
A Programmable Hardware Path Profiler

Kapil Vaswani Matthew J. Thazhuthaveetil Y. N. Srikant

Department of Computer Science and Automation
Indian Institute of Science, Bangalore
{kapil, mjt, srikant}@csa.iisc.ernet.in

Abstract

For aggressive path-based program optimizations to be
profitable in cost-sensitive environments, accurate path pro-
files must be available at low overheads. In this paper,
we propose a low-overhead, non-intrusive hardware path
profiling scheme that can be programmed to detect several
types of paths including acyclic, intra-procedural paths,
paths for a Whole Program Path and extended paths. The
profiler consists of a path stack, which detects paths and
generates a sequence of path descriptors using branch in-
formation from the processor pipeline, and a hot path table
that collects a profile of hot paths for later use by a pro-
gram optimizer. With assistance from the processor’s event
detection logic, our profiler can track a host of architec-
tural metrics along paths, enabling context-sensitive per-
formance monitoring and bottleneck analysis. We illustrate
the utility of our scheme by associating paths with a power
metric that estimates power consumption in the cache hier-
archy caused by instructions along the path. Experiments
using programs from the SPEC CPU2000 benchmark suite
show that our path profiler, occupying 7KB of hardware
real-estate, collects accurate path profiles (average overlap
of 88% with a perfect profile) at negligible execution time
overheads (0.6% on average).

1. Introduction

The design of several aggressive compiler and architec-
tural optimizations is driven by the well-known principle of
making the common case faster. Here, the common case
generally refers to frequently executed orhot regions of
code and repeating patterns in the program’s control flow.
Focusing on hot regions allows an optimizer to minimize
the costs and side-effects of an optimization without sacri-
ficing much of its benefits.

In its bid to identify hot regions, the optimizer is typi-
cally assisted by aprogram profile. Several types of pro-
gram profiles have been proposed, each catering to the de-
mands of different profile-guided optimizations. These pro-

files can be classified aspointprofiles orpathprofiles. Point
profiles, such as basic block, edge [4] and call-graph pro-
files [1], record the execution frequency of specific points
in the program. In contrast, path profiles capture control
flow in more detail by tracking paths or sequences of in-
structions through the program. Point profiles find extensive
use in several profile-driven compiler optimizations because
of the ease with which they can be collected and analyzed.
However, the task of profiling program paths, in general, is
much more complex and imposes significant space and time
overheads. To overcome this limitation, paths have been
characterized in different ways [5, 26, 18], each characteri-
zation involving a trade-off between the amount of control
flow information encoded in the profile and the overheads of
profiling. For instance, theacyclic, intra-procedural path
[5] is defined as a sequence of basic blocks within a pro-
cedure that does not include any loop back-edges. Impor-
tantly, it has been shown that acyclic, intra-procedural path
profiles can be obtained with relatively low complexity and
execution time overheads [5, 30]. These efficient profiling
techniques have given rise to a new class of aggressive path-
based optimizations [2, 11]. Moreover, the use of path pro-
files over point profiles has also proven to be beneficial in
classical profile-driven optimizations [31].

However, existing path profiling techniques suffer from
the following limitations.

• They incur significant space and time overheads due to
large number of paths they track, precluding their use
in cost-sensitive online systems.

• Overheads increase manifold if the scope of profiling
is extended beyond acyclic, intra-procedural paths.

• They do not facilitate profiling execution in system
calls or dynamically linked libraries.

• Precisely associating informative architectural events,
such as the number of cache misses or branch mis-
predictions, with paths is a non-trivial task [1].

This paper proposes a programmable, non-intrusive
hardware-based path detection and profiling scheme that

Profiler
Logic

PPCR

Branch
Queue

Path Stack

Path Detector

Path descriptors

Hot
Path
Table

Phase
Detector

Software
Thread

Other
entities

Branch
instructions

from pipeline

Block event count

Figure 1. Components of the Hardware Path Profiling Infrastructure.

overcomes these limitations. Figure 1 illustrates the com-
ponents of the proposed profiling hardware. At the heart of
the hardware profiler is apath detector that uses apath
stack to detect paths by monitoring the stream of retiring
branch instructions emanating from the processor pipeline
during program execution. The path detector can be pro-
grammed to detect various types of paths and track archi-
tectural events that occur along the paths. The detector gen-
erates a stream ofpath descriptors, which is available to all
interested hardware/software entities.

The second component of the hardware profiling infras-
tructure is aHot Path Table (HPT), a compact hardware
structure that processes the stream of path descriptors gen-
erated by the path detector. The HPT is designed to collect
accurate hot path profiles, irrespective of the type of path
being profiled, the duration of profiling and the architectural
metric associated with paths. The success of a moderately-
sized HPT in capturing accurate path profiles is attributed to
locality exhibited by program paths i.e. programs typically
traverse a small fraction of the numerous feasible acyclic,
intra-procedural paths. And as illustrated in Figure 2, a
small set of hot paths within the set of traversed paths domi-
nates program execution. These properties continue to hold
when paths are associated with architectural events such as
L2 cache misses or branch mis-predictions (Figure 2(b)).

As previously mentioned, the path detector can track
one of several architectural events that occur along paths.
Events are tracked usinginstruction event countersas-
sociated with every instruction in the processor pipeline.
In such cases, the HPT generated profile identifies paths
that caused a significant fraction of those events, enabling
context-sensitive bottleneck analysis and optimization. The

generic nature of instruction event counters and our path-
based event tracking mechanism can be further exploited by
associating paths with more complex metrics. As an illus-
tration, we associate paths with a power metric that provides
an accurate estimate of the power consumption caused by
instructions along each path in the cache hierarchy, a task
hard to emulate using software profilers.

Our results indicate that our path profiler virtually elim-
inates the space and time overheads incurred by software
path profilers. Moreover, the profiles collected in hardware,
although lossy, are sufficiently accurate for program opti-
mizers that can usually tolerate a small loss in profile ac-
curacy. In offline environments, the hardware path profile
can be serialized to a file at program completion for later
use by a static program optimizer. Our profiler is all the
more effective in online environments, where path profiles
representative of the current program behavior can be ob-
tained by enabling the profiler for short intervals of time.
The availability of accurate profiles at low overheads helps
the dynamic compiler generate optimized code efficiently
and quickly, increasing the number of optimization oppor-
tunities exploited.

The rest of the paper is organized as follows. Section 2
presents prior work on path profiling techniques. In Sec-
tion 3, we describe how different types of paths can be rep-
resented and detected in hardware. We propose extensions
to the processor’s event detection logic that enable the track-
ing of various architectural metrics along paths in Section 4.
Section 5 discusses the design of the Hot Path Table, the
hardware structure that collects hot path profiles. Section 6
evaluates the path profiling infrastructure. We conclude in
Section 7 with suggestions for future work.

Figure 2. (a) Cumulative distribution of dynamic instructions along acyclic, intra-procedural paths. (b) Average
cumulative distribution of path frequencies, L2 cache misses and branch mis-predictions along paths. The top 100
paths account for more than 80% of the dynamic instructions and a high percentage of L2 cache misses and branch
mis-predictions in the SPEC CPU2000 programs studied.

2. Related Work

Although the notion of program paths has always gen-
erated significant academic interest, Ball and Larus [5] first
demonstrated the feasibility of obtaining path profiles au-
tomatically and efficiently. The proposed instrumentation-
based profiling scheme splits the dynamic instruction
stream into acyclic, intra-procedural sequences, also re-
ferred to as Ball-Larus (BL) paths and tracks their occur-
rences. The profiler incurs average execution time over-
heads of 30-45%.

Subsequent research in path profiling has focused on al-
leviating two drawbacks of BL paths. First, such paths
do not provide information about a program’s control flow
across procedure and loop boundaries, limiting their utility
in inter-procedural and aggressive loop optimizations. Ef-
forts to overcome this limitation include the Whole Program
Path (WPP) [18] and extended path profiling [26]. A WPP
is a complete sequence of the acyclic, intra-procedural paths
traversed by a program. The sequence is compressed online
by generating an equivalent context free grammar, which
is compactly represented as a DAG. Despite high compres-
sion ratios, the WPP’s size and profiling overheads hinder
its widespread use. As a compromise between BL paths and
the WPP, Tallam et al [26] propose the notion ofinteresting
or extendedpaths− paths that extend beyond loop or pro-
cedure boundaries. Also proposed is a profiling scheme that
reduces overheads by approximating the frequencies of ex-
tended paths from a profile of paths that are slightly longer
than BL paths. Average execution time overheads of the
profiling scheme are reported to be nearly 4 times the over-
heads of BL path profiling.

Other efforts [3, 14, 28] have focused on reducing the

overheads of path profiling, a critical factor in cost-sensitive
dynamic optimization systems. Although these schemes re-
duce profiling overheads without much loss in profile ac-
curacy, they cause an increase in the time required to ob-
tain representative profiles, which in turn delays the opti-
mization process and results in fewer optimization oppor-
tunities being exploited. Moreover, it is not clear whether
these schemes can be extended for profiling other varieties
of paths or for profiling program binaries, as is required in
binary translation/optimization systems.

The importance of efficient program profiling techniques
in improving performance has also been recognized by
computer architects. Most modern processors provide ar-
chitectural support for performance monitoring, typically in
the form of event counters [25, 24]. To meet the require-
ments of profile-guided optimizations, hardware profilers
that construct approximate point profiles using information
from the processor have also been proposed [8, 9, 19]. Our
profiler subsumes existing hardware profiling schemes and
has comparatively wider applicability because of its ability
to collect various types of path profiles and the added ability
to associate architectural metrics with program paths.

Locality in instruction streams is also responsible for the
effectiveness of architectural enhancements such as global
branch predictors [20], trace caches [23], trace predictors
[13] and trace-based optimizers [21]. These mechanisms
capture and exploit patterns in a program’s control flow us-
ing approximate path representations like the recent global
history, traces and frames. Unlike these schemes, our pro-
filer is designed to detect andcollect profiles for a larger
class of program paths. Our hardware structures and poli-
cies are geared towards generatingaccurate profiles, irre-

Figure 3. Distribution of dynamic instructions accord-
ing to the length of BL paths they execute along. Paths
with at most 16 branches account for over 90% of pro-
gram execution in most programs.

spective of the duration of profiling.

3. Representing and Detecting Paths in Hardware

Paths have traditionally been represented by the se-
quence of indices/addresses of basic blocks that fall along
the path. However, this representation is expensive to main-
tain in hardware. In our profiler, a path is uniquely repre-
sented by apath descriptorwhich consists of(1) the path’s
starting instruction address,(2) the length of the path in
terms of the number of branch instructions along the path,
and(3) a set of branch outcomes, one for each branch along
the path1). This representation is compact and expressive
enough to describe all types of paths.

The hardware version of the path descriptor does have a
limitation; it can accommodate only a predetermined, fixed
number of branches per path. Our path detection hardware
overcomes this limitation by splitting paths if their length
exceeds this threshold. Figure 3 shows the distribution of
dynamic instructions according to the length of BL (Ball-
Larus) paths they are executed along for programs from the
SPEC CPU2000 benchmark suite. We observe that paths
of length less than 16 branch instructions account for over
90% of dynamic instructions in most programs. For the
rest of this study, we assume a path descriptor representa-
tion that allows paths to grow up to 32 branch instructions,
large enough to accommodate a majority of BL paths and
extended paths without splitting.

The hardware profiler uses a hardwarepath stackto de-
tect paths. Each entry on the path stack consists of a path
descriptor, an 8-bit path event counter, a path extension

1This bit is set to 1 for unconditional branches.

counter and other path specific information. The path pro-
filer receives information pertaining to every retiring branch
instruction from the processor pipeline via abranch queue,
which serves to decouple the processor pipeline from the
path profiler. Every branch read from the branch queue is
decoded and classified as a call, a return, an indirect branch,
a forward branch or a backward branch. The profiler then
performs one or more of the following operations on the
path stack depending on the type of branch being processed:

• path stackpush: Pushes a new entry on the path stack
with the starting address field of the path descriptor set
to the target address of the branch being processed. All
other fields of the new entry are reset to zero.

• path stackpop: Pops the current entry on top-of-stack
and makes it available to all interested entities.

• path stackupdate: Updates the entry on top-of-stack
with information about the branch being processed.
The update involves incrementing the length of the
path, updating the branch outcomes and incrementing
the event counter. During update, if the length of the
path on top-of-stack exceeds the predefined threshold
value, the profiler logic pops the entry and pushes a
new entry for a path beginning from the target of the
current branch.

• path stackupdatecount : Increments the event
counter associated with the path descriptor on top-of-
stack without updating the path length or outcomes.
This operation is used if it is desired that branches like
calls and returns should not be explicitly recorded in
the path.

The mapping between the branch type and set of
operations to be performed is specified by the pro-
grammer in aPath Profiler Control Register(PPCR).
However, the following restrictions on the mapping ap-
ply. For any branch, either one ofpath stackupdateor
path stackupdatecount can be performed. Also, the
order in which operations are performed is fixed,viz
path stackupdate/pathstackupdatecount followed by
path stackpop and path stackpush. These restrictions
notwithstanding, the hardware path profiler can be pro-
grammed to detect several types of paths.

Detecting acyclic, intra-procedural paths: The branch
type−profiler operations mapping shown in Table 1 enables
the profiler to detect a variant of BL paths that terminate on
backward branches. Path entries are pushed on calls and
popped on returns. On a forward branch, the path descriptor
on the top-of-stack is updated with information about the
branch. The path entry on top-of-path stack is updated
and terminated on all backward branches. Paths are also
terminated on indirect branches since such branches can
have several targets. These profiler operations ensure that

Branch type update update-count pop push
call ×

√
×

√

return ×
√ √

×
forward

√
× × ×

backward
√

×
√ √

indirect
√

×
√ √

Table 1. Branch type −profiler operation mapping for
detecting BL paths

B1

B2

B3

B4

B5

B6

10

0 1

10

Ball-Larus Paths

P1 = { B1, 3, 101 }
P2 = { B2, 3, 101 }
P3 = { B2, 3, 111 }
P4 = { B2, 4, 1001 }

Sample Sequence:
P1(P2)+(P3)+P4

Extended Loop Paths

P1 = { B1, 6, 101101 }
P2 = { B2, 6, 101101 }
P3 = { B2, 6, 101111 }
P4 = { B2, 6, 111111 }
P5 = { B2, 4, 1001 }

Sample Sequence:
P1(P2)+P3(P4)+P5

1

Figure 4. The control flow graph, path descriptors and a
sequence of BL paths and extended loop paths detected
for a sample execution of a procedure. Blocks B1 and
B4 do not end with branches whereas B2 ends with an
unconditional jump to B3.

there exists exactly one entry on the path stack for every
active procedure, and that the path stack grows and shrinks
in the same way as stack frames on the program’s runtime
stack. Each entry on the path stack records the BL path
that the corresponding procedure is currently traversing.
Figure 4 shows a control flow graph, the set of BL path
descriptors and a sequence of BL paths generated by the
path stack for a sample procedure.

Detecting extended paths: In order to detect extended
paths, the path stack supports apath extensioncounter with
every entry on the path stack. The programmer is required
to specify the following options via the PPCR: (1) the type
of extended paths that should be profiled i.e. paths span-
ning across procedure boundaries or those that extend be-
yond loop boundaries, and (2) a maximum extension count
that indicates the number of procedure calls or backward
branches that the path is allowed to span across. The map-
ping shown in Table 1 is reused.

When programmed to detect extended paths, the path de-
tector processes forward and indirect branches in the usual
manner. However, the operations performed on backward

Branch type update update-count pop push
call ×

√ √ √

return ×
√ √ √

forward
√

× × ×
backward

√
×

√ √

indirect
√

×
√ √

Table 2. Branch type-Profiler operation mapping for
detecting paths for a Whole Program Path.

branches, calls and returns are qualified by the value of the
extension counter of the path stack entry on top-of-stack. If
the profiler is programmed to detect paths that span across
loop boundaries and a backward branch is encountered, the
path on top-of-stack is allowed to expand if the correspond-
ing extension counter value is less than the maximum exten-
sion count. In such a scenario, only thepath stackupdate
operation is performed and the extension counter is incre-
mented. When the extension counter reaches the maximum
count specified via the PPCR, the default set of operations
are performed i.e the path is terminated. Figure 4 illus-
trates a set of extended loop paths detected and a sequence
of paths recorded by the profiler for the given control flow
graph.

When the profiler is tracking paths that span across
procedure boundaries and a call instruction is encountered,
the path on top-of-stack is terminated only if the extension
counter value is equal to the maximum. Otherwise, the
path is allowed to expand and the extension counter
incremented. Conversely, paths are allowed to expand
on procedure returns if the extension counter value is
non-zero. Each return also decrements the extension
counter. This set of actions generates path descriptors that
represent inter-procedural paths through the program. It is
important to note that with our profiler, the time complexity
of detecting extended paths is similar to the complexity of
detecting acyclic, intra-procedural paths.

Detecting paths for a Whole Program Path: The basic
element of a Whole Program Path (WPP) is a variant of
the BL path that also terminates at call instructions. A
WPP is formed by compressing the sequence of such
paths. Our profiler, configured using the mapping shown
in Table 2, simplifies the process of constructing the WPP
by generating the path sequence at low overhead and
complexity. While processing a call, the profiler performs
a path stackpop and terminates the current path before
pushing a new entry on the stack. Similarly, the profiler
performs apath stackpop followed by apath stackpush
on every return. Path descriptors generated by the path
stack are fed to a software WPP profiler running as a
separate thread, which compresses the sequence online and
constructs the WPP.

compute dcache_access_power;
num_dcache_ports = 2;
if (num_dcache_access) {
 if (num_dcache_access <= num_dcache_ports)
 total_dcache_power += dcache_access_power;
 else
 total_dcache_power +=
 (num_dcache_access/num_ports)

* dcache_access_power;
}

(a) Cycle level power model

compute dcache_access_cost;
num_dcache_ports = 2;
if (num_dcache_access) {
 if (num_dcache_access == 1)
 apportion_cost = dcache_access_cost;
 else
 apportion_cost = dcache_access_cost / 2;
 distribute apportion_cost to num_dcache_access instructions;
}

(b) Apportioning logic

Figure 5. (a) A power model that computes power consumption in L1 dcache and (b) corresponding apportioning
logic that assigns costs to instructions that simultaneously access L1 dcache. Here, both dcache access power and
dcache access cost are computed a priori; these are constants for a specific process technology.

Path stack consistency: For the path profiler to work
correctly, the path stack must be maintained in state con-
sistent with the program’s execution. This requires spe-
cial handling of certain events such as exceptions and
setjmp/longjmp operations. The handlers for such events
must repair the path stack, typically by popping entries of
the path stack or purging the stack. Further, path stack over-
flows can occur due to the fixed size of the path stack. Im-
plementations have the choice of handling overflows either
by ignoring older entries on the stack, or by allowing the
stack to grow into a region of memory specially allocated
by the OS for the program being profiled. We find that
a 32-entry path stack eliminates overflows for most of the
programs we studied; we assume a path stack of this length
for the rest of this study.

4. Associating architectural metrics with paths

Existing software-based path profilers are designed to
track the frequency with which each path is traversed. How-
ever, future analysis tools and optimizations are likely to
be interested in path-wise profiles of other metrics such as
cache misses, branch mis-predictions and pipeline stalls.
Such profiles are important because the paths of interest
to an optimizer could differ significantly depending on the
metric associated with paths. For example, our studies us-
ing benchmarks from the SPEC CPU2000 suite have shown
that path profiles for various architectural and power met-
rics have only small percentage of information in common
with a path-frequency profile (25% for a branch mispredic-
tion profile, 32% for a L2 cache profile and 62% for a power
profile) [27]. These results justify the need for flexible pro-
filing schemes that can capture program behavior across dif-
ferent architectural metrics.

Extending existing profiling schemes to associate archi-
tectural metrics with paths is complicated due to the intra-
procedural nature of paths and perturbation effects of the
instrumented code [1]. However, our hardware path profiler
can perform this task accurately and non-intrusively since
precise information regarding all architectural events is di-

rectly available to the profiler. To track the occurrence of
such events, each instruction in the processor pipeline is an-
notated with anevent counter(an extension of per instruc-
tion tag in [24]). An instruction’s event counter is incre-
mented every time the instruction causes an architectural
event of typeX specified via the PPCR. When an instruc-
tion commits, the value in the instruction’s event counter is
used to update ablock event countermaintained at the com-
mit stage of the pipeline. The block event counter value
is passed to the path profiler along with every committing
branch, which in turn updates the event counter associated
with the path on top-of-stack. When a path is popped off the
path stack, its event counter value represents the number of
events of typeX that occurred along the path. The block
event counter is itself reset after every branch instruction.

A limitation of this scheme is that architectural events
caused by non-committing, speculative instructions are
not accounted for since the profiler monitors committing
instructions only. Apart from this anomaly, the profiler
is capable of associating any architectural event with
paths, thereby enabling precise path-based performance
monitoring and bottleneck analysis.

Associating power consumption metrics with paths:
Virtually all existing hardware profiling schemes are fo-
cused towards detecting and aggregating data pertaining to
performance-related architectural events. While this was
also the case with the initial design of our profiling scheme,
we were subsequently interested in exploring possible reuse
of the proposed hardware in tracking metrics related to
power consumption. Our goal was to associate program
paths with a count that provides an estimate of the power
consumption caused by instructions along the path in a spe-
cific processor component/set of components. Such pro-
files enable power-aware compilers to identify and focus
on regions of code that account for a significant fraction
of the power consumption. Such profiles can also assist
a programmer in analyzing the impact of traditional com-
piler/architectural optimizations on power consumption in

specific regions of the program.
Our power profiling scheme assumes the availability of

an accurate power model for each processor component of
interest, parameterized by the component configuration and
one or more architectural events. The power model is used
to assign arelative costto each architectural event related to
the component. The cost associated with an event indicates
the power consumed by the occurrence of the event relative
to the event with the lowest consumption. For instance, the
relative costs of accesses to each level of the cache hierarchy
are derived from a power model for caches parameterized
by the cache configuration and number of accesses. Since
an instruction cache access typically consumes the lowest
power, the costs of other events are relative to the instruction
cache access.

Once costs are assigned to all events, the event detection
logic associated with each component is extended to appor-
tion the event cost to instructions that cause the events. For
simple analytical models, this translates to logic that incre-
ments the event counters of all event-causing instructions
by an amount equal to the cost of the event. More complex
cycle-level models can be implemented using logic that dy-
namically computes the apportioned cost based on online
information. Figure 5 illustrates one such dynamic power
model for the L1 data cache [6] and the corresponding ap-
portioning logic implementation. Here, the actual power
consumption and the apportioned cost are determined based
on the number of simultaneous data cache accesses in each
cycle and the number of ports available.

Note that our implementation of the power models as-
sumes a constant activity factor, a significant parameter in
power models for components such as caches, buses and
register files. Rounding off errors during the process of
computing relative costs, approximations in the apportion-
ing logic and the loss of information due to non-committing
but power consuming instructions also introduce inaccura-
cies. However, our results suggest that although these fac-
tors cause discrepancies in the total power estimates, their
impact on the quality of hot path profiles is minimal. We
evaluate the effectiveness of our profiling scheme in col-
lecting power specific profiles in Section 6.

5. Collecting Hot Path Profiles

Much of the execution time overhead incurred by exist-
ing path profiling techniques is attributed to the hash-and-
update operation performed when a path terminates [14].
This overhead can be reduced if the hash table that stores
the path profile is maintained in hardware. Such a hardware
implementation must be capable of generating a profile ac-
curate enough to drive path-based optimizations without a
loss in their effectiveness. Additionally, the quality of the
profile must be independent of the duration of profiling and
the metric associated with paths.

Figure 6. The Hot Path Table that collects hot path pro-
files. The HPT is indexed using bits from the incoming
path’s address, length and branch outcomes.

We evaluated several hardware profiler design configu-
rations and next describe a simple, low overhead path col-
lection scheme that meets these requirements. The path col-
lection mechanism is based on a hardware structure called
theHot Path Table(HPT) illustrated in Figure 6. Each entry
in the HPT consists of a path descriptor and a 32-bit accu-
mulator. The HPT receives a sequence of path descriptors
and associated counts from the path stack. An index into
the HPT is computed from the fields of each incoming path
descriptor. If a corresponding entry is found in HPT, the ac-
cumulator is incremented by the count associated with the
incoming path. If the lookup fails, an entry from the in-
dexed HPT entry set is selected for replacement and initial-
ized with information about the incoming path descriptor.

The HPT design parameters that determine the effective-
ness of the hot path collection scheme include the HPT size
and associativity, the replacement policy and the indexing
function. Our initial experiments indicate that LRU replace-
ment, which is oblivious to the frequency of access of en-
tries, does not capture and retain information about an ade-
quate fraction of paths. The Least Frequently Used (LFU)
policy serves the purpose of retaining frequently used en-
tries. However, the execution time overheads of implement-
ing LFU (log n for an n-way associative structure) have pre-
vented its use in other cache structures. In the context of
the HPT, a moderately expensive replacement policy does
not have a significant impact on the overall execution time
because(1) the HPT does not lie on the processor’s criti-
cal path and(2) HPT updates are relatively infrequent (once

Processor core Out-of-Order issue of up to 4 instructions per cycle, 128 entry reorder buffer, 64 entry LSQ, 16 entry IFQ
Functional units 4 integer ALUs, 2 integer MULT/DIV units, 4 floating-point units and 2 floating-point MULT/DIV units
Memory hierarchy 32KB direct mapped L1 instruction and data caches with 32 byte blocks (1 cycle latency) , 512KB 4-way

set associative unified L2 cache (10 cycle latency), 100 cycle memory latency
Branch predictor Combined: 12-bit (8K entry) gshare/(8K entry) bimodal predictor with 1K meta predictor, 3 cycle branch

mis-prediction latency, 32 entry return address stack, 2K entry, 4-way associative BTB

Table 3. Baseline Processor Model

Parameter Low High
Number of HPT entries 128 2048

HPT associativity 2 32
HPT indexing scheme Bits from path starting address XOR(Bits from path starting address, path length, branch outcomes)

L2 cache size 256KB 2048KB
L2 cache associativity 1 8

Branch predictor 2K entry, 2-level predictor Hybrid with 8K entry bimodal, 2K entry 2-level and 8K entry metatable

Table 4. Parameters considered during experiments based on Plackett-Burman design to determine an effective HPT
configuration. The corresponding low and high values are also listed.

for every path) and HPT replacements even less frequent.
Our experiments with different hotness criteria and HPT
configurations reveal that the LFU replacement policy out-
performs others without a significant increase in execution
time overheads. Moreover, an implementation of LFU for
the HPT does not incur additional space overheads since
frequency information is available in counters associated
with every HPT entry. For the rest of the paper, we as-
sume an HPT implementation that uses LFU replacement.
We discuss the impact of HPT size, associativity and index-
ing scheme on profile accuracy and profiler overheads in
Section 6.

6. Experimental Evaluation

The success of a profiling technique can be measured by
the accuracy of the profile, implementation costs and over-
heads of profiling. In this section, we evaluate our hardware
path profiler on these counts.

• We explore the impact of various profiler design pa-
rameters on profile accuracy by comparing hardware
generated profiles with a complete profile obtained us-
ing an infinitely large HPT. We compare profiles using
theoverlap percentagemetric [3, 10], which indicates
the percentage of information common to the profiles.
Our results show that average profile accuracy of 88%
is obtained using an HPT that occupies approximately
7KB of real estate.

• We assess the quality of hardware generated profiles in
a real-world application by using the profiles to drive
superblock formation in thegcccompiler. We find that
performance benefits of superblock scheduling driven
by HPT generated path profiles are similar to those ob-
tained using a complete path profile.

• We evaluate the use of our profiler in gathering profiles
where paths are associated with architectural metrics
such as L2 cache misses, branch mis-predictions and a
metric that estimates power consumption in the cache
hierarchy.

• Using a cycle-accurate superscalar processor simula-
tor, we find that the execution time overheads of our
profiling scheme are low (0.6% on average), enabling
the use of the profiler in cost-sensitive environments.

6.1 Experimental Methodology

We performed simulation experiments using 12 pro-
grams from the SPEC CPU2000 benchmark suitegcc, gzip,
mcf, parser, vortex, bzip2, twolf, perlbmk, art, equake, mesa
andammp. We extended SimpleScalar [7], a processor sim-
ulator for the Alpha ISA, with an implementation of our
hardware path profiler. The baseline micro-architectural
model of the processor is shown in Table 3.

Due to simulation time constraints, overlap percentages
in Section 6.2 are reported from simulations of 15 billion
instructions for alpha binaries precompiled atpeaksettings,
running on their reference inputs. We validated our simu-
lation methodology using complete runs of as many of the
programs as possible, finding an average deviation of 6%
from the reported values. We extended thegcc compiler
(version 3.4) with a path-based superblock formation pass.
Execution times for complete runs of superblock scheduled
binaries optimized at level -O2 were obtained using the
hardware cycle counter on an Alpha AXP 21264 processor
under the OSF V4.0 operating system. Profiling overheads
reported in Section 6.3 are estimated using out-of-order pro-
cessor simulations for complete runs of the programs with
the MinneSPEC inputs [17].

Figure 7. Complete overlap percentages for various profiler configurations when profiling path frequencies, L2 cache
misses and branch mis-predictions.

6.2 Quality of Hardware Path Profiles

We use two metrics, thecomplete overlap percentage
and thedynamic overlap percentageto quantify the accu-
racy of hardware generated profiles. The complete overlap
percentage is obtained when profiling is enabled for the en-
tire duration of program execution. To assess profile ac-
curacy under conditions where the profiler is activated for
short durations during program execution, we define the dy-
namic overlap percentage as the average of overlap percent-
ages computed for path profiles over non-overlapping 100
million instruction execution windows.

We performed a simulation study using Plackett-Burman
experimental design [22, 29] to identify a path profiler con-
figuration that realizes our design goals. Table 4 lists the
input parameters we used in this design with their low and
high values. We also conducted Plackett-Burman experi-
mental studies where metrics other than path frequency−
number of L2 cache misses and number of branch mis-
predictions− are associated with paths. Our results show
that the HPT size, HPT associativity and the HPT index-
ing scheme are the three most important profiler parameters
[27]. On the other hand, the cache and branch predictor re-
lated parameters are of significantly less importance. This
leads us to conclude that the hardware profile accuracy is
unaffected by the underlying architecture. With these less
important parameters eliminated, we next performed a full
factorial study with HPT size, associativity and the indexing
scheme as parameters. Our experiments reveal that an HPT
indexing function that XORs bits from the path’s starting
address with path length and branch outcomes outperforms

other functions we evaluated [27]. We use this indexing
function in the rest of the study.

Figure 7 shows the complete overlap percentages for
four HPT configurations. When profiling path frequencies,
the best average complete overlap percentage of 88% is ob-
tained using a 512 entry, 4-way set associative HPT. The
overlap percentage with this configuration is 96% when the
metric associated with paths is L2 cache misses. We at-
tribute the higher coverage to the observation that L2 cache
misses are concentrated along a smaller number of paths
and exhibit more pronounced locality than paths them-
selves. On the other hand, the average complete overlap
percentage dips to 78.4% when branch mis-predictions are
profiled, a reflection of the fact that branch mis-predictions
are usually distributed over a larger number of paths. Cer-
tain programs (gcc, perl, twolf) have lower overlap percent-
ages since the working set of paths in these programs is
large (Figure 2), making it harder for a hardware structure
of limited size to capture a high fraction of execution. We
also find that a further increase in HPT size leads to addi-
tional improvements in overlap percentages, although the
gains taper off for HPTs with over 2048 entries [27].

The impact of HPT configuration on dynamic overlap
percentages is summarized in Figure 8. Notice that the dy-
namic overlap percentages are higher than their static coun-
terparts. This is to be expected since the dynamic overlap
percentage is computed using path profiles collected over
short time durations. For the 512 entry, 4-way set associa-
tive HPT, we obtain average dynamic overlap percentages
of 95.5%, 98% and 91.2% when profiling path frequencies,
L2 cache misses and branch mis-predictions respectively.

path execu-
tion count

L2 cache
misses

branch mis-
predictions

50

60

70

80

90

100
256:4

256:8

512:4

512:8

av
er

ag
e

dy
na

m
ic

 o
ve

rl
ap

 (
%

)

Figure 8. Average dynamic overlap percentages for
various profiler configurations when profiling path fre-
quencies, L2 cache misses and branch mis-predictions.

Although the overlap percentage metric quantifies pro-
file accuracy, it says little about the performance impact
of using a less than complete profile in a real world ap-
plication. We obtain a direct assessment of the quality of
hardware generated paths profiles by using them to drive
superblock scheduling [12] in the gcc compiler. Our im-
plementation of the path-based superblock formation pass
identifies hot traces using path profiles followed by tail du-
plication, superblock enlargement and loop unrolling using
heuristics similar to those used in [12]. The path-based su-
perblock scheduler improves execution time by an average
9.3%, with a maximum of 14% over the baseline (-O2 opti-
mized, traditional local scheduling).

gc
c

gz
ip

m
cf

vo
rte

x ar
t

eq
ua

ke
bz

ip2

Ave
ra

ge

60

70

80

90

100 512:4

512:8

re
la

tiv
e

ex
ec

ut
io

n
tim

e
(%

)

Figure 9. Execution times of binaries superblock-
scheduled using path profiles from two HPT configura-
tions normalized against the execution time of a binary
scheduled using a complete path profile.

Figure 9 shows the execution times of optimized
program binaries that use path profiles generated by
different HPT configurations. Program execution time is
reported relative to that of a binary executable generated
using a complete path profile. Observe that the difference
between execution times is 0.12% on the average with a
maximum of 2.2%. For certain benchmarks, superblock
scheduling using hardware-generated path profiles per-
forms marginally better than scheduling using complete
profiles; this behavior is attributed to secondary cache and
branch prediction effects. On the whole, a minor change in
average execution time indicates that hardware path profiles

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x

pe
rlb

m
k
tw

olf

bz
ip2

m
es

a

am
m

p ar
t

eq
ua

ke

Ave
ra

ge
0

10

20

30

40

50

60

70

80

90

100

BL Paths

Extended Loop

Extended Call

co
m

pl
et

e
ov

er
la

p
(%

)

Figure 10. Accuracy of complete extended path profiles
collected using the hardware path profiler. Paths extend
across one backward branch/procedure call.

are comparable in quality to and can be used instead of
complete path profiles.

Quality of extended path profiles: Next, we evaluate
the effectiveness of the hardware profiler in collecting
extended path profiles. Figure 10 shows the complete
overlap percentages for extended paths that span across
one backward branch and those that extend beyond one
procedure call for a 512-entry, 4-way associative HPT. The
average overlap percentages for such paths are 78.35% and
84.10% respectively. The reduction in overlap percentages
when compared to a BL path profile is due to the increase
in the number of unique paths traversed. It remains to be
seen whether the reduced profile accuracy can be tolerated
by real-world applications.

Quality of path-wise power profiles: Unlike other archi-
tectural metrics, the quality of path-wise power profiles can-
not be assessed in isolation of the power models used to es-
timate power consumption in various components. In this
section, we first determine whether the choice of a power
model has an influence on the nature of path profiles. Our
evaluation uses power consumption in the cache hierarchy
as the metric associated with paths, primarily because a sig-
nificant fraction of the overall power consumption is at-
tributed to the caches [6]. Of the several candidate power
models for caches [15, 16, 6], we chose two, an analytical
power model from Kadayif et al [15] and a cycle level power
model used by the Wattch power simulator [6]. The analyti-
cal model was used to compute the relative costs of hits and
misses at each level of cache. Apportioning logic similar
to Figure 5 was designed for the Wattch power model and
integrated into a cycle-accurate processor simulator.

A comparison of the path-wise power profiles obtained

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x

pe
rlb

m
k
tw

olf

bz
ip2

m
es

a

am
m

p ar
t

eq
ua

ke

Ave
ra

ge
0

10

20

30

40

50

60

70

80

90

100

256:4

256:8

512:4

512:8

co
m

pl
et

e
ov

er
la

p
(%

)

Figure 11. Accuracy of complete path-wise power pro-
files for various HPT configurations, obtained using an
analytical model for power consumption in the cache
hierarchy.

using the two power models shows a strong similarity in the
relative ordering of paths in the profiles despite differences
in the absolute value of the associated power metric. This
observation suggests that for caches, the analytical model
identifies hot paths as well as the accurate cycle-level power
model. Figure 11 illustrates the impact of various HPT con-
figurations on the accuracy of path-wise power profiles gen-
erated using the analytical power model. An average com-
plete overlap percentage of 82.9% is obtained using a 512
entry, 4-way associative HPT. Further investigations into the
relative quality of these profiles and their impact on power-
aware compiler optimizations are left for future work.

6.3 Profiling Overheads

Using the hardware path profiler during program execu-
tion can lead to degraded performance if the profiler does
not service branch instructions faster than their rate of re-
tirement. To study this, we incorporated our path pro-
filer into a cycle-accurate superscalar processor pipeline
simulator. Profiler operations are assigned latencies pro-
portional to the amount of work involved in carrying out
those operations: thepath stackpush, path stackupdate
andpath stackupdatecount operations are assessed a la-
tency of one cycle whereas the latency of apath stackpop
is one cycle plus the latency of updating the HPT. Since the
HPT uses a LFU based replacement policy, an HPT miss
incurs a cost oflog(n)cycles, wheren is the associativity of
the HPT. The latency of processing a branch is the sum of
latencies of the profiler operations performed while process-
ing the branch. If a retiring branch finds the branch queue
full, the commit stage stalls and no further instructions are
committed until the stalling branch can be accommodated
in the branch queue.

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x ar
t

eq
ua

ke
bz

ip2
m

es
a

am
m

p

pe
rlb

m
k
tw

olf

Ave
ra

ge
-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.0010.63 13.98 7.20 7.98 14.83 27.52 8.04

No Queue

1

2

4

ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (

%
)

Figure 12. Execution time overheads incurred due to
the hardware profiler while profiling BL paths for various
branch queue sizes.

The execution time overheads incurred while collecting
a BL path profile using a 512-entry, 4-way set associative
HPT for various branch queue sizes are shown in Figure 12.
We observe that a 4-entry branch queue sufficiently buffers
the profiler from the pipeline and reduces average execution
time overheads from 8.04% to 0.6%. This also represents a
sharp drop from the typical 30-45% overheads incurred by
the Ball-Larus path profiling scheme [5]. Moreover, profil-
ing overheads remain unchanged even when the profiler is
configured to collect otherwise expensive extended paths.
Our experiments ignore the overheads of transferring the
HPT generated profile (approximately 6KB in size) to user
memory. Even conservative estimates of this overhead (a
few thousands of cycles) are negligible when compared to
the execution time of the program.

7. Conclusions and Future Work

This paper proposes and evaluates a hardware path de-
tection and profiling scheme that is capable of generating
high quality hot path profiles with minimal space and time
overheads. The profiler derives its flexibility from a generic
path representation and a programmable interface that al-
lows various types of paths to be profiled and several archi-
tectural metrics to be tracked along paths using the same
hardware. These characteristics enable the use of the pro-
filer in a host of static and dynamic optimizations systems.
We believe that the availability of semantically rich and de-
tailed path information in hardware opens the doors to sev-
eral architectural optimizations. As an example, we have
proposed a phase detection scheme [27] that accurately de-
tects phase changes using the sequence of acyclic, intra-
procedural paths generated by our hardware profiler. Pos-
sible avenues for future work include the use of hot path
information in improving the performance of trace caches

and precomputing memory reference addresses for cache
prefetching.

Acknowledgements

We would like to thank P. J. Joseph, Anand Vardhan
and Bharath Kumar for providing valuable suggestions and
comments throughout this work. This work is funded in part
by the Infosys Doctoral Fellowship.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Context Sensitive Profiling. In
Proceedings of the SIGPLAN Conference on Programming
Languages Design and Implementation, pages 85–96, 1997.

[2] G. Ammons and J. R. Larus. Improving Data-flow Analy-
sis with Path Profiles. InProceedings of the SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 72–84, 1998.

[3] M. Arnold and B. Ryder. A Framework for Reducing the cost
of Instrumented Code. InProceedings of the ACM SIGPLAN
Conference on Programming Languages Design and Imple-
mentation, pages 168–179, June 2001.

[4] T. Ball and J. R. Larus. Optimally Profiling and Tracing Pro-
grams. ACM Transactions on Programming Languages and
Systems, pages 16(4):1319–1360, July 1994.

[5] T. Ball and J. R. Larus. Efficient Path Profiling. InProceed-
ings of the 29th Annual International Symposium on Microar-
chitecture, pages 46–57, 1996.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. InProceedings of the Annual International Symposium
on Computer Architecture, pages 83–94, 2000.

[7] D. Burger, T. M. Austin, and S. Bennett. Evaluating Fu-
ture Microprocessors: The SimpleScalar Toolset. Technical
Report CS-TR-96-1308, University of Wisconsin-Madison,
1996.

[8] T. M. Conte, B. Patel, K. N. Menezes, and J. S. Cox.
Hardware-Based Profiling: An Effective Technique for
Profile-Driven Optimization.International Journal of Paral-
lel Programming, pages 187–206, Vol 24, No. 2, April 1996.

[9] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors. InProceedings
of the Annual International Symposium on Microarchitecture,
pages 292–302, December 1997.

[10] P. T. Fellar. Value Profiling for Instructions and Memory
Locations. CS98-581, University of California, San Diego,
April 1998.

[11] R. Gupta, D. A. Berson, and J. Z. Fang. Path Profile Guided
Partial Redundancy Elimination Using Speculation. InPro-
ceedings of the 1998 International Conference on Computer
Languages, page 230, 1998.

[12] W. W. Hwu and S. A. Mahlke. The Superblock: An Effective
Technique for VLIW and Superscalar Compilation.The Jour-
nal of Supercomputing, pages 7(1–2):229–248, May 1993.

[13] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-Based Next
Trace Prediction. InProceedings of the International Sympo-
sium on Microarchitecture, pages 14–23, 1997.

[14] R. Joshi, M. D. Bond, and C. B. Zilles. Targeted Path Pro-
filing: Lower Overhead Path Profiling for Staged Dynamic
Optimization Systems. InProceedings of the International
Symposium on Code Generation and Optimization (CGO),
pages 239–250, March 2004.

[15] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan,
M. J. Irwin, and A. Sivasubramaniam. vEC: Virtual Energy
Counters. InProceedings of Workshop on Program Analysis
for Software Tools and Engineering, pages 28–31, 2001.

[16] M. B. Kamble and K. Ghose. Analytical Energy Dissipation
Models for Low Power Caches. InProceedings of the Inter-
national Symposium on Low Power Electronics and Design,
1997.

[17] A. KleinOsowski and D. J. Lilja. MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Ar-
chitecture Research.Computer Architecture Letters, 2002.

[18] J. R. Larus. Whole Program Paths. InProceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 259–269, 1999.

[19] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal,
and W. mei W. Hwu. A Hardware-Driven Profiling Scheme
for Identifying Program Hot Spots to Support Runtime Op-
timization. InProceedings of the 26th International Sympo-
sium on Computer Architecture, pages 136–147, June 1999.

[20] R. Nair. Dynamic path-based branch correlation. InProceed-
ings of the Annual International Symposium on Microarchi-
tecture, pages 15–23, 1995.

[21] S. J. Patel and S. S. Lumetta. rePLay: A Hardware Frame-
work for Dynamic Optimization. IEEE Transactions on
Computers, June 2001.

[22] R. Plackett and J. Burman. The Design of Optimal Multi-
factorial Experiments.Biometrika, Vol 33, Issue 4:305–325,
June 1956.

[23] E. Rotenberg, S. Bennett, and J. Smith. Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching.
In Proceedings of the 28th International Symposium on Mi-
croarchitecture, 1996.

[24] B. Sprunt. Pentium 4 Performance Monitoring Features.
IEEE Micro, pages 22(4):72–82, July-August 2002.

[25] Sun Microsystems Inc.UltraSPARC User’s Manual, 1997.
[26] S. Tallam, X. Zhang, and R. Gupta. Extending Path Profil-

ing across Loop Backedges and Procedure Boundaries. In
Proceedings of the International Symposium on Code Gener-
ation and Optimization (CGO), pages 251–262, March 2004.

[27] K. Vaswani, M. J. Thazhuthaveetil, and Y. N. Srikant. Repre-
senting, Detecting and Profiling Paths in Hardware. Techni-
cal Report IISc-CSA-TR-2004-7, Indian Institute of Science,
May 2004.

[28] T. Yasue, T. Suganuma, H. Komatsu, and T. Nakatani.
Structural Path Profiling: An Efficient Online Path Profil-
ing Framework for Just-In-Time Compilers. InInternational
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Sept-Oct 2003.

[29] J. Yi, D. Lilja, , and D. Hawkins. A Statistically Rigor-
ous Approach for Improving Simulation Methodology. In
Proceedings of the International Symposium on High Perfor-
mance Computer Architecture, February 2003.

[30] C. Young. Path-based Compilation. PhD thesis, Harvard
University, Jan 1998.

[31] C. Young and M. D. Smith. Better Global Scheduling Us-
ing Path Profiles. InProceedings of the 30th International
Symposium on Microarchitecture, November 1998.

