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Abstract

We give a rigorous analysis of variations of the contact process on a finite graph in
which the cure rate is allowed to vary from one vertex to the next, and even to depend
on the current state of the system. In particular, we study the epidemic threshold in
the models where the cure rate is proportional to the degree of the node or when it is
proportional to the number of its infected neighbors.

1 Introduction

Motivated by the control of epidemics on technological and social networks, we give a
rigorous analysis of a variant of the contact process on a finite graph in which the cure rate
is allowed to vary from one vertex to the next, and even to depend on the current state of
the system. We think of the cure rate at each vertex as representing the amount of antidote
available to that vertex. In order to model a system with a fixed amount of antidote, we
limit the sum of the cure rates over all vertices, so that the sum scales at most linearly with
the number of vertices in the network.

In the standard contact process, the rate at which an infected vertex becomes healthy
is the same for all vertices. In other words, it is implicitly assumed that all the vertices of
the graph are monitored uniformly or receive the same dose of antidote.

It is known that, on the high-degree graphs typical of real-world networks, the stan-
dard contact process is very susceptible to epidemics. In the case of a star graph, it has
been proven [8, 3] that if the cure rate is constant from one vertex to the next, then no
matter how small the rate of infection transmission between neighbors is, the infection has
a positive probability of surviving for a time super-polynomial in the number of vertices.
This result was used to show that the epidemic threshold of the standard contact process
goes to zero with the number of vertices, both on preferential attachment graphs [3] and
on the related power-law configuration model graphs [8], thereby rigorously establishing a
theoretical physics result of [19].

In this paper, we allow the cure rate to be non-uniform, i.e., the amount of antidote to
vary from one vertex to the next. The questions we would like to answer in this context are:

∗Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA. Email: {borgs, jchayes
}@microsoft.com.

†Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK. Email: a.ganesh@bristol.ac.uk
‡Department of Management Science and Engineering, Institute for Computational and Mathematical

Engineering, Stanford University. Email: saberi@stanford.edu.

1



What is the efficacy of standard epidemiological protocols for a non-uniform distribution of
antidote? Are there better ways of distributing antidote non-uniformly? In particular, is
it possible to distribute antidote in such a way that the epidemic threshold does not go to
zero with the number of vertices?

To answer these questions, we consider two non-trivial methods for distributing antidote
non-uniformly among the vertices. First, we study the widely-used contact tracing method
from epidemiology: we augment the cure rates of all neighbors of an infected node. We
prove that contact tracing is insufficient to contain epidemics in the sense that, on a
star graph, the epidemic threshold still goes to zero no matter how much we enhance the
cure rate of neighbors of infected vertices, provided that the overall cure rate scales like
the number of vertices. In other words, using contact tracing to control epidemics would
require a total amount of antidote which is super-linear in the number of vertices. We also
give quantitative estimates on how quickly the threshold goes to zero, or alternatively on
the scaling of the amount of antidote with the number of vertices. This still leaves open
the possibility that contact tracing could be effective if applied at a sufficiently early stage
of an infection. We also answer this question, in the sense that we estimate the maximum
size of an infection at which it becomes impossible to control via contact tracing.

Next, we propose an a priori simpler method for distributing antidote: we augment the
cure rate proportional to the degree of the vertex — independent of the current state of the
model — again keeping the total antidote proportional to the number of vertices. We show
that, on a general graph with bounded average degree, a curing mechanism proportional to
degree controls epidemics, in the sense that the epidemic threshold remains bounded below
by a strictly positive number, independent of the number of vertices. In other words, on a
general graph, curing proportional to degree requires an amount of antidote that scales only
linearly with the number of vertices, provided the average degree is bounded. For graphs
in which the average degree is much smaller than the maximum degree, this could result in
a dramatic shift in behavior.

Finally, we show that for expander graphs, the total amount of antidote used by the
above mechanism (i.e., curing proportional to degree) cannot be reduced by more than a
constant factor. It has been shown [17, 9] that the standard power-law graphs have constant
conductance and eigenvalue gap, so this lower bound applies to these graphs.

The organization of this paper is as follows. In the next section, we give detailed
motivation for studying this problem in the context of technological and epidemiological
networks, and we review previous results on the contact process on various graphs. In
Section 3, we state our main results precisely, in particular giving the scaling of our results
with the number of vertices of the graph. In Section 4, we provide the proofs of our results.

2 Motivation, Models, and Previous Results

There has recently been much interest in the spread of viruses and worms on general net-
works — especially so-called preferential attachment networks used to model both technolog-
ical networks, such as the Internet, the World Wide Web and Instant Messaging Networks,
and social networks. Assuming that the virus does not mutate, an appropriate model is
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the so-called susceptible-infected-recovered (SIR) model, in which each vertex is in one of
three states — depending on whether it is healthy (but susceptible), infected and actively
infecting neighboring vertices, or cured (and no longer susceptible).

If the virus mutates, it is much more dangerous from an epidemiological perspective.
In this case, even if the vertex is cured, and therefore not susceptible to the original virus,
it is still susceptible to a mutated virus. In the case of human disease, the occurrence of
mutating viruses is well-documented; rapidly mutating viruses are very difficult to cure
permanently, and tend to lead to epidemics.

In the case of technological networks, such effects have been observed with rapidly
mutating worms. In contrast to a computer virus which spreads when the user executes a
certain program, a so-called worm can infect a computer without the user taking any action.
Instead, the worm exploits a vulnerability unintentionally left in the operating system; it
enters the computer the moment the machine is connected to the network. Worms spread
either by infecting vulnerable randomly generated IP addresses, or by infecting vulnerable
addresses on the contact lists of infected computers. When a computer is patched, it is no
longer vulnerable to the given worm.

A mutating worm has a list, often a long list, of vulnerabilities. It uses the first vulner-
ability to infect a set of machines. Then at a random time, or at a specific pre-arranged
time, or in response to a message from a central authority, it begins to use the second vul-
nerability on its list to infect other computers on the network. Computers which have been
patched against the first vulnerability are still susceptible to the second. Especially if the
worm has a long list of vulnerabilities, and if the time scale of changing the vulnerability is
shorter than the typical patching time, these worms can lead to very serious epidemics.

If the virus or worm mutates very rapidly through many states, an approximate model
for the system is the so-called susceptible-infected-susceptible (SIS) model, also known as
the contact process. Here each vertex is in one of two states — healthy (but susceptible)
or infected. State transitions at vertices occur independently as follows: An infected vertex
becomes healthy with rate ρ, independently of the status of its neighbors. A healthy vertex
becomes infected at a rate equal to the propagation rate of the disease, β, times the number
of its infected neighbors. The relevant parameter is λ = β/ρ.

The contact process has been studied extensively in the probability community [14],
where it is usually studied on bounded-degree graphs. The most important general result
in that context is the existence of epidemic thresholds. For infinite graphs it has been shown
that there exist two epidemic thresholds λ1 ≤ λ2. If the infection ratio λ = β/ρ is larger
than λ2, then with positive probability the epidemic can spread and survive at any point of
the graph. If λ1 < λ < λ2, the epidemic survives with positive probability, but every vertex
almost surely eventually heals without being reinfected. If λ < λ1, the epidemic dies out
almost surely. As it turns out, λ1 = λ2 for Zd, while λ1 < λ2 for regular trees (see [14] and
[22, 23]).

It is easy to see that, in a finite graph, the infection will eventually die out with proba-
bility 1. However, there is still a natural definition of epidemics in the finite case, as can be
seen by considering finite subsets of well-studied infinite graphs, such as Zd. It turns out
that, for the cube [−`, `]d, there is a λc such that if λ > λc then with probability bounded
away from zero the infection survival time is exponential in `d, while if λ < λc the infection
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dies out before time log(`) with probability 1 − o(1). Moreover, this λc is equal to the
epidemic threshold for Zd. (See [14] for proofs of these statements.) Therefore, it is natural
to say that the infection becomes an epidemic if the time that it takes for the infection to
die out is super-polynomial in the number of vertices of the graph.

In spite of the fact that most of the rigorous work on the contact process has concerned
regular lattices or mean-field models, many epidemiologists have observed that the struc-
ture of contacts in populations has important implications for the propagation of infection.
Empirical studies have shown the relevance of network structure for epidemiological net-
works in the cases of human contact networks [15, 16, 19], animal contact networks [5] and
computer networks [18, 24, 11]. For other recent works in mathematical epidemiology on
models for controlling infections see [7, 12, 10].

For many real-world networks, the underlying graph G is a power-law graph, i.e., a
graph whose degree distribution follows a power law [1, 21, 2, 4], such as the preferential
attachment graph. The contact process on power-law graphs was first analyzed by Pastor-
Satorras and Vespignani [19, 20]. Using simulation and mean-field approximations, they
argued that the epidemic threshold λc in power-law networks should tend to zero as the
number of vertices tends to infinity. This behavior is not hard to understand: the maximal
degree of a power-law graph grows like a power of the number of vertices n (for the original
Barabasi-Albert power-law graph, this power is n1/2), so these graphs contain high-degree
stars as subgraphs. Once the infection reaches such a star, it will survive for a long time,
unless β/ρ is smaller than the critical value for this star. For preferential attachment models,
this behavior was rigorously established in [3], and for the configuration model it was first
established in [8]. In both cases, it has been shown that λc decays like a power in n (this is
explicit in [8], and implicit in [3]). Formulated differently, these results say that the amount
of antidote needed to cure an infection on power-law graphs grows faster than the number
of vertices, making it very hard to control the infection on large graphs.

A slightly different aspect on the spread of viruses was studied by Wagner and Anan-
tharam [26]. They raised the question of whether an inhomogeneous spread rate βxy for the
different edges {x, y} of the underlying graph might be more efficient for the virus. Specif-
ically, they analyzed the contact process on the real line, comparing a constant infection
rate β to a varying infection rate βxy, normalized in such a way that the average infection
rate is the same. They showed that no matter how low the original rate β is, it is possible
to redistribute it in such a way that the infection becomes supercritical.

3 Our Model and Statement of Results

Let G = (V,E) be an undirected graph with vertex set V and edge set E. The contact
process is a continuous-time Markov process X(t) on {0, 1}|V |, where Xi(t) is the indicator
that node i is infected at time t. State transitions at nodes occur independently as follows:
each infected node becomes healthy at some constant rate ρ, while each healthy node
becomes infected at rate β times the number of its infected neighbors. Note that a node
becomes susceptible again as soon as it is cured.

In our model, we will assume that, as in the contact process, the virus is spreading at
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a constant infection rate β. However, we assume that we can distribute different amounts
of antidote between different nodes. The rate at which an infected node becomes healthy
is proportional to the amount of antidote it receives.

We will assume that there is a fixed amount of antidote R =
∑

x∈V ρx available which
can be distributed non-uniformly between the nodes, even depending on their current state
of the infection. These are some of the questions that we would like to answer in this
context: what is the best policy for distributing the antidote? Is there a way to reduce
the amount of antidote needed to control an infection on a power law graph or star to a
constant times the number of nodes?

An obvious choice, employed in disease control, is to inoculate neighbors (or contacts)
of infected individuals. In the contact process, this is modeled by augmenting the cure rate
ρx for all neighbors of an infected vertex. This amounts to setting

ρx = ρ + ρ′d?
x(t), (1)

for specified constants ρ and ρ′, where d?
x(t) is the number of infected neighbors of x at time

t.
To evaluate the effectiveness of this method, let us consider the star with n leaves, which

has a critical infection rate βc = ρn−1/2+o(1) under uniform inoculation rate ρ. The next
theorem shows that inoculating according to (1) is not enough to result in a positive βc.
Instead, we get that βc = O(n−1/3+o(1)). Formulated differently, the amount of antidote
needed to cure an infection with constant infection rate β still grows super-linearly in the
number of nodes, at least like n4/3−o(1).

Theorem 1. Given ρ > 0, ρ′ > 0 and ε > 0 there are constants c > 0, C < ∞ and n0 < ∞
such that the following holds for the star network with one central hub and n ≥ n0 leaves.

(i) For n−1/3+ερ ≤ β ≤ ρ and arbitrary initial conditions, with probability 1 − O(n−c)
the survival time of the epidemic is either smaller than τ1 = Cρ−1 log n or larger than
τ2 = ρ−1ecβ3n/ρ3

.
(ii) Let β be as above. If the epidemic starts with an infected center, or with a healthy

center and at least (ρ/β) log n infected leaves, then with probability 1−O(n−c), the survival
time is at least τ2, and the number of nodes touched by the infection is at least nc.

(iii) Let β be as above, and let (1 + log k)/ρ < τ < τ2. If the epidemic starts with a
healthy center and k infected leaves, then the probability that the survival time is smaller
than τ lies between(

1− β

β + ρ

)k(
1− 1 + log k

ρτ

)
and

(
1− β

β + ρ

)k
+ O(n−c).

(iv) If β = ρn−1/3−ε, then the epidemic dies out in expected time O(log n), starting from
any initial condition.

For the star, contact tracing is therefore only effective as long as the center is not infected
and the number of infected leaves is O(ρ/β). After that point, with high probability, it can’t
prevent an epidemic with very long survival time, even if the amount of antidote grows like
βn4/3−o(1).
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Is there a better way to distribute the antidote? The answer is yes. This is the result of
our main theorem. To formulate it, we define τ to be the expected survival time, starting
from all vertices infected. We also denote the degree of a vertex x in the underlying graph
G by dx.

Theorem 2. Let G be an arbitrary graph on n nodes, and let ρx = dx. If β < 1, then
τ = O(log n).

For a graph with bounded average degree d̄ (like the power law graphs used to describe
the WWW), this implies that the total amount of antidote needed is just βd̄n, corresponding
to a finite λc. (For varying ρ, we define λ as the ratio of β and the average amount of
antidote, 1

n

∑
x ρx.)

This raises the question of whether we could do significantly better, so that λc →∞ as
n →∞. The answer is no, even if we allow adapting the curing rate ρx to the current state
of the infection. This is the content of our next theorem.

Recall that a graph G = (V,E) is an (α, η)-expander, if for each set of nodes W ⊂ V
with |W | ≤ α|V |, the number of edges joining W to its complement V \ W is at least
η|W |. We use Xt to denote the set of infected vertices at time t, and allow for an arbitrary
allocation ρx = ρx(Xt, t) depending on Xt and maybe on the time t as well. For comparison
purposes, we impose the normalization condition∑

x

ρx(W, t) ≤ d̄n for all W ⊂ V and t. (2)

Theorem 3. Let ε, α, η > 0 and let Gn be a sequence of (α, η)-expanders on n nodes. Let
ρx(Xt, t) be an arbitrary distribution obeying the constraint (2). Then there are constants
γ > 0 and n0 < ∞ depending only on ε, α and η such that τ ≥ eγn whenever β ≥ (1+ε)d̄

αη
and n ≥ n0.

The theorem implies that for expanders with bounded average degree, inoculating ac-
cording to degrees is a constant factor competitive inoculation scheme. We do not expect
Theorem 3 to hold for general graphs. Indeed, we expect that there are graphs for which
other inoculation schemes may out-perform the proportional-to-degree inoculation scheme
by more than a constant factor. For example, if a graph contains densely connected clusters
that are loosely coupled to one another, it may be better to “quarantine” the clusters from
one another.

Perhaps the right qualitative interpretation of our work is that contact tracing is effective
only when the infection has not reached high degree nodes. It seems that a more effective
strategy is to use “intelligent tracing” [25] which uses a global knowledge of the topology.
We leave an the question of deriving or approximating the optimal adaptive strategy for
controlling an infection spreading in a network as an important open problem.
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4 Proofs

4.1 Proof of Theorem 2

Without loss of generality, we may assume that G is connected (otherwise, we apply the
arguments below separately to every component), so that dx ≥ 1 for all x. Each infected
vertex x will infect each of its uninfected neighbors with rate β, but recovers with rate
ρx = dx. Let ∂Xt be the edge boundary of Xt, and let Nt = |Xt| be the number of infected
vertices. Then

Nt →

{
Nt + 1 at rate β|∂Xt|
Nt − 1 at rate

∑
x∈Xt

dx,

implying that

dE[Nt]
dt

= E

[
β|∂Xt| −

∑
x∈Xt

dx

]
≤ −E

[ ∑
x∈Xt

dx(1− β)

]
≤ −(1− β)E[Nt].

As a consequence, we have

E[Nt] ≤ N0e
−(1−β)t ≤ ne−(1−β)t.

Let T be the survival time, starting from all sites infected, so that τ = E[T ]. Then

Pr[T > t] = Pr[Nt ≥ 1] ≤ E[Nt] ≤ ne−(1−β)t.

This in turn implies that E[T ] = O(log n), as claimed.

4.2 Proof of Theorem 3

Let ti be the ith time the chain

Nt →

{
Nt + 1 at rate β|∂Xt|
Nt − 1 at rate

∑
x∈Xt

ρx,

makes a transition, let Yi = Xti and let Mi = |Yi|. Taking into account the normalization
condition (2), we see that the probability that Mi+1 = Mi − 1 is at most

pi =
d̄n

β|∂Yi|+ d̄n
.

Chose ε̃ in such a way that ε̃ in such a way that (1− ε̃)(1 + ε) =
√

1 + ε, and let

n1 = b(1− ε̃)αnc, and n2 = bαnc.

For n1 + 1 ≤ Mi ≤ n2r we may use the fact that G is an expander to bound

β|∂Yi| ≥ βη|Yi| ≥ (1− ε̃)βηαn ≥ d̄n
√

1 + ε,
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implying that

pi ≤ p =
d̄

d̄ + βαη(1− ε̃)
<

1
2

whenever n1 + 1 ≤ Mi ≤ n2.
Until the first time that Mt ≤ n1, the discrete time chain Mt therefore stochastically

dominates an upward biased simple random walk Si on the interval (−∞, n2], where

Si+1 =

{
Si + 1 with probability 1− p

Si − 1 with probability p,

except when Si = n2, in which case Si+1 = Si with probability 1 − p and Si+1 = Si − 1
with probability p. A simple gambler’s ruin argument (for example, see page 115 of Durrett
[6]) shows that the probability that this biased random walk starting at n2 − 1 reaches n1

before reaching n2 is

1−
( p
1−p)n2−1 − ( p

1−p)n1

( p
1−p)n2 − ( p

1−p)n1
≤ (

p

1− p
)n2−n1−1 ≤

( d̄

βαη(1− ε̃)

)ε̃αn−2
,

where we used that n2 − n1 ≥ ε̃αn− 1 in the last step. Therefore, the expected number of
times the walk visits n2 before reaching n1 is at least (1−p

p )n2−n1−1 = eΩ(n), implying that
the expected time for the chain Mt to fall below n2 + 1 is at least eΩ(n) as well.

Since the continuous time chain moves at the rate β|∂Xt|+
∑

x∈Xt
ρx ≤ (β+1)d̄n ≤ 2βd̄n

(where we used η ≤ d̄ and α ≤ 1 in the last step), this implies that

τ ≥ 1
2βd̄n

(βαη(1− ε̃)
d̄

)ε̃αn−2

For ε̃αn ≥ 3, the right hand side is increasing in β, implying that

τ ≥ αη

2(1 + ε)d̄2n

(
(1 + ε)(1− ε̃)

)ε̃αn−2 =
αη

2d̄2n

(
1 + ε

) 1
2
ε̃αn−2 ≥ αη

2n3

(
1 + ε

) 1
2
ε̃αn−2

Choosing γ = αε̃
4 log(1 + ε) and n sufficiently large, this implies the bound of the theorem.

4.3 Proof of Theorem 1

4.3.1 Proof Idea

Consider the star graph on n leaves, and let k denote the number of them that are infected.
We shall assume that ρ and ρ′ are fixed while n →∞, and that β tends to 0 as n →∞. We
start by describing the course of a typical infection, which should convey to the reader the
reason for the 1/3 exponent in the theorem, and then proceed with the proof. The course
of the epidemic may be divided into center-healthy phases and center-infected phases.

Suppose that the center is healthy. No new leaves become infected, leaves become
healthy at rate ρk, and the center becomes infected at rate βk. The number of leaves
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that become healthy is the minimum of k and a geometric random variable with parameter
β/(β + ρ) (and expectation ρ/β). This is well-approximated by

ρ

β
Exp(1),

where Exp denotes an exponential random variable.
Suppose that the center is infected. Let us assume that 1 � k � n. Then the center

becomes healthy with rate ρ′k +ρ ≈ ρ′k, new leaves become infected at rate (n−k)β ≈ nβ,
and leaves become cured at rate k(ρ + ρ′). By the time the center becomes healthy again,
we expect O(1) leaves to become healthy, but about

nβ

ρ′k
Exp(1)

new leaves to become infected.
If the number of leaves that become well during a center-healthy phase about balances

the number of leaves that become infected during a center-infected phase, then we have
ρ/β ≈ nβ/(ρ′k). So let us define

k0 :=
nβ2

ρρ′
.

If the infection persists for a long time, then we expect that typically there will be about
k0 infected leaves. We now distinguish two cases:

Survival of the Infection: In order for all these k0 infected leaves not to become cured
during a single center-healthy phase, it must be that k0 � ρ/β, i.e. nβ3

ρ2ρ′ � 1. So let us
assume that this inequality holds, i.e., let us assume that

β � n−1/3.

Next we compare the number of new infections during a center-infected phase to k when
k ≈ k0. This number is approximately nβ

ρ′k0
= ρ

β , of the same order as the number of cured
leaves during a center-healthy phase. Both are � 1 and � k0, implying that for a long
time, the number of infected leaves stays near to k0.

Fast Curing: If
β � n−1/3,

we have a good chance that all these k0 infected leaves become cured during a single center-
healthy phase, so that the infection dies out. We thus expect fast curing.

4.3.2 Proof of long survival if β = ρn−1/3+ε.

We denote the state of the chain by (0, k) when the center is healthy, and there are k infected
leaves, and by (1, k), when the center and k of the leaves are infected. The evolution of the
chain is then a process with rates
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(1, k) → (1, k + 1) at rate β(n− k)
(1, k) → (1, k − 1) at rate (ρ + ρ′)k

(1, k) → (0, k) at rate ρ + ρ′k

(0, k) → (0, k − 1) at rate ρk

(0, k) → (1, k) at rate βk,

(3)

so that, in particular, the number of infected leaves reduces by a geometric random variable
with parameter β/(β + ρ) whenever the center is cured.

Our next lemma is the main technical lemma on which the proof of Theorem 1 is based.

Lemma 1. Let β, ρ, ρ′ > 0, let

k1 ≤
β2n

4(ρ + ρ′)(ρ + β) + β2
,

and let θ = 1
2

β
β+ρ .

i) Assume that the chain (3) starts in a state (1, k) with 1 ≤ k < k1. Then the probability
P

(1)
k,k1

that the chain reaches a state with no infected leaves before it reaches (1, k1) is bounded
by e−kθ.

ii) Assume that the chain (3) starts in a state (0, k) with 1 ≤ k < k1. Then the probability
P

(0)
k,k1

that the chain reaches a state with no infected leaves before it reaches (1, k1) is bounded
by 3e−kθ.

Proof. (i) In order to determine whether the chain (3) reaches the state (1, k1) before the
number of leaves drops to zero when starting from (1, k), it is clearly enough to consider
the one dimensional chain

k → k + 1 at rate β(n− k)
k → k − 1 at rate (ρ + ρ′)k

k → k −Geom(β/(β + ρ)) at rate ρ + ρ′k.

(4)

The first time this chain reaches a state k ≤ 0 corresponds to the first time the chain (3)
reaches the state (1, 0) or (0, 0), and the first time it reaches k1 corresponds to the first time
the chain (3) reaches the state (1, k1).

Consider the discrete time analog of the chain (4),

k → k + 1 with probability 1− p
(1)
k − p

(2)
k

k → k − 1 with probability p
(1)
k

k → k −Geom(β/(β + ρ)) with probability p
(2)
k ,

(5)

where

p
(1)
k =

(ρ + ρ′)k
βn + (ρ + 2ρ′ − β)k + ρ

and p
(2)
k =

ρ + ρ′k

βn + (ρ + 2ρ′ − β)k + ρ
.
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In order to analyze this chain, we will couple it to the chain

k → k + 1 with probability 1− p

k → k − 1−Geom(β/(β + ρ)) with probability p
(6)

where

p =
2(ρ + ρ′)k1

β(n− k1) + 2(ρ + ρ′)k1
.

Note that the downstep in (6) bounds both downsteps in (5) and that p
(1)
k + p

(2)
k ≤ p as

long as k ≤ k1. Now, it is easy to see that the two chains can be coupled in such a way that
(6) stays below (5), as long as the latter does not exceed the threshold k1.

Let X be a random variable with the same distribution as the step distribution of (6),
i.e., let X be equal to

+1 with probability 1− p

−1−Geom(β/(β + ρ)) with probability p, .

We claim that the equation E[e−θX ] = 1 has exactly two solutions: the solution θ = 0, and
the solution

θ∗ = − log
[
1− β

β + ρ
+

p

1− p

]
(7)

In order to see this, we note that

E[e−θX ] = (1− p)e−θ + p
∑
j≥0

e(j+1)θ
(
1− β

β + ρ

)j β

β + ρ
.

If (1 − β
β+ρ)eθ ≥ 1, then the right hand side is infinity, implying that any solution to

E[e−θX ] = 1 is such that (1 − β
β+ρ)eθ < 1. Under this condition, we sum the geometric

series, giving

E[e−θX ] = (1− p)e−θ + p
β

β + ρ

[
e−θ −

(
1− β

β + ρ

)]−1
.

The equation E[e−θX ] = 1 then turns into a quadratic equation for e−θ. This equation has
two solutions: the solution θ = 0 and the solution θ = θ∗, with θ∗ given by (7). Since
both solutions of the quadratic equation satisfy the condition (1− β

β+ρ)eθ < 1, they are also
solutions of E[e−θX ] = 1. That completes the proof of our claim.

Let φ(X) = e−θ∗X . Then, E[φ(St+1)|S1, S2, . . . , St] = E[e−θ∗X ]φ(St) = φ(St), and
therefore φ(St) is a martingale. We want to estimate the probability P that St reaches
a state St ≤ 0 before reaching the state St = k1. By the optional stopping theorem (see
Durrett [6], chapter 2) and the fact that φ(x) ≥ φ(0) for x < 0 , we have

Pφ(0) + (1− P )φ(k1) ≤ φ(k)

and hence

P ≤ φ(k)− φ(k1)
φ(0)− φ(k1)

=
1− e−θ∗(k1−k))

1− e−θ∗k1
e−θ∗k ≤ e−θ∗k.
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Recall that we have coupled our original chain (5) and the chain (6) in such a way that the
former stays above the latter as long as k ≤ k1 in the chain (5). Assume that the chain (5)
reaches 0 before it reaches k1. Then the chain (6) must reach 0 before k1 as well, implying
that P

(1)
k,k1

≤ P .
To complete the proof of (i), we use the assumption of the lemma to bound

p

1− p
=

2(ρ + ρ′)k1

β(n− k1)
≤ 1

2
β

β + ρ
.

This in turn implies that

e−θ∗ ≤ 1− 1
2

β

β + ρ
≤ e

− 1
2

β
β+ρ

which completes the proof of (i).
(ii) To prove (ii), we use (i) and the fact that the number of cured leaves during a center

healthy is a geometric random variable with parameter β/(β + ρ). As a consequence,

P
(0)
k1,k =

β

β + ρ

k∑
j=0

Pk1,k−j

(
1− β

β + ρ

)j
≤ β

β + ρ

k∑
j=0

e
− 1

2
β

ρ+β
(k−j)

e
− β

ρ+β
j

≤ β

β + ρ

1

1− e
− 1

2
β

ρ+β

e
− 1

2
β

ρ+β
k ≤ 2

(
1 +

1
2

β

ρ + β

)
e
− 1

2
β

ρ+β
k ≤ 3e

− 1
2

β
ρ+β

k
,

where we used that x
1−e−x ≤ 1 + x for all x ≥ 0 in the second to last step.

Proof of Theorem 1 (i) – (iii)
Let θ be as in Lemma 1, let

k1 =
⌊ β2n

4(ρ + ρ′)(ρ + β) + β2

⌋
,

and let c and n0 be such that 3e−θ(k1−1) ≤ e−4cβ3n/ρ3
if n ≥ n0.

Assume first that the chain starts with k ≥ k1 infected leaves. Since (0, 0) is the only
absorption point of the chain (3), it must at some point pass through a state with k1 − 1
infected leaves. By Lemma 1, with probability at least 1 − e−2cβ3/n, the chain will return
to k1 at least be2cβ3/nc times before going to the absorbing state (0, 0). Since the transition
rates of the chain (3) are bounded by βn+2(ρ+ ρ′)n ≤ Cρn, the expected time it takes for
these be2cβ3/nc returns is at least be2cβ3/nc/(Cρn) ≥ 2τ2. Observing that the probability
that the actual time is half the expected time decays exponentially in be2cβ3/nc, we conclude
that with probability at least 1−e−2cβ3n/ρ3−exp(−cbe2cβ3/nc) ≥ 1−2e−2cβ3n/ρ3

, the survival
time is at least τ2.

Next we consider an initial condition with k2 = b(ρ/β) log nc ≤ k < k1 infected leaves.
Applying Lemma 1 once more (and recalling that β ≤ ρ), we conclude that with probability
at least 1− 3e−kθ ≥ 1−O(n−1/4), the chain reaches k1 infected leaves, at which point with
high probability, the survival time of the infections is at least τ2.

For the remainder of the proof, we distinguish the case where initially the center is
healthy and the one where it is infected. We start with the latter. Assume thus that

12



initially, the center is healthy, and 0 ≤ k ≤ k2 leaves are infected. A lower bound on the
probability that the chain reaches the state (1, k2) is obtained by assuming that it goes
through the sequence (1, k), (1, k + 1), . . . , (1, k2) with no downsteps, and without curing of
the center. The probability of this event is

k2−1∏
i=k

β(n− i)
β(n− i) + (2ρ′ + ρ)i + ρ

≥
k2−1∏
i=0

1
1 + Cρ

βn i
≥ exp

(
−

k2−1∑
i=0

Cρ

βn
i
)

≥ exp
(
−Cρk2

2

2βn

)
≥ 1− Cρk2

2

2βn

Inserting the value of k2 and the lower bound on β, we see that this probability is 1 −
O(n−3ε(log n)2). Together with the bounds proven so far and the fact that k1 grows like
n1/3+2ε as n →∞ this proves statement (ii) of Theorem 1.

We are left with analyzing an initial condition with 1 ≤ k < k2 infected leaves and
healthy center (we will actually not use the assumption k < k2 in most of the following
argument). Since the downsteps in a center healthy phase are governed by a geometric
distribution with parameter β/(β + ρ), the probability that the infection dies out without
ever infecting the center can be easily calculated; it is (1−β/(β +ρ))k. Conditioned on this
event, the time it takes for extinction is the random variable Tk =

∑k
i=1 Xi, where Xi is

an exponential random variable with rate iρ. Since the expectation of Xi is 1/ρi, Markov’s
bound gives that Tk ≥ τ with probability at most 1

τρ

∑k
i=1

1
i ≤

log k+1
τρ , which implies the

first bound in (iii).
Before turning to the other bound in (iii), we would like to prove sharper bounds on

the tail of Tk. Using standard large deviation techniques (and the fact that eαρXi has
expectation

(
1− α

i

)−1), this is not hard, leading an estimate of

P (Tk ≥ τ) ≤ O
(
e−α(ρτ−log k−1)

)
where α can be chosen arbitrarily in (0, 1), and the constant implicit in the O-symbol de-
pends on α. This implies in particular that, conditioned on the event that the infection dies
out without ever infecting the center, the survival time is at most 2

ρ log n with probability
1 − O(n−α). By contrast, conditioned on the event that the center gets infected at least
once, the survival time is at least τ2 with probability 1 − O(n−c) by the already proven
statement (ii). This proves (i).

To prove the upper bound in (iii) we bound the event that the survival time is at most
τ by (

1− β

β + ρ
)kP (Tk ≤ τ) +

(
1−

(
1− β

β + ρ
)k

)
O(n−c) ≤

(
1− β

β + ρ
)k + O(n−c)

where we used the fact that τ < τ2, which implies that conditioned on an infected center,
the probability that survival time of the infection ≤ τ is bounded by O(n−c).

4.3.3 Proof of short survival if β = ρn−1/3−ε

The proof uses the following lemmas, which follow from well-known large deviation bounds
for sums of i.i.d. Bernoulli and Geometric random variables.
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Lemma 2. Suppose X1, X2, . . . are i.i.d. Geometric(λ) random variables, so that EX1 =
(1− λ)/λ. Then, for all x < EX1, we have

1
t

log P (
t∑

`=1

Xk ≤ xt) ≤ −(1 + x)H
( x

1 + x
; 1− λ

)
,

where H(q; p) = q log
q

p
+ (1− q) log

1− q

1− p
.

Proof. Let p = 1− λ and q = x
1+x . By Chernoff’s inequality, we have

1
t

log P
( t∑

k=1

Xk≤ xt
)
≤ −θx + log E[eθX1 ] = −θx + log

( λ

1− peθ

)
for all θ ≤ 0. Optimizing over θ, we get peθ = q and

1
t

log P
( t∑

k=1

Xk≤ xt
)
≤ x log

p

q
+ log

( λ

1− q

)
= −(1 + x)H(q; p).

Lemma 3. Suppose X1, X2, . . . are i.i.d. Bern(p) random variables. Then

P
( t∑

k=1

Xk < pt/2
)
≤ exp

(
−pt

1− log 2
2

)
.

Proof. For Bernoulli random variables and x ≤ p, Chernoff’s inequality gives the large
deviation estimate

1
t

log P
( t∑

k=1

Xk ≤ xt
)
≤ x log

x

p
+

(
1− x

)
log

1− p

1− x
≤ x log

x

p
− (p− x),

where in the last step we used the fact log y ≤ y − 1 for all y > 0. Setting x = p/2, this
gives the claim of the lemma.

To prove Theorem 1 (iv), we first note that we may assume without loss of generality
that ε < 2/3. Indeed, for ε ≥ 2/3, we have that β = O(n−1), implying that the probability
of extinction during a center healthy phase is of order one, and the expected time for this
event is bounded by log n. On the other hand, for β = O(n−1), the probability of curing the
center is bounded from below by an n-independent, positive constant as well. This implies
that the expected number of times the center gets cured before the epidemic dies out is of
order one as well, so that the expected survival time is O(log n).

Assume thus without loss of generality that 0 < ε < 2/3, and let k1 = d(βn/ρ)3/4e, so
that k1/(βn) → 0 and k2

1/(βn) → ∞ as n → ∞. The proof of the theorem proceeds in
two steps. First, we prove that starting from a state with more than k1 infected leaves, the
time τ to reach k1 leaves for the first time is at most O(log n) in expectation, and second
we prove that starting with k1 or fewer infected leaves, it takes at most time O(log n) in
expectation to go extinct.

The next lemma will be used in both steps of the proof.
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Lemma 4. Given ρ > 0, ρ′ > 0 and 0 < ε < 2/3, there are constants n0 < ∞ and
C < ∞ (depending on on ρ, ρ′, ε) such that for β = ρn−1/3−ε, n ≥ n0 and k ≥

√
βn/ρ, the

following holds: Starting from a state with more than k and less than 2k infected leaves, the
expected number of transitions until the chain (3) first reaches a state with k infected leaves
is bounded by Ck.

Proof. We first note that it is enough to prove the lemma for an initial state with infected
center. Indeed, if the center is not infected, the number of infected leaves will either go
down to k in less than k steps without ever infecting the center, or the chain will end up
in a state with infected center and k0 infected leaves, where k0 is a random number in
Ik = {k + 1, . . . , 2k}.

Assume therefore that we start with k0 ∈ Ik infected leaves and an infected hub, and
let U be the number of steps it takes the chain (3) to reach k infected leaves. To bound
U , we consider the discrete time chain S defined by (5). Assume that it takes K steps for
the chain S to reach k or less infected leaves. Conditioned on this event, the total upward
excursion of the original chain before it reaches k infected leaves is bounded by K since
both S and (3) can only move up by one at each step. Consequently, the time U is bounded
by 2K + k. To prove the lemma, it is therefore enough to show that it takes the chain S at
most O(k) steps to reach k or fewer infected leaves.

To this end, we will couple the chain S to a chain S̃ which starts at S̃(0) = k0, and at
each discrete time t = 1, 2, . . . takes an upward step of +1 with probability 1 − p, and a
downward step of Geom(β/ρ + β) with probability p, with

p =
ρ′

2(ρ + ρ′)
1

1 +
√

βn/ρ
. (8)

We claim that the two chains can be coupled in such a way that S̃(t) ≥ S(t) as long as
S(t) ≥ k. To this end, we note that the probability of a downward move of the chain S is
bounded from below by

p
(2)
S(t) ≥

ρ′S(t)
βn + 2(ρ + ρ′)S(t)

≥ p,

provided S(t) ≥ k. Since for t = 0, we have S(0) = S̃(0) ≥ k, we can maintain the condition
S̃(t) ≥ S(t) ≥ k as long as S̃(t) ≥ k.

Next we observe that in distribution

S̃(t) = S̃(t− 1) + 1− (Y (t) + 1)X(t),

where the X(t) are i.i.d. Bern(p) and independent of the Y (t), which are i.i.d. Geom(β/(ρ+
β)). We will show that for t ≥ k the probability that S̃(t) − S̃(0) ≥ −k is exponentially
small in t, which in turn will allow us to give a bound on the expected number of steps the
chain S̃ needs to fall below k.

Indeed, by the independence of the X(t) and Y (t), and the non-negativity of the Y (t),
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we have that for all t ≥ k,

P (S̃(t)− S̃(0) ≥ −k)= P
( t∑

i=1

(1 + Y (i))X(i) ≤ t + k
)

≤ P
( t∑

i=1

X(i) ≤ pt/2
)

+ P
(dpt/2e∑

i=1

Y (i) ≤ 2t
)
.

(9)

By Lemma 3, we have

P
( t∑

i=1

X(i) ≤ pt/2
)
≤ exp(−c1pt), (10)

where c1 = (1− log 2)/2 > 0. Moreover, by Lemma 2,

1
dpt/2e

log P
(dpt/2e∑

i=1

Y (i) ≤ dpt/2eρ
2β

)
≤ −

(
1 +

ρ

2β

)
H

( ρ

ρ + 2β
;

ρ

ρ + β

)
. (11)

Now

H
( ρ

ρ + 2β
;

ρ

ρ + β

)
=

ρ

ρ + 2β
log

ρ + β

ρ + 2β
+

2β

ρ + 2β
log

2(ρ + β)
ρ + 2β

= log
ρ + β

ρ + 2β
+

2β

ρ + 2β
log 2

≥ − β

ρ + β
+

β

ρ + 2β
log 4,

where we have used the inequality log x ≤ x− 1 for x = ρ+2β
ρ+β to obtain the last inequality.

Substituting this in (11), we get

1
dpt/2e

log P
(dpt/2e∑

i=1

Y (i) ≤ dpt/2eρ
2β

)
≤ − log 2 +

ρ + 2β

2(ρ + β)
≤ −c2, (12)

for some constant c2 > 0 and all n sufficiently large. On the other hand,

dpt/2eρ
2β

≥ ptρ

4β
= t

ρρ′

8(ρ + ρ′)2
ρ/β

1 +
√

βn/ρ
≥ 2t

for all n sufficiently large. As consequence,

P
(dpt/2e∑

i=1

Y (i) ≤ 2t
)
≤ e−c2dpt/2e ≤ e−c2pt/2 (13)

provided n is sufficiently large. Combining (9), (10) and (13) we obtain that

P
(
S̃(t)− S̃(0) ≥ −k

)
≤ e−c1pt + e−c2pt/2. (14)
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Let U denote the total number of steps for which the process S(·) remains above k. It is
clear from the dominating arguments above that, if the random walk S̃(·) falls below = −k
before time t, then the random walk S falls below k in this time interval as well. In other
words, equation (14)) implies that

P (U > t) ≤ e−c1pt + e−c2pt/2 for all t ≥ k.

This in turn implies that

E[U ] ≤ k + O(
1
p
) = O(k) (15)

where in the last step we used that by the assumption of the lemma k ≥
√

βn/ρ to conclude
that 1/p = O(

√
βn/ρ) = O(k), with the implicit constants in the O-symbols depending on

ρ and ρ′.

The lemma immediately implies that starting from an arbitrary initial condition, it takes
fewer than O(log n) steps to reach a phase with k1 or fewer infected leaves. Indeed, let A
be the set of states with k1 or fewer infected leaves (and at least one infected node), let τ
be the time it takes to first reach a state in A, and let Bi be the set of states with at least
k12i−1 + 1 and at most k12i infected leaves. If the chain starts in phase A there is nothing
to prove, so let us assume that the chain starts in some phase Bi for i ≥ 1.

Let Ti be the total time it takes the chain (3) to first enter the phase Bi−1, assuming it
starts in Bi. It follows from (3) that the mean time for a step of this chain is bounded by
1/(min{ρ, ρ′}k) when the number of infected leaves is k, and hence by 1/(min(ρ, ρ′)k12i)
throughout phase i. Since the average number of steps in phase i is bounded by Ck12i, we
conclude that for n large enough, E[Ti] ≤ C/(min{ρ, ρ′}). Since there are fewer than log2 n
phases, it follows E[τ ] = O(log n).

To prove fast extinction once we have reached the phase A, we distinguish the center
healthy part of A, to be denoted by A0, and the center infected part of A, denoted by A1.
We also note that the first time the chain leaves phase A, it will be either go extinct, or it
will enter into the state (1, k1 + 1).

Lemma 5. Given ρ > 0, ρ′ > 0, and 0 < ε < 2/3 there is a constant n0 such that for
n ≥ n0, β = ρn−1/3−ε and k1 = d(βn/ρ)3/4e the following holds: If the infection starts in
the state (1, k1 + 1), the probability that at the first time the chain enters phase A, it enters
it with a healthy center is 1− o(1).

Proof. Let C be the set of states with infected center, and a number of infected leaves which
stays between k1 + 1 and 2k1 − 1. If the chain (3) leaves phase C by curing the center, the
number of infected leaves will be below 2k1, and since ρ/β � k1, we conclude that with
high probability, the chain will enter phase A through the state (k1, 0). We thus have to
bound the probability that the chain (3) leaves the phase C through the states (1, k1) or
(1, 2k1). To bound this probability, let us postpone the decisions on whether we cure the
center, considering instead a chain with transition rates

k → k + 1 at rate β(n− k)
k → k − 1 at rate (ρ + ρ′)k.

(16)
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In a second step, we will then look at the Poisson clocks (for the definition see for example
the chapter 2 of Lawler [13]) for curing the center, deciding on whether we should actually
have taken a step curing the center, instead of one of the steps of the chain (16). But
before doing this, we bound the probability that the chain (16) falls to k1 before it reaches
the state 2k1. By a martingale argument similar to that used in the proof of Lemma 1,
one easily shows that this probability is dominated by the probability of the event that the
chain goes to k1 in the very first step, leading to a bound of O(ρk1/βn) for this event.

We may therefore assume that the chain (16) leaves phase C through the state 2k1.
Going back to the original chain (3), we now have to look at the Poisson clocks that the
center gets cured instead of taking one of the steps needed to reach the state 2k1. Since the
restricted chain (16) touches each state from (1, k1+1) to (2, 2k1) at least once, we conclude
that conditioned on the event that the chain (16) leaves phase C through the state 2k1, the
probability of curing the center is at least

1−
2k1∏

i=k1+1

β(n− i) + (ρ + ρ′)i
β(n− i) + ρ + (ρ + 2ρ′)i

≥ 1− exp
(
−ρ′k2

1

2βn
(1 + o(1))

)
Thus we have shown that with probability tending to one three events happen: the chain
(16) walks to 2k1 before falling below k1 + 1, the center gets cured when the chain (16) has
between k1 + 1 and 2k1 leaves, and at least k1 leaves get cured directly after the center was
cured. Together, these three events imply the event considered in the lemma.

Given the above two lemmas, the proof of Theorem 1 (iv) is now an easy exercise.
Indeed, at time τ , the chain will either start in phase A0 or in phase A1. If it starts in phase
A0, the expected time it stays there is O(

∑k1
i=1 1/i) = O(log n), and the probability that

it leaves this phase by curing all leaves before the hub is re-infected tends to 1 as n tends
to infinity. If we start in phase A1, it will stay in this phase for an expected time which is
o(1), and it will either leave this phase by curing the center, entering phase A0, or it will
leave this phase through the state (1, k1 +1), at which point it will go to the phase A0 with
high probability, in expected time O(1) (by Lemmas 5 and 4, respectively).

Thus with high probability, the infection will die out before the chain re-enters phase
A1, and it will take expected time at most O(log n) before the infection dies out or re-
enters phase A1 We therefore need a geometric number of visits to A1 (with mean close to
one) before the epidemic dies out. Since each of these moves takes expected time at most
O(log n), the expected time before the epidemic dies out is of order O(log n) as well. This
proves the last statement of Theorem 1.
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