
Web Image Clustering by Consistent Utilization of Visual
Features and Surrounding Texts

Bin Gao1, 2, Tie-Yan Liu1, Tao Qin1, 3, Xin Zheng1, 4, Qian-Sheng Cheng2, and Wei-Ying Ma1
1Microsoft Research Asia

5F, Sigma Center, No. 49, Zhichun Road,
 Beijing, 100080, P. R. China
{tyliu, wyma}@microsoft.com

3MSP Laboratory, Dept. of Electronic Engineering,

Tsinghua University,
Beijing 100084, P. R. China

qinshitao99@mails.tsinghua.edu.cn

2LMAM, Dept. of Information Science,
 School of Mathematical Sciences, Peking University,

Beijing, 100871, P. R. China
gaobin@math.pku.edu.cn, qcheng@pku.edu.cn

4Key Lab of Pervasive Computing,

Dept. of Computer Science and Technology,
Tsinghua University,

Beijing 100084, P. R. China
zhengxin99@mails.tsinghua.edu.cn

ABSTRACT
Image clustering, an important technology for image processing,
has been actively researched for a long period of time. Especially
in recent years, with the explosive growth of the Web, image
clustering has even been a critical technology to help users digest
the large amount of online visual information. However, as far as
we know, many previous works on image clustering only used
either low-level visual features or surrounding texts, but rarely
exploited these two kinds of information in the same framework.
To tackle this problem, we proposed a novel method named
consistent bipartite graph co-partitioning in this paper, which can
cluster Web images based on the consistent fusion of the
information contained in both low-level features and surrounding
texts. In particular, we formulated it as a constrained multi-
objective optimization problem, which can be efficiently solved
by semi-definite programming (SDP). Experiments on a real-
world Web image collection showed that our proposed method
outperformed the methods only based on low-level features or
surround texts.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering – algorithms; I.5.4
[Pattern Recognition]: Applications – Computer vision.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Co-clustering, Consistency, Spectral Graph, Image Processing.

1. INTRODUCTION
Along with the fast development of Web search engines, Web
image search has become a more and more popular application,
which can provide users with relevant images to the queries they
issued. Considering the numerous online images, the numbers of
image search results for many queries are usually very large. In
such a scenario, image clustering will be very helpful to users
because it can provide a concise summarization and visualization
of image search results.

To the best of our knowledge, most of the traditional image
clustering algorithms were based on the low-level visual features
of the images [7][18][25]. That is, some low-level visual features
such as color histogram and wavelet texture were first extracted
from the raw images, and then clustering algorithms such as k-
means [11], maximum likelihood estimation [11] and spectral
clustering [1][27] were applied to group similar images together.
For example, as an interesting piece of such works, Qiu [24]
proposed to use a bipartite graph1 to model the relations between
images and their low-level features, so as to convert the image
clustering problem to a graph partitioning problem that could be
solved by singular value decomposition [16]. Although low-level
feature based image clustering has been used in many applications
[7][18], its effectiveness is doubtful due to the problem of
semantic gap. That is, many images whose appearances are very
similar to each other actually belong to quite different categories.
For instance, an image of a hawk flying in the sky and another
image of a black duck swimming in a lake are quite similar in
their colors and textures, even if their semantics are far from each
other. Actually, it is the same reason that prevents content-based
image retrieval (CBIR) from being widely used in real-world
applications.

In contrast to the embarrassment of CBIR, image search tools in
today’s Web search engines have partially fitted people’s
information need. Their successes lie in that they have taken a

1 If the vertices of a graph can be decomposed into two disjoint subsets

such that no two vertices within the same set are adjacent, the graph is
named a bipartite graph.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’05, November 6-11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011...5.00.

112

different approach from CBIR: the search indexes were actually
built on the surrounding texts of the images 2 , but not visual
features. In such a way, the image clustering problem is converted
to a text clustering problem, where traditional text mining
techniques [2][6], such as tf-idf weighting, cosine similarity
measure and so on can be applied. However, it is clear that an
image is not a textual document after all. So simply converting
image clustering to text clustering is not a perfect solution. One
can expect better clustering results if both textural and visual
features are utilized to cluster Web images.

Actually, there has been some works [5][20][21][29] on
integrating visual and textual information in the literature,
although not many. For instance, Cai et al [5] proposed to use
three representations of a Web image, i.e. representation based on
visual features, representation based on textual features and
representation induced from link analysis to construct an image
relationship graph. Then they used spectral techniques to cluster
the search results into different semantic groups by textual
features and link information. After that, low-level visual features
were used to further cluster images in each semantic category.
Therefore, they used textual and visual features successively but
not simultaneously, so errors in the first clustering step might
propagate to the next step so that the clustering performance
might be depressed in some cases. La Cascia et al [20] proposed
to combine textual and visual statistics in a single index vector for
content based search of a WWW image database. Textual
statistics were captured in vector form using latent semantic
indexing (LSI) [12] based on text in the containing HTML
document. Visual statistics were captured in vector form using
color and orientation histograms. In another similar work [29],
textual feature vector and visual feature vector were firstly
combined directly into a global feature vector, and then the LSI
technique was applied in this global feature vector for CBIR. In
the above two methods [20][29], textual and visual features were
combined in a stiff way. However, in our opinion, textual features
reflect the external description, interpretation or comment
imposed on an image by people, while visual features reflect the
internal attributes held by the image. They come from totally
different sources and we consider it improper to combine them in
such a stiff way. Li et al [21] also took visual features, textual
features and link information into account when clustering images.
They combined the co-clustering between images and terms in
surrounding texts and the one-side image clustering based on low-
level features into an iterative process. However, they did not
prove the convergence property of this algorithm, and in our
opinion, this kind of combination is unsymmetrical according to
the status of visual and textual features. In this regard, we had
better develop some more advanced technology to fuse the
heterogeneous information for a better clustering.

Illumined by the idea of image and low-level feature co-clustering
[24], in this paper, we propose to use a tripartite graph3 to model
the relations among low-level features, images and their

2 In the scenario of Web image search, such an approach is meaningful

because most of the images in the web pages are surrounded with rich
textual information.

3 Generally speaking, a k-partite graph is a graph whose graph vertices
can be partitioned into k disjoint sets so that no two vertices within the
same set are adjacent.

surrounding texts. Then we partition this tripartite graph using a
novel technology named consistent bipartite graph co-partitioning
(CBGC), which is based on the consistent fusion of two co-
clustering sub-problems: the co-clustering of low-level visual
features and the images, and the co-clustering of textual features
and the images. In other words, we look for such two clustering
schemes for the aforementioned two sub-problems, provided that
each of them might not be locally optimal but their clustering
results on the images are identical and the overall clustering
scheme is globally optimal. Actually, similar ideas have been
proposed in our former works. The consistent bipartite spectral
graph co-partitioning algorithm, which was based on generalized
singular value decomposition (GSVD) [16], was proposed in [14]
to solve the above tripartite model. This algorithm has a spectral
interpretation but does not have a distinct objective function, and
the computation cost of GSVD is rather high. In [15], the concept
of consistent bipartite graph co-partitioning was proposed and the
above problem was modeled by a single objective optimization
problem which could be efficiently solved by semi-definite
programming (SDP) [4]. In this paper, we model this problem as a
multi-objective optimization problem so that a better
interpretation might be given under this model. Then the model is
solved by the similar technique as in [15]. Tested on real-world
image collections, the proposed algorithm showed its high
feasibility and validity in Web image clustering.

The rest of this paper is organized as follows. In Section 2 the
background knowledge on spectral clustering is introduced while
the novel model for image clustering is proposed in Section 3.
Then in Section 4 the method to solve consistent bipartite graph
co-partitioning is described in details and the experimental results
are discussed in Section 5. Concluding remarks and future work
directions are listed in the last section.

2. RELATED WORKS
In this section, we will review some research works on spectral
clustering, which is the foundation of our proposed method.

2.1 Spectral Clustering
Spectral clustering [1][27] refers to a category of clustering
algorithms based on spectral graph partitioning [22], which was
proposed and well studied in the literature. To explain how this
method works, we need to introduce some basic knowledge about
graph theory first.

A graph G=(V, E) is composed by a set of vertices V={1,2,…,|V|}
and a set of edges E={<i, j>| i, j∈V}, where |V| represents the
number of vertices. If using Eij to denote the weight of edge <i,j>,
we can further define the adjacency matrix M of the graph as
follows

, ,
0, otherwise

ij
ij

E if i j E
M

< >∈�
= �
�

. (1)

In the spectral graph partitioning methods for image clustering,
the vertices correspond to images, and the edges correspond to the
similarities between images. The weights of the edges correspond
to the strength of the similarities, which can be calculated by a
certain measure in the low-level feature space. Supposing that the
vertex set V is partitioned into two subsets V1 and V2, the
corresponding cut can be defined as:

113

� ∈∈
=

21 ,21),(
VjVi ijMVVcut . (2)

One can easily extend the above definition to the case of k subsets:

� <
=

θη θη),(),,,(21 VVcutVVVcut k� . (3)

Image clustering is to find clusters such that images in the same
cluster are similar while images in different clusters are dissimilar.
Then it is easy to see that the clustering objective is equivalent to
minimizing the cut. Usually, balanced clusters are more preferred,
so some variations of the definition of cut were proposed and
therefore different kinds of spectral clustering methods
[10][19][27] were derived. For example, Ratio Cut [19] is
achieved by balancing cluster sizes, while Normalized Cut [27] is
attained by balancing cluster weights. Among these variations,
Normalized Cut (or NCut) is one of the most popularly-used
spectral clustering methods. Its objective function is shown in (4),
where e is the column vector with all its elements equal to 1:

min , subject to 0, 0
T

T
T

q Lq
q De q

q Dq
= ≠ . (4)

Here D is a diagonal matrix with Dii=�kEik, and L=D-M is called
Laplacian matrix. q is a column vector with qi= c1 if i∈V1 and qi=
-c2 if i∈ V2, where c1

 and c2 are constants derived from D. By
relaxing qi from discrete values to continuous values, it can be
proved that the solution for (4) is the eigenvector corresponding
to the second smallest eigenvalue �2 of the following generalized
eigenvalue problem [9][16][27] :

DqLq λ= . (5)

Then we can obtain the desired image clusters by running some
routine clustering algorithms such as k-means [11] on this
eigenvector q (called the Fiedler vector). However, the efficiency
of this method in image clustering is low in many cases, for the
computation cost on generating the similarity matrix M is high
especially when the dimensionality of the feature vector is large.
Besides, different forms of similarity measures might affect the
clustering results more or less.

2.2 Bipartite Spectral Graph Partitioning
To depress the computation cost and avoid the effect by different
similarity measures in image clustering, Qiu [24] used the
undirected bipartite graph in Figure 1 to represent the relationship
between images and their low-level features. In this figure,
squares and circles represent low-level features F = {f1, f2,…, fm}
and images H = {h1, h2,…, hn} respectively. Then the bipartite
graph can be represented by a triplet G=(F, H, E), where E is a set
of edges connecting vertices from different vertex sets, i.e., E={<i,
j> | i∈F, j∈H}. If we further use A to denote the inter-relation
matrix in which Aij equals to the weight of edge Eij, i.e., the value
of low-level feature i for image j, the adjacency matrix of the
bipartite graph will be written as:

0
0T

F H

M F A

H A

= � �
� �
	

, (6)

where the vertices have been ordered such that the first m vertices
index low-level features while the last n index images.

Figure 1. The Bipartite Graph of Low-level Features and
Images.

Suppose the dashed line in Figure 1 shows the very partition that
minimizes (4), we will obtain two subsets {f1,f2,h1,h2,h3,h4} and
{f3,f4,h5,h6}. Therefore, the low-level features are clustered into
two subsets {f1,f2} and {f3,f4}, while the images are clustered into
two subsets {h1,h2,h3,h4} and {h5,h6} simultaneously. To work out
this very partition, we also need to solve a generalized eigenvalue
problem like (5). Due to the bipartite property of the graph, after
some trivial deduction, this problem can be converted to a
singular value decomposition (SVD) [16] problem, which can be
computed more efficiently. For the details of this algorithm,
please refer to [9][24].

3. LOW-LEVEL FEATURE, IMAGE AND
TERM IN SURROUNDING TEXT CO-
CLUSTERING
In this section, a tripartite graph model is first proposed to
represent the relations among low-level features, images and
surrounding texts. And then the concept of consistency is
presented.

3.1 The Tripartite Graph Model
To make use of both the visual information and the textual
information for image clustering, we use the tripartite graph as
shown in Figure 2 to model the relations between images and their
visual and textual features.

Figure 2. The Tripartite Graph of Low-level Features, Images

and Terms in Surrounding Texts.

In this figure, squares, circles and diamonds represent low-level
features F = {f1, f2,…, fm}, images H = {h1, h2,…, hn} and terms in
surrounding texts W={w1, w2,…, wt} respectively. The weight of
an edge between low-level feature i and image j equals the value
of low-level feature i in image j, while the weight of an edge
between image j and term k equals the frequency of term k in the
surrounding text of image j.

If we use A and B to denote the inter-relationship matrices
between low-level features and images, and between images and

114

terms respectively, it is easy to derive the adjacency matrix for
Figure 2:

0 0
0

0 0

T

T

F H W

F A
M

H A B

W B

� �
= � �

� �
� �	

, (7)

where the vertices have been ordered such that the first m vertices
index low-level features, the next n index images and the last t
index terms in surrounding texts.

To co-cluster low-level features, images and surrounding texts
simultaneously, it seems natural to partition the graph in Figure 2
by working out the generalized eigenvalue problem corresponding
to the adjacency matrix (7). However, we would like to point out
that this idea does not always work as it seems. Actually, if we
move the vertices of low-level features in Figure 2 to the side of
the vertices of terms, it is not difficult to see that the original
tripartite graph will turn to be a bipartite graph. Therefore, we are
actually working on an {images}-{low-level features & terms in
surrounding texts} bipartite graph and the loss of cutting an edge
between an image and a low-level feature contributes to the loss
function identically to the loss of cutting an edge between an
image and a term. However, these two kinds of edges are
heterogeneous and might not be comparable. To tackle this
problem, in the next subsection, we will present a novel method to
avoid this situation.

3.2 Consistent Bipartite Graph Co-
Partitioning (CBGC)
To tackle the aforementioned problem, as we have done in [15],
we propose to treat the tripartite graph in Figure 2 as two bipartite
graphs in Figure 1 and Figure 3 respectively, which share the
central part of images in Figure 2. Then we transform the original
problem to the fusion of the pair-wise co-clustering problems over
these two bipartite graphs.

Figure 3. The Bipartite Graph of Images and Terms.

However, if we conduct bipartite spectral graph partitioning
[9][24][28] on Figure 1 and 3 independently, it will have a great
probability that the partitioning schemes for images are different
in the two solutions. In other words, the two locally optimal
partitioning schemes in images do not match in most cases. This is
not what we want. Actually, we are looking for such two
partitions for Figure 1 and 3, provided that each of them is not
locally optimal, but their clustering results on images are the same,
and the overall partitioning is globally optimal under a certain
objective function. We call it by consistent bipartite graph co-
partitioning (CBGC).

To make the aforementioned concept of CBGC computable, we
will give a specific objective function and discuss how to optimize

it efficiently. In this paper, we will focus on bi-partitioning, where
the three substances will be simultaneously clustered into two
groups respectively. For this purpose, we let f, h, w act as the
indicating column vectors of m, n, t dimensions for low-level
features, images and terms respectively. We denote q=(f, h)T and
p=(h, w)T as the indicating vectors for the two local bipartite
graphs, and denote D(f), D(w), L(f) and L(w) as the diagonal matrices
and Laplacian matrices for the adjacent matrices A and B. Then
we mathematically model the consistent co-partitioning problem
in a manner of multi-objective optimization,

()

()

()

()

()

()

min

min

s. t. () 0, 0

() 0, 0

T f

T f

T w

T w

T f

T w

q L q
q D q

p L p
p D p

i q D e q

ii p D e p

= ≠
= ≠

, (8)

4. OPTIMIZING ALGORITHM BASED ON
SEMI-DEFINITE PROGRAMMING
In this section we will propose an algorithm to compute the
solution of the optimization problem (8) defined in Section 3.2.
Actually a very commonly-used approach to solve the multi-
objective optimization problem is linearly combining the two
objective functions, which is shown as follows,

() ()

() ()

()

()

min (1)

s. t. () 0, 0

() 0, 0
() 0 1

T f T w

T f T w

T f

T w

q L q p L p
q D q p D p

i q D e q

ii p D e p

iii

β β

β

� �
+ −� �

	

= ≠
= ≠

< <

 (9)

where � is a weighting parameter to balance which local graph we
trust more. This form of objective function materializes the
concept of consistent bipartite graph co-partitioning. Note that the
aforementioned linear combination is only one of the approaches
to solve multi-objective programming. One can choose to use
other approaches [17] as well.

Then the following derivations are very similar with what we have
done in [15]. By setting �=(f, h, w)T to be a combined indicating
vector of s=m+n+t dimensions, and extending the matrices
L(f),L(w),D(f) and D(w) to adapt the dimension of � as follows4:

()

1 2 (),
f

w
s ss s

L
L ××

� � � �
Γ = Γ =� � � �

	
	

0 00
00 0

, (10)

()

1 2 (),
f

w
s ss s

D
D ××

� � � �
Π = Π =� � � �

	
	

0 00
00 0

, (11)

we have

4 Here the 0’s are matrix blocks with all the elements equal to zero.

115

1 2

1 2

1

2

min (1)

s. t. () 0

() 0

() 0, 0 1

T T

T T

T

T

i e

ii e

iii

ω ω ω ωβ β
ω ω ω ω

ω
ω
ω β

� �Γ Γ+ −� �Π Π	

Π =

Π =
≠ < <

. (12)

Problem (12) is a typical sum-of-ratios quadratic fractional
programming problem [13], which is hard and complicated to
solve although there has been some branch-and-bound algorithms
[3]. To avoid solving this fractional programming problem, we
use a familiar skill in spectral clustering to simplify it: by fixing
the values of the denominators in (12) to eT

�1e and eT
�2e

respectively, we have:

1 1

2 2

1

2

min

s. t. ()

()

() 0

() 0

T

T T

T T

T

T

i e e

ii e e

iii e

iv e

ω ω
ω ω
ω ω
ω
ω

Γ

Π = Π

Π = Π

Π =

Π =

, (13)

where

 10,
1

2
2

1
1

<<Γ
Π
−+Γ

Π
=Γ βββ

eeee TT . (14)

Optimization problem (13) turns to be a quadratically constrained
quadratic programming (QCQP) [4] problem, and it is not
difficult to verify that the constraints are all convex because
matrices �1 and �2 are both positive semi-definite. As we know,
convex QCQP problem can be cast in the form of a semi-definite
programming problem (SDP) [4] for efficient computation.

SDP is an optimization problem with the form as below:

min
s. t. () , 1,...,

()
i i

C W
i A W b i k

ii W is positive semidefinite

•
• = = , (15)

where C is a symmetric coefficient matrix and W is a symmetric
parameter matrix; Ai (and bi), i=1,…,k are coefficient matrices
(and vectors) for the constraints; the matrix inner-product is
defined as:

�=•
ji

ijijWCWC
,

. (16)

As done in [15], we further reformulate this QCQP as a SDP by
relaxing the product terms �i�j to an element �ij of a symmetric
matrix �.:

,

1

1

2

2

1

1

2

2

0 1
 min

1
s. t. () 0

1
() 0

0 2 1
() 0

2

0 2 1
() 0

2

1
()

T

T T

T T

T T

T T

T

e e
i

e e
ii

e
iii

e

e
iv

e

v is positive semid

ω
ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

Ω

� �� �
•� �� �Γ Ω	
 	

� � � �− Π
• =� � � �Π Ω	
	

� � � �− Π
• =� � � �Π Ω	
	

� � � �Π
• =� � � �Π Ω	
	

� � � �Π
• =� � � �Π Ω	
	

� �
� �Ω	

0
0

0
0

0
0

0

0

efinite

 (17)

As it has been proved that the SDP relaxation of a QCQP may
produce an approximation to the original problem with a good
error bound [26], we further ignore the constraints of � =�i�j and
get the following relaxation:

1

1

2

2

1

1

2

2

1

0
 min

s. t. () 0

() 0

0 2
() 0

2

0 2
() 0

2

1
 (v) 1,

0
 (vi) ,

0
 (vii)

W

T

T

T

T

W

e e
i W

e e
ii W

e
iii W

e

e
iv W

e

W

e
W

e

W
E

θ

� �
•� �Γ	

� �− Π
• =� �Π	

� �− Π
• =� �Π	

� �Π
• =� �Π	

� �Π
• =� �Π	

� �
• =� �

	

� �
• =� �

	

� �
• =� �

	

0
0

0
0

0
0

0

0

0
0 0

0

0
0 2

()viii W is positive semidefinite

θ
 (18)

where E is a matrix block with all the elements equal to one; the

constraint (v) 1
1W

� �
• =� �

	

0
0 0

 guarantees W11=1, and the next two

constrains ((vi) and (vii)) are bound controllers with some
constants �1 and �2. We will discuss these parameters in Section 5.

Up to now, we have got a standard form of SDP. The first column
of W (except W11) can be regarded as the representation of �. As
SDP is a hot research field [26] in recent years, there are many
toolkits available such as SDPA5, SDPT36 and SeDuMi7, almost

5 http://grid.r.dendai.ac.jp/sdpa/
6 http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

116

all of which are based on fast iterative algorithms. We could use
any of these toolkits to compute an efficient solution to the
optimization problem (18).

To summarize, our algorithm to solve the co-clustering of low-
level features, images and terms can be listed as below. This
algorithm was firstly proposed by us in [15] and is modified to
adapt the multimedia applications in this paper. For ease of
reference, we use F-I-T (low-level Features, Images, Terms in
surrounding texts) to abbreviate it in the future discussions.

The F-I-T Algorithm

1. Set the parameters �, �1 and �2.

2. Given the inter-relation matrices A and B, form the
corresponding diagonal matrices and Laplacian matrices
D(f), D(w), L(f) and L(w).

3. Extend D(f), D(w), L(f) and L(w) to �1, �2, �1 and �2, and form
�, such that the coefficient matrices in SDP (18) can be
computed.

4. Solve (18) by a certain iterative algorithm such as SDPA.

5. Extract � from W and regard it as the embedding vector of
low-level features, images and terms.

6. For image clustering, extract the embedding vector h of
images from � and run some traditional clustering
algorithms such as the k-means algorithm or threshold split
algorithm on h to obtain the desired clusters of images.

5. EXPERIMENTAL EVALUATION
In this section, we present the experiments that we used to
evaluate the effectiveness of the proposed consistency concept
and the corresponding SDP-based algorithm. For this purpose, we
first show the influence of the parameters �, �1 and �2 on the
clustering accuracy, and then compare the proposed algorithm
with low-level feature based image clustering and surrounding
text based image clustering respectively.

5.1 Data Preparation
All the data used in our experiments were crawled from the
Photography Museums and Galleries8 of the Yahoo! Directory.
Images and their surrounding texts were extracted from the
crawled Web pages. We filtered out those images whose width-
height ratios are larger than 5 or smaller than 1/5, and those
images whose width and height are both less than 60 pixels,
because such kinds of images are most probably of low quantity.
After that, the remaining 17,000 images were assigned to 48
categories manually.

In our experiment, we randomly selected 10 categories of images
from the aforementioned dataset, the names and sizes of which are
listed in Table 1. To give a more vivid impression, we randomly
selected 8 samples from each category and put their thumbnails in
Figure 4. We totally extracted 530-dimension color and texture

7 http://fewcal.kub.nl/sturm/software/sedumi.html
8 http://dir.yahoo.com/Arts/Visual_Arts/Photography/

Museums_and_Galleries/

features as the low-level visual representation of the images (See
Table 2).

Table 1. The Image Categories Used in the Experiments.

Category
Name

Category
Size

Category
Name

Category
Size

Bat 48 Hill 82
Bear 57 Hummingbird 69

Caterpillar 64 Map 31
Coral 87 Moth 87
Flying 70 Owl 86

Figure 4. Thumbnails of Samples from the Collection.

Table 2. The Low-Level Features Extracted from Images.

Feature
Category

Feature Name Dimensions

Color Histogram Features 256
Color Moment Features 9

Color

Color Coherence Features 128
Tamura Texture Features 18

Wavelet Features[7] 104

Texture
MRSAR [22] 15

And for the surrounding texts, we removed the stop words such as
prepositions, conjunctions, articles and pronouns and so on. The
remaining words were regarded as textual representations of the
images in our experiments. The dimensionality of the textual
feature ranges from several hundred to more than one thousand,
change with different subset of images. Because there are not
many textual features for one single image, the term-image
adjacency matrix B might be very sparse. This may affect the
connectivity of the corresponding image-term bipartite graph and
make the corresponding spectral analysis less robust. To tackle
this problem, we smoothed the matrix B by adding an additional
term that connects to all the images and setting the corresponding
edge weights to be the reciprocal of the number of images.

117

5.2 Experiment Settings
For comparison, we also tested low-level feature based image
clustering method and surrounding text based image clustering
method on the above data set. Low-level Feature based Image
clustering, abbreviated by us as F-I algorithm, uses bipartite
spectral graph partitioning to get image clusters. (For details of
this algorithm, please refer to Section 2.2 and [24].) Surrounding
text based image clustering, treats terms in the surrounding texts
of images as textual features and also uses bipartite spectral graph
partitioning to get image clusters [9]. For ease of reference, we
abbreviate it as I-T (Images and Terms in their surrounding texts)
algorithm.

In our experiments, we simply used 0 as a threshold to partition
the embeddings of images to get the bi-clustering results. To
evaluate different algorithms, we used cross accuracy as metric. If
the concerned subset is mixed with category I and category II with
n1 and n2 images respectively, the ground truth can be represented
by a Boolean vector rt,

(1,1,...,1,0,0,...,0)rt = , (19)

in which the first n1 elements are set to 1 and the rest n2 elements
are set to 0.

After image clustering, the results can also be converted to a
Boolean vector rc, the element arrangement of which is the same
with rt. Then the definition of cross accuracy is given as follows,
where XOR means the exclusive-OR operator.

1 2 1 2

() ()
max ,1

i i i i
i i

rt XOR rc rt XOR rc
accuracy

n n n n

� �
� �= −�
+ +� �
� �

� �
. (20)

5.3 Parameter Tuning
As we know, the parameter � in the proposed F-I-T algorithm
controls which local bipartite graph we can trust more. To see
how this parameter will influence the clustering performance, we
mixed the images in the categories of Coral and Bat (the
thumbnails9 of which are shown in Figure 5 and Figure 6) and
tuned � in the interval of [0, 1]. The corresponding results are
plotted in Figure 7. From this figure, we can see that the accuracy
drops seriously at the extreme points of � = 0 and � = 1, while in a
wide range within (0.2, 0.8) it is correspondingly stable. In
particular, we chose � = 0.6 as the basic setting of the following
experiments.

As for the influence of the other two parameters, �1 and �2 in the
F-I-T algorithm on the clustering performance, we plot the
performance surface with respect to different values of �1 and �2
in Figure 8. From this figure we can see that there is a large high-
performance area when �1 ≥ �2, while the accuracy drops
severely when �1 < �2. Without loss of generality and for ease, we
would set both �1 and �2 to 1 when comparing the F-I-T algorithm
to the two reference algorithms.

9 From the thumbnails in Figure 5 and Figure 6, readers might find
there seems to lay some repeated images. Actually, they were crawled
from different Website and might have different resolutions, color
spaces and surrounding texts.

Figure 5. Thumbnails of Images in the Category of Coral.

Figure 6. Thumbnails of Images in the Category of Bat.

Figure 7. Clustering Performance under Different Values of �.

118

Figure 8. Clustering Performance under Different Values

of �1 and �2.

5.4 A Glance of the Clustering Results
In this subsection, we randomly select two category pairs (Hill vs.
Owl and Flying vs. Map) to investigate the clustering performance
of the F-I-T algorithm as well as the two reference algorithms (F-I
and I-T). The corresponding results can be seen in Figure 9 and
Figure 10, where “o” and “+” indicate the different clustering
results of the images.

Figure 9. Embedding Values for Hill and Owl.

In each sub-figure of Figure 9, the vertical axis indicates the
embedding values of the images, and the horizontal axis indicates
the indices of them, which have been ordered such that the first 82
points index the images in Hill while the next 86 points index the
images in Owl. We can see that the clustering results of F-I are
bad. This is because the low-level features of some images from
different categories are quite similar. We know the main color of a
hill and an owl might both be puce or dark, and we found there
are images of a flying owl in the background of hills. The
performance of I-T is even worse because the surrounding texts
are so infrequent in this subset that many images only have a few
words with them. The F-I-T algorithm utilizes the information
from both low-level features and surrounding texts and output the
best clusters among the three algorithms.

Figure 10. Embedding Values for Flying and Map.

From Figure 10, we can see that all three methods performed
excellently. This is because the low-level features of images in
Flying and Map are quite different, and the surrounding texts in
this subset are rich and easily distinguishable.

From the above two figures, we can see that: on one hand, when
information from low-level features or surrounding texts are good
enough for image clustering, the F-I-T algorithm can also get nice
results as F-I or I-T algorithms; on the other hand, when low-level
features or surrounding texts are not good enough for
distinguishing different categories of images, the F-I-T algorithm
can leverage these information to get better output.

5.5 Average Performance
In this section, we would like to report the clustering performance
for all possible pairs of categories in our experimental dataset. We
plot the F-I-T vs F-I and F-I-T vs I-T figures in Figure 11, each
point in which represents a possible category pair. We can see that
most of the points fall in the upper side of the diagonal in either
sub-figure, indicating that the F-I-T algorithm outperforms the
other two methods in most cases. Though there are several cases
that our algorithm performs inferior to one of the two reference
algorithms or even both of them, they are infrequent and do not
affect the superiority of the average performance of F-I-T.

Figure 11. Performance Comparison.

The averaged performance for between each category and all the
other categories are listed in Table 3, where the surpassing values
are blackened. From Table 3, we can see that, averagely speaking,
our algorithm succeeds in 80% categories. We can also see that in
a global average view, the F-I-T algorithm outperforms F-I and I-

119

T methods by 5%, and in an average view of category-respective,
F-I-T is at best 10% better than the reference algorithms.

Table 3. Average Performance.

Category Name F-I I-T F-I-T
Bat 0.7307 0.6866 0.8266

Bear 0.6303 0.5920 0.6857
Caterpillar 0.6297 0.6240 0.6805

Coral 0.6494 0.6351 0.6932
Flying 0.6554 0.6917 0.6892

Hill 0.7369 0.6500 0.8203
Hummingbird 0.6567 0.6308 0.6518

Map 0.9594 0.8488 0.9708
Moth 0.6332 0.7071 0.7213
Owl 0.6302 0.5483 0.6633

Total Average 0.6912 0.6614 0.7403

After a macro view of the results, we would like to investigate
several special cases to get more insights. In the case of Map, the
accuracies of the three algorithms are high because their low-level
features are almost the same within this category and quite
different with others (please refer to Figure 4), and their
surrounding texts are also extremely alike with each other. We
tracked down by following clues from the crawling list and found
that these images come from a Website illuminating the
distributing of dinosaurs. Almost all of their surrounding texts
contain terms like map, dinosaur, locate, etc. Similarly, the
performance in Bat is high since most of the backgrounds of the
bats are black, which causes the similarity of their low-level
features. In the cases of Flying and Hummingbird, F-I-T failed to
hit the top (but it is only no more than 0.5% lower than the
winner). In these cases, either the low-level features are bad-
regulated or the surrounding texts are confused and inaccurate,
and thus they would have negative effect on the proposed
algorithm.

To sum up, the F-I-T algorithm would achieve better cross
accuracy than the two reference algorithms in the majority cases.

5.6 An Image Search System
At the end of the section, we would like to show an application of
our method. We organized the corpora (17,000 images in total)
described in Section 5.1 in a database and built an image search
system based on the proposed algorithm. When a user submits a
query, the system will search in the table of the surrounding texts
of all images and retrieve the images whose surrounding texts
contains this query. Then the F-I-T algorithm is implemented on
the retrieved images to get clusters, which are organized in a
friendly interface to the user. 10 For example, when the query
“bird” was submitted by a user, the system retrieved 832 images.
After clustering by F-I-T, they were re-organized as 3 clusters
shown in the left part of Figure 12. We can see that the three
clusters are birds in forests, birds on water and birds in the sky. If

10As we focus on bi-clustering problem in this paper, for k-clustering
cases, we simply ran the k-means algorithm on the extracted
embeddings of images to get the desired clusters. Note that there must
be some better ways to generalize our method to the case of k-clustering,
but it has been beyond the scope of this paper.

the user clicked one of the clusters, all images grouped in this
cluster would be shown in the right part.

Figure 12. A View of Our Image Search System.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we used a tripartite graph to model the co-clustering
problem of low-level features, images and terms in surrounding
texts, and proposed the concept of consistent bipartite graph co-
partitioning to get the co-clustering of the three substances
simultaneously. Then we proved our desired consistent co-
clustering can be achieved by optimizing a certain objective
function based on semi-definite programming. Experiments on a
collection of digital photographs showed the effectiveness and
validity of our approach. For the future work, we will further
explore whether there are any more reasonable objective functions,
and whether it is possible to get a close-form solution for them.

7. ACKNOWLEDGMENTS
This work was done when the first, the third and the fourth
authors were interns at Microsoft Research Asia. We would like
to thank Professor Kurt M. Anstreicher for his great generosity
and enthusiasm in helping us nail down some facts on semi-
definite programming. We should also thank Hang-Hang Tong,
Xin-Jing WANG and Deng CAI for their enthusiasm in helping us
prepare the collection of images and surrounding texts.

8. REFERENCES
[1] Bach, F.R., and Jordan, M.I. Learning spectral clustering.

Neural Info. Processing Systems 16 (NIPS 2003), 2003.

[2] Baeza-Yates, R., and Ribeiro-Neto, B. Modern information
retrieval. ACM Press, a Division of the Association for
Computing Machinery, Inc. (ACM). 1999.

[3] Benson, H.P. Global Optimization Algorithm for the
Nonlinear Sum of Ratios Problem. Journal of Optimization
Theory and Applications: Vol. 112, No. 1, pp. 1–29, January
2002.

[4] Boyd, S., and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004.

120

[5] Cai, D., He, X., Li, Z., Ma, W., and Wen, J. Hierarchical
Clustering of WWW Image Search Results Using Visual,
Textual and Link Information. In ACM Multimedia 2004,
2004.

[6] Cai, D., He, X., Ma, W., Wen, J., and Zhang, H. Organizing
WWW Images Based on The Analysis of Page Layout and
Web Link Structure. In the 2004 IEEE International
Conference on Multimedia and EXPO, 2004.

[7] Chang, T., and Kuo, C. -CJ. Texture analysis and
classification with tree-structured wavelet transform. IEEE
Transactions on Image Processing, 2, 4(Oct. 1993), 429-441.

[8] Chen, Y., Wang, J. Z., and Krovetz, R. Content-based image
retrieval by clustering. In Proceedings of the 5th ACM
SIGMM international workshop on Multimedia information
retrieval, pages 193–200. ACM Press, 2003.

[9] Dhillon, I.S. Co-clustering documents and words using
bipartite spectral graph partitioning. In KDD’01, 2001.

[10] Ding, C., He, X., Zha, H., Gu, M., and Simon, H. A min-max
cut algorithm for graph partitioning and data clustering. Proc.
IEEE Int'l Conf. Data Mining, 2001.

[11] Duda, R.O., Hart, P.E., and Stork, D.G. Pattern classification,
Second Edition. John Wiley & Sons Inc. 2001.

[12] Dumais, S.T. Latent semantic analysis. Annual Review of
Information Science and Technology (ARIST), Volume 38,
Chapter 4, 189-230, 2004.

[13] Frenk, J.B.G., and Schaible, S. Fractional Programming.
ERIM Report Series Reference No. ERS-2004-074-LIS.
http://ssrn.com/abstract=595012.

[14] Gao, B., Liu, T., Cheng, Q., Feng, G., Qin, T., and Ma, W.
Hierarchical Taxonomy Preparation for Text Categorization
Using Consistent Bipartite Spectral Graph Co-partitioning.
IEEE Transactions on Knowledge and Data Engineering, vol.
17, no. 9, pp. 1263-1273, September 2005.

[15] Gao, B., Liu, T., Zheng, X., Cheng, Q., and Ma, W.
Consistent Bipartite Graph Co-Partitioning for Star-
Structured High-Order Heterogeneous Data Co-Clustering.
In Proceedings of ACM SIGKDD 2005.

[16] Golub, G.H., and Loan, C.F.V. Matrix computations. Johns
Hopkins University Press, 3rd edition, 1996.

[17] Freitas, Alex A. A Critical Review of Multi-Objective
Optimization in Data Mining, SIGKDD Explorations, vol.6,
Issue.2: 77-86, 2004.

[18] Gordon, S., Greenspan, H., and Goldberger, J. Applying the
information bottleneck principle to unsupervised clustering of
discrete and continuous image representations. In ICCV, 2003.

[19] Hagen, L., and Kahng, A.B. New spectral methods for ratio
cut partitioning and clustering. IEEE. Trans. on Computed
Aided Desgin, 11:1074-1085, 1992.

[20] La Cascia, M., Sethi, S., and Sclaroff, S. Combining Textual
and Visual Cues for Content-based Image Retrieval on the
World Wide Web. IEEE Workshop on Content-based Access
of Image and Video Libraries, June 1998.

[21] Li, Z., Xu, G., Li, M., Ma, W., and Zhang, H. Group WWW
image search results by novel inhomogeneous clustering
method. In proceedings of MMM’04, 2004.

[22] Mao, J. C., and Jain, A. K. Texture classification and
segmentation using multiresolution simultaneous
autoregressive models. Pattern Recognition, 25, 2(1992),
173-188.

[23] Pothen, A., Simon, H.D., and Liou, K.P. Partitioning sparse
matrices with eigenvectors of graph. SIAM Journal of Matrix
Anal. Appl., 11:430-452, 1990.

[24] Qiu, G. Image and Feature Co-clustering. ICPR (4) 2004:
991-994.

[25] Rodden, K., Basalaj, W., Sinclair, D., and Wood, K. R. Does
organisation by similarity assist image browsing? In
Proceedings of Human Factors in Computing Systems, 2001.

[26] Semidefinite Programming. http://www-user.tu-
chemnitz.de/~helmberg/semidef.html.

[27] Shi, J., and Malik, J. Normalized cuts and image
segmentation. IEEE. Transactions on Pattern Analysis and
Machine Intelligence, 22:888--905, 2000.

[28] Zha, H., Ding, C., and Gu, M. Bipartite graph partitioning
and data clustering. In proceedings of CIKM’01, 2001.

[29] Zhao, R. and Grosky, W.I. Narrowing the Semantic Gap -
Improved Text-Based Web Document Retrieval Using
Visual Features. IEEE Transactions on Multimedia, Vol. 4,
No. 2, June 2002.

121

