
Ziria: A DSL for wireless systems programming

Gordon Stewart
Princeton University

jsseven@cs.princeton.edu

Mahanth Gowda
UIUC

gowda2@illinois.edu

Geoffrey Mainland
Drexel University

mainland@cs.drexel.edu

Božidar Radunović
MSR Cambridge

bozidar@microsoft.com

Dimitrios Vytiniotis
MSR Cambridge

dimitris@microsoft.com

Cristina Luengo Agulló
Universitat Politècnica de Catalunya

cristinaluengoagullo@gmail.com

Abstract
Software-defined radio (SDR) brings the flexibility of soft-
ware to wireless protocol design, promising an ideal platform
for innovation and rapid protocol deployment. However, im-
plementing modern wireless protocols on existing SDR plat-
forms often requires careful hand-tuning of low-level code,
which can undermine the advantages of software.

Ziria is a new domain-specific language (DSL) that of-
fers programming abstractions suitable for wireless physical
(PHY) layer tasks while emphasizing the pipeline reconfig-
uration aspects of PHY programming. The Ziria compiler
implements a rich set of specialized optimizations, such as
lookup table generation and pipeline fusion. We also offer
a novel – due to pipeline reconfiguration – algorithm to op-
timize the data widths of computations in Ziria pipelines.
We demonstrate the programming flexibility of Ziria and the
performance of the generated code through a detailed eval-
uation of a line-rate Ziria WiFi 802.11a/g implementation
that is on par and in many cases outperforms a hand-tuned
state-of-the-art C++ implementation on commodity CPUs.

1. Introduction
The past few years have seen increased innovation in the
design and implementation of wireless protocols, both in
industry and academia (cf. [8, 28, 44]). Much of this work –
especially at the physical (PHY) layer of the protocol stack,
managing the translation between radio hardware signals
and protocol packets – has been driven by the increased

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694368

availability of software-defined radio (SDR) platforms. SDR
platforms, unlike ASIC designs, enable wireless devices
to be programmed by researchers and other end users. In
industry, low-cost SDR platforms have paved the way for
new business models to disrupt the traditionally conservative
telecom sector [23, 34, 51].

In order to meet the processing requirements of wireless
protocols, SDR platforms have traditionally been FPGA-
based, and were therefore difficult to program and extend.
Despite some recent efforts [35], these FPGA-based SDR
platforms still haven’t achieved wide-spread adoption. Re-
cently, however, projects such as Sora [45] and USRP [50]
have demonstrated that CPU-based platforms can also meet
the processing demands of contemporary wireless standards.
Sora, for example, was the first to achieve interoperability
with commercial WiFi hardware while executing all signal
processing on the CPU.

Writing realtime PHY code for a CPU, though easier
than programming FPGAs, is still difficult. Wireless PHY
algorithms have to process tens of millions of I/Q samples per
second – equivalent to a rate of around one gigabit per second.
To achieve such speed a programmer has to have a good
understanding of the underlying hardware and the effects of
design choices on performance. As evidence of the difficulty
of the problem, the initial Sora WiFi implementation – the
first to solve the problem in software – merited a best-paper
award [45]; the first WiFi receiver for GNU Radio appeared
only a year ago [11].

A PHY design typically consists of a pipeline of signal
processing stages. So far, much of the effort has been devoted
to generating efficient implementations (using advanced CPU
features) of the digital signal processing (DSP) algorithms
that sit within these pipelines – such as FFT, correlation,
encoding, and decoding. Such implementations are developed
by human experts [45] or are auto-generated from high-level
algebraic specifications [40, 52].

However, wireless PHY programming is not only about
generating fast DSP code and efficient matrix computations.

It is also about expressing and correctly and efficiently compil-
ing pipeline reconfigurations when system state (e.g. channel
information, index of element in the LTE resource grid, cod-
ing and modulation rates) changes. Pipeline reconfigurations
do appear in a PHY implementation and a programmer needs
to maintain state that persists across the processing of multi-
ple entities (header, resource blocks, packets, etc.), specify
when a state changes, and how that change will affect the
functionality of other blocks.

This pipeline reconfiguration aspect of PHY design is
largely overlooked in previous work on SDR programming,
yet it is of paramount importance. For example, the 4G/LTE
standard – the state-of-the-art wireless cellular technology –
contains over 400 pages of specifications defining the PHY
layer alone [1–3]. The signal processing blocks used in LTE
are mainly standard (e.g. FFT, turbo coding); most of the
specification actually describes the control flow and state
changes. The IEEE WiFi standard and typical textbooks
give simplified block diagrams [25, Figure 118] that look
like straightline dataflow composition. Unfortunately, these
diagrams completely ignore pipeline reconfigurations. The
full specification of state changes is instead given in 90
pages of text [25] and is nontrivial to implement correctly
and efficiently due to the delicate synchronization required
between pipeline reconfiguration and data processing.

Our key contribution is a new programming language,
Ziria, specifically designed to expose high-level pipeline re-
configuration and control flow in PHY protocols without sac-
rificing the performance required for line-rate SDR. Ziria has
a layered design. The main novelty is the higher-layer com-
putation language for specifying and composing stream pro-
cessing pipelines. Ziria also offers a lower-layer expression
language for implementing DSP algorithms and data manipu-
lation within pipeline components. This language is similar
to those used by domain experts (C or Matlab), with a subset
of features and low-level optimizations carefully selected to
maintain expressiveness yet guarantee efficient compilation.
The main benefits of a new domain-specific language over
a library-based approach implemented in a general-purpose
language are (a) domain-specific programming abstractions
and a rich type system that allow programmers to express
and confidently reason about state changes in their pipelines,
and (b) support for aggressive optimizations on Ziria ASTs,
which is crucial for compiling high-level programs to meet
the tight performance constraints of modern PHYs on com-
modity CPUs. In this work we focus on CPUs because they
are adopted by wide-spread SDR platforms [45, 50].

An important optimization in SDRs involves increasing
the data widths of the components in a processing pipeline.
For instance, although an encoder may naturally be defined to
operate on single bit inputs, it will be much more efficient if
implemented to operate on bytes. Wide data paths bring
clear benefits: the ability to use SIMD instructions and
wider lookup tables, efficient data manipulation, and more

data locality. However, having to optimize data widths
manually compromises ease of programming and flexibility.
The acceptable data widths of a component may depend in
complex ways on the rest of the pipeline (Section 3). As a
consequence, a programmer needs to jointly optimize all the
data widths in a pipeline, which is error-prone and tedious.
Additionally, optimizing each component for the data widths
of the specific pipeline in which it is used can lead to code
that cannot easily be reused in other pipelines.

The Ziria compiler instead offers a vectorization transfor-
mation that automates this process. Thanks to this transforma-
tion, a component can be written once and reused – without
any changes – in different pipelines or in different positions
in the same PHY implementation with possibly different
vectorizations. A well-typed pipeline modification does not
require manual modifications in the constituent components.
The main novelty of our vectorization transformation (com-
pared to more traditional coarsening transformations of data
paths [4, 48]) is that – for correctness – it must take into ac-
count pipeline reconfigurations (Section 3). In addition, our
algorithm must jointly optimize the data path widths for all
the components in a pipeline, which (we have empirically
confirmed) can easily cause compilation times to blow up. To
address this problem, we employ an idea from a distributed
convex optimization framework [26] that, for a large class
of utility functions, allows our vectorizer to make a local
decision for each sub-computation in the pipeline without
compromising global optimality. Local pruning dramatically
reduces the number of vectorization candidates. As a conse-
quence, full-featured WiFi transmit (TX) and receive (RX)
PHY pipelines can compile (from Ziria to C) in 2-4 seconds.

In addition to vectorization, the Ziria compiler implements
numerous other optimizations, including: automatic lookup
table (LUT) creation, inlining, partial evaluation, memory
management optimizations, fusion, a variant of static schedul-
ing and others that are fundamental in achieving the desired
processing speeds.

In summary, our contributions are:

• We present a new programming language, Ziria, with
domain-specific abstractions well-suited for program-
ming wireless SDRs with reconfigurable pipelines and a
compilation scheme that supports limited coarse-grained
pipeline parallelism and produces efficient executables for
commodity CPUs (Section 2).
• We design and implement a novel vectorization algorithm

to optimize the data widths of components in processing
pipelines (Section 3). We measure the effects of this
optimization and show that it also dramatically amplifies
the effects of other optimizations (a combined 10×−100×
speedup over baseline).
• To demonstrate the viability of Ziria for developing SDR

applications, we implement a IEEE 802.11a/g PHY. Our
implementation meets the protocol throughput and latency
constraints, its performance matches and often outper-

forms hand-tuned C++ code, and it is tested with live
transmissions on Sora boards, delivering < 2% packet
error rate on a nonrealtime OS (Section 5).
To the best of our knowledge, we are the first to present

a high-level programming language that – in addition to
being performant – can concisely capture and optimize for
reconfigurations in PHY pipelines. Our compiler, testsuite,
and WiFi implementation are publicly available [22].

2. Programming in Ziria
In this section we present the basic programming abstrac-
tions of Ziria and show how these abstractions help program-
mers compose complex pipelines such as those required for
802.11a/g. We then show how programmers familiar with
imperative C-like languages can implement the basic process-
ing blocks of those pipelines as imperative code in Ziria’s
expression language. A small number of signal processing
concepts are introduced along the way.

2.1 Ziria stream programming abstractions
Ziria programs process streams of values. At a high level, a
WiFi receiver is just one such computation that reads a stream
of complex numbers (I/Q samples) from the A/D converter of
a radio and outputs a stream of bytes corresponding to MAC-
layer packets. Ziria programmers can create and compose
together computations of two types.

Stream transformers are computations that resemble tra-
ditional stream processing “blocks” or “bricks” commonly
found in existing SDR platforms like GnuRadio and Sora.
They execute indefinitely by taking values from input streams
and emitting values onto output streams, perhaps also main-
taining some internal state. A scrambler block is a simple
example: scramblers are used, e.g., in a WiFi transmitter, to
XOR input data with a pseudorandom sequence in order to
shape the transmitted signal.

Stream computers, on the other hand, are a novel concept
in SDR programming. Like stream transformers, they take
values from input streams and emit onto output streams. In
contrast to stream transformers, they execute for a while,
consuming input and producing output, but eventually halt
and return an additional value, which we refer to as a control
value. The WiFi packet header decoder is an example of
a stream computer: it decodes the header of a packet in a
streaming fashion but eventually halts, returning a control
value containing coding and modulation parameters from the
header, which can subsequently be used to decode the packet
payload. The fact that computers continuously process and
output data while computing the final return value allows
downstream components to continuously use these outputs,
reducing overall program latency.

The Ziria type system distinguishes between these two
abstractions. It assigns type (Zr T a b) to Ziria transformers
that take inputs of type a and emit outputs of type b and type
(Zr (C c) a b) to Ziria computers that take inputs of type a and

emit outputs of type b while eventually returning a control
value of type c. Value types a, b, c are more conventional
and include bit, integer and complex types of various widths,
structures, arrays of statically known length, etc.

2.2 Composition on the control path
Control values returned by stream computers are the only
Ziria mechanism for reconfiguring the processing pipeline.
In our decoding example, the runtime – upon termination of
the header decoder – will use the returned control value to
initialize and configure the payload decoder and serve it the
rest of the input stream. This is in sharp contrast to other
SDR platforms [35, 46, 48], in which reconfiguration and
initialization of different parts of the processing pipeline is
achieved via shared global variables, asynchronous message
passing, or has to be manually programmed in a low-level
fashion with extra messages in data paths. These alternatives
can hamper code maintainability and reusability.

In Ziria, this pattern of control flow is expressed using the
seq-uence combinator (excerpt from our WiFi receiver):

seq { (h : HeaderInfo) ← DecodePLCP ()
; Decode(h) }

This code runs the stream computer DecodePLCP() until
it produces a control value h, of type HeaderInfo, and then
switches to the stream computer Decode(h). Because this
sequencing expresses control flow in a program, we refer
to the sequence operator as composition “on the control
path.” The Ziria type system ensures that in a sequence
seq { x ← c1; c2 }, the component c1 is indeed a stream
computer, and not a transformer (c2 may be either a stream
computer or transformer). The (simplified) typing rule is:

` c1 : Zr (C c) a b (x:c) ` c2 : Zr t a b

` seq { x ←c1; c2 } : Zr t a b

where t is either T or C d. Notice that both c1 and c2 take
values of the same type (a) and emit values of the same type
(b), albeit at different points in time.

Dynamic reconfiguration using seq directly reflects the
control flow of many PHY-layer protocols. Another typical
example is WiFi packet reception, in which the receiver first
uses a sample preamble to estimate the characteristic of the
communication channel and uses this estimation to invert the
effects of the channel and decode the packet.

2.3 Composition on the data path
Whereas control path composition combines two components
that take from the same input stream and emit to the same
output stream (although at different points in time), Ziria also
supports the more convential form of composition “on the
data path”: this is composition in which the stream output of
one block becomes the stream input of another. For instance,
in a WiFi transmitter the output stream of the CRC block is
piped to a scrambler, followed by an encoder. We express this
composition with the >>> combinator. In Ziria code (again,
an excerpt from our WiFi transmitter):

crc24(len) >>> scrambler () >>> encode12 ()

The general form of this combinator c1>>> c2 allows at most
one of c1 and c2 to be a stream computer, in which case the
whole c1>>> c2 becomes a computer, halting and returning
back the return value of the computer component. If both
components are transformers, then so is their composition.
The (simplified) typing rule is:

t = t1 ⊕ t2 ` c1 : Zr t1 a b ` c2 : Zr t2 b c

` c1 >>> c2 : Zr t a c

where T ⊕ t = t ⊕ T = t.1 In addition, only one of c1
and c2 can have read-write access to shared variables, to
guarantee race-freedom in a pipeline parallel execution of
>>> composition.

2.4 Example: WiFi receiver pipeline
We now show how these abstractions fit together to form
complex pipelines. Our example in this section is an imple-
mentation of a WiFi 802.11a/g receiver in Ziria, based on the
Sora implementation [45].

1 let comp Decode(h : struct HeaderInfo) =
2 DemapLimit (0) >>>
3 if h.modulation == M_BPSK then
4 DemapBPSK () >>> DeinterleaveBPSK ()
5 else if h.modulation == M_QPSK then
6 DemapQPSK () >>> DeinterleaveQPSK ()
7 else ... -- QAM16 , QAM64 cases
8 >>> Viterbi(h.coding , h.len*8 + 8)
9 >>> scrambler ()

10 let comp detectSTS () = removeDC () >>> cca()
11 let comp receiveBits () =
12 seq { h ← DecodePLCP ()
13 ; Decode(h) >>> check_crc(h.len)
14 }
15 let comp receiver () =
16 seq { det ← detectSTS ()
17 ; params ← LTS(det.shift)
18 ; DataSymbol(det.shift) >>>
19 FFT() >>>
20 ChannelEqualization(params) >>>
21 PilotTrack () >>>
22 GetData () >>>
23 receiveBits () }

Listing 1: Ziria WiFi 802.11a/g receiver pipeline

The main phases of the WiFi pipeline are: channel de-
tection (line 16), channel estimation (line 17), and packet
demodulation and decoding (lines 22 to 23). Lines 18 to 22
convert from the time into the frequency domain and remove
channel impairments.

Channel detection determines if there is a WiFi transmis-
sion by searching for a known preamble in the input stream.
The first block, detectSTS, consists of a block that removes the
signal DC component (removeDC), followed by the actual de-
tection algorithm (clear channel assessment, cca). Detection
returns fine-grained timing information, bound to det.

1 Readers may recognize the combination of a monad [32] and arrow [24]
structure in Ziria computation types, an idea that appears in several variations
in the functional progrmaming literature [14, 38, 39].

c ::= seq{x← c; c} Sequence
| c >>> c Data path composition
| if e then c1 else c2 Conditionals
| var x:τ := v in c Mutable variables
| let f(x:τ) = m in c Function definition
| let comp f(x:τ) = c1 in c2 Computation definition
| c(e) Call computation function

| take Take from input
| emit e Emit on output
| dom | return e Lift expression
| repeat c Repeat c indefinitely

| while e c Repeat c while e
| times e c Repeat c e-times
| map f Map function over input

| . . .
e,m ::= x | v | x := e |m1;m2 | f(e) | . . . Expressions
v ::= unit | i | . . . Values

Figure 1: Simplified syntax of Ziria

Channel estimation estimates physical effects (multipath
fading) on the transmitted signal (block LTS). The channel
estimate is returned as control value params.

OFDM demodulation converts the received data from
the time to the frequency domain (lines 18 to 22), and the
receiver removes the effects of the channel, as estimated in
the previous phase, using ChannelEqualization followed by
PilotTrack. Finally, the processed symbols are passed to
receiveBits for demodulation and decoding.

Discussion. The WiFi example highlights key high-level
features of the Ziria computation language. First, component
composition is intuitive and code is well-structured, short, and
guaranteed type-correct by the compiler. Second, configura-
tion parameters are explicitly passed to and from components,
and all reconfigurations – contrary to Sora – become explicit
in the seq-structure of the programs.

2.5 Implementing processing blocks
Ziria is a two-layer language consisting of (i) a computation
language and (ii) an imperative and by-and-large conven-
tional language for computing with bits, integers, complex
values, structures, arrays, etc. The most important syntactic
forms of the language are given in Figure 1. We use c to
denote computations and e, m to denote expressions from the
imperative fragment. The details of the imperative fragment,
which we omit, are unsurprising. As a notational convention,
we use m for statements (e.g. y := y+1) and e for expressions
(e.g. y+42). Formally, statements are just expressions that
return unit.

Computations c include the seq and >>> combinators,
conditionals, bindings for mutable variables, functions, com-
putations, and calls.

In addition, Ziria provides a set of primitives:
• emit e. A stream computer that evaluates its argument

and emits the value on the output stream. It is a computer,

since it halts after emitting its value, returning a unit

control value.
• take. A stream computer that takes one element from the

input stream and returns it as a control value. For instance:

seq { (x : int) ← take
; emit (x+1) }

will take one value x from the input stream and emit x+1.
• do m and return e. These primitives lift an m or e

from the low-level imperative fragment to the computation
language. They are both stream computers that execute
their argument and return the final result as a control value.
For instance, given a mutable variable y, the following
code will take an input value, update y, and emit y + 1:

seq { (x : int) ← take
; do { y := y+x+1; }
; emit (y+1) }

The do and return primitives have identical semantics, but
as a programmer convenience we use do for imperative
code that returns unit (such as y := x+y+1) and return for
expressions that will return a value, e.g. return(y + 1).
• repeat c. A stream transformer that executes the stream

computer c. When c halts, repeat re-initializes it and
restarts, effectively implementing: seq{c; c; . . .}. Here
is a component that filters out all 0-value elements of its
input stream.

repeat { (x : int) ← take
; if x == 0 then return ()

else emit x }

Ziria also provides a few more combinators for: repeating
computers n times, mapping (expression) functions over
input streams, and more. The typing rules for the most
important primitives are summarized below:

` take : ∀ab. Zr (C a) a b
` emit e : ∀a. Zr (C unit) a τ, if ` e : τ
` return e : ∀ab. Zr (C τ) a b, if ` e : τ
` map f : Zr T τ σ, if ` f : τ → σ
` repeat c : Zr T τ σ, if ` c : Zr (C unit) τ σ

2.6 Executing Ziria pipelines
Ziria programs target commodity CPUs and large parts of
program pipelines run on dedicated cores. The design
of the Ziria intrathread execution model is motivated by
performance, namely (a) processing with low latency, and (b)
avoiding compiler-introduced buffering – even for programs
that use >>> .

The fundamental insight is that there exist computations
that can spontaneously produce output and push it down-
stream (the simplest being emit e), and computations that
must first pull input in order to execute (the simplest being
take). Many complex Ziria processing blocks will need to
both push and pull data during their execution. Consequently,
every Ziria computation compiles to a pair of code blocks,
called tick and proc. The tick code block determines if the

computation has a result readily available, and if so, imme-
diately pushes it to the proc code block of the downstream
component for processing. On the other hand, if input needs
to be pulled, tick jumps to the tick code block of the up-
stream component. A proc code block consumes a pushed
input and can push output to the downstream proc code block.

Two subtle points deserve attention:
• The tick or proc block can determine that the computation

– if it is a stream computer – should halt. This will happen
when c1 halts in a seq { x ←c1; c2} computation. For
this reason, seq compiles with a switchtable that selects
which of the two tick/proc blocks is active at any point
in time. Termination of c1 activates the tick/proc blocks
associated with c2.
• The tick and proc blocks for c1 >>> c2 are c2’s tick and
c1’s proc, respectively. This means pipelines are drained
from the right, and thus there is no need for variable-
sized queues between >>> . It also implies that values
are pushed as soon as they become available, which is
beneficial for latency.
On top of this basic compilation scheme, the Ziria com-

piler also makes static scheduling decisions, such as eliminat-
ing tick code blocks for components that can never sponta-
neously produce output but always require input (e.g. map f or
take). This optimization reduces the administrative overhead
of tick-ing through the data path.2

Pipeline parallelization. A c1 >>> ... >>> cn in isolation
can naturally be mapped onto multiple cores by introducing
interthread queues and compiling each constitutent compo-
nent according to the previous intrathread model. We gener-
alize this observation to programs where the last computation
in a seq-uence is a data-path composition:

seq { x ← c0
; c1 >>> ... >>> cn }

We allow programmers to replace any of the >>> operators
above with a variant |>>> | to explicitly indicate partitioning
onto multiple cores. Pipeline-parallelizing arbitrary uses of
>>> is more delicate and left as future work. The reason is,
upon termination and reconfiguration of a data path, we need
to synchronously notify all participating threads, making sure
that no upstream thread in that path has erroneously consumed
data not intended for this particular data path. The currently
supported form of pipeline parallelization is sufficient for our
workloads, however. Section 5 gives performance evaluation
for WiFi TX/RX parallel pipelines.

3. Vectorization
A central optimization in the Ziria compiler is the vector-
ization transformation. It rewrites pipeline components that
take values of type a and emit values of type b to take in-
stead values of type (array[din] a) and emit values of type
(array[dout] b) for appropriate din and dout, thus systematically

2 In Section 5 we evaluate execution model overhead with program size.

transforming pipelines data paths to operate on vectors rather
than scalars.

The benefits of compiler-based vectorization were outlined
in the introduction. The alternative – manually adjusting the
implementations of processing blocks for a specific place-
ment in a pipeline – not only departs from intuitive protocol
specifications and hampers reusability, but as the next para-
graph shows, is also challenging to get right.

The challenge of vectorization. Let us examine a simple
transformer t in isolation:

let comp t = repeat { (x:int) ← take
; emit f(x); }

We could vectorize t to take arrays instead of singleton values
of type int:3

let comp t_vect =
repeat { (xa:arr [8] int) ← take

; for i in 0..7 { emit f(xa[i]); }}

Consider now placing t inside a pipeline that can be reconfig-
ured with a seq block:

seq { x ← (t >>> c1); c2 }

Suppose that c1 returns after consuming 4 values (one by
one). The original t transformer can produce those 4 values
by consuming 4 values from the input stream. On the other
hand, t_vect can produce 4 values only after consuming
a full array of 8 values. Hence, the moment the pipeline
reconfigures to c2, t_vect has erroneously consumed 4 extra
values, originally destined for c2. We conclude that the t_vect
vectorization is incorrect for this pipeline.

The example illustrates the subtlety of vectorization and
the challenge we address. The set of feasible vectorizations
of a component depends on the placement of the component
inside the pipeline, as well as on the data widths of adjacent
blocks (as we have to – at the very least – produce well-typed
pipelines to avoid buffer overruns and segmentation faults).

Overview of our algorithm. Guided by this intuition, we
design a decentralized vectorization algorithm that:
1. In a top-down fashion, identifies sets of feasible vectoriza-

tions for transformers and computers based on the num-
ber of values they take and emit (Section 3.1) and their
pipeline placement (Section 3.2), then

2. In a bottom-up fashion, composes feasible vectorization
candidates together to re-assemble vectorization candi-
dates for the original pipeline (Section 3.3).

To avoid search space explosion, the second step uses ideas
from distributed optimization to locally prune the set of can-
didates and finally return a single candidate that maximizes a
(parameter) utility function.

We implement vectorization as an AST transformation
(versus a code-generation-time optimization) to allow for
further waves of optimizations on the vectorized ASTs, as we
illustrate in Section 4.
3 Though valid, this may not be the most efficient vectorization since the
output is not vectorized.

3.1 Cardinality analysis
As the examples above demonstrate, central to vectorization
is a static analysis that we refer to as “cardinality analysis.”
Cardinality analysis infers for each computer c the number
αin of values the computer will take from its input and the
number αout of values the component will emit on its output
before returning. All transformers in our WiFi workload use
repeat-ed computers of statically deducible cardinalities, but
a few computers take or emit a dynamic number of values. For
these few cases Ziria provides several forms of annotations to
force vectorizations, e.g., when we know that some multiple
of a fixed number of values will be emitted, such as in the
CRC implementation in our repository.

3.2 Feasible vectorization sets
In a top-down fashion, our algorithm determines feasible
vectorizations, distinguishing the following three cases.

Computer vectorizations. For correctness, vectorization of
a computer c needs to ensure that the vectorized computer
takes (one or more) arrays of size din and emits (one or
more) arrays of size dout for some divisors din and dout of
cardinalities αin and αout respectively. We call this a down-
vectorization of the computer because the final array sizes
are less or equal to the cardinality parameters.

Transformer-before-computer vectorization. Consider now
the example from the beginning of this Section,

seq { x ← (t >>> c1); c2 }

and assume t is of the form repeat c for some computer c
with input cardinality αin and output cardinality αout.

Suppose t vectorizes so that in each iteration it takes one
array of size 2αin and emits two arrays of size αout each.
The downstream computer c1 may also be vectorized to
take an array of αout input values, so the types match. This
vectorization candidate is nevertheless incorrect because c1
could stop after reading the first αin inputs from t’s output,
leaving t with extra αin values which should have been
processed by c2.

The solution is to never increase the output rate per
input in a “transformer-before-computer” vectorization. A
transformer in a data path with a computer to the right can
only safely up-vectorize to take arrays of size d ·αin and emit
arrays of size d · k · αout for some d and k. We refer to this
mode as up-vectorization because it takes and emits arrays
with larger width than the cardinality parameters.

Finally, we can also down-vectorize to take arrays din and
emit arrays dout where din and dout are divisors of αin and αout
taken and emitted per iteration.

Transformer-after-computer vectorization. The symmet-
ric situation is also interesting. Consider a transformer t that
consumes the output of computer c1:

seq { x ← (c1 >>> t); c2 }

Although transformers do not themselves return control val-
ues, in this case t will process a finite amount of data because
the component upstream is a computer.

Again, consider an example of a transformer t in the form
repeat c for some computer c that has input cardinality αin
and output cardinality αout. Suppose t vectorizes so that in
each iteration it takes one array of αin values and in every
second iteration emits an array of 2αout values, leading to an
input–output rate of 2-to-1. If the computer c1 emits an array
of size αin (so the types match) and then immediately returns,
the expected αout output values will never be emitted since
the output granularity is 2αout.

Unsurprisingly, the solution is to never decrease the output
rate per input in a “transformer-after-computer” vectorization.
A transformer in a data path with a computer to the left can
only safely up-vectorize to take arrays of size d · k · αin and
emit arrays of size d ·αout for some d and k. Finally, as before,
down-vectorizations are also acceptable.

3.3 Assembling vectorization candidates
Having collected constraints describing all feasible vector-
izations for simple components, our algorithm proceeds to
compose these sets to form well-typed vectorized pipelines.
Let D(c) denote the feasible set for computation c as a
set of triples (cv, din, dout), where cv takes and emits arrays
(array[din] a) and (array[dout] b) respectively. The following
rules describe how feasible sets compose over >>> and seq:

D(c1 >>> c2) =
{ (cv1 >>> cv2, din, dout) where
∃d. (cv1, din, d) ∈ D(c1) and (cv2, d, dout) ∈ D(c2) }

D(seq x←c1;c2) =
{ (seq x←cv1;cv2, din, dout) where

(cv1, din, dout) ∈ D(c1) and (cv2, din, dout) ∈ D(c2) }

The sets of vectorizations that the aforementioned strategy
introduces can grow large very quickly (tens or hundreds of
thousands, for WiFi-scale pipelines), even if we impose limits
on the maximum size of arrays.

To avoid search space explosion, we perform local pruning
of candidates. Consider the example of c1 >>> c2. There will
be multiple feasible input (din) and output (dout) data widths
that this component can vectorize into. Moreover, for each
feasible pair of din and dout, there may be several possible
internal vectorizations arising from the set of intermediate
widths d in the first rule above.

Locally pruning the candidates for c1 >>> c2 for a given
din and dout amounts to deciding, for a choice of two inter-
mediate widths d and d′ (and consequently two vectorization
candidates), which of the two we should prefer. A natural
choice, guided by the need for “fat” pipelines, is to choose
the one with the highest intermediate width.

However, at top-level we must choose a single vectoriza-
tion among a set of vectorizations, irrespectively of input
and output widths. A simple generalization of the aforemen-
tioned local choice is to choose the vectorization with the

D(c1 >>> c2) =
{ (cv1 >>> cv2, din, dout, u) where
(cv1, din, d, u1)∈D(c1) and (cv2, d, dout, u2)∈D(c2)
and u = u1 + f(d) + u2 is maximal }

D(seq x←c1;c2) =
{ (seq x←cv1;cv2, din, dout, u1 + u2) where
(cv1, din, dout, u1) ∈ D(c1) and
(cv2, din, dout, u2) ∈ D(c2) }

Figure 2: Vectorization composition and utility calculation

highest sum of all input, intermediate, and output widths
in the pipeline. However, that choice is not always desir-
able. Consider two pipelines vectorized to input, intermedi-
ate, and output widths of 256-4-256 and 128-64-128, respec-
tively,4 where the unvectorized constituent components emit
one value for each value they take. Choosing the pipeline
with the highest sum of all widths means the first candidate
(256 + 4 + 256 > 128 + 64 + 128) is selected, but the in-
termediate narrow width, 4, in the first pipeline is a clear
bottleneck.

An alternative is to pick the candidate with the highest
minimal width – this strategy would happily select the second
candidate above. But highest-minimal-width is not always
good either, since it will prefer 8-8-8-8 over 256-256-256-
4 even though the second candidate is better in this case:
candidate 256-256-256-4 sends 256 elements directly through
the first two blocks and only pays the cost of breaking the
result into arrays of size 4 at the end, causing 1+1+64 =
66 tick/proc executions. By contrast the 8-8-8-8 candidate
induces 4 · 32 = 128 procs.

From the above discussion, it is evident that the two
extreme metrics, maximizing the sum of all block widths
and maximizing the smallest of all widths, are conflicting.
A similar issue is often encountered in computer network
design. The seminal work of Kelly et al. [26] presents a
utility framework parameterized over a set of concave (utility)
functions that is amenable to decentralized optimization. The
trade-off between the two extremes can be balanced through
the choice of the utility function. Let f be such a utility
function. Choosing f(d) = d results in maximizing the sum
of widths, whereas choosing f(d) = 1/da for large a is
known to be equivalent to maximizing the minimum width.

Here we adapt this framework. Specifically, we choose
f(d) = log(d), a function that is known to strike a good
balance between the two extremes [26]. We extend the earlier
composition rules with local pruning and decentralized utility
calculation, as given in Figure 2. We evaluate the effects of
the resulting vectorizations in Section 5.

4 In light of the previous discussion on rates, this may occur if the pipeline is
composed just of transformers.

4. Other Optimizations
The Ziria compiler implements a series of type- and semantics-
preserving optimizations that eliminate computations over
expressions, reduce memory copying, and fuse multiple com-
putations for more efficient execution. These optimizations
are mainly based on standard techniques but are instrumental
in producing performant code. We review the most important
in this section and illustrate their synergy.

Static scheduling optimizations. One set of optimizations
focuses on converting sequences of computations that include
seq and >>> into imperative code wherever possible. One
particular form of this optimization is called auto-mapping
and is essential for producing performant code, as the over-
head measurements in Section 5.2 (Figure 4) show. Figure 3
illustrates auto-mapping: the vectorized scrambler kernel
is pulled out in a separate local function, and the repeat
block is replaced with a call to map. A whole set of optimiza-
tions, such as inlining, pushing around let-bound definitions
and conditionals, and replacing computation-level loops with
expression-level loops, are specifically designed to enable
auto-mapping. Auto-mapping is a form of static scheduling,
since the code generator is aware that map cannot proceed
without consuming input (cf. Section 2.6) – for instance a
long sequence of >>> compositions of map will only push
values downstream without using tick blocks.

Lookup table generation. Many PHY operations are de-
fined to operate at a bit-level granularity, but direct imple-
mentation of such code is inefficient on CPUs with wide data
buses. A common optimization is to identify such operations
and speed them up by memoizing the results as lookup tables
(LUTs) (manually created LUTs are used pervasively in Sora
and GNU Radio for performance, for example). However,
writing functions that use LUTs is tedious and results in code
that is hard to read and modify.

The Ziria compiler solves this problem by automatically
detecting portions of a program that are amenable to a LUT
implementation (e.g., expressions complex enough to be
worth converting to a LUT but whose LUT sizes are not
too large) and automatically converting these expressions to
LUTs. For instance, the auto-mapped version of the scrambler
in Figure 3 is compiled to use a LUT with an index consisting
of the current input (8 bits) and the scrambler state (7 bits),
a total of 215 entries. Packing input values to LUT indices
and unpacking results required delicate performance tuning
in the Ziria compiler; Section 5 evaluates the results of this
optimization in our WiFi pipeline.

5. Evaluation
In this section we seek to answer the following questions
about the performance of Ziria: (1) What is the overhead of
Ziria’s execution engine? (2) What is the speedup of various
compiler optimizations? (3) Can we implement WiFi PHY
in Ziria to meet the protocol specifications and how does this

implementation compare with a state-of-the-art, manually
optimized implementation on the same platform?

5.1 Methodology
We evaluate the performance of our framework on various
DSP algorithms that are part of a standard WiFi transceiver.
We choose Sora’s WiFi implementation [45] as our reference
implementation (since it is the most stable available) and
port it to Ziria. Our port consists of ≈ 3k lines of Ziria code
in total and it is verified against Sora’s implementation. As
part of Ziria, we provide a basic signal processing library
with a high-level interface for SIMD instructions and efficient
implementations (borrowed from Sora) of FFT, IFFT and
Viterbi decoding.5 The rest is written entirely in Ziria and
available online [22].

We evaluate data throughput of a number of the processing
blocks and compare the performance of our Ziria implemen-
tation with the manually optimized Sora implementation [45]
and the WiFi requirements. We compile both on the Sora-
supported C compiler [31], and we adapt our runtime to use
Sora’s runtime libraries. In particular, we use Sora’s user-
mode threading library, which allows us to run threads at
the highest priority and pinned to a specific core, effectively
preventing the OS from preempting their execution. Our eval-
uation machine is a 2-year-old Dell T3600 PC with an Intel
Xeon E5-1620 CPU6 at 3.6 GHz running Windows 8.1 and
the WinDDK compiler [31], together with the SoraMIMO
SDR platform. When we measure the maximum rates of our
software components (which are faster than the line speed of
WiFi), we feed the input samples directly from memory and
discard the output. We also evaluate the performance of the
full SDR system using live wireless transmissions.

5.2 Overheads of nonoptimized execution model
Control-flow composition (seq). We measure the overhead
of seq by measuring the runtime of a program containing n
computation components in sequence, with each component
consisting of a single call to sin(). As a performance baseline,
we use the runtime of the equivalent program in which all n
sin operations are executed in the same block. The results are
depicted in Figure 4, top. The dashed line gives runtime of
the baseline program for n sin computations. The solid line
gives runtimes forn sin components bound in sequence. Both
are average over 200 million inputs and we report average
execution time per data item (confidence intervals are very
small). We verify that the runtime data fit a linear model as a
function of n, indicating that the cost of seq grows linearly
with the number of components. The cost of a single seq
operation on our system, given by the difference of the slopes
of the two lines, is around 3ns.

5 These blocks are standard and are reused across all modern physical layers
(WiFi, WiMax, LTE). Efficient implementations are already available across
a large range of SDR platforms.
6 We observe very similar results on a laptop with an Intel i7.

let comp scrambler_VECTORIZED () =
var scrmbl_st: arr[7] bit :=

{'1, '1, '1, '1, '1, '1, '1};

let comp vect_22 () =
var vect_ya_map_24 : arr[8] bit;
seq { (vect_xa_23 : arr[8] bit) <- take

; for vect_j_26 in [0, 8] {
do { vect_ya_map_24[vect_j_26] :=

var x := vect_xa_23[vect_j_26];
var tmp : bit;
tmp := scrmbl_st[3]^scrmbl_st[0];
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
return (x^tmp) } }

; emit vect_ya_map_24 }
in
repeat vect_22()

fun comp scrambler() {
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};

repeat <= [8,8] {
x <- take;
var tmp : bit;
do{
tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;

};
emit (x^tmp)

}
}

fun comp scrambler_VECTORIZED () =
var scrmbl_st: arr[7] bit :=

{'1, '1, '1, '1, '1, '1, '1};

fun auto_map_68(vect_xa_23: arr[8] bit) =
var vect_ya_map_24 : arr[8] bit;
for vect_j_26 in [0, 8] {
vect_ya_map_24[vect_j_26] :=

var x := vect_xa_23[vect_j_26];
var tmp : bit;
tmp := scrmbl_st[3]^scrmbl_st[0];
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp
return (x^tmp)

};
return vect_ya_map_24

in map auto_map_68

void auto_map_68_ln27_7(
BitArrPtr __retf_auto_map_68_blk,
int __prm_unused_30,
BitArrPtr vect_xa_23_blk_v23,
int __prm_unused_31, BitArrPtr scrmbl_st,
int __prm_by_ref_unused_29)

{
unsigned int idx28;

idx28 = 0;
idx28 |= *scrmbl_st & 127;
idx28 |= (*vect_xa_23_blk_v23 & 255) << 7;
*scrmbl_st = ((BitArrPtr) clut8[idx28])[0];
*__retf_auto_map_68_blk =

((BitArrPtr) clut8[idx28])[1];
return UNIT;

}

A
u
to
-LU

T

Auto-Map

V
e
cto

rize
Figure 3: Optimization synergy: original scrambler, auto-vectorized, auto-mapped, and generated C code with a LUT.

0 20 40 60 80 100
0

1

2

Number of blocks

Bind
Baseline

0 20 40 60 80 100
0

2

Number of blocks

R
un

tim
e

pe
r

da
tu

m
 [u

s]

 Repeat
Map
Baseline

0 50 100 150 200
0

1

2

Number of sin() calls

1 thread
2 threads

Figure 4: Overheads of various Ziria components: seq (top),
>>> (middle), |>>> | (bottom)

Dataflow composition >>> . To evaluate the overhead of
>>>, we measured the runtime of a program containing
n >>>-composed code blocks, with each block executing
the computation repeat {x←take; emit(sin(x))}. We also
measured the runtime of a version of this program optimized
to use map. The baseline is the runtime of a program in which
all n sin calls are merged into a single block. We average
over 200 million inputs and report average execution time per
data item (confidence intervals are very small). The results
are depicted in Figure 4, middle. The cost of a single >>>

with repeat on our system, given by the difference of the
slopes of Repeat and Baseline, is ≈ 24ns, while the cost of a
single >>> with map is≈ 1ns. The difference stems from the
fact that the repeat block executes several ticks and procs in
each round, whereas map execution is completely streamlined.
As shown in Section 5.3, the overhead of >>> is usually
significantly reduced by auto-mapping (Section 4), which
converts certain repeat blocks into maps. The cost is further
amortized by vectorization (Section 3), except in a few cases
in which automapping and vectorization cannot be applied
because not all sizes are statically known. Examples where
this occurs include CRC, for which the input size depends
on packet length and is therefore not known at compile time,
and Viterbi, whose output frequency and size may depend on
the amount of noise present at the received signal.

Pipelined dataflow composition |>>> |. To gauge the over-
head of pipelining Ziria programs onto multiple cores using
|>>> |, we measured the runtime of n sin calls both on a sin-
gle core and divided evenly onto two cores. Figure 4, bottom,
shows the results of this experiment. We average over 200
million inputs and report average execution time per data item
(confidence intervals are very small). The red dashed line
and solid black line give the execution time when running
on a single core and on two cores, respectively. The point
at which these two lines intersect, approximately 30 compu-
tations per datum, is the point at which we break even, i.e.,
when pipelining gives speedup rather than slowdown. The
speedup is approximately 1.7x at 60 calls and 2x at 90 calls.

(a) Vect. WiFi RX blocks (green) vs. all (yellow), relative to no opts.

10
0

10
1

10
2

CCA

Cha
nn

elE
qu

ali
za

tio
n

Dat
aS

ym
bo

l

Dein
te

rle
av

eB
PSK

Dein
te

rle
av

eQ
AM

16

Dein
te

rle
av

eQ
AM

64

Dein
te

rle
av

eQ
PSK

Dem
ap

BPSK

Dem
ap

QAM
16

Dem
ap

QAM
64

Dem
ap

QPSK

Dow
nS

am
ple FFT

LT
S

Pilo
tT

ra
ck

Rem
ov

eD
C

Vite
rb

i

RX06
M

bp
s

RX09
M

bp
s

RX12
M

bp
s

RX18
M

bp
s

RX24
M

bp
s

RX36
M

bp
s

RX48
M

bp
s

RX54
M

bp
s

R
el

at
iv

e
im

pr
ov

em
en

t

Vect/None
All/None

(b) Vect. WiFi TX blocks (green) vs. all (yellow), relative to no opts.

10
0

10
1

10
2

10
3

en
co

din
g

12

en
co

din
g

23

en
co

din
g

34 ifft

int
er

lea
vin

g
16

qa
m

int
er

lea
vin

g
64

qa
m

int
er

lea
vin

g
bp

sk

int
er

lea
vin

g
qp

sk

m
ap

 o
fd

m

m
od

ula
tin

g
16

qa
m

m
od

ula
tin

g
64

qa
m

m
od

ula
tin

g
bp

sk

m
od

ula
tin

g
qp

sk

sc
ra

m
ble

TX06
M

bp
s

TX09
M

bp
s

TX12
M

bp
s

TX18
M

bp
s

TX24
M

bp
s

TX36
M

bp
s

TX48
M

bp
s

TX54
M

bp
s

R
el

at
iv

e
im

pr
ov

em
en

t

Vect/None
All/None

Figure 5: Benefits of optimizations

(a) WiFi receiver throughputs at various data rates

0

50

100

150

200

250

RX06Mbps

RX09Mbps

RX12Mbps

RX18Mbps

RX24Mbps

RX36Mbps

RX48Mbps

RX54Mbps

R
X

 s
am

pl
e

ra
te

 [M
sa

m
pl

es
/s

]

802.11 specs
Ziria, 1 thread
Sora, 1 thread
Ziria, 2 threads
Sora, 2 threads

(b) WiFi transmitter throughputs at various data rates

0

100

200

300

400

500

TX06Mbps

TX09Mbps

TX12Mbps

TX18Mbps

TX24Mbps

TX36Mbps

TX48Mbps

TX54Mbps

T
X

 d
at

a
ra

te
 [M

bi
t/s

]

802.11 specs
Ziria, 1 thread
Sora, 1 thread
Ziria, 2 threads
Sora, 2 threads

Figure 6: WiFi throughput

5.3 Ziria optimizations
Vectorization is instrumental in achieving good performance,
both on its own and in combination with LUTs. In plot 5a
and 5b, we give the relative improvement of vectorization
(green) and vectorization+LUT (yellow) over no optimization
for receiver (RX) and transmitter (TX) blocks. Vectorization
brings large benefits to the receiver, with order-of-magnitude
speedups. Vectorization alone is not as effective on the trans-
mitter side, since most TX blocks perform bit-level opera-
tions that dominate performance. However, vectorization
enables LUT generation, and the combined speedup of both
optimizations is up to 1000× (in the full TX pipeline at 54
Mbps the compiler automatically identifies 40 LUT oppor-
tunities). Note that wherever we measure the performance
of vectorization, we also include other control flow optimiza-
tions mentioned in Section 4.

5.4 WiFi performance
Finally, we compare our WiFi implementation in Ziria with
the IEEE WiFi standard requirements and the Sora implemen-
tation in terms of compile time, throughput, and latency. We
also evaluate its real world performance.

Compile time. We begin by measuring the compile times
in Sora (C++ with templates to executable code) and Ziria
(Ziria high-level code to executable code) using the same
WinDDK C compiler [31]. Both Sora and Ziria take 8s to

compile the transmitter at 54 Mbps to an executable file. Ziria
is faster when compiling the receiver at 54 Mbps: it takes 15s
compared to the 26s taken by Sora.

Throughput. We next inspect the receiver’s performance,
plot 6a. The specification mandates a sampling (input) rate
of 40 million samples/second (dark green bars). We measure
the maximum throughputs of the Sora implementations of
receivers at various data rates and compare with the equivalent
implementations in Ziria, with 1 and 2 threads. We see that all
Ziria implementations meet the WiFi specifications at all data
rates. We are also at most 15% slower than the corresponding
manually optimized Sora implementations and even faster
than Sora in several of the most demanding cases.

In particular, our 2-threaded implementation of the re-
ceiver at 54 Mbps is more than 60% faster than Sora’s. This
is because our vectorizer finds the optimal width of the Viterbi
decoder for this particular pipeline (288 samples), whereas
Sora uses the default width (48 samples). Since Viterbi is
placed on a different core from the rest of the pipeline, we
reduce the number of synchronization messages 6-fold.

In plot 6b we give the results for the same experiment
applied instead to the WiFi transmitter. The inputs to the TX
pipeline are data bits, so the required input rates correspond
to the WiFi data rates (dark green bars). Ziria again meets
the WiFi requirements and in most cases is faster than Sora.
The main exceptions are the transmitters at 48 and 54 Mbps.

These data rates use 64QAM modulation and require packing
chunks of 6 bits of data per symbol; our current bit operations
are not very efficient for nonaligned data.

Latency. We also evaluate the latency of our single thread
WiFi implementation. We measure two types of latencies:
the read latency at input and the write latency at output. To
measure read latency, we randomly sample 10000 latencies
between two consecutive read operations, and we do the same
for write latency. Since read and write operations are vector-
ized, we plot an average latency per sample for each measured
vectorized read/write. We normalize all latencies with respect
to the maximum average latency per datum for each data rate
(1/data rate for TX reads and 1/sampling rate = 1/40MHz
for TX writes and RX reads).

We plot the CDFs of normalized latencies in Figure 7.
Plot 7a shows that latencies at transmitter reads are highly
nonuniform. This is because the time it takes to process one
input datum may vary widely depending on the order in which
we execute various blocks. For example, it will be small while
we are reading data to fill an FFT buffer. But the FFT will get
executed once the buffer is filled, which will introduce high
latency before the subsequent read. However, since the FFT
is the transmitter block with the largest vectorization and also
the last component in the TX pipeline, the latencies at write
are much more uniform (Plot 7b). The read latencies for the
receiver are shown in Plot 7c.

For the performance of WiFi, it is important that the write
latency of the transmitter is below the maximum latency
dictated by the line rate of WiFi (1/40MHz). This is because
a sudden excessive write delay can cause an interruption in
transmission. Similarly, if the read latency of the receiver is
above the maximum latency dictated by the line rate, a buffer
overflow can occur causing dropped RX samples. WiFi is not
designed to cope with dropped samples or interruptions, and
such events will yield immediate packet losses.

However, occasional large delays are not catastrophic; all
SDR hardware uses buffers to amortize such delays. The
sizes of these buffers are dimensioned according to the
protocol specs. For example, WiFi requires hardware to
finish processing packet reception and start transmitting in
10µs (SIFS, “short interframe space” time), so any buffering
and processing delays smaller than SIFS are acceptable.

We see that only 0.2% of all observed write latencies at
the TX and read latencies at the RX are above the maximum
allowed by the device line speed, and the highest of all
observed latencies is 5× the maximum, which is still more
than 100× smaller than the SIFS time.

Testbed evaluation. In order to further verify that our im-
plementation meets the system requirements in practice and
that no excessive delay between consecutive samples, caused
by our nonrealtime OS scheduler, will cause packet trans-
mission or reception errors, we set up a realtime wireless
transmission using Ziria WiFi code and Sora SDR hardware.
High data rates (24-54 Mbps) involve amplitude modulation

(16QAM and 64QAM) and require a more accurate imple-
mentation of an automatic gain control algorithm, which is
currently provided neither in Sora nor in Ziria. We therefore
experiment with the four lowest data rates (6-18 Mbps). For
each of these rates we send a sequence of packets encoded
at the selected rate at a constant pace. Each packet has a
unique ID so we can detect losses accurately. We count how
many packets are correctly received and calculate the packet
error rate. In our experiment, we lose around 2% of 10,000
packets transmitted [18]. This is on par with loss observed
with commercial WiFi cards (cf. [41]). As discussed before,
WiFi cannot cope with sample losses, and the low loss rate we
observe here implies that we meet WiFi timing requirements.

6. Related work
Software-defined radio. SDR platforms have traditionally
been FPGA- [29, 33, 35] and DSP-based [43, 49]. More
recently, CPU-based platforms [6, 23, 34, 45, 50] have
gained popularity, in particular due to widespread use of
USRP radios and GNU Radio [12, 50]. Similarly, there
are numerous programming platforms and approaches for
SDRs [7, 12, 13, 19, 30, 35, 36, 42, 48, 52].

As we motivated in the introduction, however, the existing
SDR platforms typically fail to provide convenient abstrac-
tions for programming pipeline reconfiguration, an important
aspect of PHY design. For example, the Sora [13] transmitter
consists of a single data pipeline with global shared state for
(re)configuration. GNU Radio [37] encodes control flow in
the data stream (e.g., using a stream of 0’s and 1’s to convey
the presence or absence of a preamble). StreamIt [48] uses
asynchronous teleport messages for pipeline reconfiguration,
which can obscure control flow. Spiral [52] does not offer an
easy way to mix control and data flow.

Further, many of the software platforms require tedious
manual optimization, which can limit code reuse and lead
to subtle errors. Examples include Sora and GNU Radio
components that are programmed with predefined, manually
adjusted widths and therefore may not be compatible with
arbitrary pipelines. In Sora, the programmer must also manu-
ally identify and implement lookup tables, which can lead to
verbose code (for example, the scrambler implementation is
90 lines of C++ code in Sora but only 20 lines in Ziria).

Dataflow languages. In addition to work on SDR, Ziria
builds on a significant body of programming languages re-
search. Synchronous dataflow (SDF) languages [9, 15, 16]
have been used in embedded and reactive systems for mod-
eling and verification but – to our knowledge – never to
implement line-rate software PHY designs. Parameterized
SDF [10], like Ziria, supports dynamic reconfiguration of the
dataflow graph but does not develop language abstractions for
reconfiguration like our seq combinator. StreamIt [48], also
based on synchronous dataflow, was one of the early works to
target DSP applications, including software WiFi and 3GPP
PHY, though it is not clear whether these implementations can

(a) WiFi transmitter latencies at read

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Relative latency

C
D

F

6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

(b) WiFi transmitter latencies at write

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Relative latency

C
D

F

6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps

(c) WiFi receiver latencies at read

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Relative latency

C
D

F

6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

Figure 7: WiFi latency at various data rates for single-threaded WiFi transmitter and receiver

operate at line rate. More recently, Liquid Metal [4] showed
how to compile a high-level Java-like language with stream-
ing primitives to a combination of Java bytecode, C code, and
FPGA bitfiles, with runtime support for dynamically selecting
from among the implementations. Both StreamIt and Liq-
uid Metal support forms of cardinality-aware vectorization,
although simpler in the absence of pipeline reconfigurations.

Functional programming and FRP. The design of Ziria
and its key combinators draws from monads [32] and ar-
rows [24]. A flavor of our seq combinator (called “switch”)
is used in Yampa [17], a popular functional reactive pro-
gramming (FRP) framework that lacks an efficient execution
model. The Haskell Pipes [39] library includes monad trans-
formers that provide high-level functionality similar to Ziria’s
stream combinators, but it does not guarantee implementation
in constant space. Ziria’s tick and process semantics resemble
the push–pull model of streaming popular in FRP [20, 21, 47].
Feldspar [5], a language for DSP embedded in Haskell, uses a
novel vector representation that supports vector fusion, which
could be profitably incorporated into the Ziria compiler. Spi-
ral [40] generates efficient implementations of a wide variety
of linear transforms (e.g., DFT) from high-level algebraic
specifications and compares favorably to Sora in benchmarks
of a Spiral-generated WiFi PHY [53]. In principle, Spiral
could be used to generate architecture-tuned versions of some
of the basic stream-processing blocks we currently use in
Ziria. Bitvector program synthesis using, e.g., sketching [27]
may be another way to generate optimized low-level process-
ing blocks.

7. Conclusion
We presented Ziria, the first high-level SDR platform with a
performant execution model. To validate our design, we built
a compiler that performs optimizations done manually in ex-
isting CPU-based SDR platforms: vectorization, lookup table
generation, and annotation-guided pipelining. To demon-
strate Ziria’s viability, we used Ziria to build a rate-compliant
PHY layer for WiFi 802.11a/g.

References
[1] 3GPP 36.211. Evolved universal terrestrial radio access

(e-utra) - physical channels and modulation. URL http:
//www.3gpp.org/DynaReport/36211.htm.

[2] 3GPP 36.212. Evolved universal terrestrial radio access
(e-utra) - multiplexing and channel coding. URL http:
//www.3gpp.org/DynaReport/36212.htm.

[3] 3GPP 36.213. Evolved universal terrestrial radio access (e-
utra) - physical layer procedures. URL http://www.3gpp.
org/DynaReport/36213.htm.

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric
Rabbah. Lime: A java-compatible and synthesizable language
for heterogeneous architectures. In Proceedings of the ACM
International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages
89–108, 2010. ISBN 978-1-4503-0203-6.

[5] Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth,
Karin Keijzer, Anders Persson, Mary Sheeran, Josef Svennings-
son, András Vajda, et al. Feldspar: A domain specific language
for digital signal processing algorithms. In FMMC, 2010.

[6] H. V. Balan, M. Segura, S. Deora, A. Michaloliakos, R. Ro-
galin, K. Psounis, and G. Caire. USC SDR, an easy-to-
program, high data rate, real time software radio platform.
In Software Radio Implementation Forum, 2013.

[7] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis.
OpenRadio: a programmable wireless dataplane. In HotSDN,
2012.

[8] T. Bansal, B. Chen, P. Sinha, and K. Srinivasan. Symphony:
Cooperative packet recovery over the wired backbone in enter-
prise WLANs. In MOBICOM, 2013.

[9] Gérard Berry and Georges Gonthier. The ESTEREL syn-
chronous programming language: Design, semantics, imple-
mentation. SCP, 19(2), 1992.

[10] Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. Param-
eterized dataflow modeling for dsp systems. Signal Processing,
IEEE Transactions on, 49(10):2408–2421, 2001.

[11] B. Bloessl, M. Segata, C. Sommer, and F. Dressler. An IEEE
802.11a/g/p OFDM receiver for GNU radio. In SRIF, 2013.

[12] Eric Blossom. GNURadio: tools for exploring the radio
frequency spectrum. Linux Journal, 2004(122):4, 2004.

http://www.3gpp.org/DynaReport/36211.htm
http://www.3gpp.org/DynaReport/36211.htm
http://www.3gpp.org/DynaReport/36212.htm
http://www.3gpp.org/DynaReport/36212.htm
http://www.3gpp.org/DynaReport/36213.htm
http://www.3gpp.org/DynaReport/36213.htm

[13] Bricks. Microsoft Research, Brick specification,
2011. URL http://research.microsoft.com/apps/
pubs/default.aspx?id=160800.

[14] Magnus Carlsson and Thomas Hallgren. Fudgets - Purely
Functional Processes with applications to Graphical User In-
terfaces. Doktorsavhandlingar vid Chalmers tekniska högskola.
Ny serie, no: 1366. Institutionen för datavetenskap, Chalmers
tekniska högskola, 1998. ISBN 91-7197-611-6.

[15] Paul Caspi. Lucid Synchrone. In Actes du colloque INRIA
OPOPAC, Lacanau. HERMES, November 1993.

[16] Paul Caspi and Marc Pouzet. Lucid Synchrone, a functional
extension of Lustre. Technical report, Univ. Pierre et Marie
Curie, Lab. LIP6, 2000.

[17] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Haskell Workshop, 2001.

[18] Demo. Ziria WiFi demo. URL http://research.
microsoft.com/apps/video/default.aspx?id=
228361.

[19] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. CODIPHY:
Composing on-demand intelligent physical layers. In SRIF,
2013.

[20] Conal Elliott. Push-pull functional reactive programming. In
Haskell Symposium, 2009.

[21] Conal Elliott and Paul Hudak. Functional reactive animation.
In ACM SIGPLAN Notices, volume 32, pages 263–273. ACM,
1997.

[22] GitHub. Ziria github repository. URL https://github.
com/dimitriv/Ziria.

[23] GSM. Fairwaves GSM base-station. URL https://
fairwaves.co/wp/.

[24] John Hughes. Generalising monads to arrows. SCP, 37(1-3),
2000.

[25] IEEE. Part 11: Wireless LAN MAC and PHY spec-
ifications high-speed physical layer in the 5 GHz band,
1999. URL http://standards.ieee.org/getieee802/
download/802.11a-1999.pdf.

[26] F. P. Kelly. Charging and rate control for elastic traffic. Euro-
pean Transactions on Telecommunications, 8:33–37, 1997.

[27] A Solar Lezama. Program synthesis by sketching. PhD thesis,
Citeseer, 2008.

[28] T. Li, M. K. Han, A. Bhartia, L. Qiu, E. Rozner, Y. Zhang, and
B. Zarikoff. CRMA: Collision-resistant multiple access. In
MOBICOM, 2011.

[29] Lyrtech. Lyrtech. URL http://intrinsic.lyrtech.
com/.

[30] Mathworks. Simulink. URL http://www.mathworks.co.
uk/products/simulink/.

[31] Microsoft. Windows driver kit version 7. URL
http://www.microsoft.com/en-us/download/
details.aspx?id=11800.

[32] Eugenio Moggi. Notions of computation and monads. Inf.
Comput., 93(1), 1991.

[33] Patrick Murphy, Ashu Sabharwal, and Behnaam Aazhang.
Design of WARP: a wireless open-access research platform.
In ESPC, 2006.

[34] Myriad. MyriadRF open source wireless hardware. URL
http://myriadrf.org/.

[35] Man Cheuk Ng, Kermin Elliott Fleming, Mythili Vutukuru,
Samuel Gross, Arvind, and Hari Balakrishnan. Airblue: a
system for cross-layer wireless protocol development. In
Proceedings of the 6th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS ’10, page
4:1–4:11, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0379-8.

[36] NI. National instruments, LabVIEW. URL http://www.ni.
com/labview/.

[37] OFDM. GNU Radio OFDM implementation. URL
http://gnuradio.org/redmine/projects/gnuradio/
repository/changes/gr-digital/python/digital/
ofdm_receiver.py?rev=master.

[38] John Peterson, Paul Hudak, and Conal Elliott. Lambda in
motion: Controlling robots with haskell. In Proceedings of the
First International Workshop on Practical Aspects of Declara-
tive Languages, PADL ’99, pages 91–105, London, UK, UK,
1998. Springer-Verlag. ISBN 3-540-65527-1. URL http:
//dl.acm.org/citation.cfm?id=645769.667757.

[39] Pipes. Haskell Pipes Tutorial. URL http:
//hackage.haskell.org/package/pipes-4.0.0/
docs/Pipes-Tutorial.html.

[40] Markus Püschel, José M. F. Moura, Jeremy Johnson, David
Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz
Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code gen-
eration for DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adapta-
tion”, 93(2):232– 275, 2005.

[41] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and Suman
Banerjee. Diagnosing wireless packet losses in 802.11:
Separating collision from weak signal. In INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE,
April 2008.

[42] T. Rondeau, N. McCarthy, and T. O’Shea. SIMD program-
ming in GNURadio: Maintainable and user-friendly algorithm
optimization with VOLK. In SDR WinnComm, 2013.

[43] Saankhya. Saankhya labs, multi-standard modems. URL
http://www.saankhyalabs.com.

[44] S. Sen, R. R. Choudhury, and S. Nelakuditi. No time to
countdown: Migrating backoff to the frequency domain. In
MOBICOM, 2011.

[45] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang,
H. Wu, W. Wang, and G. Voelker. Sora: High performance
software radio using general purpose multi-core processors,
2009.

[46] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen
Wang, Yongguang Zhang, Haitao Wu, Wei Wang, and Geof-
frey M. Voelker. Sora: high performance software radio
using general purpose multi-core processors. In Proceed-
ings of the 6th USENIX symposium on {N}etworked {S}ystems
{D}esign and {I}mplementation, NSDI’09, pages 75—90,
Berkeley, CA, USA, 2009. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1558977.1558983.

http://research.microsoft.com/apps/pubs/default.aspx?id=160800
http://research.microsoft.com/apps/pubs/default.aspx?id=160800
http://research.microsoft.com/apps/video/default.aspx?id=228361
http://research.microsoft.com/apps/video/default.aspx?id=228361
http://research.microsoft.com/apps/video/default.aspx?id=228361
https://github.com/dimitriv/Ziria
https://github.com/dimitriv/Ziria
https://fairwaves.co/wp/
https://fairwaves.co/wp/
http://standards.ieee.org/getieee802/download/802.11a-1999.pdf
http://standards.ieee.org/getieee802/download/802.11a-1999.pdf
http://intrinsic.lyrtech.com/
http://intrinsic.lyrtech.com/
http://www.mathworks.co.uk/products/simulink/
http://www.mathworks.co.uk/products/simulink/
http://approjects.co.za/?big=en-us/download/details.aspx?id=11800
http://approjects.co.za/?big=en-us/download/details.aspx?id=11800
http://myriadrf.org/
http://www.ni.com/labview/
http://www.ni.com/labview/
http://gnuradio.org/redmine/projects/gnuradio/repository/changes/gr-digital/python/digital/ofdm_receiver.py?rev=master
http://gnuradio.org/redmine/projects/gnuradio/repository/changes/gr-digital/python/digital/ofdm_receiver.py?rev=master
http://gnuradio.org/redmine/projects/gnuradio/repository/changes/gr-digital/python/digital/ofdm_receiver.py?rev=master
http://dl.acm.org/citation.cfm?id=645769.667757
http://dl.acm.org/citation.cfm?id=645769.667757
http://hackage.haskell.org/package/pipes-4.0.0/docs/Pipes-Tutorial.html
http://hackage.haskell.org/package/pipes-4.0.0/docs/Pipes-Tutorial.html
http://hackage.haskell.org/package/pipes-4.0.0/docs/Pipes-Tutorial.html
http://www.saankhyalabs.com
http://dl.acm.org/citation.cfm?id=1558977.1558983
http://dl.acm.org/citation.cfm?id=1558977.1558983

[47] Colin J Taylor. Formalising and reasoning about Fudgets.
PhD thesis, University of Nottingham, 1998.

[48] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A language for streaming applications. In CC, 2002.

[49] TMS320. Texas Instruments TMS320TCI6616 Communica-
tions Infrastructure KeyStone SoC. URL http://www.ti.
com/lit/ds/sprs624d/sprs624d.pdf.

[50] USRP. Ettus Research, USRP: Universal Software Radio
Peripheral. URL http://www.ettus.com/.

[51] Volo. Volo Wireless, low-cost last mile broadband. URL
http://www.volowireless.com/.

[52] Y. Voronenko, V. Arbatov, C. Berger, R. Peng, M. Puschel,
and F. Franchetti. Computer generation of platform-adapted
physical layer software. In Proc. Software Defined Radio
(SDR), 2010.

[53] Y Voronenko, V Arbatov, CR Berger, R Peng, M Pueschel,
and F Franchetti. Computer generation of platform-adapted
physical layer software. Proceedings Software Defined Radio
(SDR), 2010.

http://www.ti.com/lit/ds/sprs624d/sprs624d.pdf
http://www.ti.com/lit/ds/sprs624d/sprs624d.pdf
http://www.ettus.com/
http://www.volowireless.com/

	Introduction
	Programming in Ziria
	Ziria stream programming abstractions
	Composition on the control path
	Composition on the data path
	Example: WiFi receiver pipeline
	Implementing processing blocks
	Executing Ziria pipelines

	Vectorization
	Cardinality analysis
	Feasible vectorization sets
	Assembling vectorization candidates

	Other Optimizations
	Evaluation
	Methodology
	Overheads of nonoptimized execution model
	Ziria optimizations
	WiFi performance

	Related work
	Conclusion

