← P2(x,w, state, c);
b← V2(x, r, c, s)

Fig. 13. Characteristic 3-step interaction in a Σ-protocol and its formalization as a game.

remaining loop iterations is

Pr [S,m : ∃i, j ∈ N. i < j < q ∧ Y [i] = Y [j]] =

q−1
∑

i=|Y |

i

2ℓ

8.3.2 A Proof Based on the Failure Event Lemma. The bound in (19) follows
from a direct application of Lemma 7.2. It suffices to take F = bad, h(i) = i 2−ℓ,
and cntr = |L|. If bad is initially set to false in memory m, we have

Pr
[

Gbad

RF ,m : bad
]

= Pr [b← A(),m {nil/L} : bad ∧ |L| ≤ q] ≤

q−1
∑

i=0

h(i) =
q(q − 1)

2ℓ+1

The first equation holds because A does not make more than q queries to O; the
inequality is obtained from Lemma 7.2; we use the logic in Fig. 9 to bound the
probability of bad being set in one call to the oracle by h(cntr).

Remark. The resulting proof is considerably shorter compared to the one pre-
sented in the previous section, about 100 lines of Coq compared to 400 lines (both
proofs are significantly more compact than the 900-lines proof reported in [Barthe
et al. 2009b]).

8.4 Formalization of Σ-Protocols

A Σ-protocol is a 3-step interactive protocol where a prover P interacts with a
verifier V . Both parties have access to a common input x, and the goal of the
prover is to convince the verifier that she knows some value w suitably related
to x, without revealing anything beyond this assertion. The protocol begins with
the prover sending a commitment r to the verifier, who responds with a random
challenge c chosen uniformly from a set C; the prover then computes a response
s and sends it back to the verifier, who either accepts or rejects the conversation.
Fig. 13 shows a diagram of a run of a Σ-protocol and the formalization of the
interaction as a game in CertiCrypt, where the different phases of each party are
represented as procedures. Formally, a Σ-protocol is defined with respect to a
knowledge relation R and must satisfy the following three properties:

(1) Completeness: Given an x ∈ dom(R) the prover always convinces the verifier:

R(m(x),m(w)) =⇒ Pr [Protocol(x,w),m : b = true] = 1

(2) Honest-Verifier Zero-Knowledge: There exists an efficient simulator S that given
x ∈ dom(R) computes triples (r, c, s) with the same distribution as a valid
conversation:

|= Protocol(x,w) ∼ (r, c, s)← S(x) : ={x} ∧ R(x,w)〈1〉 ⇒ ={r,c,s}

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Gilles Barthe et al.

Table I. Special homomorphisms in selected Σφ-protocols. In the table, Z+
q stands for the additive

group of integers modulo q, Z∗
p for the multiplicative group of integers modulo p; N is an RSA

modulus and e a public RSA exponent coprime with ϕ(N).

Protocol G H φ u v

Schnorr Z
+
q Z∗

p x 7→ gx x 7→ 0 q

Okamoto (Z+
q ,Z+

q) Z
∗
p (x1, x2) 7→ gx1

1 ⊗ gx2

2 x 7→ (0, 0) q

Fiat-Shamir Z∗
N

Z∗
N

x 7→ x2 x 7→ x 2
Guillou-Quisquater Z∗

N
Z∗
N

x 7→ xe x 7→ x e
Feige-Fiat-Shamir {−1, 1} × Z∗

N
Z∗
N

(s, x) 7→ s.x2 x 7→ (1, x) 2

(3) Special soundness: Given two accepting conversations for an input x with
the same commitment r but with different challenges, there exists an efficient
knowledge extractor KE that computes a witness w such that R(x,w):

(r, c1, s1), (r, c2, s2) accepting ∧ c1 6= c2 =⇒
Pr [w← KE(x, r, c1, c2, s1, s2) : R(x,w)] = 1

We showed in [Barthe et al. 2010b] that many protocols in the literature are in-
stances of an abstract protocol that proves knowledge of preimages under a homo-
morphism.

Definition 8.7 Special homomorphism. We say that a homomorphism φ between
a finite additive group (G,⊕) and a multiplicative group (H,⊗) is special if there
exists a value v ∈ Z \ {0} (called special exponent) and an efficient algorithm that
given x ∈ H computes u ∈ G such that φ(u) = xv.

Theorem 8.8 Σφ-protocols for special homomorphisms. If φ is special
and c+ is smaller than any prime divisor of the special exponent v, then there exists
a Σ-protocol with knowledge relation R def

= {(x,w) | x = φ(w)} and challenge set
C = [0..c+].

Table I shows several archetypal zero-knowledge protocols that can be construed as
Σφ-protocols, and for which we have used the previous theorem to obtain compact
proofs of their completeness, honest-verifier zero-knowledge and special soundness.

9. RELATED WORK

Cryptographic protocol verification is an established area of formal methods, and
a wealth of automated and deductive methods have been developed to the purpose
of verifying that protocols provide the expected level of security [Meadows 2003].
Traditionally, protocols have been verified in a symbolic model, for which effective
decision procedures exist under suitable hypotheses [Abadi and Cortier 2006]. Al-
though the symbolic model assumes perfect cryptography, soundness results such
as [Abadi and Rogaway 2002]—see [Cortier et al. 2010] for a recent survey—relate
the symbolic model with the computational model, provided the cryptographic
primitives satisfy adequate notions of security. It is possible to combine symbolic
methods and soundness proofs to achieve guarantees in the computational model,
as done e.g. in [Backes and Laud 2006; Sprenger and Basin 2008; Backes et al.
2010]. One drawback of this approach is that the security proof relies on intri-
cate soundness proofs and hypotheses that unduly restrict the usage of primitives.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 43

Besides, it is not clear whether computational soundness results will always exist
to allow factoring verification through symbolic methods [Backes and Pfitzmann
2005]. Consequently, some authors attempt to provide guarantees directly at the
computational level [Blanchet 2008; Laud 2001; Roy et al. 2008].

In contrast, the formal verification of cryptographic functionalities is an emerging
trend. An early work of Barthe et al. [2004] proves the security of ElGamal in Coq,
but the proof relies on the generic model, a very specialized and idealized model that
elides many of the issues that are relevant to cryptography. Den Hartog [2008] also
proves ElGamal semantic security using a probabilistic (non-relational) Hoare logic.
However, their formalism is not sufficiently powerful to express precisely security
goals: notions such as well-formed and effective adversary are not modeled.

Blanchet and Pointcheval [2006] were among the first to use verification tools
to carry out game-based proofs of cryptographic schemes. They used CryptoVerif
to prove the existential unforgeability of the FDH signature scheme, with a bound
weaker than the one given in Section 8.1. CryptoVerif has also been used to verify
the security of many protocols, including Kerberos [Blanchet et al. 2008]. It is
difficult to assess CryptoVerif ability to handle automatically more complex crypto-
graphic proofs (or tighter security bounds), e.g. for schemes such as OAEP; on the
other hand, compiling CryptoVerif sequences of games in CertiCrypt is an interesting
research direction that would increase automation in CertiCrypt and confidence in
CryptoVerif—by generating independently verifiable proofs.

Impagliazzo and Kapron [2006] were the first to develop a logic to reason about
indistinguishability. Their logic is built upon a more general logic whose soundness
relies on non-standard arithmetic; they show the correctness of a pseudo-random
generator and that next-bit unpredictability implies pseudo-randomness. Recently,
Zhang [2009] developed a similar logic on top of Hofmann’s SLR system [Hofmann
1998] and reconstructed the examples of Impagliazzo and Kapron [2006]. These
logics have limited applicability because they lack support for oracles or adaptive
adversaries and so cannot capture many of the the standard patterns for reason-
ing about cryptographic schemes. More recently Barthe et al. [2010] developed a
general logic, called Computational Indistinguishability Logic (CIL), that captures
reasoning patterns that are common in provable security, such as simulation and
reduction, and deals with oracles and adaptive adversaries. They use CIL to prove
the security of the Probabilistic Signature Scheme, a widely used signature scheme
that forms part of the PKCS standard [Bellare and Rogaway 1996]. CIL subsumes
an earlier logic by Courant et al. [2008], who developed a form of strongest post-
condition calculus that can establish automatically asymptotic security (IND-CPA
and IND-CCA) of encryption schemes that use one-way functions and hash func-
tions modeled as random oracles. They show soundness and provide a prototype
implementation that covers many examples in the literature.

In parallel, several authors have initiated formalizations of game-based proofs in
proof assistants and shown the security of basic examples. Nowak [2007] gives a
game-based proof of ElGamal semantic security in Coq. Nowak uses a shallow em-
bedding to model games; his framework ignores complexity issues and has limited
support for proof automation: because there is no special syntax for writing games,
mechanizing syntactic transformations becomes very difficult. Affeldt et al. [2007]

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Gilles Barthe et al.

formalize a game-based proof of the PRP/PRF switching lemma in Coq. How-
ever, their formalization is tailored towards the particular example they consider,
which substantially simplifies their task and hinders generality. They deal with a
weak (non-adaptive) adversary model and ignore complexity. In another attempt
to build a system supporting provable security, Backes et al. [2008] formalize a lan-
guage for games in the Isabelle proof assistant and prove the Fundamental Lemma;
however, no examples are reported. All in all, these works appear like preliminary
experiments that are not likely to scale.

Leaving the realm of cryptography, CertiCrypt relies on diverse mathematical con-
cepts and theories that have been modeled for their own sake. We limit ourselves
to singling out Audebaud and Paulin-Mohring [2009] formalization of the measure
monad, which we use extensively, and the work of Hurd et al. [2005], who devel-
oped a mechanized theory in the HOL theorem prover for reasoning about pGCL
programs, a probabilistic extension of Dijkstra’s guarded command language.

10. CONCLUSION

CertiCrypt is a fully formalized framework that supports machine-checked game-
based proofs; we have validated its design through formalizing standard crypto-
graphic proofs. Our work shows that machine-checked proofs of cryptographic
schemes are not only plausible but indeed feasible. However, constructing machine-
checked proofs requires a high-level of expertise in formal proofs and remains time
consuming despite the high level of automation achieved. Thus, CertiCrypt only pro-
vides a first step towards the completion of Halevi’s program, in spite of the amount
of work invested so far (the project was initiated in June 2006). A medium-term
objective would be to develop a minimalist interface that eases the writing of games
and provides a fixed set of mechanisms (tactics, proof-by-pointing) to prove some
basic transitions, leaving the side conditions as hypotheses. We believe that such
an interface would help cryptographers ensure that there are no obvious flaws in
their definitions and proofs, and to build sketches of security proofs. In fact, it is
our experience that the type system and the automated tactics provide valuable
information in debugging proofs.

Numerous research directions remain to be explored. Our main priority is to
improve proof automation. In particular, we expect that one can automate many
proofs in pRHL, by relying on a combination of standard verification tools: weakest
pre-condition generators, invariant inference tools, SMT solvers.

In addition, it would be useful to formalize cryptographic meta-results such as
the equivalence between IND-CPA and IND-CCA under plaintext awareness, or the
transformation of an IND-CPA-secure scheme into an IND-CCA-secure scheme [Fu-
jisaki and Okamoto 1999]. Another direction would be to formalize proofs of com-
putational soundness of the symbolic model, see e.g. [Abadi and Rogaway 2002]
and proofs of automated methods for proving security of primitives and protocols,
see e.g. [Courant et al. 2008; Laud 2001]. Finally, it would also be worthwhile to
explore applications of CertiCrypt outside the realm cryptography, in particular to
randomized algorithms and complexity.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 45

REFERENCES

Abadi, M. and Cortier, V. 2006. Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367, 1-2, 2–32.

Abadi, M. and Rogaway, P. 2002. Reconciling two views of cryptography (The computational
soundness of formal encryption). J. Cryptology 15, 2, 103–127.

Affeldt, R., Tanaka, M., and Marti, N. 2007. Formal proof of provable security by game-
playing in a proof assistant. In 1st International Conference on Provable Security, ProvSec

2007. Lecture Notes in Computer Science, vol. 4784. Springer, Berlin, 151–168.

Amtoft, T., Bandhakavi, S., and Banerjee, A. 2006. A logic for information flow in object-
oriented programs. In 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL 2006. ACM, New York, 91–102.

Audebaud, P. and Paulin-Mohring, C. 2009. Proofs of randomized algorithms in Coq. Sci.

Comput. Program. 74, 8, 568–589.

Backes, M., Berg, M., and Unruh, D. 2008. A formal language for cryptographic pseudocode.
In 15th International Conference on Logic for Programming, Artificial Intelligence and Rea-

soning, LPAR 2008. Lecture Notes in Computer Science, vol. 5330. Springer, Berlin, 353–376.

Backes, M. and Laud, P. 2006. Computationally sound secrecy proofs by mechanized flow
analysis. In 13th ACM Conference on Computer and Communications Security, CCS 2006.
ACM, New York, 370–379.

Backes, M., Maffei, M., and Unruh, D. 2010. Computationally sound verification of source
code. In 17th ACM Conference on Computer and Communications Security, CCS 2010. ACM,
New York.

Backes, M. and Pfitzmann, B. 2005. Limits of the cryptographic realization of Dolev-Yao-style
XOR. In Computer Security – ESORICS 2005, 10th European Symposium on Research in

Computer Security. Lecture Notes in Computer Science, vol. 3679. Springer, Berlin, 178–196.

Barthe, G., Cederquist, J., and Tarento, S. 2004. A machine-checked formalization of the
generic model and the random oracle model. In Automated Reasoning, 2nd International Joint

Conference, IJCAR 2004. Lecture Notes in Computer Science, vol. 3097. Springer, Berlin,
385–399.

Barthe, G., Daubignard, M., Kapron, B., and Lakhnech, Y. 2010. Computational indistin-
guishability logic. In 17th ACM Conference on Computer and Communications Security, CCS

2010. ACM, New York.

Barthe, G., Grégoire, B., Heraud, S., and Zanella Béguelin, S. 2009a. Formal certification
of ElGamal encryption. A gentle introduction to CertiCrypt. In 5th International Workshop

on Formal Aspects in Security and Trust, FAST 2008. Lecture Notes in Computer Science,
vol. 5491. Springer, Berlin, 1–19.

Barthe, G., Grégoire, B., and Zanella Béguelin, S. 2009b. Formal certification of code-
based cryptographic proofs. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2009. ACM, New York, 90–101.

Barthe, G.,Grégoire, B., and Zanella Béguelin, S. 2010a. Programming language techniques
for cryptographic proofs. In 1st International Conference on Interactive Theorem Proving, ITP

2010. Lecture Notes in Computer Science, vol. 6172. Springer, Berlin, 115–130.

Barthe, G., Hedin, D., Zanella Béguelin, S., Gregoire, B., and Heraud, S. 2010b. A
machine-checked formalization of Sigma-protocols. In 23rd IEEE Computer Security Founda-

tions Symposium, CSF 2010. IEEE Computer Society, Los Alamitos, Calif.A, 246–260.

Bellare, M. and Rogaway, P. 1993. Random oracles are practical: a paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications Security, CCS

1993. ACM, New York, 62–73.

Bellare, M. and Rogaway, P. 1994. Optimal asymmetric encryption. In Advances in Cryptology

– EUROCRYPT 1994. Lecture Notes in Computer Science, vol. 950. Springer, Berlin, 92–111.

Bellare, M. and Rogaway, P. 1996. The exact security of digital signatures – How to sign with
RSA and Rabin. In Advances in Cryptology – EUROCRYPT 1996. Lecture Notes in Computer
Science, vol. 1070. Springer, Berlin, 399–416.

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · Gilles Barthe et al.

Bellare, M. and Rogaway, P. 2006. The security of triple encryption and a framework for

code-based game-playing proofs. In Advances in Cryptology – EUROCRYPT 2006. Lecture
Notes in Computer Science, vol. 4004. Springer, Berlin, 409–426.

Benton, N. 2004. Simple relational correctness proofs for static analyses and program transforma-
tions. In 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2004. ACM, New York, 14–25.

Bertot, Y., Grégoire, B., and Leroy, X. 2006. A structured approach to proving compiler
optimizations based on dataflow analysis. In Types for Proofs and Programs. Lecture Notes in
Computer Science, vol. 3839. Springer, Berlin, 66–81.

Blanchet, B. 2008. A computationally sound mechanized prover for security protocols. IEEE

Trans. Dependable Sec. Comput. 5, 4, 193–207.

Blanchet, B., Jaggard, A. D., Scedrov, A., and Tsay, J.-K. 2008. Computationally sound
mechanized proofs for basic and public-key Kerberos. In 15th ACM Conference on Computer

and Communications Security, CCS 2008. ACM, New York, 87–99.

Blanchet, B. and Pointcheval, D. 2006. Automated security proofs with sequences of games.
In Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117.
Springer, Berlin, 537–554.

Boneh, D. 2001. Simplified OAEP for the RSA and Rabin functions. In Advances in Cryptology

– CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139. Springer, Berlin, 275–291.

Coron, J.-S. 2002. Optimal security proofs for PSS and other signature schemes. In Advances

in Cryptology – EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332. Springer,
Berlin, 272–287.

Cortier, V., Kremer, S., and Warinschi, B. 2010. A survey of symbolic methods in computa-
tional analysis of cryptographic systems. J. Autom. Reasoning , 1–35.

Courant, J., Daubignard, M., Ene, C., Lafourcade, P., and Lakhnech, Y. 2008. Towards
automated proofs for asymmetric encryption schemes in the random oracle model. In 15th

ACM Conference on Computer and Communications Security, CCS 2008. ACM, New York,
371–380.

den Hartog, J. 2008. Towards mechanized correctness proofs for cryptographic algorithms:
Axiomatization of a probabilistic Hoare style logic. Sci. Comput. Program. 74, 1-2, 52–63.

Fujisaki, E. and Okamoto, T. 1999. How to enhance the security of public-key encryption
at minimum cost. In 2nd International Workshop on Practice and Theory in Public Key

Cryptography, PKC 1999. Lecture Notes in Computer Science, vol. 1560. Springer, Berlin,
634–634.

Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J. 2004. RSA-OAEP is secure under
the RSA assumption. J. Cryptology 17, 2, 81–104.

Goldreich, O. 2001. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge University
Press, Cambridge, UK.

Goldwasser, S. and Micali, S. 1984. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2,
270–299.

Halevi, S. 2005. A plausible approach to computer-aided cryptographic proofs. Cryptology
ePrint Archive, Report 2005/181.

Håstad, J., Impagliazzo, R., Levin, L. A., and Luby, M. 1999. A pseudorandom generator
from any one-way function. SIAM J. Comput. 28, 4, 1364–1396.

Hofmann, M. 1998. A mixed modal/linear lambda calculus with applications to Bellantoni-Cook
safe recursion. In 11th International Workshop on Computer Science Logic, CSL 1997. Lecture

Notes in Computer Science, vol. 1414. Springer, Berlin, 275–294.

Hurd, J., McIver, A., and Morgan, C. 2005. Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346, 1, 96–112.

Impagliazzo, R. and Kapron, B. M. 2006. Logics for reasoning about cryptographic construc-
tions. J. Comput. Syst. Sci. 72, 2, 286–320.

Impagliazzo, R. and Rudich, S. 1989. Limits on the provable consequences of one-way permu-
tations. In 21st Annual ACM Symposium on Theory of Computing, 1989. ACM, New York,
44–61.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Certification of Code-Based Cryptographic Proofs · 47

Jonsson, B., Yi, W., and Larsen, K. G. 2001. Probabilistic extensions of process algebras. In

Handbook of Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. Elsevier, Amsterdam,
685–710.

Kozen, D. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 3, 328–350.

Laud, P. 2001. Semantics and program analysis of computationally secure information flow.
In Programming Languages and Systems, 10th European Symposium on Programming, ESOP

2001. Lecture Notes in Computer Science, vol. 2028. Springer, Berlin, 77–91.

Leroy, X. 2006. Formal certification of a compiler back-end, or: programming a compiler with a
proof assistant. In 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2006. ACM, New York, 42–54.

Meadows, C. 2003. Formal methods for cryptographic protocol analysis: emerging issues and
trends. IEEE J. Sel. Areas Commun. 21, 1, 44–54.

Nowak, D. 2007. A framework for game-based security proofs. In 9th International Conference on

Information and Communications Security, ICICS 2007. Lecture Notes in Computer Science,
vol. 4861. Springer, Berlin, 319–333.

Okamoto, T. and Pointcheval, D. 2001. The gap-problems: A new class of problems for the
security of cryptographic schemes. In 4th International Workshop on Practice and Theory in

Public Key Cryptography, PKC 2001. Lecture Notes in Computer Science, vol. 1992. Springer,
Berlin, 104–118.

Okamoto, T. and Pointcheval, D. 2001b. REACT: Rapid Enhanced-Security Asymmetric
Cryptosystem Transform. In Topics in Cryptology – CT-RSA 2001. Lecture Notes in Computer
Science, vol. 2020. Springer, Berlin, 159–174.

Pointcheval, D. 2005. Provable security for public key schemes. In Advanced Courses on

Contemporary Cryptology. Birkhäuser Basel, Chapter D, 133–189.

Ramsey, N. and Pfeffer, A. 2002. Stochastic lambda calculus and monads of probability
distributions. In 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2002. ACM, New York, 154–165.

Roy, A., Datta, A., Derek, A., and Mitchell, J. 2008. Inductive proofs of computational
secrecy. In Computer Security – ESORICS 2007, 12th European Symposium on Research In

Computer Security. Lecture Notes in Computer Science, vol. 4734. Springer, Berlin, 219–234.

Sabelfeld, A. and Sands, D. 2001. A per model of secure information flow in sequential pro-
grams. Higher-Order and Symbolic Computation 14, 1, 59–91.

Shoup, V. 2001. OAEP reconsidered. In Advances in Cryptology – CRYPTO 2001. Lecture Notes
in Computer Science, vol. 2139. Springer, Berlin, 239–259.

Shoup, V. 2004. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332.

Sprenger, C. and Basin, D. 2008. Cryptographically-sound protocol-model abstractions. In
21st IEEE Computer Security Foundations Symposium, CSF 2008. IEEE Computer Society,
Los Alamitos, Calif., 115–129.

Stern, J. 2003. Why provable security matters? In Advances in Cryptology – EUROCRYPT

2003. Lecture Notes in Computer Science, vol. 2656. Springer, Berlin, 644–644.

The Coq development team. 2009. The Coq Proof Assistant Reference Manual Version 8.2.
Online – http://coq.inria.fr.

Zanella Béguelin, S., Grégoire, B., Barthe, G., and Olmedo, F. 2009. Formally certifying
the security of digital signature schemes. In 30th IEEE Symposium on Security and Privacy,

S&P 2009. IEEE Computer Society, Los Alamitos, Calif.A, 237–250.

Zhang, Y. 2009. The computational SLR: A logic for reasoning about computational indis-
tinguishability. In 8th International Conference on Typed Lambda Calculi and Applications,

TLCA 2008. Lecture Notes in Computer Science, vol. 5608. Springer, Berlin, 401–415.

ACM Journal Name, Vol. V, No. N, Month 20YY.

