
Web Image Clustering by Consistent Utilization of Visual 
Features and Surrounding Texts 

Bin Gao1, 2, Tie-Yan Liu1, Tao Qin1, 3, Xin Zheng1, 4, Qian-Sheng Cheng2, and Wei-Ying Ma1 
1Microsoft Research Asia  

5F, Sigma Center, No. 49, Zhichun Road,  
 Beijing, 100080, P. R. China 
{tyliu, wyma}@microsoft.com 

 
3MSP Laboratory, Dept. of Electronic Engineering, 

Tsinghua University,  
Beijing 100084, P. R. China 

qinshitao99@mails.tsinghua.edu.cn 

2LMAM, Dept. of Information Science,  
 School of Mathematical Sciences,  Peking University,  

Beijing, 100871, P. R. China 
gaobin@math.pku.edu.cn, qcheng@pku.edu.cn 

 
4Key Lab of Pervasive Computing,  

Dept. of Computer Science and Technology,  
Tsinghua University,  

Beijing 100084, P. R. China 
zhengxin99@mails.tsinghua.edu.cn 

  
ABSTRACT 
Image clustering, an important technology for image processing, 
has been actively researched for a long period of time. Especially 
in recent years, with the explosive growth of the Web, image 
clustering has even been a critical technology to help users digest 
the large amount of online visual information. However, as far as 
we know, many previous works on image clustering only used 
either low-level visual features or surrounding texts, but rarely 
exploited these two kinds of information in the same framework. 
To tackle this problem, we proposed a novel method named 
consistent bipartite graph co-partitioning in this paper, which can 
cluster Web images based on the consistent fusion of the 
information contained in both low-level features and surrounding 
texts. In particular, we formulated it as a constrained multi-
objective optimization problem, which can be efficiently solved 
by semi-definite programming (SDP). Experiments on a real-
world Web image collection showed that our proposed method 
outperformed the methods only based on low-level features or 
surround texts. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering – algorithms; I.5.4 
[Pattern Recognition]: Applications – Computer vision.  

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Co-clustering, Consistency, Spectral Graph, Image Processing. 

1. INTRODUCTION 
Along with the fast development of Web search engines, Web 
image search has become a more and more popular application, 
which can provide users with relevant images to the queries they 
issued. Considering the numerous online images, the numbers of 
image search results for many queries are usually very large. In 
such a scenario, image clustering will be very helpful to users 
because it can provide a concise summarization and visualization 
of image search results. 

To the best of our knowledge, most of the traditional image 
clustering algorithms were based on the low-level visual features 
of the images [7][18][25]. That is, some low-level visual features 
such as color histogram and wavelet texture were first extracted 
from the raw images, and then clustering algorithms such as k-
means [11], maximum likelihood estimation [11] and spectral 
clustering [1][27] were applied to group similar images together. 
For example, as an interesting piece of such works, Qiu [24] 
proposed to use a bipartite graph1 to model the relations between 
images and their low-level features, so as to convert the image 
clustering problem to a graph partitioning problem that could be 
solved by singular value decomposition [16]. Although low-level 
feature based image clustering has been used in many applications 
[7][18], its effectiveness is doubtful due to the problem of 
semantic gap. That is, many images whose appearances are very 
similar to each other actually belong to quite different categories. 
For instance, an image of a hawk flying in the sky and another 
image of a black duck swimming in a lake are quite similar in 
their colors and textures, even if their semantics are far from each 
other. Actually, it is the same reason that prevents content-based 
image retrieval (CBIR) from being widely used in real-world 
applications. 

In contrast to the embarrassment of CBIR, image search tools in 
today’s Web search engines have partially fitted people’s 
information need. Their successes lie in that they have taken a 
                                                                 
1 If the vertices of a graph can be decomposed into two disjoint subsets 

such that no two vertices within the same set are adjacent, the graph is 
named a bipartite graph. 
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different approach from CBIR: the search indexes were actually 
built on the surrounding texts of the images 2 , but not visual 
features. In such a way, the image clustering problem is converted 
to a text clustering problem, where traditional text mining 
techniques [2][6], such as tf-idf weighting, cosine similarity 
measure and so on can be applied. However, it is clear that an 
image is not a textual document after all. So simply converting 
image clustering to text clustering is not a perfect solution. One 
can expect better clustering results if both textural and visual 
features are utilized to cluster Web images.  

Actually, there has been some works [5][20][21][29] on 
integrating visual and textual information in the literature, 
although not many. For instance, Cai et al [5] proposed to use 
three representations of a Web image, i.e. representation based on 
visual features, representation based on textual features and 
representation induced from link analysis to construct an image 
relationship graph. Then they used spectral techniques to cluster 
the search results into different semantic groups by textual 
features and link information. After that, low-level visual features 
were used to further cluster images in each semantic category. 
Therefore, they used textual and visual features successively but 
not simultaneously, so errors in the first clustering step might 
propagate to the next step so that the clustering performance 
might be depressed in some cases. La Cascia et al [20] proposed 
to combine textual and visual statistics in a single index vector for 
content based search of a WWW image database. Textual 
statistics were captured in vector form using latent semantic 
indexing (LSI) [12] based on text in the containing HTML 
document. Visual statistics were captured in vector form using 
color and orientation histograms. In another similar work [29], 
textual feature vector and visual feature vector were firstly 
combined directly into a global feature vector, and then the LSI 
technique was applied in this global feature vector for CBIR. In 
the above two methods [20][29], textual and visual features were 
combined in a stiff way. However, in our opinion, textual features 
reflect the external description, interpretation or comment 
imposed on an image by people, while visual features reflect the 
internal attributes held by the image. They come from totally 
different sources and we consider it improper to combine them in 
such a stiff way. Li et al [21] also took visual features, textual 
features and link information into account when clustering images. 
They combined the co-clustering between images and terms in 
surrounding texts and the one-side image clustering based on low-
level features into an iterative process. However, they did not 
prove the convergence property of this algorithm, and in our 
opinion, this kind of combination is unsymmetrical according to 
the status of visual and textual features. In this regard, we had 
better develop some more advanced technology to fuse the 
heterogeneous information for a better clustering. 

Illumined by the idea of image and low-level feature co-clustering 
[24], in this paper, we propose to use a tripartite graph3 to model 
the relations among low-level features, images and their 

                                                                 
2 In the scenario of Web image search, such an approach is meaningful 

because most of the images in the web pages are surrounded with rich 
textual information. 

3 Generally speaking, a k-partite graph is a graph whose graph vertices 
can be partitioned into k disjoint sets so that no two vertices within the 
same set are adjacent. 

surrounding texts. Then we partition this tripartite graph using a 
novel technology named consistent bipartite graph co-partitioning 
(CBGC), which is based on the consistent fusion of two co-
clustering sub-problems: the co-clustering of low-level visual 
features and the images, and the co-clustering of textual features 
and the images. In other words, we look for such two clustering 
schemes for the aforementioned two sub-problems, provided that 
each of them might not be locally optimal but their clustering 
results on the images are identical and the overall clustering 
scheme is globally optimal. Actually, similar ideas have been 
proposed in our former works. The consistent bipartite spectral 
graph co-partitioning algorithm, which was based on generalized 
singular value decomposition (GSVD) [16], was proposed in [14] 
to solve the above tripartite model. This algorithm has a spectral 
interpretation but does not have a distinct objective function, and 
the computation cost of GSVD is rather high. In [15], the concept 
of consistent bipartite graph co-partitioning was proposed and the 
above problem was modeled by a single objective optimization 
problem which could be efficiently solved by semi-definite 
programming (SDP) [4]. In this paper, we model this problem as a 
multi-objective optimization problem so that a better 
interpretation might be given under this model. Then the model is 
solved by the similar technique as in [15]. Tested on real-world 
image collections, the proposed algorithm showed its high 
feasibility and validity in Web image clustering. 

The rest of this paper is organized as follows. In Section 2 the 
background knowledge on spectral clustering is introduced while 
the novel model for image clustering is proposed in Section 3. 
Then in Section 4 the method to solve consistent bipartite graph 
co-partitioning is described in details and the experimental results 
are discussed in Section 5. Concluding remarks and future work 
directions are listed in the last section. 

2. RELATED WORKS 
In this section, we will review some research works on spectral 
clustering, which is the foundation of our proposed method. 

2.1 Spectral Clustering 
Spectral clustering [1][27] refers to a category of clustering 
algorithms based on spectral graph partitioning [22], which was 
proposed and well studied in the literature. To explain how this 
method works, we need to introduce some basic knowledge about 
graph theory first. 

A graph G=(V, E) is composed by a set of vertices V={1,2,…,|V|} 
and a set of edges E={<i, j>| i, j∈V}, where |V| represents the 
number of vertices. If using Eij to denote the weight of edge <i,j>, 
we can further define the adjacency matrix M of the graph as 
follows 

, ,
0, otherwise

ij
ij

E if i j E
M

< >∈�
= �
�

.                (1) 

In the spectral graph partitioning methods for image clustering, 
the vertices correspond to images, and the edges correspond to the 
similarities between images. The weights of the edges correspond 
to the strength of the similarities, which can be calculated by a 
certain measure in the low-level feature space. Supposing that the 
vertex set V is partitioned into two subsets V1 and V2, the 
corresponding cut can be defined as: 
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=

21 ,21 ),(
VjVi ijMVVcut .                                     (2) 

One can easily extend the above definition to the case of k subsets: 

� <
=

θη θη ),(),,,( 21 VVcutVVVcut k� .                    (3) 

Image clustering is to find clusters such that images in the same 
cluster are similar while images in different clusters are dissimilar. 
Then it is easy to see that the clustering objective is equivalent to 
minimizing the cut. Usually, balanced clusters are more preferred, 
so some variations of the definition of cut were proposed and 
therefore different kinds of spectral clustering methods 
[10][19][27] were derived. For example, Ratio Cut [19] is 
achieved by balancing cluster sizes, while Normalized Cut [27] is 
attained by balancing cluster weights. Among these variations, 
Normalized Cut (or NCut) is one of the most popularly-used 
spectral clustering methods. Its objective function is shown in (4), 
where e is the column vector with all its elements equal to 1: 

min , subject to 0, 0
T

T
T

q Lq
q De q

q Dq
= ≠ .               (4) 

Here D is a diagonal matrix with Dii=�kEik, and L=D-M is called 
Laplacian matrix. q is a column vector with qi= c1 if i∈V1 and qi= 
-c2 if i∈ V2, where c1

 and c2 are constants derived from D. By 
relaxing qi from discrete values to continuous values, it can be 
proved that the solution for (4) is the eigenvector corresponding 
to the second smallest eigenvalue �2 of the following generalized 
eigenvalue problem [9][16][27] : 

DqLq λ= .                                         (5) 

Then we can obtain the desired image clusters by running some 
routine clustering algorithms such as k-means [11] on this 
eigenvector q (called the Fiedler vector). However, the efficiency 
of this method in image clustering is low in many cases, for the 
computation cost on generating the similarity matrix M is high 
especially when the dimensionality of the feature vector is large. 
Besides, different forms of similarity measures might affect the 
clustering results more or less.  

2.2 Bipartite Spectral Graph Partitioning 
To depress the computation cost and avoid the effect by different 
similarity measures in image clustering, Qiu [24] used the 
undirected bipartite graph in Figure 1 to represent the relationship 
between images and their low-level features. In this figure, 
squares and circles represent low-level features F = {f1, f2,…, fm} 
and images H = {h1, h2,…, hn} respectively. Then the bipartite 
graph can be represented by a triplet G=(F, H, E), where E is a set 
of edges connecting vertices from different vertex sets, i.e., E={<i, 
j> | i∈F, j∈H}. If we further use A to denote the inter-relation 
matrix in which Aij equals to the weight of edge Eij, i.e., the value 
of low-level feature i for image j, the adjacency matrix of the 
bipartite graph will be written as: 

0
0T

F H

M F A

H A

= � �
� �
	 


,                                  (6) 

where the vertices have been ordered such that the first m vertices 
index low-level features while the last n index images. 

 

Figure 1. The Bipartite Graph of Low-level Features and 
Images. 

Suppose the dashed line in Figure 1 shows the very partition that 
minimizes (4), we will obtain two subsets {f1,f2,h1,h2,h3,h4} and 
{f3,f4,h5,h6}. Therefore, the low-level features are clustered into 
two subsets {f1,f2} and {f3,f4}, while the images are clustered into 
two subsets {h1,h2,h3,h4} and {h5,h6} simultaneously. To work out 
this very partition, we also need to solve a generalized eigenvalue 
problem like (5). Due to the bipartite property of the graph, after 
some trivial deduction, this problem can be converted to a 
singular value decomposition (SVD) [16] problem, which can be 
computed more efficiently. For the details of this algorithm, 
please refer to [9][24]. 

 

3. LOW-LEVEL FEATURE, IMAGE AND 
TERM IN SURROUNDING TEXT CO-
CLUSTERING 
In this section, a tripartite graph model is first proposed to 
represent the relations among low-level features, images and 
surrounding texts. And then the concept of consistency is 
presented. 

3.1 The Tripartite Graph Model 
To make use of both the visual information and the textual 
information for image clustering, we use the tripartite graph as 
shown in Figure 2 to model the relations between images and their 
visual and textual features.  

 
Figure 2. The Tripartite Graph of Low-level Features, Images 

and Terms in Surrounding Texts. 

In this figure, squares, circles and diamonds represent low-level 
features F = {f1, f2,…, fm}, images H = {h1, h2,…, hn} and terms in 
surrounding texts W={w1, w2,…, wt} respectively. The weight of 
an edge between low-level feature i and image j equals the value 
of low-level feature i in image j, while the weight of an edge 
between image j and term k equals the frequency of term k in the 
surrounding text of image j.  

If we use A and B to denote the inter-relationship matrices 
between low-level features and images, and between images and 
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terms respectively, it is easy to derive the adjacency matrix for 
Figure 2: 

0 0
0

0 0

T

T

F H W

F A
M

H A B

W B

� �
= � �

� �
� �	 


,                          (7) 

where the vertices have been ordered such that the first m vertices 
index low-level features, the next n index images and the last t 
index terms in surrounding texts. 

To co-cluster low-level features, images and surrounding texts 
simultaneously, it seems natural to partition the graph in Figure 2 
by working out the generalized eigenvalue problem corresponding 
to the adjacency matrix (7). However, we would like to point out 
that this idea does not always work as it seems. Actually, if we 
move the vertices of low-level features in Figure 2 to the side of 
the vertices of terms, it is not difficult to see that the original 
tripartite graph will turn to be a bipartite graph. Therefore, we are 
actually working on an {images}-{low-level features & terms in 
surrounding texts} bipartite graph and the loss of cutting an edge 
between an image and a low-level feature contributes to the loss 
function identically to the loss of cutting an edge between an 
image and a term. However, these two kinds of edges are 
heterogeneous and might not be comparable. To tackle this 
problem, in the next subsection, we will present a novel method to 
avoid this situation. 

3.2 Consistent Bipartite Graph Co-
Partitioning (CBGC) 
To tackle the aforementioned problem, as we have done in [15], 
we propose to treat the tripartite graph in Figure 2 as two bipartite 
graphs in Figure 1 and Figure 3 respectively, which share the 
central part of images in Figure 2. Then we transform the original 
problem to the fusion of the pair-wise co-clustering problems over 
these two bipartite graphs. 

 

Figure 3. The Bipartite Graph of Images and Terms. 

However, if we conduct bipartite spectral graph partitioning 
[9][24][28] on Figure 1 and 3 independently, it will have a great 
probability that the partitioning schemes for images are different 
in the two solutions. In other words, the two locally optimal 
partitioning schemes in images do not match in most cases. This is 
not what we want. Actually, we are looking for such two 
partitions for Figure 1 and 3, provided that each of them is not 
locally optimal, but their clustering results on images are the same, 
and the overall partitioning is globally optimal under a certain 
objective function. We call it by consistent bipartite graph co-
partitioning (CBGC). 

To make the aforementioned concept of CBGC computable, we 
will give a specific objective function and discuss how to optimize 

it efficiently. In this paper, we will focus on bi-partitioning, where 
the three substances will be simultaneously clustered into two 
groups respectively. For this purpose, we let f, h, w act as the 
indicating column vectors of m, n, t dimensions for low-level 
features, images and terms respectively. We denote q=(f, h)T and 
p=(h, w)T as the indicating vectors for the two local bipartite 
graphs, and denote D(f), D(w), L(f) and L(w) as the diagonal matrices 
and Laplacian matrices for the adjacent matrices A and B. Then 
we mathematically model the consistent co-partitioning problem 
in a manner of multi-objective optimization, 

( )

( )

( )

( )

( )

( )

min

min

s. t. ( ) 0, 0

( ) 0, 0

T f

T f

T w

T w

T f

T w

q L q
q D q

p L p
p D p

i q D e q

ii p D e p

= ≠
= ≠

,                        (8) 

4. OPTIMIZING ALGORITHM BASED ON 
SEMI-DEFINITE PROGRAMMING 
In this section we will propose an algorithm to compute the 
solution of the optimization problem (8) defined in Section 3.2. 
Actually a very commonly-used approach to solve the multi-
objective optimization problem is linearly combining the two 
objective functions, which is shown as follows, 

( ) ( )

( ) ( )

( )

( )

min (1 )

s. t. ( ) 0, 0

( ) 0, 0
( ) 0 1

T f T w

T f T w

T f

T w

q L q p L p
q D q p D p

i q D e q

ii p D e p

iii

β β

β

� �
+ −� �

	 


= ≠
= ≠

< <

              (9) 

where � is a weighting parameter to balance which local graph we 
trust more. This form of objective function materializes the 
concept of consistent bipartite graph co-partitioning. Note that the 
aforementioned linear combination is only one of the approaches 
to solve multi-objective programming. One can choose to use 
other approaches [17] as well. 

Then the following derivations are very similar with what we have 
done in [15]. By setting �=(f, h, w)T to be a combined indicating 
vector of s=m+n+t dimensions, and extending the matrices 
L(f),L(w),D(f) and D(w) to adapt the dimension of � as follows4: 

( )

1 2 ( ),
f

w
s ss s

L
L ××

� � � �
Γ = Γ =� � � �

	 
	 


0 00
00 0

,                    (10) 

( )

1 2 ( ),
f

w
s ss s

D
D ××

� � � �
Π = Π =� � � �

	 
	 


0 00
00 0

,                (11) 

we have 

                                                                 
4 Here the 0’s are matrix blocks with all the elements equal to zero. 
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1 2

1 2

1

2

min (1 )

s. t. ( ) 0

( ) 0

( ) 0, 0 1

T T

T T

T

T

i e

ii e

iii

ω ω ω ωβ β
ω ω ω ω

ω
ω
ω β

� �Γ Γ+ −� �Π Π	 


Π =

Π =
≠ < <

.                   (12) 

Problem (12) is a typical sum-of-ratios quadratic fractional 
programming problem [13], which is hard and complicated to 
solve although there has been some branch-and-bound algorithms 
[3]. To avoid solving this fractional programming problem, we 
use a familiar skill in spectral clustering to simplify it: by fixing 
the values of the denominators in (12) to eT

�1e and eT
�2e 

respectively, we have: 

1 1

2 2

1

2

min

s. t. ( )

( )

( ) 0

( ) 0

T

T T

T T

T

T

i e e

ii e e

iii e

iv e

ω ω
ω ω
ω ω
ω
ω

Γ

Π = Π

Π = Π

Π =

Π =

,                           (13) 

where 

    10,
1

2
2

1
1

<<Γ
Π
−+Γ

Π
=Γ βββ

eeee TT .                    (14) 

Optimization problem (13) turns to be a quadratically constrained 
quadratic programming (QCQP) [4] problem, and it is not 
difficult to verify that the constraints are all convex because 
matrices �1 and �2 are both positive semi-definite. As we know, 
convex QCQP problem can be cast in the form of a semi-definite 
programming problem (SDP) [4] for efficient computation.  

SDP is an optimization problem with the form as below: 

min
s. t. ( ) , 1,...,

( )
i i

C W
i A W b i k

ii W is positive semidefinite

•
• = =     ,                 (15) 

where C is a symmetric coefficient matrix and W is a symmetric 
parameter matrix; Ai (and bi), i=1,…,k are coefficient matrices 
(and vectors) for the constraints;  the matrix inner-product is 
defined as: 

�=•
ji

ijijWCWC
,

.                                  (16) 

As done in [15], we further reformulate this QCQP as a SDP by 
relaxing the product terms �i�j to an element �ij of a symmetric 
matrix �.: 

,

1

1

2

2

1

1

2

2

0 1
 min

1
s. t. ( ) 0

1
( ) 0

0 2 1
( ) 0

2

0 2 1
( ) 0

2

1
( )

T

T T

T T

T T

T T

T

e e
i

e e
ii

e
iii

e

e
iv

e

v is positive semid

ω
ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

Ω

� �� �
•� �� �Γ Ω	 
 	 


� � � �− Π
• =� � � �Π Ω	 
	 


� � � �− Π
• =� � � �Π Ω	 
	 


� � � �Π
• =� � � �Π Ω	 
	 


� � � �Π
• =� � � �Π Ω	 
	 


� �
� �Ω	 


0
0

0
0

0
0

0

0

efinite

    (17) 

As it has been proved that the SDP relaxation of a QCQP may 
produce an approximation to the original problem with a good 
error bound [26], we further ignore the constraints of � =�i�j and 
get the following relaxation:  

1

1

2

2

1

1

2

2

1

0
 min

s. t. ( ) 0

( ) 0

0 2
( ) 0

2

0 2
( ) 0

2

1
       (v)  1,

0
       (vi) ,

0
       (vii) 

W

T

T

T

T

W

e e
i W

e e
ii W

e
iii W

e

e
iv W

e

W

e
W

e

W
E

θ

� �
•� �Γ	 


� �− Π
• =� �Π	 


� �− Π
• =� �Π	 


� �Π
• =� �Π	 


� �Π
• =� �Π	 


� �
• =� �

	 


� �
• =� �

	 


� �
• =� �

	 


0
0

0
0

0
0

0

0

0
0 0

0

0
0 2

( )viii W is positive semidefinite

θ
               (18) 

where E is a matrix block with all the elements equal to one; the 

constraint (v) 1
1W

� �
• =� �

	 


0
0 0

 guarantees W11=1, and the next two 

constrains ((vi) and (vii)) are bound controllers with some 
constants �1 and �2. We will discuss these parameters in Section 5. 

Up to now, we have got a standard form of SDP. The first column 
of W (except W11) can be regarded as the representation of �. As 
SDP is a hot research field [26] in recent years, there are many 
toolkits available such as SDPA5, SDPT36 and SeDuMi7, almost 

                                                                 
5 http://grid.r.dendai.ac.jp/sdpa/ 
6 http://www.math.nus.edu.sg/~mattohkc/sdpt3.html 
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all of which are based on fast iterative algorithms. We could use 
any of these toolkits to compute an efficient solution to the 
optimization problem (18).  

To summarize, our algorithm to solve the co-clustering of low-
level features, images and terms can be listed as below. This 
algorithm was firstly proposed by us in [15] and is modified to 
adapt the multimedia applications in this paper. For ease of 
reference, we use F-I-T (low-level Features, Images, Terms in 
surrounding texts) to abbreviate it in the future discussions. 

The F-I-T Algorithm 

1. Set the parameters �, �1 and �2. 

2. Given the inter-relation matrices A and B, form the 
corresponding diagonal matrices and Laplacian matrices 
D(f), D(w), L(f) and L(w). 

3. Extend D(f), D(w), L(f) and L(w) to �1, �2, �1 and �2, and form 
�, such that the coefficient matrices in SDP (18) can be 
computed. 

4. Solve (18) by a certain iterative algorithm such as SDPA. 

5. Extract � from W and regard it as the embedding vector of 
low-level features, images and terms. 

6. For image clustering, extract the embedding vector h of 
images from � and run some traditional clustering 
algorithms such as the k-means algorithm or threshold split 
algorithm on h to obtain the desired clusters of images. 

5. EXPERIMENTAL EVALUATION 
In this section, we present the experiments that we used to 
evaluate the effectiveness of the proposed consistency concept 
and the corresponding SDP-based algorithm. For this purpose, we 
first show the influence of the parameters �, �1 and �2 on the 
clustering accuracy, and then compare the proposed algorithm 
with low-level feature based image clustering and surrounding 
text based image clustering respectively. 

5.1 Data Preparation 
All the data used in our experiments were crawled from the 
Photography Museums and Galleries8 of the Yahoo! Directory. 
Images and their surrounding texts were extracted from the 
crawled Web pages. We filtered out those images whose width-
height ratios are larger than 5 or smaller than 1/5, and those 
images whose width and height are both less than 60 pixels, 
because such kinds of images are most probably of low quantity. 
After that, the remaining 17,000 images were assigned to 48 
categories manually.  

In our experiment, we randomly selected 10 categories of images 
from the aforementioned dataset, the names and sizes of which are 
listed in Table 1. To give a more vivid impression, we randomly 
selected 8 samples from each category and put their thumbnails in 
Figure 4. We totally extracted 530-dimension color and texture 

                                                                                                           
7 http://fewcal.kub.nl/sturm/software/sedumi.html 
8 http://dir.yahoo.com/Arts/Visual_Arts/Photography/ 

Museums_and_Galleries/ 

features as the low-level visual representation of the images (See 
Table 2). 

Table 1. The Image Categories Used in the Experiments. 

Category 
Name 

Category 
Size 

Category 
Name 

Category 
Size 

Bat 48 Hill 82 
Bear 57 Hummingbird 69 

Caterpillar 64 Map 31 
Coral 87 Moth 87 
Flying 70 Owl 86 

 

 

Figure 4. Thumbnails of Samples from the Collection. 

Table 2. The Low-Level Features Extracted from Images. 

Feature 
Category 

Feature Name Dimensions 

Color Histogram Features 256 
Color Moment Features 9 

 
Color 

Color Coherence Features 128 
Tamura Texture Features 18 

Wavelet Features[7] 104 
 

Texture 
MRSAR [22] 15 

 

And for the surrounding texts, we removed the stop words such as 
prepositions, conjunctions, articles and pronouns and so on. The 
remaining words were regarded as textual representations of the 
images in our experiments. The dimensionality of the textual 
feature ranges from several hundred to more than one thousand, 
change with different subset of images. Because there are not 
many textual features for one single image, the term-image 
adjacency matrix B might be very sparse. This may affect the 
connectivity of the corresponding image-term bipartite graph and 
make the corresponding spectral analysis less robust. To tackle 
this problem, we smoothed the matrix B by adding an additional 
term that connects to all the images and setting the corresponding 
edge weights to be the reciprocal of the number of images. 
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5.2 Experiment Settings 
For comparison, we also tested low-level feature based image 
clustering method and surrounding text based image clustering 
method on the above data set. Low-level Feature based Image 
clustering, abbreviated by us as F-I algorithm, uses bipartite 
spectral graph partitioning to get image clusters. (For details of 
this algorithm, please refer to Section 2.2 and [24].) Surrounding 
text based image clustering, treats terms in the surrounding texts 
of images as textual features and also uses bipartite spectral graph 
partitioning to get image clusters [9]. For ease of reference, we 
abbreviate it as I-T (Images and Terms in their surrounding texts) 
algorithm. 

In our experiments, we simply used 0 as a threshold to partition 
the embeddings of images to get the bi-clustering results. To 
evaluate different algorithms, we used cross accuracy as metric. If 
the concerned subset is mixed with category I and category II with 
n1 and n2 images respectively, the ground truth can be represented 
by a Boolean vector rt,  

(1,1,...,1,0,0,...,0)rt = ,                       (19) 

in which the first n1 elements are set to 1 and the rest n2 elements 
are set to 0. 

After image clustering, the results can also be converted to a 
Boolean vector rc, the element arrangement of which is the same 
with rt. Then the definition of cross accuracy is given as follows, 
where XOR means the exclusive-OR operator. 

1 2 1 2

( ) ( )
max ,1

i i i i
i i

rt XOR rc rt XOR rc
accuracy

n n n n

� �
� �= −� 
+ +� �
� �

� �
. (20) 

5.3 Parameter Tuning 
As we know, the parameter � in the proposed F-I-T algorithm 
controls which local bipartite graph we can trust more. To see 
how this parameter will influence the clustering performance, we 
mixed the images in the categories of Coral and Bat (the 
thumbnails9 of which are shown in Figure 5 and Figure 6) and 
tuned � in the interval of [0, 1]. The corresponding results are 
plotted in Figure 7. From this figure, we can see that the accuracy 
drops seriously at the extreme points of � = 0 and � = 1, while in a 
wide range within (0.2, 0.8) it is correspondingly stable. In 
particular, we chose � = 0.6 as the basic setting of the following 
experiments. 

As for the influence of the other two parameters, �1 and �2 in the 
F-I-T algorithm on the clustering performance, we plot the 
performance surface with respect to different values of �1 and �2 
in Figure 8. From this figure we can see that there is a large high-
performance area when �1 ≥  �2, while the accuracy drops 
severely when �1 < �2. Without loss of generality and for ease, we 
would set both �1 and �2 to 1 when comparing the F-I-T algorithm 
to the two reference algorithms. 

                                                                 
9 From the thumbnails in Figure 5 and Figure 6, readers might find 
there seems to lay some repeated images. Actually, they were crawled 
from different Website and might have different resolutions, color 
spaces and surrounding texts. 

 

Figure 5. Thumbnails of Images in the Category of Coral. 

 

 

 

Figure 6. Thumbnails of Images in the Category of Bat. 

 

 

 

Figure 7. Clustering Performance under Different Values of �. 
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Figure 8. Clustering Performance under Different Values 

of �1 and �2. 

5.4 A Glance of the Clustering Results 
In this subsection, we randomly select two category pairs (Hill vs. 
Owl and Flying vs. Map) to investigate the clustering performance 
of the F-I-T algorithm as well as the two reference algorithms (F-I 
and I-T). The corresponding results can be seen in Figure 9 and 
Figure 10, where “o” and “+” indicate the different clustering 
results of the images. 

 

Figure 9. Embedding Values for Hill and Owl. 

In each sub-figure of Figure 9, the vertical axis indicates the 
embedding values of the images, and the horizontal axis indicates 
the indices of them, which have been ordered such that the first 82 
points index the images in Hill while the next 86 points index the 
images in Owl. We can see that the clustering results of F-I are 
bad. This is because the low-level features of some images from 
different categories are quite similar. We know the main color of a 
hill and an owl might both be puce or dark, and we found there 
are images of a flying owl in the background of hills. The 
performance of I-T is even worse because the surrounding texts 
are so infrequent in this subset that many images only have a few 
words with them. The F-I-T algorithm utilizes the information 
from both low-level features and surrounding texts and output the 
best clusters among the three algorithms. 

 

Figure 10. Embedding Values for Flying and Map. 

From Figure 10, we can see that all three methods performed 
excellently. This is because the low-level features of images in 
Flying and Map are quite different, and the surrounding texts in 
this subset are rich and easily distinguishable. 

From the above two figures, we can see that: on one hand, when 
information from low-level features or surrounding texts are good 
enough for image clustering, the F-I-T algorithm can also get nice 
results as F-I or I-T algorithms; on the other hand, when low-level 
features or surrounding texts are not good enough for 
distinguishing different categories of images, the F-I-T algorithm 
can leverage these information to get better output. 

5.5 Average Performance 
In this section, we would like to report the clustering performance 
for all possible pairs of categories in our experimental dataset. We 
plot the F-I-T vs F-I and F-I-T vs I-T figures in Figure 11, each 
point in which represents a possible category pair. We can see that 
most of the points fall in the upper side of the diagonal in either 
sub-figure, indicating that the F-I-T algorithm outperforms the 
other two methods in most cases. Though there are several cases 
that our algorithm performs inferior to one of the two reference 
algorithms or even both of them, they are infrequent and do not 
affect the superiority of the average performance of F-I-T. 

 

Figure 11. Performance Comparison. 

The averaged performance for between each category and all the 
other categories are listed in Table 3, where the surpassing values 
are blackened. From Table 3, we can see that, averagely speaking, 
our algorithm succeeds in 80% categories. We can also see that in 
a global average view, the F-I-T algorithm outperforms F-I and I-
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T methods by 5%, and in an average view of category-respective, 
F-I-T is at best 10% better than the reference algorithms.  

Table 3. Average Performance. 

Category Name F-I I-T F-I-T 
Bat 0.7307 0.6866 0.8266 

Bear 0.6303 0.5920 0.6857 
Caterpillar 0.6297 0.6240 0.6805 

Coral 0.6494 0.6351 0.6932 
Flying 0.6554 0.6917 0.6892 

Hill 0.7369 0.6500 0.8203 
Hummingbird 0.6567 0.6308 0.6518 

Map 0.9594 0.8488 0.9708 
Moth 0.6332 0.7071 0.7213 
Owl 0.6302 0.5483 0.6633 

Total Average 0.6912 0.6614 0.7403 
 

After a macro view of the results, we would like to investigate 
several special cases to get more insights. In the case of Map, the 
accuracies of the three algorithms are high because their low-level 
features are almost the same within this category and quite 
different with others (please refer to Figure 4), and their 
surrounding texts are also extremely alike with each other. We 
tracked down by following clues from the crawling list and found 
that these images come from a Website illuminating the 
distributing of dinosaurs. Almost all of their surrounding texts 
contain terms like map, dinosaur, locate, etc. Similarly, the 
performance in Bat is high since most of the backgrounds of the 
bats are black, which causes the similarity of their low-level 
features. In the cases of Flying and Hummingbird, F-I-T failed to 
hit the top (but it is only no more than 0.5% lower than the 
winner). In these cases, either the low-level features are bad-
regulated or the surrounding texts are confused and inaccurate, 
and thus they would have negative effect on the proposed 
algorithm. 

To sum up, the F-I-T algorithm would achieve better cross 
accuracy than the two reference algorithms in the majority cases. 

5.6 An Image Search System 
At the end of the section, we would like to show an application of 
our method. We organized the corpora (17,000 images in total) 
described in Section 5.1 in a database and built an image search 
system based on the proposed algorithm. When a user submits a 
query, the system will search in the table of the surrounding texts 
of all images and retrieve the images whose surrounding texts 
contains this query. Then the F-I-T algorithm is implemented on 
the retrieved images to get clusters, which are organized in a 
friendly interface to the user. 10  For example, when the query 
“bird” was submitted by a user, the system retrieved 832 images. 
After clustering by F-I-T, they were re-organized as 3 clusters 
shown in the left part of Figure 12. We can see that the three 
clusters are birds in forests, birds on water and birds in the sky. If 

                                                                 
10As we focus on bi-clustering problem in this paper, for k-clustering 
cases, we simply ran the k-means algorithm on the extracted 
embeddings of images to get the desired clusters. Note that there must 
be some better ways to generalize our method to the case of k-clustering, 
but it has been beyond the scope of this paper. 

the user clicked one of the clusters, all images grouped in this 
cluster would be shown in the right part. 

 

Figure 12. A View of Our Image Search System. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we used a tripartite graph to model the co-clustering 
problem of low-level features, images and terms in surrounding 
texts, and proposed the concept of consistent bipartite graph co-
partitioning to get the co-clustering of the three substances 
simultaneously. Then we proved our desired consistent co-
clustering can be achieved by optimizing a certain objective 
function based on semi-definite programming. Experiments on a 
collection of digital photographs showed the effectiveness and 
validity of our approach. For the future work, we will further 
explore whether there are any more reasonable objective functions, 
and whether it is possible to get a close-form solution for them. 
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