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Abstract

Energy has become a first-class design constraint in computer sys-
tems. Memory is a significant contributor to total system power.
This paper introduces Flikker, an application-level technique to re-
duce refresh power in DRAM memories. Flikker enables develop-
ers to specify critical and non-critical data in programs and the run-
time system allocates this data in separate parts of memory. The
portion of memory containing critical data is refreshed at the regu-
lar refresh-rate, while the portion containing non-critical data is re-
freshed at substantially lower rates. This partitioning saves energy
at the cost of a modest increase in data corruption in the non-critical
data. Flikker thus exposes and leverages an interesting trade-off be-
tween energy consumption and hardware correctness. We show that
many applications are naturally tolerant to errors in the non-critical
data, and in the vast majority of cases, the errors have little or no
impact on the application’s final outcome. We also find that Flikker
can save between 20-25% of the power consumed by the memory
sub-system in a mobile device, with negligible impact on applica-
tion performance. Flikker is implemented almost entirely in soft-
ware, and requires only modest changes to the hardware.

Categories and Subject Descriptors B.3.4 [Hardware]: Memory
Structures-Reliability, Testing, and Fault-Tolerance; C.0 [Com-
puter Systems Organization]: General-Hardware/software inter-
faces

General Terms Design, Management, Reliability

Keywords Power-savings, DRAM refresh, soft errors, critical
data, allocation

1. Introduction

Energy has become a first-class design constraint in many com-
puter systems, particularly in mobile devices, clusters, and server-
farms [5, 11, 27]. In a mobile phone, saving energy can extend
battery life and enhance mobility. Recently, mobile phones have
morphed into general-purpose computing platforms, often called
smartphones. Smartphones are typically used in short-bursts over
extended periods of time [21], i.e., they are idle most of the time.
Nonetheless, they are “always-on” as users expect to resume their
applications in the state they were last used. Hence, even when the
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phone is not being used, application state is stored in the phone’s
memory to maintain responsiveness. This wastes power because
Dynamic Random Access Memories (DRAMs) leak charge and
need to be refreshed periodically, or else they will lose data.

Memory is a major part of overall system power in smartphones.
Measures of DRAM power as a fraction of overall power range
from 5-30% [6, 14] and depend on the application model, operat-
ing system, and underlying hardware. Some smartphone applica-
tion programming models, such as Android’s, emphasize reducing
application DRAM usage in idle mode [30]. Further, the memory
capacity of smartphones has been steadily increasing and, as a re-
sult, memory power consumption will be even more important in
the future. Memory consumes power both when the device is ac-
tive (active mode) and when it is suspended (standby mode). In
standby mode, the refresh operation is the dominant consumer of
power, and hence we focus on reducing refresh power in this paper.

This paper proposes Flikker,1 a software technique to save en-
ergy by reducing refresh power in DRAMs. DRAM manufacturers
typically set the refresh rate to be higher than the leakage rate of the
fastest-leaking memory cells. However, studies have shown that the
leakage distribution of memory-cells follows an exponential distri-
bution [22], with a small fraction of the cells having significantly
higher leakage rates than other cells. Hence, the vast majority of the
cells will retain their values even if the refresh rate of the memory
chip is significantly reduced. Flikker leverages this observation to
obtain power-reduction in DRAM memories at the cost of know-
ingly introducing a modest number of errors in application data.

Typical smartphone applications include games, audio/video
processing and productivity tasks such as email and web-browsing.
These applications are insensitive to errors in all but a small portion
of their data. We call such data critical data, as it is important for
the overall correctness of the application [7, 8, 32]. For example, in
a video processing application, the data-structure containing the list
of frames is more important than the output buffer to which frames
are rendered (as the human eye is tolerant to mild disruptions in
a frame). Therefore, this data structure would be considered as
critical data.

Flikker enables the programmer to distinguish between critical
and non-critical data in applications. At runtime, Flikker allocates
the critical and non-critical data in separate memory pages and
reduces the refresh rate for pages containing non-critical data at
the cost of increasing the number of errors in these pages. Pages
containing critical data are refreshed at the regular rate and are
hence free of errors. This differentiated allocation strategy enables
Flikker to achieve power savings with only marginal degradation
of the application’s reliability.

1 CRT monitors occasionally exhibited flickering, i.e., loss of resolution,
when their refresh rates were lowered—hence the name.



Our approach in Flikker fundamentally differs from existing
solutions for saving energy in low-power systems. In these solu-
tions, energy reduction is achieved by appropriately trading-off per-
formance metrics, such as throughput/latency, Quality-of-Service
(QoS), or user response time, e.g. [17, 37, 39]. In contrast, our ap-
proach explores a largeley unexplored trade-off in system design,
namely trading off energy consumption for data integrity at the ap-
plication level. By intentionally lowering hardware correctness in
an application-aware manner, we show that it is possible to achieve
significant power-savings at the cost of a negligible reduction in
application reliability.

To the best of our knowledge, Flikker is the first software
technique to intentionally introduce hardware errors for mem-
ory power-savings based on the characteristics of the application.
While we focus on mobile applications in this paper, we believe
that Flikker approach can also be applied to data-center applica-
tions (Section 9).

Aspects of Flikker make it appealing for use in practice. First,
Flikker allows programmers to control what errors are exposed to
the applications, and hence explicitly specify the trade-off between
power consumption and reliability. Programmers can define what
parts of the application are subject to errors, and take appropriate
measures to handle the introduced errors. Second, Flikker requires
only minor changes to the hardware in the form of interfaces to ex-
pose refresh rate controls to the software. Current mobile DRAMs
already allow the software to specify how much of the memory
should be refreshed (Partial Array Self-Refresh (PASR) [18]), and
we show that it is straightforward to enhance the PASR architec-
ture to refresh different portions of the memory at different rates.
Finally, legacy applications can work unmodified with Flikker, as it
can be selectively enabled or disabled on demand. Hence, Flikker
can be incrementally deployed on new applications.

We have evaluated Flikker both using analytical and experimen-
tal methods on five diverse applications representative of mobile
workloads. We find that Flikker can save between 20% to 25%
of the total DRAM power in mobile applications, with negligible
degradation in reliability and performance (less than 1%). Based
on previous study of DRAM power as a fraction of total power
consumption, this 20-25% corresponds to 1% of total power sav-
ings in a smartphone [6]. We also find that the effort required to
deploy Flikker is modest (less than half-a-day per application) for
the applications considered in the paper.

2. Flikker: Design Overview

We start with a brief overview of Flikker. Flikker requires a modest
set of simple changes to both hardware and software. For the hard-
ware portion, Flikker enhances existing DRAM architectures that
allow for a partial refresh of DRAM memory by allowing different
refresh rates for different sections in memory. For the software por-
tion, Flikker (1) introduces a new programming language construct
that allows application programmers to mark non-critical data, and
(2) provides OS and runtime support to allocate the data to its cor-
responding portion in the DRAM memory. The hardware and soft-
ware components of Flikker are explained in detail in Sections 3
and 4, respectively.

The changes required by Flikker are justified for several rea-
sons. First, the software changes required to deploy Flikker can
be easily made by application developers, who already distinguish
between critical and non-critical data implicitly (see Section 4).
Further, hardware is becoming less reliable due to trends in sili-
con manufacturing, and hence it is important to write software that
can degrade gracefully in the presence of hardware faults [4]. The
software changes to partition the application into critical and non-
critical portions can also provide resilience against naturally occur-
ring hardware faults.
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Figure 1. Simplified Diagram of DRAM Operating States.

Secondly, small hardware changes are not an inherent show-
stopper in terms of practical deployment, given that mobile phone
architectures (both hardware and software) are still in a state of
flux, with new hardware and software models being developed and
put to market regularly. For example, the Partial-Array Self-Refresh
Mode (PASR) mode on which we base Flikker was a relatively re-
cent introduction in mobile DRAMs (in 2002). We show in Sec-
tion 3 that the hardware changes we propose are relatively minor
and only involve the memory controller.

Finally, our approach allows us to explore a novel and funda-
mental trade-off in system design. Traditionally, the hardware/software
boundary in computer systems (and specifically the hardware mem-
ory) has provided a clear abstraction layer. The hardware was
assumed to provide a resilient and “correct” substrate based on
which the operating system and application can run. In Flikker, we
re-examine this assumption and consciously allow the DRAM to
violate data integrity (to a limited degree) in order to save energy.

3. Flikker Hardware

This section presents the hardware architecture of Flikker, i.e., the
Flikker DRAM (§3.2) and the impact of lowering the refresh rate
on DRAM error-rates (§3.3). We present an analytical model to
evaluate the power-savings of the Flikker DRAM in §3.4. This
model is used to determine the best refresh rates in our system
design (§3.5), and to estimate power savings in our evaluations
(§5).

3.1 Background on mobile DRAMs

Mobile phones have traditionally used SRAMs (Static Random Ac-
cess Memories) for memory. However, as memory capacity in-
creases, conventional SRAM becomes more expensive, and hence,
smartphones have adopted DRAM (Dynamic RAMs). A DRAM
memory system consists of three major components: (1) multiple
DRAM banks that store the actual data, (2) the DRAM controller
(scheduler) that schedules commands to read/write data from/to the
DRAM banks, and (3) DRAM address/data/command buses that
connect banks and the controller. The organization into multiple
banks allows memory requests issued to different banks to be ser-
viced in parallel. Each DRAM bank has a two-dimensional struc-
ture, consisting of multiple rows and columns. The usual memory
mapping is for consecutive addresses in memory to be located in
consecutive columns in the same row, and consecutive memory
rows to be located in different banks. The size of a row varies be-
tween 1 to 32 kilobytes in commodity DRAMs. In mobile DRAMs,
the row size varies from 1 to 4 kilobyes.

Figure 1 shows a simplified diagram of DRAM operating states.
DRAM could only be accessed in active states (activate/precharge).
Beside active states, several low-power states are used in different
system scenarios. Fast low-power states, which have good respon-
siveness (short wakeup time), are used in idle period during ap-
plication executions. In systems with light DRAM traffic, utilizing
these fast low-power states is usually a good power-performance
tradeoff. On the other hand, self-refresh state and deep power-down
state are used when the whole system is in standby mode. Com-



Figure 2. Flikker Bank Architecture. The DRAM bank is partitioned into
two parts, the high refresh part, which contains critical data, and the low
refresh part, which contains non-critical data. The high refresh / low refresh
partition can be assigned at discrete locations, as shown by the dashed lines.
The curly brackets on the left show a partition with 1/4 high refresh rows
and 3/4 low refresh rows.

pared with fast low-power states, self-refresh and deep power-down
has lower power consumption as well as longer wakeup time. Un-
like the self-refresh, the deep power-down mode will stop all re-
fresh operations and hence the DRAM will lose data in deep power-
down state. In the following, we will discuss details of these low-
power states.

Self-refresh: Self-refresh is a feature of low power mobile
DRAMs in which the DRAM array is periodically refreshed even
if the processor is in sleep mode. The self-refresh operation is per-
formed by dedicated hardware on the DRAM chip. The self-refresh
mode is activated only when the mobile device is in standby and
the processor is put to sleep as it incurs considerable latencies to
transition in and out of self-refresh mode. The Operating System
(OS) needs to activate self-refresh before putting the mobile device
to sleep.

Partial Array Self Refresh (PASR) is an enhancement of the
self-refresh low power state [18] in which only a portion of the
DRAM array is refreshed. DRAM cells that are not refreshed will
lose data in PASR. In a system with PASR, before switching to self-
refresh mode, the OS needs to specify the portion of the memory ar-
ray to refresh. In Micron’s mobile DDR SDRAM [18] with 4 banks,
there are five different options for PASR, full array (4 banks), half
array (2 banks), quarter array (1 bank), 1/8 array (1/2 bank), and
1/16 array (1/4 bank).

The main difference between Flikker DRAM and PASR is that
instead of discarding the data in a part of the memory array, Flikker
lowers the reliability of the data. As a result, Flikker is able to
achieve similar levels of power savings as PASR, without compro-
mising on the amount of memory available to applications.

Fast Low-power States: Mobile DRAMs also employ low-
power states during active mode to conserve power. These low-
power modes are activated even when there are brief periods of no
DRAM traffic as the latency of transitioning out of these states is
only around 10 nano-seconds. The transition to/from these modes
is performed by the DRAM controller and does not need OS inter-
vention. The power consumption in these low-power states is typi-
cally less than half of the DRAM power-consumption without any
memory accesses.

3.2 Flikker DRAM Architecture

Figure 2 illustrates a Flikker DRAM bank. In Flikker DRAM, each
bank is partitioned into two different parts, the high refresh fault-
free part and the low refresh faulty part. DRAM rows in the high
refresh part are refreshed at a regular refresh cycle time Tregular

(64 milliseconds or 32 milliseconds in most systems). The error
rate of data in these high refresh parts is negligible (similar to data
in state-of-the-art DRAM chips). On the other hand, the low refresh
part is refreshed at a much lower rate (longer refresh cycle time

extra bits

row address

counter_clk

refresh

enable config

Figure 3. Self-refresh counter in the Flikker DRAM.

Tlow) and its error rate is a function of the refresh cycle time (see
Section 3.3).

Mobile DRAMs use a hardware counter during the self-refresh
operation to remember which row to refresh next, known as the
self-refresh counter. Flikker DRAM extends this counter by a few
extra bits (see Figure 3.2) in order to support two refresh rates. The
Flikker self-refresh counter also has an additional “refresh enable”
output. The DRAM row is refreshed only when the refresh enable
bit is set to “1”. A configurable controller sets different values to
refresh enable bit based on higher bits of the row address and the
extra bits, and thus control the refresh rate of different DRAM rows.

The number of additional bits required in the self-refresh
counter is given by the ratio of Tlow to Tregular . For example,
in a system where Tlow = 16 × Tregular , the Flikker self-refresh
counter requires 4 extra bits. The refresh enable bit is always set
to “1” when the row address is a high refresh row. For low refresh
rows, the refresh enable bit is set to “1” only when the extra bits
has a predefined value (say “1111”). In the case of 1/8 high refresh,
when the extra bits are “0000” through “1110”, the refresh enable
bits is only set for row addresses with highest three bits of “000”.
When the extra bits are “1111”. The refresh enable bits is set for
all row addresses. With this configuration, the low refresh rows
(rows with “001” through “111” in highest bits of row address) are
refreshed 16 times less frequently than the high refresh rows.

3.3 Flikker DRAM Error Rates

Previous work [3, 36] has measured DRAM error rate as a function
of refresh cycle time. Bhalodia presents the per cell DRAM error
rate under different temperatures and different refresh cycles [3].
Venkatesan et al. measure the percentage of DRAM rows that are
free from errors with a low refresh rate [36]. Although these two
measurements are at different granularity (per cell versus per row),
their results are consistent with each other.

Table 1 shows the DRAM error rates used in our experiments
which are based on Bhalodia’s measurements [3]. The retention
time of DRAM cells decrease with temperature. Therefore, under
a given refresh cycle, the DRAM error rate increases with ambient
temperature. We assume an operating temperature of 48°C, which
is higher than the operating temperatures of most smartphones, and
hence our error-rates are higher than those likely to be experienced
under real conditions.

Note that the above error-rates are only a function of the re-
fresh period and temperature. In particular, the error-rates do not
depend on the duration of low refresh mode. This is because errors
in DRAM cells are primarily caused by manufacturing variations
among their retaining capacities. Thus, under a given temperature
and refresh rate, a fraction of DRAM cells loses their charge, and
this fraction is independent of how long the refresh rate is applied.

3.4 Flikker DRAM Power Model

We use an analytical model to estimate the power consumption of
the Flikker DRAM. The model is based on real power measure-
ments in mobile DDR DRAMs with PASR [18]. The self-refresh
power consumption is calculated as follows:



Refresh Cycle [s] Error Rate Bit Flips per Byte

1 4.0× 10
−8

3.2× 10
−7

2 2.6× 10
−7

2.1× 10
−6

5 3.8× 10
−6

3.0× 10
−5

10 2.0× 10
−5

1.6× 10
−4

20 1.3× 10
−4

1.0× 10
−3

Table 1. Error rate under different refresh cycle (under 48°C, data derived
from [3]).

High Refresh Size

Self-Refresh Current [mA]

PASR
Flikker

1s 10s 100s
1 0.5 0.5 0.5 0.5

3/4 0.47∗ 0.4719 0.4702 0.4700
1/2 0.44 0.4438 0.4404 0.4400
1/4 0.38 0.3877 0.3807 0.3801
1/8 0.35 0.3596 0.3509 0.3501
1/16 0.33 0.3409 0.3310 0.3301

Table 2. Self-refresh current in different PASR and Flikker configurations
(PASR current values are from [18]). ∗ This value is derived from linear
interpolation of full array (1) and half array(1/2) cases.

PFlikker =Prefresh + Pother

=Prefresh low + Prefresh high + Pother

=PL ×
Tregular

Tlow

+ Prefresh high + Pother

=(Pfull − PPASR)×
Tregular

Tlow

+ PPASR

(1)

As shown in Eq. 1, PFlikker has two components, Prefresh,
which is the power consumed by refresh operations, and Pother ,
which is the power consumed by other parts of the DRAM (e.g.
the control logic) in standby. Prefresh is proportional to the refresh
rate; while Pother is independent of the refresh rate and is constant.
Then we divide Prefresh into Prefresh high and Prefresh low,
which correspond to the refresh power consumed by the high and
low refresh parts respectively (as shown in second line of Eq. 1).
We further explicate the relationship between refresh power and
refresh cycle time by representing Prefresh low as PL (which is a
constant) times Tregular/Tlow (third line in Eq. 1).

In order to evaluate PFlikker , we consider the DRAM with
PASR and DRAM with full array refreshed (i.e., regular DRAM)
as two extreme cases of Flikker. We calculate PPASR and Pfull

by assigning Tlow = ∞ and Tlow = Tregular in the third line
of Eq. 1. With these two extremes cases, we rewrite the third line
of Eq. 1 with PPASR and Pfull (as shown in the fourth line of
Eq. 1). The underlined and double-underlined parts of the third line
in Eq. 1 are equal to the corresponding parts in the fourth line.

Table 2 summarizes the self-refresh current of different PASR
configurations and Flikker DRAM with different refresh cycle
times for the low refresh part. The self-refresh power is calculated
as self-refresh current times power supply voltage (1.8V in our ex-
periments). It is important to understand that the self-refresh power
comprises the power consumed in refreshing the DRAM array, and
the power consumed to control the refresh operations of the DRAM
chip. The former is proportional to the refresh rate, while the latter
is a constant. Therefore, the self-refresh power does not decrease
linearly with the refresh rate, but decreases and saturates at about
33%.
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Figure 4. Error rate and power saving for different refresh cycles. The
high refresh part is 1/4 of DRAM array .

3.5 Power-Reliability Trade-off

The models derived in the two previous sections are used to derive
a suitable refresh rate for Flikker. Figure 4 shows the self-refresh
power saving and DRAM error rate of different refresh cycles in
a system with 1/4 of the memory array at the high refresh rate.
In Figure 4 (top), the X-axis represents the refresh cycle time,
the Y-axis on the left represents the power-savings in self-refresh
mode, while the Y-axis on the right represents the error-rate on
a logarithmic scale. It can be observed that the DRAM error rate
increases exponentially with the DRAM refresh cycle. However,
the self-refresh power saving saturates to about 25% at a refresh
cycle time of about 1 second.

Increasing the refresh cycle beyond 1 second leads to significant
increase in the error rates (the graph is draw to log-scale). For
example, from 1 to 20 seconds, the error rate increases over 3000
times, from 4.0× 10−8 to 1.3× 10−4. However, the improvement
in power saving corresponding to the refresh cycle increase is small
(22.5% to 23.9%). On the other hand, reducing refresh cycle time
from 1 second to 0.5 seconds leads to a steep decrease in power
saving. This finding is also substantiated in Figure 4 (bottom),
which shows the power-savings as a function of the error-rate (in
log scale). Therefore, we believe that a refresh cycle of 1 second
is near-optimal, as it achieves a desirable tradeoff between power
savings and reliability. This is the value we use in our experiments.

4. Flikker Software

In this section, we describe the changes that need to be made to
software so that it can use the Flikker DRAM. Figure 5 shows the
steps involved in the operation of Flikker. First, the programmer
marks application data as critical or non-critical. Second, the run-
time system allocates critical and non-critical data to separate pages
in memory, and places the pages in separate regions of memory
(i.e., high-refresh and low-refresh respectively). Third, the Oper-
ating System (OS) configures the DRAM self-refresh counter be-
fore switching to the self-refresh mode. Finally, the self-refresh
controller refreshes different rows of the DRAM bank at different
rates depending on the OS-specified parameters. Based on Figure 5,
modifications need to be made to the application, the runtime sys-
tem and the Operating System (OS).



4.1 Application Changes

Critical data is defined as any data that if corrupted, leads to a
catastrophic failure of the application. It includes any data that
cannot be easily recreated or regenerated and has a significant
impact on the output. The concept of critical data has been used
in prior work [7, 8, 32] on error recovery. However, to the best
of our knowledge, our work is the first to leverage critical data in
applications for power savings.

Earlier studies have shown that it is intuitive for developers to
identify critical data in applications [8, 32]. This is consistent with
our observations in this paper as each application considered in the
paper took us less than a day to partition (including the time we
spent understanding it).

Reason for ease of critical data separation: We posit that ap-
plication developers make a natural distinction between critical and
non-critical data. Such a distinction is important for three reasons.
First, application developers typically partition their code into mod-
ules based on functionality. Some modules may be responsible for
the application’s core functionality and separating the data manipu-
lated by such modules from the rest of the application’s data makes
it easier to reason about their correctness. Secondly, software fails
due to a variety of different reasons (in production use), and ap-
plication developers may provide recovery and restart mechanisms
for such failures. While the operating system may provide limited
support, it is typically up to the application developer to store the
important state of the application periodically and to restart the ap-
plication from the stored state upon a failure [7]. Finally, programs
typically separate the data structures storing different parts of their
input/output space. For example, a video application will likely
store its non-critical video data separate from the critical meta-data
describing the video file.

How to identify critical data: In Flikker, the programmer
marks program variables as “critical” or “non-critical” through
type-annotations in the program’s source code. We assume that the
default type of a variable is critical, so that we can run an unmodi-
fied (legacy) application safely. An application’s memory footprint
has four components, code, stack, heap, and global data. Errors in
the code or the stack are likely to crash the application and hence,
we place code and stack data on the critical pages. Global data and
heap data, on the other hand, contain both critical and non-critical
parts. For global data, the programmer uses special keywords to
designate the non-critical part. This requires support from the com-
piler and linker, which we currently do not have (we emulate such
support). For heap data, the programmer allocates non-critical ob-
jects with a custom allocator, which involves modifying malloc
calls in the program where non-critical data objects are allocated.

Limitations: Failure to identify critical data correctly may lead
to corrupted states of applications and/or loss of data. As a result,
Flikker may not be suitable for safety critical applications, such
as bio-medical devices. However, there are a large class of appli-
cations that do not require such stringent correctness guarantees.
To protect data during application failures, programmers of many
applications already identify and protect critical data. Specifically,
some applications periodically dump critical data to persistent stor-
age (e.g., a file), while other applications introduce redundancy in
the critical data. For these applications, Flikker may not require
substantial effort from programmers. However, in many other ap-
plications, the separation between critical and non-critical data may
not be as obvious. In particular, applications in which the critical
state it tightly intertwined with the non-critical state are not good
candidates for Flikker. In such applications, there are two difficul-
ties with deploying Flikker. One is that the programmer may miss
identifying critical data, leading to corruption of critical state and
failure of the application. The second difficulty is that the program-
mer may over-annotate critical data, thereby marking non-critical
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Figure 5. Flikker system diagram.

data as critical. This leads to lost opportunities for power savings,
though the application’s reliability is not impacted. Identifying the
most effective way for the programmer to partition critical data is
outside the scope of this paper and is a topic of future work.

4.2 Runtime System Support

Flikker utilizes a custom allocator that allocates critical and non-
critical heap data on different pages. The allocator marks pages
containing non-critical data using a special bit in the page-table
entry. The allocator also ensures that either all the data in a page is
critical or all of it is non-critical, i.e., there is not mixing of critical
and non-critical data within a page.

Ideally, both heap and global data should be partitioned into
critical/non-critical parts. Our current version of Flikker does not
implement partitioning of global data as this requires compiler
support. However, as we will show in the experimental results
(Section 6), there is strong evidence that global data has similar
characteristics as heap data in terms of the relative proportion of
critical to non-critical data.

4.3 Operating System Support

In a system with Flikker, the OS is responsible for managing crit-
ical and non-critical pages. A “criticality bit” is added to the page
table entry of each page. This bit is set by the custom allocator
when allocating any data from the page, unless the data has been
designated as non-critical by the programmer. Based on the crit-
icality bit, the OS maps critical pages to the high refresh part of
the bank (top down in Figure 2), and non-critical pages to the low
refresh part (bottom up in Figure 2). Before switching to the self-
refresh mode, the OS configures DRAM registers that control the
self-refresh controller based on the amount of critical data.

Ideally, the high refresh rate portion in the bank covers only
pages containing critical data. However, this may not always be
possible due to discretization in the self-refresh mode (Section 3.4).
Therefore, the OS may end up placing more DRAM banks in high-
refresh state than absolutely necessary, leading to wasted power.
We show in Section 5 that this discretization does not significantly
impact the power-savings of Flikker.

5. Experimental Setup

In this section, we present the applications and experimental meth-
ods used to evaluate Flikker. As mentioned in Section 3, Flikker
requires minor changes to the hardware and hence we do not evalu-
ate it directly on a mobile device. Instead, we use hardware simula-
tion based on memory traces from real applications to evaluate the
performance overheads and active power consumption of Flikker.
Further, we evaluate the error-resilience of these applications by



injecting representative faults in the applications’ memory with an
error-rate corresponding to the expected rate of errors from Sec-
tion 3.3. The fault-injection experiments are carried out during the
execution of each application (to completion) on a real system. We
inject thousands of faults in each application and observe their fi-
nal outputs in order to evaluate the reliability degradation due to
Flikker. Finally, we evaluate the total power consumed by combin-
ing the active power consumption with the idle power consumption
from the analytical model.

5.1 Selected Applications

We choose a diverse range of applications to evaluate Flikker, based
on typical application categories for smartphones. Each applica-
tion’s output is evaluated using custom metrics based on its char-
acteristics. For each application, we describe the application, the
choice of critical data and the metrics for evaluating its output.

mpeg2: Multimedia applications are important for smartphones.
Many multimedia applications utilize lossy compression / decom-
pression algorithms, which are naturally error resilient. We select
mpeg2 decoder from MediaBench [26] to represent multimedia ap-
plications. We mark the input file pointer, video information, and
output file name as critical because corrupting these objects will
cause unrecoverable failures in the application. We use the Signal-
to-Noise-Ratio (SNR) to evaluate the output of the mpeg2 applica-
tion, which is a commonly-used measure of video/audio fidelity in
multimedia applications.

c4: Computer games constitute an important class of smart-
phone applications. Games usually have a save mechanism to store
their state to files. Since the game can be recovered entirely from
the saved files, the data stored to these files constitute the criti-
cal data. We select c4 [13] (known as connect 4 or four-in-a-row),
which is a turn-based game similar to chess. c4 stores its moves in
a heap-allocated array, which we mark as critical. We modify c4 to
save its moves at the end of each game, and use the saved moves to
check its output.

rayshade: Rayshade [24] is an extensible system for creating
ray-traced images. Rayshade represents a growing class of mobile
3D applications. In rayshade, objects that model articles in the
scene are marked critical as errors in these objects impact large
ranges of the output figure. As was the case with mpeg2, we use
the SNR to evaluate the output of rayshade.

vpr: Optimization algorithms may be executed on mobile
phones for a variety of common tasks, e.g., calculating driving
directions. We select vpr from SPEC2000 [35] to represent these
algorithms, as it employs a graph routing algorithm for optimiz-
ing the design of Field-Programmable Gate Arrays (FPGAs). We
choose the graph data structure as critical because any error in this
structure will crash the program. We evaluate the output of vpr by
perfoming a byte-by-byte comparison with the fault-free outputs.

parser: Natural language parsing is used in applications such
as word processing and translation. The parser application from
SPEC2000 [35] is chosen to represent this class of applications.
Parser translates the input file into the output file based on a dictio-
nary. Errors in the dictionary data are likely to affect multiple lines
in the output and hence the dictionary is marked critical. Similar to
vpr, we evaluate the results of parser by comparing the output file
with the fault-free output.

Table 3 summarizes the characteristics and evaluation metrics
of these applications.

5.2 Experimental Framework

We introduce the main components of our experimental infrastruc-
ture in this section.

Memory Footprint Analyzer: We analyze the memory foot-
print of each application in order to calculate the proportion of crit-

Application LoC Input Metric

mpeg2 10,000 mei16v2.m2v output SNR
c4 6100 N/A saved moves
rayshade 24,200 balls.ray output SNR
vpr 24,600 ref/test output file
parser 11,500 ref/test output file

Table 3. Application characterizations and the output criteria used
for evaluating Flikker. (LoC = Lines of Code)
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Figure 6. State transition diagram of “modified” bit in fault-
injection. Error is injected to the DRAM with probability “P”.

ical data. This foot-print is used to calculate power-consumption in
idle-mode. These measurements were performed by enhancing the
Pin dynamic-instrumentation framework [29].

Architectural simulator: We use a cycle-accurate architectural
simulator for evaluating the Flikker hardware. The simulator con-
tains a functional front-end based on Pin [29] and a detailed mem-
ory system model. A DRAM power model based on the system-
power calculator [19] is incorporated into the simulator. We do not
specify the physical allocation of pages among different banks in
the simulator—this is implicitly assigned depending on whether the
page is critical. The simulator takes instruction traces as inputs,
and produces as outputs estimates of the total power consumed and
the total number of processor cycles and instructions executed in
the trace. Table 4 shows the main processor and DRAM parame-
ters used by the simulator. These parameters are chosen to model a
typical smartphone with a 1GHz processor and 128 Mega-bytes of
DRAM memory.

Fault-injector: We built a fault-injector based on the Pin [29]
dynamic instrumentation framework. The injector starts the ap-
plication and executes it for an initial period. No errors are in-
jected during this period. Then a self-refresh period is inserted, af-
ter which errors are injected to the non-critical memory pages to
emulate the effect of lowering their refresh rate. In order to keep
track of the errors injected during the self-refresh period, the injec-
tor maintains a “modified” bit for each byte in the low refresh pages
denoting whether this byte has been accessed after the self-refresh
period. Before a low refresh byte is read, the corresponding modi-
fied bit is checked. If it is “0”, meaning that the byte has not been
accessed after self-refresh, a single bit is flipped in the byte with a
pre-computed probability (third column of Table 1).2 Modified bits
that correspond to target bytes of memory read or write operations
are set to “1” to prevent future injections into these bytes. Figure 6
shows the state transition diagram of the “modified” bit.

5.3 Experimental Methodology

We evaluate the performance overhead, power savings, and relia-
bility degradation due to Flikker. Figure 7 demonstrates our overall
evaluation methodology. The main steps are as follows:

2 Given the low error rates in Table 1, the probability of multiple bit flips in
each byte is extremely low, and are hence ignored.



Parameter Value

Processor single core, 1GHz
Cache 32KB IL1 and 32KB DL1, 4-way set associative, 32-byte block, 1-cycle latency
DRAM 1Gb, 4 banks, 200MHz (see [18])
Low power scheme precharge row buffer after 100ns idle; switch to fast low power state 100ns after precharge
Cache miss delay row-buffer-hit: 40ns, row-buffer-close: 60ns, row-buffer-conflict: 80ns

Table 4. Major architectural simulation parameters.
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Figure 7. Evaluation Framework.

1. First partition each application’s data into critical and non-
critical (top box of Fig. 7).

2. Obtain the memory footprint of each application and use the an-
alytical model to calculate the idle DRAM power consumption
with and without Flikker (left portion of Fig. 7).

3. Apply architectural simulation for measuring the performance
degradation and active DRAM power consumed by the appli-
cation (middle portion of Fig. 7).

4. Calculate average DRAM power consumption and the total
DRAM power saving achieved by Flikker (bottom left portion
of Fig. 7).

5. Use fault-injection to evaluate the application’s reliability under
Flikker (right portion of Fig. 7).

In the following, we describe each of the above steps in detail.
Critical Data Partitioning: We modify all 5 applications to use

Flikker’s custom allocator for allocating heap data. Our experimen-
tal infrastructure does not allow us to partition the global data into
critical and non-critical parts. To understand the impact of global
data partitioning, we consider two configurations: “conservative”,
in which all global data is critical, and “aggressive”, in which all
global data is non-critical. The configurations bound the perfor-
mance benefit and the reliability impact of partitioning the global
data. We anticipate that partitioning global data yields a power-
savings close to that of aggressive and has reliability impact close
to that of the conservative configuration, provided that the critical
data is a small fraction of all global data (in Section 6.4, we present
experimental evidence that this is indeed the case).

In the above discussion, we assumed that stack data is placed
in high-refresh state. However, in some applications, the stack
data may also be amenable to being partitioned into critical
and non-critical. To emulate this condition, we consider a third-
configuration “crazy”, where the stack and critical data are also
placed in low-refresh state. Table 5 summarizes the configurations
used for evaluating each application.

Configuration High Refresh Low Refresh

conservative
Code, Stack Noncrit-Heap
Crit-Heap, Global

aggressive
Code, Stack Global
Crit-Heap Noncrit-Heap

crazy
Code Stack, Global

Crit/Noncrit-Heap

Table 5. Configurations used to evaluate Flikker

App. Code Stack Global Crit Noncrit
Heap Heap

mpeg2 79 31 181 1 618
c4 473 21 10062 1 0
rayshade 97 10 603 2 541
vpr 114 713 4271 1739 2888
parser 88 544 1570 27 7688

Table 6. Memory footprint breakdown (number of 4kB pages).

Memory foot-print and idle-power calculator: Table 6 sum-
marizes the memory footprint break down for code, stack, global
data, critical, and non-critical heap pages. For stack and heap data,
we report the maximum number of pages used during the execu-
tion. Hence, these measurements form an upper-bound on the total
memory foot-print of the application.

We calculate the power consumed by the system in idle mode
based on the analytical model derived in Section 3.4 and the data
presented in Table 6. The refresh cycle in the low refresh portion
of memory is assumed to be 1 second. This calculation is based on
the results of the analytical model in Section 3.4. Further, the high
refresh portions in each application are rounded up to the discrete
levels in Table 2 to emulate their real-world behavior.

Architectural Simulation: We evaluate the performance and
power consumption in active mode using the hardware simulator
described in Section 5.2. For evaluating performance, we measure
the Instructions Per Cycle (IPC) of the system, and for evaluating
the power consumption, we measure the total energy consumed by
each DRAM bank and divide it by the simulation time.

All 5 applications are compiled with Microsoft Visual Studio
2008. The simulations are performed with application traces con-
sisting of 100 million instructions chosen from the approximate
middle of the execution of each application. For vpr and parser,
we use the SPEC ref inputs in architectural simulations, while for
the other applications, we choose inputs representative of typical
usage scenarios.

The main source of performance overhead due to Flikker stems
from the partitioning of application data, which can potentially
impact locality and bank-parallelism. Therefore, the overhead of
Flikker is evaluated by considering a system that employs data
partitioning (Part) with one that does not (Base). Note that the
refresh rate of Flikker plays no part in the measurement of active
power. In both cases, we assume that the DRAM aggressively
transitions to low-power states when not in use, as mentioned in
Section 3.1.



Application Scenario IPC Active Power [mW]

mpeg2
Base 1.462 4.17
Part 1.462 4.18

c4
Base 1.057 5.06
Part 1.068 5.03

rayshade
Base 1.734 4.15
Part 1.734 4.15

vpr
Base 1.772 4.14
Part 1.772 4.14

parser
Base 1.694 4.17
Part 1.695 4.16

Table 7. Performance (IPC) and Active Power Consumption of
Flikker

Power-savings calculation: We assume a mobile DRAM de-
vice having a capacity of 128 megabytes, which is conservative
compared to the memory capacity of current smartphones (e.g., the
iPhone). 3 Most of the selected applications will use far less RAM
than this space. However, in a realistic scenario, multiple applica-
tions will share the RAM space and hence it is important to ac-
count for power-savings on a per-application basis. Therefore, we
compute the proportion of critical and non-critical data for the ap-
plication, and scale it to the size of the entire DRAM. This allows
us to emulate the multiple-application scenario while considering
only one application at a time. In order to evaluate overall DRAM
power reduction, we assume that the cell phone usage profile is 5%
busy versus 95% in standby mode (self-refresh state) as assumed in
prior work [36].

Fault-injection: The fault-injection experiments are performed
using the fault-injector described in Section 5.2. Note that the in-
puts used for each application during fault-injection are the same
as those used for performance evaluation and active-power calcu-
lation (the only exceptions are vpr and parser, where we use the
SPEC test inputs for fault-injection due to the large number of tri-
als performed). When performing the fault-injection experiments,
we monitor the applications for failures, i.e., crashes and hangs.
If the application does not fail, its final output is evaluated us-
ing application-specific metrics shown in Table 3. We classify the
fault-injection results into three categories as follows, (1) perfect
(the output is identical to an error-free execution), (2) degraded
(program finishes successfully with different output), and (3) failed
(program crashes or hangs).

6. Experimental Results

We now discuss the results of experiments used to evaluate the
power savings, reliability and performance degradation with Flikker.

6.1 Performance & Active Power

Table 7 (column 2) shows the performance and active power con-
sumption of the Base and Part system scenarios. Recall that Base
represents the non-partitioned version of the application, while Part
represents the partitioned version. The results in Table 7 show that
the IPC of the Base and Part scenarios are similar for all applica-
tions (both within 1% of each other). Therefore, the performance
overhead of Flikker is negligible for the applications considered.
Further, Flikker does not significantly increase the active power
consumption of the application. In some cases, the active power
consumption is actually reduced due to the partitioning because it
increases the bank-parallelism by laying out memory differently.

3 The higher the memory capacity, the greater the power savings achieved
by Flikker.

6.2 Power Reduction

Figure 8 shows the reduction in DRAM standby power for different
applications and the three configurations in Table 5. Figure 9 shows
the overall power reduction for different applications, which are
obtained by combining the results in Figure 8 with the active power
measurements in Table 7. The following trends may be observed
from Figures 8 and 9.

• Both the standby and overall power consumed vary with the
application and the configuration. For all applications, the
crazy configuration achieves the highest power savings (25-
32% standby and 20-25% overall), followed by the aggressive
configuration (10-32 % standby and 9-25% overall) and finally
the conservative configuration (0-25% standby and 0-17% over-
all).

• The aggressive configuration achieves significant power sav-
ings in all applications except vpr. This is because the appli-
cations’ memory foot-print is dominated by global and non-
critical data, whereas in vpr the stack, code and critical data
pages constitute a sizable fraction of the total memory pages
(over 35% according to Table 6). However, the crazy configu-
ration achieves significant power savings for vpr, as the stack
and critical pages are placed in the low-refresh state.

• For mpeg2, c4 and rayshade, the aggressive and crazy config-
urations yield identical power savings (both standby and over-
all) as these applications have very few stack and critical data
pages.

• Among all applications in the conservative configuration,
parser exhibits the maximum reduction in both standby and
overall power consumption (22% and 17% respectively). This
is because parser has the largest proportion of non-critical heap
data among the applications considered, and this data is placed
in low-refresh state in the conservative configuration.

• The power savings for the c4 application in the conservative
configuration is 0% as its memory footprint is dominated by
global data pages (according to Table 6), which are placed in
high-refresh mode in the conservative configuration.

From Figure 8 and 9, Flikker achieves substantial DRAM power
savings. The actual reduction in the overall system power consump-
tion depends on the relative fraction of memory power to total sys-
tem power. Previous work [6] shows that DRAM contributes about
4% of overall power consumption of the Openmoko Neo Freerun-
ner (revision A6) mobile phone. In this case, Flikker would only
yield 1% reduction of total system energy consumption. Neverthe-
less, as DRAM power is and will continue to be a significant com-
ponent of computer systems, Flikker savings can be obtained across
the spectrum of systems, ranging from the very small (mobile de-
vices) to the very large (datacenters).

6.3 Fault Injection Results

In this section, we present the results of fault-injection experiments
to evaluate the reliability of Flikker. We first present overall results
corresponding to the error-rate for a low-refresh period of one sec-
ond, which we showed represents the optimal refresh period for
power-reliability trade-off in Section 3.4. We further evaluate the
output degradation for each application under faults. Finally, we
demonstrate the importance of protecting critical data by perform-
ing targeted fault-injections into the critical heap data.

6.3.1 Injections in both critical and non-critical data

Figure 10 shows the result of the fault-injection experiments for five
applications and three configurations with an error-rate correspond-
ing to a 1 second refresh period. Each bar in the figure represents
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Figure 8. Standby DRAM power reduction for different applica-
tions.
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Figure 9. Overall DRAM power reduction for different applica-
tions.
the result of 1000 fault-injection trials. The results are normalized
to 100% for ease of comparison.

The main results from Figure 10 are summarized as follows:

• No application exhibits failures in the conservative configura-
tion. In fact, c4, vpr, and parser, have perfect outputs in the con-
servative configuration. However, mpeg2 and rayshade have a
few runs with degraded results (about 33% for mpeg2 and 4%
for rayshade), but as we show later in the section, the degra-
dation is marginal. The degradation accurs because mpeg2 and
rayshade maintain a large output buffer in DRAM, which is
likely to accumulate errors during the self-refresh period.

• Both aggressive and crazy configurations yield worse results
than conservative for all applications. The only exception is c4,
which has a very small proportion of critical pages. These pages
are unlikely to get corrupted given the relatively low error rate
corresponding to the 1 second refresh period.

• The difference between the aggressive and crazy configurations
is small, with aggressive having slightly fewer failures and
degraded outputs. This is because the proportion of critical heap
and stack pages is relatively small, and hence the probability of
corrupting objects in these pages is very low.

• Finally, the aggressive configuration exhibits a very small num-
ber of failures across applications (except parser). This con-
firms our earlier intuition (see Section 5.3) that global data is
likely to contain a very small proportion of critical data.

As mentioned above, the conservative configuration yields de-
graded outputs in about 33% of mpeg2 executions and in about 4%
of rayshade executions. The aggressive and crazy configurations
also yield degraded output in about 40% and 20% of mpeg2 execu-
tions and 21% and 23% of rayshade executions respectively.

To further understand the extent of output degradation, we mea-
sure the quality of the video or image using measures such as the

Configuration mpeg2 rayshade

conservative 95 101
aggressive 88 72

crazy 88 73

Table 8. Average SNR of degraded output for mpeg2 and rayshade
[dB]. Larger values indicate better output quality.

(a) Original (b) 52dB

(c) Magnified orig. (d) Magnified 52dB

Figure 11. Rayshade output figures with different SNRs.

Signal-to-Noise Ratio (SNR). Table 8 shows the average SNR mea-
surements for the outputs averaged across all trials exhibiting de-
graded outputs. Note that SNR is measured in decibels (dB), a log-
arithmic unit of measurement. As can be seen from the table, the
conservative configuration yields over 95 decibels of output qual-
ity for mpeg2 and over 100 decibels for rayshade on average. The
aggressive and crazy configurations both yield SNRs of over 80
decibels for mpeg2 and over 70 decibels for rayshade.

In order to understand better the qualitative impact of output
degradation in mpeg2, we take a raw video, encode it with the
mpeg2 encoder, and decoded the result with the mpeg2 decoder.
Compared with the original video, the final output video has an
SNR of 35 decibels. This demonstrates that an SNR of 80 or above
in fact represents a video of high-quality, which we believe is ac-
ceptable for a mobile smartphone with a limited display resolution.

For rayshade, we attempt to understand the output degradation
by studying the rendered images. Figures 11 a and 11 b show the
original image and the corresponding degraded image (with a SNR
of 52 decibels). The latter is generated during a faulty execution
of rayshade. These figures are shown with a scale factor of 0.25.
As can be seen from the figure, it is almost impossible to tell the
difference between the original image and the degraded image.
However, when we magnify the images to a factor of two of the
original (Figures 11 c and 11 d), small differences among the pixels
become discernible. Therefore, even for a significantly degraded
image with SNR considerably below 70 decibels, the differences
become discernible only at high resolutions.

6.3.2 Injections into critical data only

Based on the results presented in the previous section, one may ask
whether it is indeed necessary to partition applications in order to
prevent errors in the non-critical data. We attempt to answer this
question by performing targeted injections into the critical data.
If we do not observe any failures in these experiments, then we
can conclude that preventing errors in the critical data (and hence
partitioning of data) is unnecessary for achieving high reliability.

In these experiments, we inject a single error into the critical
data during each trial because the proportion of critical data in each
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Figure 10. Fault-injection result for systems with low refresh rate of 1 second.

Application Perfect Degraded Failed SNR

mpeg2 0% 0% 100% N/A
rayshade 42% 58% 0% 39.37dB

vpr 7% 0% 93% N/A
parser 52% 10% 38% N/A

Table 9. Results of injecting a single error in the critical heap data.

application is relatively small. Further, we perform fewer trials (50-
100) than previous experiments as we obtained converging results
even within these trials.

Table 9 shows the results of these experiments normalized to
100%. We exclude c4 from the experiments, because its only crit-
ical heap data is the game record, and this is precisely the output
used for comparison. Therefore, all injections into the critical data
of c4 will result in failures.

From Table 9, mpeg2 always fails (crashes) due to the injected
errors because its output path or file pointer gets corrupted. On
the other hand, rayshade does not fail but its output quality with
even a single error in the critical data is 39 decibels on average,
which is considerably worse than the quality with errors in non-
critical data (over 70 decibels). Both parser and vpr experience
high failure rates due to a single error in the critical data - vpr even
more so than parser. The above results illustrate the importance of
protecting critical data in applications and underline the need for
data partitioning to prevent reliability degradation due to lowering
of refresh rates.

6.4 Optimal Configurations

In this section, we combine the fault-injection results (Figure 10)
with the power-savings results (Figures 8 and 9) to find the optimal
configuration in terms of the power-reliability trade-off for each
application. The main results are as follows:

• mpeg2, c4 and rayshade exhibit high overall power savings (20-
25%) and no failures in the aggressive configuration. Further,
the output quality is high (measured in SNR) for both rayshade
and mpeg2 in the aggressive configuration. Hence, the best
configuration for these applications is aggressive, suggesting
that they have a large proportion of non-critical global data (see
Section 5.3).

• For parser, the best results are achieved in the conservative
configuration. This is because parser has a large proportion of
non-critical data pages, and hence significant power savings
(about 25%) can be achieved by putting these pages in the low-
refresh mode. Further, parser experiences quite a few failures in
the aggressive configuration, which suggests that it has a sizable
chunk of critical global data.

• Finally, for vpr, the crazy configuration achieves the best overall
power savings (nearly 25%) compared to the other two configu-
rations. Further, even under the crazy configuration, the number
of failures in vpr is marginal (less than 3%). This is because vpr
has a significant proportion of stack data due to recursive calls,
which is not critical to its correct execution.

7. Related Work

This section discusses related work in the areas of both hardware
and software techniques for power reduction.

Hardware Techniques: Traditionally, hardware design tech-
niques over-provision for the worst-case behavior of the platform.
However, in the majority of common usage scenarios, the worst-
case behavior is rarely exhibited, and the approach is often waste-
ful. Therefore, a new class of techniques have emerged that pro-
vision for the average case and treat the worst case behavior as
an exception. This paradigm is referred to as Better-Than-Worst-
Case (BTWC) [1]. Razor is one of the best known examples of
the BTWC paradigm [12]. Razor reduces the energy consumption
of processors by progressively lowering their voltage until such a
point that the processor starts to experience errors due to timing
violations.

At a high-level, Flikker is also a BTWC technique. However,
unlike Razor and other BTWC technique which attempt to correct
the introduced errors in hardware, Flikker exposes the errors all
the way up the system stack to the application, thereby leveraging
power-saving opportunities that were unexposed or infeasible at
the architectural level alone. This is because many applications
are naturally resilient to errors [28, 38], and this resilience can be
exploited for power-savings through application-level techniques
such a Flikker.

RAPID [36] is a hardware-software technique that applies the
BTWC principle for DRAM refresh-power reduction. The main
idea is to characterize the leakage behavior of each physical page
and partition the pages into different classes based on their DRAM
leakage characteristics. Applications preferentially use pages from
the leakage class with the lowest leakage rate and the overall refresh
rate is set based on the highest leakage class of pages allocated
by the application (thereby preserving data integrity). In order for
RAPID to be effective, applications must have substantial slack
in memory usage. However, this assumption often does not hold
for smartphone applications which are memory-constrained and
typically operate near their peak memory capacities.

A number of other techniques modify the memory controller
hardware to reduce unnecessary or redundant refreshes of DRAM
cells [15, 23, 31]. These techniques however, require substantial
changes to the memory controller’s hardware compared to Flikker.

Finally, ESKIMO [20] is a hardware mechanism to save DRAM
power using knowledge of application semantics. Similar to Flikker,



ESKIMO modifies the memory allocator to expose details of the
application’s allocation patterns to the hardware. However, in terms
of refresh-power reduction, ESKIMO differs from Flikker in two
ways. First, ESKIMO focuses on reducing the refresh power of un-
used memory areas, while Flikker focuses on reducing the refresh
power of the used memory areas. Second, ESKIMO attempts to
preserve data integrity in the allocated areas, and hence has only
limited opportunities for saving refresh-power (6 to 10%).

Software Techniques: Recently, a number of software-based
techniques have been proposed that trade-off reliability for energy
savings [2, 10, 16, 34]. These techniques share the same goal as
Flikker, namely to reduce hardware reliability in an application-
specific manner in order to achieve power savings. We discuss the
techniques further in this section and then discuss the differences
with Flikker.

Fluid-NMR [34] performs N-way replication of applications in
a multi-core processors for tolerating errors due to reductions in
voltage-levels of processors. The parameter N is varied based on
the application’s ability to tolerate errors. Relax is a technique to
save computational power by exposing hardware errors to software
in specified regions of code [10]. Relax allows programmers to
mark certain regions of the code as “relaxed”, and lowers the pro-
cessor’s voltage and frequency below the critical threshold when
executing such regions, thereby allowing errors to occur during
computation. Green [2] trades off Quality-of-Service (QoS) for
energy efficiency in server and high-performance applications re-
spectively. Green allows programmers to specify regions of code in
which the application can tolerate reduced precision. Based on this
information, the Green system attempts to compute a principled ap-
proximation of the code-region (loop or function body) to reduce
processor power. Code perforation [16] is similar to Green, except
that it attempts to infer the approximation code regions based on
acceptance criteria provided by the user. Further, code perforation
monitors the application at runtime and adapts the inference mech-
anism based on the application’s behavior.

The above techniques are very similar to Flikker in their overall
objectives. However, they differ from Flikker in two ways. First,
they are task-centric and/or code-centric whereas Flikker is data-
centric. In other words, the techniques require programmers to
identify regions of code where errors are allowed (code perfora-
tion infers such regions automatically [16]), while Flikker requires
programmers to identify data items where errors are allowed, i.e.,
non-critical data. We believe that it is more intuitive for program-
mers to identify non-critical data as data items often map directly
to applications’ outputs. Second, the above techniques target pro-
cessor power reduction, while Flikker targets memory power re-
duction, which involves a different set of trade-offs and is hence
orthogonal to the techniques.

In work submitted concurrently with our own, Salajegheh et al.
propose “Half-wits” to save Flash power consumption by operating
Flash chips at a lower voltage level and correcting errors with
software techniques [33]. However, Half-wits fail to exploit the
full potential of power reduction because it provides same level of
reliability to both critical and non-critical data. The combination of
Half-wits and Flikker will achieve more power savings.

8. Alternatives to Flikker

In this section, we consider alternative technologies to Flikker and
qualitatively discuss the relative costs and benefits of the Flikker
technique vis-a-vis these technologies.

Flash memory is predominantly used in smartphones as sec-
ondary storage. Flash memory is durable and does not need to be
periodically refreshed. Hence it can be used to store the applica-
tion’s data before the smartphone transitions into sleep mode. Un-
fortunately, Flash memory read and write times are an order of

magnitude higher than DRAM’s, with the result that it is consider-
ably slower read/write the contents of entire DRAM to memory. For
a smartphone with 128 megabytes of DRAM and 16 megabytes per
second effective Flash bandwidth, paging the whole main memory
from Flash requires 8 seconds. Since memory capacity scales faster
than bandwidth, this delay is likely to increase in future smart-
phones. While it is possible to accelerate the process by writing out
only selected portions of the memory state, the challenges in doing
so are similar to those faced by Flikker. In particular, the program-
mer must identify critical data in the application and be prepared to
restore the application based only on the critical data.

Phase-Change Memory (PCM) is an emerging technology
that offers better write performance and longer lifetime than Flash.
Some recent proposals [25] have called for the partial replacement
of DRAMs with PCMs in mobile devices. However, due to its over-
head in dynamic power and access latency, PCM is not expected
to completely replace DRAMs, but instead to be used for high-
endurance but infrequently accessed data [25]. Flikker can also be
applied in this context by storing the critical data only on PCM
memory. This will allow the refresh rate of the entire DRAM array
to be reduced rather than partition the array into the high-refresh
and low-refresh part as done by Flikker. This is an avenue for fu-
ture investigation.

ECC memory is widely used in systems that require extreme
relibility. To enable error correction, ECC memory employs both
extra storage and logic, which consumes power. As a result, ECC
memory is not suitable for power-constrained systems. To the best
of our knowledge, fault-tolerant refresh reduction [22] is the only
technique that utilizes ECC memory for refresh power reduction.
However, this technique targets the system scenario where only
idle power consumption is considered. Hence, dynamic power con-
sumed in the logic circuit is eliminated from the power overhead
of ECC in this technique. An additional factor to consider is the
increased cost of ECC memory, which may be a significant bot-
tleneck to its adoption in commodity systems. Studies have shown
that this cost may be as high as 25% in some systems [9].

9. Conclusion and Future Work

We present Flikker, a novel technique to save refresh power in
DRAMs. Flikker enables programmers to partition the application
data based on its criticality and lowers the refresh rate of the part
of memory containing the non-critical data to save power. This
separation introduces a modest amount of data corruption in the
non-critical data, which is tolerated by the natural error-resilience
of many applications. We prototyped the Flikker approach on a
mobile device (using simulation), and find that it saves between
20-25% of total DRAM power in memory systems with less than
1% performance degradation and almost no loss in application
reliability. Flikker represents a novel tradeoff in systems design,
namely trading off hardware reliability for power-savings in an
application-aware manner, as hardware only needs to be as reliable
as the software requires.

Flikker can also be applied to data-center applications because
they, (1) exhibit high variations in workloads and have considerable
periods of inactivity, (2) consume significant power in idle-mode
due to over-engineering, and (3) are inherently error-resilient and
do not have to be 100% accurate [2]. Understanding the benefits of
Flikker in this domain is a direction for future research.
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