
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Moneta: A Storage System for Fast Non-Volatile Memories

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Adrian Michael Caulfield

Committee in charge:

Professor Steven Swanson, Chair
Professor Rajesh Gupta
Professor Paul Siegel
Professor Dean Tullsen
Professor Geoff Voelker

2013

Copyright

Adrian Michael Caulfield, 2013

All rights reserved.

The Dissertation of Adrian Michael Caulfield is approved and is accept-

able in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1

Chapter 2 Technologies and Trends . 8
2.1 Hard Disks . 8
2.2 NAND Flash Memory . 9
2.3 Phase Change RAM . 11
2.4 Spin-Torque MRAM and the Memristor . 12
2.5 Trends in Storage Technology . 13

Chapter 3 The Moneta Kernel Stack . 17
3.1 The Moneta prototype . 18

3.1.1 Moneta array architecture . 19
3.1.2 Implementing the Moneta prototype . 21

3.2 Baseline Moneta performance . 22
3.3 Software Optimizations . 24

3.3.1 IO scheduler . 24
3.3.2 Issuing and completing IO requests . 27
3.3.3 Avoiding interrupts . 28
3.3.4 Other overheads . 29

3.4 Tuning the Moneta hardware . 29
3.4.1 Read/Write bandwidth . 29
3.4.2 Balancing bandwidth . 30
3.4.3 Non-volatile memory latency . 31
3.4.4 Moneta power consumption . 32

3.5 Evaluation . 34
3.5.1 Microbenchmarks . 36
3.5.2 Applications . 37

3.6 Related work . 40

iv

3.7 Summary . 42

Chapter 4 User Space Access . 44
4.1 System overview . 46

4.1.1 Channels . 48
4.1.2 The user space driver . 50
4.1.3 The file system . 50

4.2 Related Work . 52
4.2.1 Virtualization . 52
4.2.2 User space IO . 54
4.2.3 Protection and translation . 55

4.3 Moneta-D Implementation . 56
4.3.1 The baseline Moneta hardware . 58
4.3.2 Virtual channels . 60
4.3.3 Translation and protection . 62
4.3.4 Completing requests and reporting errors 68

4.4 Results . 72
4.4.1 Operation latency . 72
4.4.2 Raw bandwidth . 73
4.4.3 Application level performance . 76
4.4.4 Asynchronous IO . 79

4.5 Summary . 80

Chapter 5 Distributed Storage . 83
5.1 Motivation . 85

5.1.1 Storage overheads . 86
5.1.2 The Impact of Fast SSDs . 87

5.2 QuickSAN . 89
5.2.1 QuickSAN Overview . 89
5.2.2 The QuickSAN SSD and NIC . 91
5.2.3 QuickSAN software . 95

5.3 Related Work . 96
5.4 Results . 98

5.4.1 Configurations . 98
5.4.2 Latency . 99
5.4.3 Bandwidth . 101
5.4.4 Scaling . 102
5.4.5 Replication . 103
5.4.6 Sorting on QuickSAN . 104
5.4.7 Energy efficiency . 107
5.4.8 Workload consolidation . 107

5.5 Summary . 109

v

Chapter 6 Summary . 111

Appendix A Moneta Hardware . 117
A.1 Moneta Overview . 117

A.1.1 Registers . 119
A.1.2 DMA . 122

A.2 Request Pipeline . 123
A.2.1 Virtualization . 124
A.2.2 Protection . 124
A.2.3 Request Queues . 125
A.2.4 Transfer Buffers and Scheduler . 126

A.3 Host-Interface . 126
A.3.1 Completing Requests in Hardware . 127

A.4 Ring Network . 127
A.5 Memory Controllers . 129

A.5.1 Non-Volatile Memory Emulation . 129
A.6 Ethernet Network . 131
A.7 Summary . 133

Bibliography . 136

vi

LIST OF FIGURES

Figure 2.1. Technology Software Overheads . 13

Figure 2.2. Software Contribution to Latency . 14

Figure 3.1. The Moneta System . 19

Figure 3.2. Moneta Bandwidth Measurements . 23

Figure 3.3. Latency Savings from Software Optimizations 26

Figure 3.4. Managing Long-latency Non-volatile Memories 30

Figure 3.5. Storage Array Performance Comparison . 35

Figure 4.1. System Overview . 47

Figure 4.2. Controller Architecture . 58

Figure 4.3. Component Latencies . 59

Figure 4.4. Extent Merging to Alleviate Permission Table Contention 67

Figure 4.5. Completion Technique Bandwidth . 70

Figure 4.6. Completion Technique Efficiency . 71

Figure 4.7. Write Access Latency . 72

Figure 4.8. File System Performance - Reads . 75

Figure 4.9. File System Performance - Writes . 75

Figure 4.10. Workload Scalability . 78

Figure 4.11. Asynchronous Bandwidth . 79

Figure 4.12. Asynchronous CPU Efficiency . 80

Figure 5.1. Existing SAN Architectures . 87

Figure 5.2. Shifting Bottlenecks . 88

Figure 5.3. QuickSAN Configurations . 90

vii

Figure 5.4. QuickSAN’s Internal Architecture . 92

Figure 5.5. QuickSAN Bandwidth . 100

Figure 5.6. QuickSAN Bandwidth Scaling . 100

Figure 5.7. The Impact of Replication on Bandwidth . 100

Figure 5.8. Sorting on QuickSAN . 103

Figure 5.9. Sorting on QuickSAN . 106

Figure 5.10. QuickSAN Energy Efficiency . 106

Figure 5.11. Application-level Efficiency . 108

Figure A.1. The Moneta System . 118

Figure A.2. Request Pipeline Components . 123

Figure A.3. Router Component . 128

Figure A.4. Network Interface . 131

viii

LIST OF TABLES

Table 3.1. Latency Savings from Software Optimizations 25

Table 3.2. Moneta Power Model . 34

Table 3.3. Storage Arrays . 35

Table 3.4. IO Operation Performance . 36

Table 3.5. Benchmarks and Applications . 38

Table 3.6. Workload Performance . 39

Table 4.1. Moneta-D Control Interfaces . 57

Table 4.2. Component Latencies . 64

Table 4.3. Benchmarks and Applications . 74

Table 4.4. Workload Performance . 77

Table 5.1. Software and Block Transport Latencies . 85

Table 5.2. QuickSAN Latency . 99

Table A.1. Moneta PCIe Registers - Channel 0 . 119

Table A.2. Moneta PCIe Registers - Untrusted Channels 120

Table A.3. Packet Format . 133

ix

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Steven Swanson for his support as the

chair of my committee. Throughout my entire graduate school experience, including

many papers and long nights, his guidance and encouragement has brought the best out

of me and helped me to achieve my goals.

I would also like to acknowledge the other members of the Non-volatile Systems

Lab, without whom my research would have no doubt taken fives times as long. Special

thanks to Todor Mollov, Joel Coburn, Ameen Akel, Arup De, Alex Eisner, and Trevor

Bunker for their extensive help with the Moneta hardware.

Thanks also to Professor Goeff Voelker for his guidance and support on several

of the key works that make up this dissertation. The rest of my committee also provided

valueable comments and feedback, for which I am greatful.

I want to thank my parents and brother for their support and advice. They always

made sure I had everything I needed throughout all of my schooling.

My wonderful wife, Laura Caulfield, has provided immesurable support and

encouragement during our shared adventure through graduate school.

Chapters 1 and 2 and Appendix A contain material from “Understanding the

Impact of Emerging Non-Volatile Memories on High-Performance, IO-Intensive Com-

puting”, by Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel,

Jiahua He, Arun Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson,

which appears in Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, (SC ’10). The dissertation

author was the primary investigator and author of this paper. The material in Chapters 1

and 2 and Appendix A is copyright c©2010 by the IEEE.

Chapters 1, 2, and 5 and Appendix A contain material from “QuickSAN: A

Storage Area Network for Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield

x

and Steven Swanson, which appears in ISCA ’13: Proceeding of the 40th Annual Interna-

tional Symposium on Computer Architecture. The dissertation author was the primary

investigator and author of this paper. The material in Chapters 1, 2, and 5, and Ap-

pendix A is copyright c©2013 by the Association for Computing Machinery, Inc. (ACM).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapters 1, 2, and 4 and Appendix A contain material from “Providing Safe,

User Space Access to Fast, Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov,

Louis Eisner, Arup De, Joel Coburn, and Steven Swanson, which appears in ASPLOS

’12: Proceedings of the 17th International Conference on Architectural Support for

Programming Languages and Operating Systems. The dissertation author was the

primary investigator and author of this paper. The material in Chapters 1, 2, and 4 and

Appendix A is copyright c©2012 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

xi

permissions@acm.org.

Chapters 1, 2, and 3, and Appendix A contain material from “Moneta: A High-

Performance Storage Array Architecture for Next-Generation, Non-Volatile Memories”,

by Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and

Steven Swanson, which appears in Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, (MICRO ’43). The dissertation author

was the primary investigator and author of this paper. The material in Chapters 1, 2, and

3 and Appendix 3 is copyright c©2010 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

xii

VITA

2007 Bachelor of Arts, University of Washington

2007–2013 Research Assistant, University of California, San Diego

2010 Master of Science, University of California, San Diego

2011 Candidate of Philosophy, University of California, San Diego

2013 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Adrian M. Caulfield and Steven Swanson. “QuickSAN: A Storage Area Network for Fast,
Distributed, Solid State Disks”, In ISCA ’13: Proceeding of the 40th Annual International
Symposium on Computer Architecture, June 2013.

Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De, Joel Coburn, and Steven
Swanson. “Providing Safe, User Space Access to Fast, Solid State Disks”, In Proceeding
of the 17th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, March 2012.

Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven Swan-
son. “Onyx: A Prototype Phase-Change Memory Storage Array”, In Proceedings of the
3rd USENIX conference on Hot topics in storage and file systems, HotStorage’11, June
2011.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories”, In ASPLOS ’11: Proceeding of the 16th
International Conference on Architectural Support for Programming Languages and
Operating Systems, March 2011.

Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua He, Arun
Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson. “Understanding
the Impact of Emerging Non-Volatile Memories on High-Performance, IO-Intensive
Computing”, In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, 2010.

Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and
Steven Swanson. “Moneta: A High-Performance Storage Array Architecture for Next-
Generation, Non-Volatile Memories”, In Proceedings of the 2010 43rd Annual IEEE/ACM

xiii

International Symposium on Microarchitecture, MICRO ’43, 2010.

Sungjin Lee, Kermin Fleming, Jihoon Park, Keonsoo Ha, Adrian M. Caulfield, Steven
Swanson, Arvind, and Jihong Kim. “BlueSSD: An Open Platform for Cross-layer Ex-
periments for NAND Flash-based SSDs”, In Proceedings of the 2010 Workshop on
Architectural Research Prototyping, 2010.

Laura M. Grupp and Adrian M. Caulfield and Joel Coburn and John Davis and Steven
Swanson. “Beyond the Datasheet: Using Test Beds to Probe Non-Volatile Memories’
Dark Secrets”, In IEEE Globecom 2010 Workshop on Application of Communication
Theory to Emerging Memory Technologies (ACTEMT 2010), 2010.

Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. “Gordon: An Improved
Architecture for Data-Intensive Applications”, IEEE Micro, 30(1):121–130, 2010.

Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. “Gordon: Using Flash
Memory to Build Fast, Power-Efficient Clusters for Data-Intensive Applications”, In
ASPLOS ’09: Proceeding of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2009.

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi,
Paul H. Siegel, and Jack K. Wolf. “Characterizing Flash Memory: Anomalies, Obser-
vations, and Applications”, In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, December 2009.

xiv

ABSTRACT OF THE DISSERTATION

Moneta: A Storage System for Fast Non-Volatile Memories

by

Adrian Michael Caulfield

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2013

Professor Steven Swanson, Chair

Over the last few decades, storage performance has stagnated in comparison to the

performance of the rest of the system. Over this time, system designers have continued

to add additional layers of abstraction and optimization to the storage hierarchy in an

attempt to hide and optimize accesses to high-latency storage. Emerging non-volatile

memory technologies promise many orders of magnitude increases in storage array

performance compared to existing storage technologies, but the thick layers of software

built on the assumption that storage is slow risk squandering the full potential of these

new devices.

xv

This dissertation describes a prototype high-performance storage array, called

Moneta, designed for next-generation non-volatile memories, such as phase-change mem-

ory, that offer near-DRAM performance. Moneta allows us to explore the architecture

of the storage array, the impact of software overheads on performance, the effects of

non-volatile technology parameters on bandwidth and latency, and the ultimate benefit to

applications.

Using Moneta, we show that system software can be optimized to expose fast

storage with minimal latency overheads. Moneta reduces software overheads by 62%

for 4 KB operations through the operating system, speeding up a range of file system,

paging, and database workloads by up to 8.7× compared to flash-based SSDs.

Moneta-Direct extends Moneta by refactoring trusted code throughout the IO

stack. This allows applications to bypass the operating system and file system entirely

on most accesses, further reducing IO overheads by 58% and increasing throughput by

7.6×. Moneta-Direct demonstrates the importance of redesigning the IO stack to work

efficiently with emerging fast non-volatile storage.

Finally, a further modification to Moneta allows us to explore the performance

of distributed storage networks. These networks are integral parts of building scalable

storage solutions. By integrating a low-latency network directly into the SSD, we can

reduce the costs of accessing remote storage by up to 95% compared to commonly used

higher-latency remote storage and network protocol layers.

Overall, Moneta demonstrates the critical need to continue to redesign system

architectures to make the best use of fast non-volatile memory technologies.

xvi

Chapter 1

Introduction

Emerging fast, non-volatile technologies such as phase change, spin-transfer

torque, and memristor memories make it possible to build storage devices that are orders

of magnitude faster than even the fastest flash-based solid-state disks (SSDs). These

technologies will rewrite the rules governing how storage hardware and software interact

to determine overall storage system performance. In particular, software overheads

that used to contribute marginally to latency (because storage hardware was slow) will

potentially squander the performance that these new memories can provide.

For many years, the performance of persistent storage (i.e., disks) has lagged

far behind that of microprocessors. Since 1970, microprocessor performance grew by

roughly 200,000×. During the same period, disk access latency has fallen by only 9×

while bandwidth has risen by only 163× [104, 43].

The emergence of non-volatile, solid-state memories (such as NAND flash and

phase-change memories, among others) has signaled the beginning of the end for painfully

slow non-volatile storage. These technologies will potentially reduce latency and increase

bandwidth for non-volatile storage by many orders of magnitude, but fully harnessing

their performance will require overcoming the legacy of disk-based storage systems.

Chapter 2 provides some background on the various storage technologies and the trends

driven by these new technologies.

1

2

Emerging storage technologies beyond flash have several note-worthy benefits

when compared against both disk drives and flash based SSDs. First, the performance

potential of the new technologies is far greater than both disks and flash, with SSD level

accesses shrinking to just a few microseconds, compared to hundreds of microseconds for

flash and milliseconds for disk based storage. Second, these devices have much higher

endurance than flash memory and require very limited management and wear-leveling

algorithms. Finally, the new memories offer the possibility of byte-addressable, in-place

updates, potentially changing the way we access and treat storage. In many ways, one

can think of these new technologies as non-volatile DRAM, with similar interfaces and

projected performance within 2-3 × of DRAM.

In order to fully exploit these technologies, we must overcome the decades of

hardware and software design decisions that assume that storage is slow. The hardware

interfaces that connect individual disks to computer systems are sluggish (∼300 MB/s

for SATA II and SAS, 600 MB/s for SATA 600) and connect to the slower “south bridge”

portion of the CPU chip set [46]. RAID controllers connect via high-bandwidth PCIe, but

the low-performance, general-purpose microprocessors they use to schedule IO requests

limit their throughput and add latency [38].

Software also limits IO performance. Overheads in the operating system’s IO

stack are large enough that, for solid-state storage technologies, they can exceed the

hardware access time. Since it takes ∼20,000 instructions to issue and complete a 4 KB

IO request under standard Linux, the computational overhead of performing hundreds of

thousands of IO requests per second can limit both IO and application performance.

This dissertation explores the design of both a prototype storage array, called

Moneta, targeting these emerging non-volatile memory technologies, as well as the

system-software design necessary to fully utilize such a device. Moneta allows us

to explore the architecture of the storage array, the impact of software overheads on

3

performance, the effects of non-volatile technology parameters on bandwidth and latency,

and the ultimate benefit to applications. We have implemented Moneta using a PCIe-

attached array of FPGAs and DRAM. The FPGAs implement a scheduler and a distributed

set of configurable memory controllers. The controllers allow us to emulate fast non-

volatile memories by accurately modeling memory technology parameters such as device

read and write times, array geometry, and internal buffering. The Moneta hardware design

is discussed through the dissertation and covered in extensive detail in Appendix A.

Achieving high performance in Moneta requires simultaneously optimizing its

hardware and software components. In Chapter 3, we characterize the overheads in

the existing Linux IO stack in detail, and show that a redesigned IO stack combined

with an optimized hardware/software interface reduces IO latency by nearly 2× and

increases bandwidth by up to 18×. Tuning the Moneta hardware improves bandwidth by

an additional 75% for some workloads.

Chapter 3 also explores the impact of non-volatile memory performance and

organization on Moneta’s performance and energy efficiency. Using a range of IO bench-

marks and applications, we characterize Moneta’s performance and energy efficiency,

and compare them to several other storage arrays.

While Chapter 3 explores the operating system level performance of Moneta,

application and file-system performance still leave much room for improvement. Chap-

ter 4 introduces Moneta Direct (Moneta-D), a second iteration of our prototype SSD

that removes operating- and file-system costs by transparently bypassing both, while

preserving their management and protection functions. These costs account for as much

as 30% of the total latency of a 4 KB request, and can reduce sustained throughput by

85%.

Using a virtualized device interface, untrusted user space library and refactored

kernel I/O stack, Moneta-D allows any unmodified application to directly talk to the

4

storage array for most file data accesses. Moneta-D maintains the operating and file-

system control over protection policy by moving the policy enforcement into the hardware,

but requiring the trusted operating system code to setup and maintain the protection

policy for the hardware.

Chapter 4 also includes an evaluation of the performance of Moneta-D and some

of the key design decisions it includes. For example, we explore several ways in which

Moneta-D trades off between CPU overhead and performance using different notification

techniques to signal to applications that I/O requests have completed. We use a set of

I/O benchmarks and database workloads and show that Moneta-D provides up to 5.7×

performance improvements for small databases and can reduce small I/O overheads by

as much as 64%.

Modern storage systems rely on complex software and interconnects to provide

scalable, reliable access to large amounts of data across multiple machines. In conven-

tional, disk-based storage systems the overheads from file systems, remote block device

protocols (e.g., iSCSI and Fibre Channel), and network stacks are tiny compared to the

storage media access time, so software overheads do not limit scalability or performance.

Systems like Moneta and Moneta-D change this landscape completely by dra-

matically improving storage media performance. As a result, software shifts from being

the least important component in overall storage system performance to being a critical

bottleneck.

The software costs in scalable storage systems arise because, until recently,

designers could freely compose existing system components to implement new and

useful storage system features. For instance, the software stack running on a typical,

commodity storage area network (SAN) will include a file system (e.g., GFS [94]), a

logical volume manager (e.g., LVM), remote block transport layer client (e.g., the iSCSI

initiator), the client side TCP/IP network stack, the server network stack, the remote

5

block device server (e.g., the iSCSI target), and the block device driver. The combination

of these layers (in addition to the other operating system overheads) adds 288 µs of

latency to a 4 kB read. Hardware accelerated solutions (e.g., Fibre Channel) eliminate

some of these costs, but still add over 90 µs per access.

Chapter 5 extends Moneta’s low latency direct, user-space access into large dis-

tributed storage area networks. It describes a new SAN architecture called QuickSAN.

QuickSAN re-examines the hardware and software structure of distributed storage sys-

tems to minimize software overheads and let the performance of the underlying storage

technology shine through.

QuickSAN improves SAN performance in two ways. First, it provides a very low-

latency, hardware-accelerated block transport mechanism (based on 10 Gbit ethernet) and

integrates it directly into an SSD. Second, it extends Moneta-D’s OS bypass mechanism

to allow an application to access remote data without (in most cases) any intervention

from the operating system while still enforcing file system protections.

Finally, Chapter 6 concludes this dissertation and summarizes the findings from

the preceding chapters.

Acknowledgements

This chapter contains material from “Understanding the Impact of Emerging

Non-Volatile Memories on High-Performance, IO-Intensive Computing”, by Adrian

M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua He, Arun

Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson, which appears in

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, (SC ’10). The dissertation author was the

primary investigator and author of this paper.

This chapter contains material from “Moneta: A High-Performance Storage Array

6

Architecture for Next-Generation, Non-Volatile Memories”, by Adrian M. Caulfield,

Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, which

appears in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (MICRO ’43). The dissertation author was the primary investigator

and author of this paper. The material in this chapter is copyright c©2010 by the Associa-

tion for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Providing Safe, User Space Access to Fast,

Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De,

Joel Coburn, and Steven Swanson, which appears in ASPLOS ’12: Proceedings of the

17th International Conference on Architectural Support for Programming Languages

and Operating Systems. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2012 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

7

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “QuickSAN: A Storage Area Network for

Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield and Steven Swanson,

which appears in ISCA ’13: Proceeding of the 40th Annual International Symposium on

Computer Architecture. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2013 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapter 2

Technologies and Trends

This chapter provides background on current and future storage technologies,

and the trends in performance that motivate the rest of the work in this dissertation. We

begin with brief introductions to the relevant technologies, and then discuss the broader

bandwidth, latency, and energy trends present across the devices.

2.1 Hard Disks

Hard disks have been the mass storage technology of choice for the last four

decades. Disks provide high-density, high-reliability storage with good sequential access

performance. However, disk performance has not kept pace with increases in processor

performance. Since 1970 processor performance has increased nearly 200,000× while

disk bandwidth increased by 163× and disk latency improved by only 9× [43, 104].

Disks store data on stacks of rotating magnetic platters. Disks store and retrieve

data from each side of the platters using a sensor, or head, on the end of an arm. The head

detects the polarity of the magnetic field on the platter and translates it into bits of data.

Similarly, during a write, the head alters the polarity of the field to store data. The arm

moves linearly across the platters and, in combination with the rotation of the platters,

allows data storage at all points on the surface. The delay during the linear movement of

the arm is known as the seek latency of a disk drive, while the disk rotation is known as

8

9

the rotational delay.

The notable characteristics of disks for this dissertation are their large access

latencies (typically 5 to 7 ms) resulting from rotational delay and linear arm movement

(seek time) as the head pans to the correct track. Disk bandwidth is also an important

characteristic: bandwidth for a single disk ranges between 500 KB/s on random accesses

to 138 MB/s during large sequential accesses [106].

Disk characteristics are now well understood and optimizations throughout the IO

stack make performance slightly better, but most applications treat storage as something to

access as infrequently as possible. For those applications that must access large amounts

of data, such as databases, disk performance severely limits application performance.

More recent memory technologies eliminate the fundamentally slow aspects of disk

storage since they have no moving parts enabling uniform access latencies regardless of

the ordering of requests.

2.2 NAND Flash Memory

Flash memory, specifically NAND flash memory, is a non-volatile solid state

storage technology. Flash has been around for many years, but only within the last

5 to 7 years has its density increased sufficiently to make it a viable primary storage

medium. NAND flash forms the basis of most commercial solid-state storage devices

including solid-state disks, USB “thumb” drives, and storage media for cameras and

portable devices.

Flash stores bits by trapping electrons on a ”floating” gate in a transistor. The

trapped charge alters the voltage required to ”turn on” the transistor. To trap electrons on

the gate, a large voltage is applied, causing electrons to tunnel through the insulator onto

the gate. Current flash can use two, four, or eight charge levels on the floating gate. In

the first case, each cell stores one bit of data, this is known as a Single Level Cell (SLC).

10

The later two are Multi-Level Cell (MLC) and Triple-Level Cell (TLC) and store two

and three bits per cell, respectively.

NAND flash typically groups from 2 KB to 8 KB into a page and then 64 to 256

pages into a block. Reads and programs operate at page granularity, while erases occur at

the block level. To maintain data integrity flash requires that each page receives at most

one programming operation between erases.

Programming and erasing flash puts significant stress on the cells, which can

eventually cause programming or erasing to fail. Modern NAND flash chips have a

maximum erase count of between 3,000 (TLC) and 100,000 (SLC) cycles per block. This

is the number of erase-program cycles that the chip can sustain before an unacceptable

level of wear occurs and too many bit errors occur.

Flash Translation Layers (FTL) provide a wear management scheme to balance

the number of erases each block performs. The FTL adds a layer of indirection between

the sectors requested by the operating system and the physical address of the data stored

in memory. This enables blocks of data to be moved around on the flash device to

distribute wear. Without the FTL, blocks could potentially wear out at uneven rates,

necessitating capacity decreases or device failure.

Several types of mass storage devices using flash memory are currently available.

One is a direct hard disk replacement, connecting to a Serial ATA (SATA) or Serially

Attached SCSI (SAS) bus. The other connects flash memory to a PCI express (PCIe) bus,

enabling higher bandwidth and lower latency accesses [29, 47].

We have measured PCIe attached flash SSDs sustaining latencies of 68 µs and

bandwidth of 250 MB/s on a random 4 KB read workload.

In summary, the main differences between flash memory and disks are three fold.

First, the solid state nature of flash eliminates the address dependent seek latencies found

in disks due to the mechanical motion of the disk arm. Second, flash requires the use

11

of a FTL to manage the lifetime of each of the blocks of data in a flash device. Finally,

access latencies in flash are operation dependent, affecting the way requests should be

scheduled for flash memory.

2.3 Phase Change RAM

Phase Change Random Access Memory (PCRAM) stores bits not with electrical

charge, but by manipulating the resistive properties of a material. To program a bit,

PCRAM memory heats a small amount of chalcogenide (the material used in recordable

CD-ROMs) and then cools it either slowly or quickly, depending on the value being

programmed [9]. The different cooling rates create different structural patterns in the

material, each with differing electrical resistance. To read a bit back, PCRAM passes

current through the material, and depending on how quickly the chalcogenide cooled,

encounters either high resistance or low resistance. PCRAM is bit alterable, meaning

that each of the bits can be toggled independently, removing the need for the extra erase

operation needed for flash memory.

PCRAM is projected to eventually match DRAM’s latency and bandwidth, con-

tinuing recent trends of fast density and performance increases, and may become a viable

technology to replace DRAM as a main memory technology [53]. The ITRS roadmap

projects a PCRAM write time of less than 50 ns by 2024 [2]. For this work we assume

PCRAM latencies of 69.5 ns and 215 ns as projected by [6].

PCRAM’s bit alterability makes it better suited for replacing main memory in

systems. However, since writes to storage often occur in larger blocks, having byte

addressable memory is not necessarily a benefit when used as storage, especially if it

incurs additional costs.

PCRAM removes many of the restrictions that flash imposes and eases oth-

ers. Unlike Flash, PCRAM is byte addressable and requires no erase operation. Al-

12

though PCRAM’s durability is 10-100×that of flash, it still requires some wear levelling.

PCRAM’s lack of an erase operation and hence the avoidance of the read/write vs erase

granularity disparity found in flash, makes wear levelling in PCRAM much simpler.

Schemes such as start-gap [77] transparently handle wear levelling with minimal over-

head. Similar to flash, PCRAM’s write operations are longer than its reads, however the

differences are much smaller (less than 4×). In most respects PCRAM is best thought of

as a slightly slower DRAM.

2.4 Spin-Torque MRAM and the Memristor

Other technologies such as Spin-Torque MRAMs and the Memristor are also on

the horizon, albeit a few years farther out than PCRAM. These technologies promise

most of the same benefits as PCRAM with lower energy costs, higher endurance and

improved latencies and bandwidth.

ST-MRAM uses layers of magnetic material that can be easily integrated with

traditional chip production processes. Stacking a fixed layer of magnetic material with a

free magnetic layer creates a magnetic tunnel junction (MJT). By changing the orientation

of the free layer the resistance of the MTJ can be altered depending on whether the

magnetic moment of the layers are in a parallel (low resistance) or anti-parallel (high

resistance) configuration. The first, low density sample parts will be available within a

year, offering latencies of 35 ns for both reads and writes [27].

The Memristor is another promising future non-volatile storage technology. Mem-

ristors are a passive circuit element that alters its resistance based on the direction of

current flow through the device. When current ceases, the resistance is remembered.

By building arrays of these circuit elements we can construct storage devices just like

ST-MRAMs and PCRAM [40]. These devices are much less mature than either PCRAM

or ST-MRAM so their characteristics are less clear, but they should be useful in many of

13

Disk Flash Fast NVM

La
te

nc
y

(u
s)

0

10

100

1000

10000

File
System

Operating
System

iSCSI Hardware

Figure 2.1. As the hardware access latency for storage technologies shrinks, software
overheads will become the dominant latency cost in accessing storage.

the same applications.

2.5 Trends in Storage Technology

The new memory technologies introduced in the preceding sections show multiple

paths forward towards non-volatile memory technologies that come within a small factor

of DRAM performance. These technologies will drive storage latency from the 7 ms

average hard disk access time to 8-10 µs with a device like the one described in this

dissertation based on PCRAM or ST-MRAM.

Figure 2.1 illustrates the effect of decreasing hardware latencies. It shows several

of the main components of I/O device latency: the file system, operating system, iSCSI

latency (for remote storage accesses), and the hardware latency. Hardware latencies

14

Disk Flash Fast NVM

S
of

tw
ar

e
C

on
tr

ib
ut

io
n

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

80

90

100

Local iSCSI

Figure 2.2. The graph shows the percentage of the total request latency contributed by
software, for both local accesses and remote accesses through a software iSCSI stack.
As memory latency decreases, software’s contribution becomes larger, accounting for as
much as 97% of the total latency.

for flash based storage are about two orders of magnitude smaller than for disks, but

software overheads remain the same. This means as storage gets faster, the percentage of

an I/O request accounted for by software components is increasing rapidly - from about

4% for disks to 84% for flash. A further reduction in latency from technologies such as

PCRAM and ST-MRAM will drive software latencies to account for as much as 97% of

the total request latency. Figure 2.2 depicts this trend, showing the software overheads as

a percentage of the total request latency.

15

Acknowledgements

This chapter contains material from “Understanding the Impact of Emerging

Non-Volatile Memories on High-Performance, IO-Intensive Computing”, by Adrian

M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua He, Arun

Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson, which appears in

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, (SC ’10). The dissertation author was the

primary investigator and author of this paper.

This chapter contains material from “Moneta: A High-Performance Storage Array

Architecture for Next-Generation, Non-Volatile Memories”, by Adrian M. Caulfield,

Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, which

appears in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (MICRO ’43). The dissertation author was the primary investigator

and author of this paper. The material in this chapter is copyright c©2010 by the Associa-

tion for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Providing Safe, User Space Access to Fast,

Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De,

Joel Coburn, and Steven Swanson, which appears in ASPLOS ’12: Proceedings of the

16

17th International Conference on Architectural Support for Programming Languages

and Operating Systems. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2012 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “QuickSAN: A Storage Area Network for

Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield and Steven Swanson,

which appears in ISCA ’13: Proceeding of the 40th Annual International Symposium on

Computer Architecture. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2013 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapter 3

The Moneta Kernel Stack

The Moneta prototype SSD introduced in the introduction offers the potential to

dramatically alter the storage performance seen by the operating system. By replacing

spinning disks and flash based storage, with latencies of 7 ms and 100s of microseconds

respectively, with emerging fast non-volatile memories that are orders of magnitude

faster, Moneta offers much potential, but decades of legacy storage system designs pose

a risk of squandering any significant gains.

Over the last four decades, storage system designs were driven by the fundamental

assumption that storage is slow. This led to the addition of many layers of latency

intensive software optimizations, to reorder, schedule, and prioritize the sequence of IO

requests sent the hardware. Even though these optimizations potentially slow individual

accesses by 100s of microseconds, they still account for less than a few percent of the

total IO request latency, and often reduce the total latency of a sequence of requests.

This chapter covers the kernel level design and implementation of the Moneta

system. We first characterize the overheads in the existing Linux IO stack in detail, and

show that a redesigned IO stack combined with an optimized hardware/software interface

reduces IO latency by nearly 2× and increases bandwidth by up to 18×. Tuning the

Moneta hardware improves bandwidth by an additional 75% for some workloads.

We present two findings on the impact of non-volatile memory performance and

17

18

organization on Moneta’s performance and energy efficiency. First, some optimizations

that improve PCM’s performance and energy efficiency as a main memory technology

do not apply in storage applications because of different usage patterns and requirements.

Second, for 4 KB accesses, Moneta provides enough internal parallelism to completely

hide memory access times of up to 1 µs, suggesting that memory designers could safely

trade off performance for density in memory devices targeted at storage applications.

Results for a range of IO benchmarks demonstrate that Moneta outperforms

existing storage technologies by a wide margin. Moneta can sustain up to 2.2 GB/s on

random 4 KB accesses, compared to 250 MB/s for a state-of-the-art flash-based SSD. It

can also sustain over 1.1 M 512-byte random IO operations per second. While Moneta

is nearly 10× faster than the flash drive, software overhead beyond the IO stack (e.g.,

in the file system and in application) limit application-level speedups: Compared to

the same flash drive, Moneta speeds up applications by a harmonic mean of just 2.1×,

demonstrating that further work is necessary to fully realize Moneta’s potential at the

application level.

The remainder of the chapter is organized as follows. Section 3.1 briefly describes

the Moneta prototype. Sections 3.2, 3.3, and 3.4 analyze the baseline Moneta system

performance and describe software and hardware optimizations. Section 3.5 compares

Moneta to existing storage technologies, and Section 3.6 describes related work. Finally,

Section 3.7 summarizes this chapter.

3.1 The Moneta prototype

This section describes the baseline Moneta architecture and the hardware system

we use to emulate it. Appendix A contains more implementation details of the Moneta

prototype.

19

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Start

Gap

Start

Gap

Start

Gap

Start

Gap

Ring (4 GB/s)

DMA

PCIe 1.1 x8 (2 GB/s Full Duplex)

Request

Queue

16 GB 16 GB 16 GB 16 GB

2x 8 KB Buffers

Scoreboard
Ctrl 0
Ctrl 1
Ctrl 2
Ctrl 3

Request

Processor

Scheduler

Figure 3.1. Moneta’s PCM memory controllers connect to the scheduler via a 4 GB/s
ring. A 2 GB/s full duplex PCIe link connects the scheduler and DMA engine to the
host. The scheduler manages 8 KB buffers as it processes IO requests in FIFO order. A
scoreboard tracks the state of the memory controllers.

3.1.1 Moneta array architecture

Figure 3.1 shows the architecture of the Moneta storage array. Moneta’s archi-

tecture provides low-latency access to a large amount of non-volatile memory spread

across four memory controllers. A scheduler manages the entire array by coordinating

data transfers over the PCIe interface and the ring-based network that connects the in-

dependent memory controllers to a set of input/output queues. Moneta attaches to the

computer system via an eight-lane PCIe 1.1 interface that provides a 2 GB/s full-duplex

connection (4 GB/s total).

20

The Moneta scheduler The scheduler orchestrates Moneta’s operation. It contains a

DMA controller and a Programmed IO (PIO) interface to communicate with the host

machine, a set of internal buffers for incoming and outgoing data, several state machines,

and an interface to the 128-bit token-ring network. The Moneta scheduler stripes internal

storage addresses across the memory controllers to extract parallelism from large requests.

The baseline stripe size is 8 KB.

Requests arrive on the PCIe interface as PIO writes from the software driver.

Each request comprises three 64-bit words that contain a sector address, a DMA memory

address (in host memory), a 32-bit transfer length, and a collection of control bits that

includes a tag number and an op code (read or write). Sectors are 512 bytes. The tag is

unique across outstanding requests and allows for multiple in-flight requests, similar to

SATA’s Native Command Queuing [42].

The scheduler places requests into a FIFO queue as they arrive and processes

them in order. Depending on the request’s size and alignment, the scheduler breaks it

into one or more transfers of up to 8 KB. It then allocates a buffer for each transfer from

two 8 KB buffers in the scheduler. If buffer space is not available, the scheduler stalls

until another transfer completes.

For write transfers, the scheduler issues a DMA command to transfer data from

the host’s memory into its buffer. When the DMA transfer completes, the scheduler

checks an internal scoreboard to determine whether the target memory controller has

space to receive the data, and waits until sufficient space is available. Once the transfer

completes, the scheduler’s buffer is available for another transfer. The steps for a read

transfer are similar except that the steps are reversed.

Once the scheduler completes all transfers for a request, it raises an interrupt

and sets a tag status bit. The operating system receives the interrupt and completes the

request by reading and then clearing the status bit using PIO operations.

21

The DMA controller manages Moneta’s 2 GB/s full-duplex (4 GB/s total) channel

to the host system. The DMA interleaves portions of bulk data transfers from Moneta

to the host’s memory (read requests) with DMA requests that retrieve data from host’s

memory controller (write requests). This results in good utilization of the bandwidth

between the host and Moneta because bulk data transfers can occur in both directions

simultaneously.

Memory controllers Each of Moneta’s four memory controllers manages an indepen-

dent bank of non-volatile storage. The controllers connect to the scheduler via the ring

and provide a pair of 8 KB queues to buffer incoming and outgoing data. The memory

array at each controller comprises four DIMM-like memory modules that present a 72

bit (64 + 8 for ECC) interface.

Like DRAM DIMMs, the memory modules perform accesses in parallel across

multiple chips. Each DIMM contains four internal banks and two ranks, each with an

internal row buffer. The banks and their row buffers are 8 KB wide, and the DIMM

reads an entire row from the memory array into the row buffer. Once that data is in the

row buffer, the memory controller can access it at 250 MHz DDR (500M transfers per

second), so the peak bandwidth for a single controller is 4 GB/s.

The memory controller implements the start-gap wear-leveling and address ran-

domization scheme [76] to evenly distribute wear across the memory it manages.

3.1.2 Implementing the Moneta prototype

We have implemented a Moneta prototype using the BEE3 FPGA prototyping

system designed by Microsoft Research for use in the RAMP project [79]. The BEE3

system holds 64 GB of 667 MHz DDR2 DRAM under the control of four Xilinx Virtex 5

FPGAs, and it provides a PCIe link to the host system. The Moneta design runs at

22

250 MHz, and we use that clock speed for all of our results.

Moneta’s architecture maps cleanly onto the BEE3. Each of the four FPGAs

implement a memory controller, while one also implements the Moneta scheduler and

the PCIe interface. The Moneta ring network runs over the FPGA-to-FGPA links that the

BEE3 provides.

The design is very configurable. It can vary the effective number of memory

controllers without reducing the amount of memory available, and it supports configurable

buffer sizes in the scheduler and memory controllers.

Moneta memory controllers emulate PCM devices on top of DRAM using a

modified version of the Xilinx Memory Interface Generator DDR2 controller. It adds

latency between the read address strobe and column address strobe commands during

reads and extends the precharge latency after a write. The controller can vary the apparent

latencies for accesses to memory from 4 ns to over 500 µs. We use the values from [53]

(48 ns and 150 ns for array reads and writes, respectively) to model PCM in this work,

unless otherwise stated.

The width of memory arrays and the corresponding row buffers are important

factors in the performance and energy efficiency of PCM memory [53]. The memory

controller can vary the effective width of the arrays by defining a virtual row size

and inserting latencies to model opening and closing rows of that size. The baseline

configuration uses 8 KB rows.

3.2 Baseline Moneta performance

We use three metrics to characterize Moneta’s performance. The first, shown in

Figure 3.2, is a curve of sustained bandwidth for accesses to randomly selected locations

over a range of access sizes. The second measures the average latency for a 4 KB access

to a random location on the device. The final metric is the number of random access

23

Read

0.5 2 8 32 128 512

B
an

dw
id

th
 (

G
B

/s
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Write

Random Request Size (KB)

0.5 2 8 32 128 512

Ideal
Moneta+2Q
Moneta+Spin
Moneta+Atomic
Moneta+NoSched
Moneta−Base 50% Read, 50% Write

0.5 2 8 32 128 512

Figure 3.2. The PCIe link bandwidth (labeled “ideal”) limits performance for large
accesses, but for small accesses software overheads are the bottleneck for the baseline
Moneta design (the solid black line). The other lines measure results for optimized
version described in Section 3.3 and 3.4.

4 KB IO operations per second (IOPS) the device can perform with multiple threads.

Our test system is a two-socket, Core i7 Quad (a total of 8 cores) machine running

at 2.26 GHz with 8 GB of physical DRAM and two 8 MB L2 caches. All measurements

in this section are for a bare block device without a file system. We access Moneta via

a low-level block driver and the standard Linux IO stack configured to use the No-op

scheduler, since it provided the best performance. Each benchmark reports results for

reads, writes, and a 50/50 combination of the two. We use XDD [109], a configurable IO

performance benchmark for these measurements.

Figure 3.2 shows bandwidth curves for the baseline Moneta array and the opti-

mized versions we discuss in future sections. The “ideal” curve shows the bandwidth of

the 2 GB/s PCIe connection.

The baseline Moneta design delivers good performance, but there is room for

improvement for accesses smaller than 64KB. For these, long access latency limits

bandwidth, and much of this latency is due to software. Figure 3.3 and Table 3.1 breaks

down the latency for 4 KB read and write accesses into 14 components. The data show

that software accounts for 13 µs of the total 21 µs latency, or 62%. For comparison,

24

the software overheads for issuing a request to the SSD- and disk-based RAID arrays

described in Section 3.5 are just 17% and 1%, respectively. Although these data do not

include a file system, other measurements show file system overhead adds an additional

4 to 5 µs of delay to each request.

These software overheads limit the number of IOPS that a single processor can

issue to 47K, so it would take 10.5 processors to achieve Moneta’s theoretical peak

of 500K 4 KB read IOPS. As a result, IO-intensive applications running on Moneta

with fewer than 11 processors will become CPU bound before they saturate the PCIe

connection to Moneta.

These overheads demonstrate that software costs are the main limiter on Moneta

performance. The next section focuses on minimizing these overheads.

3.3 Software Optimizations

3.3.1 IO scheduler

Linux IO schedulers sort and merge requests to reduce latencies and provide fair

access to IO resources under load. Reordering requests can provide significant reductions

in latency for devices with non-uniform access latencies such as disks, but for Moneta it

just adds software overheads. Even the no-op scheduler, which simply passes requests

directly to the driver without any scheduling, adds 2 µs to each request. This cost arises

from context switches between the thread that requested the operation and the scheduler

thread that actually performs the operation.

Moneta+NoSched bypasses the scheduler completely. It uses the thread that

entered the kernel from user space to issue the request without a context switch. Removing

the scheduler provides several ancillary benefits, as well. The no-op scheduler is single-

threaded so it removes any parallelism in request handling. Under Moneta+NoSched

25

Table 3.1. The table breaks down baseline Moneta latency by component. Total latency
is smaller than the sum of the components, due to overlap among components.

Label Description
Baseline latency (µs)

Write Read
OS/User OS and userspace overhead 1.98 1.95
OS/User Linux block queue and no-op scheduler 2.51 3.74
Schedule Get request from queue and assign tag 0.44 0.51
Copy Data copy into DMA buffer 0.24/KB -
Issue PIO command writes to Moneta 1.18 1.15
DMA DMA from host to Moneta buffer 0.93/KB -
Ring Data from Moneta buffer to mem ctrl 0.28/KB -
PCM 4 KB PCM memory access 4.39 5.18
Ring Data from mem ctrl to Moneta buffer - 0.43/KB
DMA DMA from Moneta buffer to host - 0.65/KB
Wait Thread sleep during hw 11.8 12.3
Interrupt Driver interrupt handler 1.10 1.08
Copy Data copy from DMA buffer - 0.27/KB
OS/User OS return and userspace overhead 1.98 1.95
Hardware total for 4 KB (accounting for overlap) 8.2 8.0
Software total for 4 KB (accounting for overlap) 13.3 12.2
File system additional overhead 5.8 4.2

26

Ti
m

e
(u

s)

0
2
4
6
8

10
12
14
16
18
20
22

Ba
se

+N
oS

ch
ed

+A
to

m
ic

+S
pi

n

DMA
Ring
PCM

OS/User
Schedule
Copy
Issue
Interrupt
Wait

{HW costs

{SW costs

Figure 3.3. The figure shows that software optimizations reduce overall access latency
by 9 µs between Moneta-Base and Moneta+Spin.

27

each request has a dedicated thread and those threads can issue and complete requests

in parallel. Moneta+NoSched reduces per-request latency by 2 µs and increases peak

bandwidth by 4× for 4 KB requests.

3.3.2 Issuing and completing IO requests

Moneta+NoSched allows some parallelism, but threads still contend for access to

two locks that protect Moneta’s hardware interface and shared data structures, limiting

effective parallelism in the driver. The first lock protects the hardware interface during

multi-word reads and writes to Moneta’s PIO interface. The second lock protects shared

data structures in the software.

To safely remove the lock that protects Moneta’s hardware/software interface, we

modify the interface so that issuing and completing a request requires a single, atomic

PIO write or read. The baseline interface requires several PIO writes to issue a request.

Moneta+Atomic reduces this to one by removing bits from the internal address and length

fields to align them to 512-byte boundaries and completely removing the DMA address

field. These changes allow a request to fit into 64 bits – 8 for the tag, 8 for the command,

16 for the length, and 32 for the internal address.

To specify the target address for DMA transfers, the Moneta+Atomic driver

pre-allocates a DMA buffer for each tag and writes the host DRAM address of each

buffer into a register in the hardware. The tag uniquely identifies which DMA buffer to

use for each request.

A second change to Moneta’s hardware/software interface allows multiple threads

to process interrupts in parallel. When a request completes and Moneta raises an interrupt,

the driver checks the status of all outstanding operations by reading the tag status register.

In Moneta+NoSched the tag status register indicates whether each tag is busy or idle and

the driver must read the register and then update it inside a critical section protected by

28

a lock. In Moneta+Atomic the tag status bits indicate whether a request using that tag

finished since the last read of the register, and reading the register clears it. Atomically

reading and clearing the status register allows threads to service interrupts in parallel

without the possibility of two threads trying to complete the same request.

The second lock protects shared data structures (e.g., the pool of available tags).

To remove that lock, we reimplemented the tag pool data as a lock-free data structure,

and allocate other structures on a per-tag basis.

By removing all the locks from the software stack, Moneta+Atomic reduces

latency by 1 µs over Moneta+NoSched and increases bandwidth by 460 MB/s for 4 KB

writes. The disproportionate gain in bandwidth versus latency results from increased

concurrency.

3.3.3 Avoiding interrupts

Responding to the interrupt that signals the completion of an IO request requires

a context switch to wake up the thread that issued the request. This process adds latency

and limits performance, especially for small requests. Allowing the thread to spin in a

busy-loop rather than sleeping removes the context switch and the associated latency.

Moneta+Spin implements this optimization.

Spinning reduces latency by 6 µs, but it increases per-request CPU utilization. It

also means that the number of thread-contexts available bounds the number of outstanding

requests. Our data show that spinning only helps for write requests smaller than 4 KB, so

the driver spins for those requests and sleeps for larger requests. Moneta+Spin improves

bandwidth for 512-4096 byte requests by up to 250 MB/s.

29

3.3.4 Other overheads

The remaining overheads are from the system call/return and the copies to and

from userspace. These provide protection for the kernel. Optimizing the system call

interface is outside the scope of this chapter, but removing copies to and from userspace

by directing DMA transfers into userspace buffers is a well-known optimization in high-

performance drivers. For Moneta, however, this optimization is not profitable, because it

requires sending a physical address to the hardware as the target for the DMA transfer.

This would make issuing requests atomically impossible. Our measurements show that

this hurts performance more than removing the copy to or from userspace helps. One

solution would be to extend the processor’s ISA to support 128 bit atomic writes. This

would allow an atomic write to include the full DMA target address.

3.4 Tuning the Moneta hardware

With Moneta’s optimized hardware interface and IO stack in place, we shift

our focus to four aspects of the Moneta hardware – increasing simultaneous read/write

bandwidth, increasing fairness between large and small transfers, adapting to memory

technologies with longer latencies than PCM, and power consumption.

3.4.1 Read/Write bandwidth

Figure 3.2 shows that Moneta+Spin nearly saturates the PCIe link for read- and

write-only workloads. For the mixed workload, performance is similar, but performance

should be better since the PCIe link is full duplex.

Moneta+Spin uses a single hardware queue for read and write requests which

prevents it from fully utilizing the PCIe link. Moneta+2Q solves this problem by provid-

ing separate queues for reads and writes and processing the queues in round-robin order.

When reads and writes are both present, half of the requests to the DMA engine will be

30

Memory Latency

4 ns 64 ns 1 us 16 us 256 us

B
an

dw
id

th
 G

B
/s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 Controllers
4 Controllers
2 Controllers
1 Controller

Figure 3.4. Additional controllers allow Moneta to hide longer memory latencies without
sacrificing bandwidth. The curves measure bandwidth for 4 KB read and write accesses.

reads and half will be writes. The DMA engine interleaves the requests to transfer data

in both directions simultaneously.

Figure 3.2 includes performance for Moneta+2Q. It increases mixed read/write

performance by 75% and consumes 71% of the total PCIe bandwidth.

The new scheduler adds some complexity to the design and requires a change

to how we implement IO barriers. IO barriers prevent the storage system from moving

requests across the barrier, and some applications (e.g. file systems) use barriers to enforce

ordering. The baseline Moneta design enforces this constraint by processing requests

in order. Moneta+2Q’s scheduler keeps track of outstanding barriers and synchronizes

the read and write queue as needed to implement them. Requests that enter either queue

after a barrier will wait for the barrier to complete before issuing.

3.4.2 Balancing bandwidth

Real-world application access patterns are more complex and varied than the

workloads we have tested so far. Multiple applications will run concurrently placing

different demands on Moneta simultaneously. Ideally, Moneta would prevent one access

31

or access pattern from unduly degrading performance for other accesses.

The scheduler in Moneta+2Q processes the requests in each queue in order, so

large requests can significantly delay other requests in the same queue. For a mixture of

large and small requests, both sizes perform the same number of accesses per second, but

bandwidth will be much smaller for the smaller accesses. For instance, if four threads

issuing 4 KB reads run in parallel with four threads issuing 512 KB reads, the 4 KB

threads realize just 16 MB/s, even though a 4 KB thread running in isolation can achieve

170 MB/s. The 512 KB threads receive a total 1.5 GB/s.

To reduce this imbalance, we modified the scheduler to service requests in the

queue in round-robin order. The scheduler allocates a single buffer to the request at the

front of the queue and then places the remainder of the request back on the queue before

moving on to the next request. Round-robin queuing improves performance for the

4 KB threads in our example by 12×, and reduces large request bandwidth by 190 MB/s.

Aggregate bandwidth remains the same.

The modified scheduler implements barriers by requiring that all in-progress re-

quests complete before inserting any operations that follow the barrier into the scheduling

queues.

3.4.3 Non-volatile memory latency

It is difficult to predict the latencies that non-volatile memories will eventually

achieve, and it is possible that latencies will be longer than those we have modeled.

Figure 3.4 explores the impact of memory latency on Moneta’s performance. It

plots Moneta+Balance performance with memory latencies between 4 ns to 128 µs and

with 1 to 8 memory controllers. The data show that adding parallelism in the form of

memory controllers can completely hide latencies of up to 1 µs and that 4 µs memories

would only degrade performance by 20% with eight controllers. The data also show

32

that at 4 µs, doubling the number of controllers increases bandwidth by approximately

400 MB/s.

These results suggest that, for bandwidth-centric applications, it makes sense

to optimize non-volatile memories for parallelism and interface bandwidth rather than

latency. Furthermore, Moneta’s memory controller only accesses a single bank of memory

at a time. A more advanced controller could leverage inter-bank parallelism to further

hide latency. Flash-based SSDs provide a useful case study: FusionIO’s ioDrive, a

state-of-the-art SSD, has many independent memory controllers to hide the long latencies

of flash memory. In Section 3.5 we show that while a FusionIO drive can match Moneta’s

performance for large transfers, its latency is much higher.

3.4.4 Moneta power consumption

Non-volatile storage reduces power consumption dramatically compared to hard

drives. To understand Moneta’s power requirements we use the power model in Table 3.2.

For the PCM array, we augment the power model in [53] to account for a power-down

state for the memory devices. Active background power goes to clocking the PCM’s

internal row buffers and other peripheral circuitry when the chip is ready to receive

commands. Each PCM chip dissipates idle background power when the clock is off, but

the chip is still “on.” The value here is for a commercially available PCM device [26].

We model the time to “wake up” from this state based on values in [26]. The model does

not include power regulators or other on-board overheads.

The baseline Moneta array with four memory controllers, but excluding the

memory itself, consumes a maximum of 3.19 W. For 8 KB transfers, the memory

controller bandwidth limits memory power consumption to 0.6 W for writes, since

transfer time over the DDR pins limits the frequency of array writes. Transfer time

and power for reads is the same, but array power is lower. The PCIe link limits total

33

array active memory power to 0.4 W (2 GB/s writes at 16.82 pJ/bit and 2 GB/s reads at

2.47 pJ/bit, plus row buffer power). Idle power for the array is also small – 0.13 W or

2 mW/GB. Total power for random 8 KB writes is 3.47 W, according to our model.

For small writes (e.g., 512 bytes), power consumption for the memory at a

single controller could potentially reach 8.34 W since the transfer time is smaller and the

controller can issue writes more frequently. For these accesses, peak controller bandwidth

is 1.4 GB/s. Total Moneta power in this case could be as high as 11 W. As a result,

efficiency for 512-byte writes in terms of MB/s/W drops by 85% compared to 8 KB

writes.

The source of this inefficiency is a mismatch between access size and PCM row

width. For small requests, the array reads or writes more bits than are necessary to

satisfy the requests. Implementing selective writes [53] resolves this problem and limits

per-controller power consumption to 0.6 W regardless of access size. Selective writes do

not help with reads, however. For reads, peak per-controller bandwidth and power are

2.6 GB/s and 2.5 W, respectively, for 512-byte accesses.

An alternative to partial read and writes is to modify the size of the PCM devices’

internal row buffer. Previous work [53] found this parameter to be an important factor in

the efficiency of PCM memories meant to replace DRAM. For storage arrays, however,

different optimizations are desirable because Moneta’s spatial and temporal access

patterns are different, and Moneta guarantees write durability.

Moneta’s scheduler issues requests that are at least 512 bytes and usually several

KB. These requests result in sequential reads and writes to memory that have much higher

spatial locality than DRAM accesses that access a cache line at a time. In addition, since

accesses often affect an entire row, there are few chances to exploit temporal locality.

This means that, to optimize efficiency and performance, the row size and stripe size

should be the same and they should be no smaller than the expected transfer size.

34

Table 3.2. The component values for the power model come from datasheets,
Cacti [99], [60], and the PCM model in [53]

Component Idle Peak
Scheduler & DMA [45] 0.3 W 1.3 W
Ring [60] 0.03 W 0.06 W
Scheduler buffers [99] 1.26 mW 4.37 mW
Memory controller [60] 0.24 W 0.34 W
Mem. ctrl. buffers [99] 1.26 mW 4.37 mW
PCIe[45] 0.12 W 0.4 W
PCM write [53] 16.82 pJ/bit
PCM read [53] 2.47 pJ/bit
PCM buffer write [53] 1.02 pJ/bit
PCM buffer read [53] 0.93 pJ/bit
PCM background [53, 70] 264 µW/die 20 µW/bit

Finally, Moneta’s durability requirements preclude write coalescing, a useful

optimization for PCM-based main memories [53]. Coalescing requires keeping the rows

open to opportunistically merge writes, but durability requires closing rows after accesses

complete to ensure that the data resides in non-volatile storage rather than the volatile

buffers.

3.5 Evaluation

This section compares Moneta’s performance to other storage technologies using

both microbenchmarks and full-fledged applications. We compare Moneta to three other

high-performance storage technologies (Table 3.3) – a RAID array of disks, a RAID array

of flash-based SSDs, and an 80GB FusionIO flash-based PCIe card. We also estimate

performance for Moneta with a 4x PCIe link that matches the peak bandwidth of the

other devices.

We tuned the performance of each system using the IO tuning facilities available

for Linux, the RAID controller, and the FusionIO card. Each device uses the best-

performing of Linux’s IO schedulers: For RAID-disk and RAID-SSD the no-op scheduler

35

Table 3.3. We compare Moneta to a variety of existing disk and SSD technologies. Bus
bandwidth is the peak bandwidth each device’s interface allows.

Name Bus Description
RAID-Disk PCIe 1.1 ×4 4×1TB hard drives.

1 GB/s RAID-0 PCIe controller.
RAID-SSD SATA II ×4 4×32GB X-25E SSDs.

1.1 GB/s RAID-0 Software RAID.
FusionIO PCIe 1.1 ×4 Fusion-IO 80GB PCIe

1 GB/s SSD
Moneta-4x PCIe 1.1 ×4 See text.

1 GB/s
Moneta-8x PCIe 1.1 ×8 See text.

2 GB/s

Read

0.5 2 8 32 128 512

B
an

dw
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Write

Random Request Size (KB)

0.5 2 8 32 128 512

Disk
SSD
FusionIO
Moneta+Spin−4x
Moneta+Spin
Ideal 50% Read, 50% Write

0.5 2 8 32 128 512

Figure 3.5. Small request sizes measure random access performance, while larger
transfers measure sequential accesses. Moneta+Spin-4x conservatively models a 1GB/s
PCIe connection and matches or outperforms the other storage arrays.

36

Table 3.4. Moneta’s combination of fast storage and optimized software stack allow it to
perform 1.1M 512 byte IOPS and 370K 4 KB IOPS. Software optimizations also reduces
the number of instructions per IO operations by between 38 and 47%.

4KB IOPS 512 IOPS Instructions per 4 KB IOP
Read Write Read Write Read Write

RAID-Disk 863 1,070 869 1,071 32,042 34,071
RAID-SSD 5,256 11,714 11,135 17,007 31,251 32,540
FusionIO 92,225 70,579 132,826 71,338 49,369 60,147

Moneta+Spin 368,534 389,859 1,156,779 1,043,793 17,364 20,744

performs best. The FusionIO card uses a custom driver which bypasses the Linux IO

scheduler just as Moneta’s does. We use software RAID for the SSD rather than hardware

because our measurements and previous studies [38] show better performance for that

configuration.

3.5.1 Microbenchmarks

Figure 3.5 and Table 3.4 contain the results of the comparison. For bandwidth,

Moneta+Spin outperforms the other arrays by a wide margin, although for large transfer

sizes most of this benefit is due to its faster PCIe link. For mixed reads and writes,

Moneta delivers between 8.9× (vs. FusionIO) and 616× (vs. disk) more bandwidth. For

Moneta+Spin-4x, the gains are smaller (4.4-308×). For mixed 512 KB read and write

accesses Moneta is 32× faster than disk and 4.5× faster than FusionIO. The bandwidth

gains relative to the SSDs vary less widely – between 7.6 and 89× for Moneta and

between 3.8 and 44× for Moneta+Spin-4x.

Moneta also delivers large gains in terms of IOPS. Moneta sustains between 364

and 616× more 4 KB IOPS than disk and between 4 and 8.9× more than FusionIO. The

gains for small transfers are much larger: Moneta achieves 1.1M 0.5 KB IOPS, or 10×

the value for FusionIO.

Table 3.4 also shows the number of instructions each device requires to perform

37

a 4 KB read or write request. Moneta’s optimized driver requires between 38 and 47%

fewer instructions than RAID-Disk and RAID-SSD. The reduction relative to the baseline

Moneta software stack is similar. As a result, it takes five processors (rather than eleven)

to fully utilize the Moneta array. FusionIO’s driver requires between 1.4 and 1.8×

more instructions than the RAID arrays because it caches device meta-data to increase

performance.

3.5.2 Applications

Moneta’s optimized hardware interface and software stack eliminates most of the

operating system overheads that limited the performance for raw device access. Here,

we explore how that performance translates to the application level and highlight where

further software optimizations may be useful.

Table 3.5 describes the workloads we use in this evaluation. They fall into three

categories that represent potential uses for Moneta: IO benchmarks that use typical

system calls to access storage, database applications that implement transaction systems

with strong durability guarantees, and paging applications that use storage to back virtual

memory. Whenever practical and possible, we use direct IO to bypass the system

buffer cache for Moneta and FusionIO, since it improves performance. Adding the

ability to apply this setting without modifying application source code would be a useful

optimization.

Table 3.6 shows the performance of the storage arrays and the speedup of Moneta

over each array. All data use XFS [48] as the underlying file system because it efficiently

supports parallel file access.

The performance of the IO benchmarks improves significantly running on Moneta:

On average, Moneta is 9.48× faster than RAID-disk, 2.84× faster than RAID-SSD, and

2.21× faster than FusionIO. However, the performance of XDD-Random on Moneta is

38

Ta
bl

e
3.

5.
W

e
us

e
a

to
ta

lo
ffi

ft
ee

n
be

nc
hm

ar
ks

an
d

w
or

kl
oa

ds
to

co
m

pa
re

M
on

et
a

to
ot

he
rs

to
ra

ge
te

ch
no

lo
gi

es
.W

or
kl

oa
ds

va
ry

fr
om

si
m

pl
e

m
ic

ro
be

nc
hm

ar
ks

to
la

rg
er

da
ta

ba
se

ap
pl

ic
at

io
ns

.

N
am

e
D

at
a

fo
ot

pr
in

t
D

es
cr

ip
tio

n
IO

be
nc

hm
ar

ks
X

D
D

-S
eq

ue
nt

ia
l-

R
aw

55
G

B
4M

B
se

qu
en

tia
lr

ea
ds

/w
ri

te
s

fr
om

16
th

re
ad

s
th

ro
ug

h
th

e
ra

w
bl

oc
k

de
vi

ce
X

D
D

-S
eq

ue
nt

ia
l-

FS
55

G
B

4M
B

se
qu

en
tia

lr
ea

ds
/w

ri
te

s
fr

om
16

th
re

ad
s

th
ro

ug
h

th
e

fil
e

sy
st

em
X

D
D

-R
an

do
m

-R
aw

55
G

B
4K

B
ra

nd
om

re
ad

s/
w

ri
te

s
fr

om
16

th
re

ad
s

th
ro

ug
h

th
e

ra
w

bl
oc

k
de

vi
ce

X
D

D
-R

an
do

m
-F

S
55

G
B

4K
B

ra
nd

om
re

ad
s/

w
ri

te
s

fr
om

16
th

re
ad

s
th

ro
ug

h
th

e
fil

e
sy

st
em

Po
st

m
ar

k
≈

0.
3-

0.
5

G
B

M
od

el
s

an
em

ai
ls

er
ve

r
B

ui
ld

0.
5

G
B

C
om

pi
la

tio
n

of
th

e
L

in
ux

2.
6

ke
rn

el
D

at
ab

as
e

ap
pl

ic
at

io
ns

PT
FD

B
50

G
B

Pa
lo

m
ar

Tr
an

si
en

tF
ac

to
ry

da
ta

ba
se

re
al

tim
e

tr
an

si
en

ts
ky

su
rv

ey
qu

er
ie

s
O

LT
P

8
G

B
Tr

an
sa

ct
io

n
pr

oc
es

si
ng

us
in

g
Sy

sb
en

ch
ru

nn
in

g
on

a
M

yS
Q

L
da

ta
ba

se
B

er
ke

le
y-

D
B

B
tr

ee
4

G
B

Tr
an

sa
ct

io
na

lu
pd

at
es

to
a

B
+t

re
e

ke
y/

va
lu

e
st

or
e

B
er

ke
le

y-
D

B
H

as
ht

ab
le

4
G

B
Tr

an
sa

ct
io

na
lu

pd
at

es
to

a
ha

sh
ta

bl
e

ke
y/

va
lu

e
st

or
e

Pa
gi

ng
ap

pl
ic

at
io

ns
B

T
11

.3
G

B
C

om
pu

ta
tio

na
lfl

ui
d

dy
na

m
ic

s
si

m
ul

at
io

n
IS

34
.7

G
B

In
te

ge
rs

or
tw

ith
th

e
bu

ck
et

so
rt

al
go

ri
th

m
L

U
9.

4
G

B
L

U
m

at
ri

x
de

co
m

po
si

tio
n

SP
11

.9
G

B
Si

m
ul

at
ed

C
FD

co
de

so
lv

es
Sc

al
ar

-P
en

ta
di

ag
on

al
ba

nd
s

of
lin

ea
re

qu
at

io
ns

U
A

7.
6

G
B

So
lv

es
a

he
at

tr
an

sf
er

pr
ob

le
m

on
an

un
st

ru
ct

ur
ed

,a
da

pt
iv

e
gr

id

39

Ta
bl

e
3.

6.
W

e
ru

n
ou

rfi
ft

ee
n

be
nc

hm
ar

ks
an

d
ap

pl
ic

at
io

ns
on

th
e

R
A

ID
-D

is
k,

R
A

ID
-S

SD
,F

us
io

nI
O

,a
nd

M
on

et
a

st
or

ag
e

ar
ra

ys
,

an
d

w
e

sh
ow

th
e

sp
ee

du
p

of
M

on
et

a
ov

er
th

e
ot

he
rd

ev
ic

es
.

W
or

kl
oa

d
R

aw
Pe

rf
or

m
an

ce
Sp

ee
du

p
of

M
on

et
a

vs
.

R
A

ID
-D

is
k

R
A

ID
-S

SD
Fu

si
on

IO
M

on
et

a
R

A
ID

-D
is

k
R

A
ID

-S
SD

Fu
si

on
IO

IO
be

nc
hm

ar
ks

Po
st

m
ar

k
4,

08
0.

0
s

46
.8

s
36

.7
s

27
.4

s
14

9.
00

×
1.

71
×

1.
34

×
B

ui
ld

80
.9

s
36

.9
s

37
.6

s
36

.9
s

2.
19
×

1.
00
×

1.
02

×
X

D
D

-S
eq

ue
nt

ia
l-

R
aw

24
4.

0
M

B
/s

56
9.

0
M

B
/s

64
2.

0
M

B
/s

2,
93

2.
0

M
B

/s
12

.0
1×

5.
15
×

4.
57

×
X

D
D

-S
eq

ue
nt

ia
l-

FS
20

3.
0

M
B

/s
56

4.
0

M
B

/s
64

1.
0

M
B

/s
2,

77
3.

0
M

B
/s

13
.7

0×
4.

92
×

4.
35

×
X

D
D

-R
an

do
m

-R
aw

1.
8

M
B

/s
32

.0
M

B
/s

14
2.

0
M

B
/s

1,
75

3.
0

M
B

/s
97

3.
89

×
54

.7
8×

12
.3

5×
X

D
D

-R
an

do
m

-F
S

3.
3

M
B

/s
30

.0
M

B
/s

11
8.

0
M

B
/s

26
1.

0
M

B
/s

80
.4

0×
8.

70
×

2.
21

×
H

ar
m

on
ic

m
ea

n
9.

48
×

2.
84
×

2.
21

×
D

at
ab

as
e

ap
pl

ic
at

io
ns

PT
FD

B
68

.1
s

5.
8

s
2.

3
s

2.
1

s
32

.6
0×

2.
75
×

1.
11

×
O

LT
P

30
4.

0
tx

/s
33

8.
0

tx
/s

66
5.

0
tx

/s
79

9.
0

tx
/s

2.
62
×

2.
36
×

1.
20

×
B

er
ke

le
y-

D
B

B
Tr

ee
25

3.
0

tx
/s

6,
07

1.
0

tx
/s

5,
97

5.
0

tx
/s

14
,8

84
.0

tx
/s

58
.8

0×
2.

45
×

2.
49

×
B

er
ke

le
y-

D
B

H
as

hT
ab

le
19

1.
0

tx
/s

4,
35

5.
0

tx
/s

6,
20

0.
0

tx
/s

10
,9

80
.0

tx
/s

57
.5

0×
2.

52
×

1.
77

×
H

ar
m

on
ic

m
ea

n
8.

95
×

2.
51
×

1.
48

×
Pa

gi
ng

ap
pl

ic
at

io
ns

B
T

84
.8

M
IP

S
1,

46
1.

0
M

IP
S

70
6.

0
M

IP
S

2,
78

5.
0

M
IP

S
32

.9
0×

1.
90
×

3.
94

×
IS

17
6.

0
25

2.
0

25
2.

0
35

1.
0

2.
00
×

1.
39
×

1.
39

×
L

U
59

.1
1,

86
4.

0
1,

09
3.

0
4,

29
8.

0
72

.7
0×

2.
31
×

3.
93

×
SP

87
.0

34
5.

0
22

5.
0

70
4.

0
8.

08
×

2.
04
×

3.
13

×
U

A
57

.2
3,

77
5.

0
44

5.
0

3,
99

2.
0

69
.8

0×
1.

06
×

8.
97

×
H

ar
m

on
ic

m
ea

n
7.

33
×

1.
61
×

3.
01

×

40

much lower when reads and writes go through the file system instead of going directly

to the raw block device. This suggests that further optimizations to the file system may

provide benefits for Moneta, just as removing device driver overheads did. Performance

on Build is especially disappointing, but this is in part because there is no way to disable

the file buffer cache for that workload.

The results for database applications also highlight the need for further software

optimizations. Databases use complex buffer managers to reduce the cost of IO, but our

experience with Moneta to date suggests reevaluating those optimizations. The results

for Berkeley DB bear this out: Berkeley DB is simpler than the PostgreSQL and MySQL

databases that OLTP and PTFDB use, and that simplicity may contribute to Moneta’s

larger benefit for Berkeley DB.

For the paging applications, Moneta is on average 7.33×, 1.61×, and 3.01×

faster than RAID-Disk, RAID-SSD, and FusionIO, respectively. For paging applications,

Moneta is on average 2.75× faster than the other storage arrays. Not surprisingly, the

impact of paging to storage depends on the memory requirements of the program, and

this explains the large variation across the five applications. Comparing the performance

of paging as opposed to running these applications directly in DRAM shows that Moneta

reduces performance by only 5.90× as opposed to 14.7× for FusionIO, 13.3× for RAID-

SSD, and 83.0× for RAID-Disk. If additional hardware and software optimizations could

reduces this overhead, Moneta-like storage devices could become a viable option for

increasing effective memory capacity.

3.6 Related work

Software optimizations and scheduling techniques for IO operations for disks and

other technologies has been the subject of intensive research for many years [67, 98, 108,

89, 97, 92, 69]. The main challenge in disk scheduling is minimizing the impact of the

41

long rotational and seek time delays. Since Moneta does not suffer from these delays, the

scheduling problem focuses on exploiting parallelism within the array and minimizing

hardware and software overheads.

Recently, scheduling for flash-based solid-state drives has received a great deal

of attention [49, 24, 14]. These schedulers focus on reducing write overheads, software

overheads, and exploiting parallelism within the drive. The work in [90] explores similar

driver optimizations for a PCIe-attached, flash-based SSD (although they do not modify

the hardware interface) and finds that carefully-tuned software scheduling is useful in

that context. Our results found that any additional software overheads hurt Moneta’s

performance, and that scheduling in hardware is more profitable.

In the last decade, there have also been several proposals for software scheduling

policies for MEMS-based storage arrays [55, 5, 87, 100, 23]. Other researchers have

characterized SSDs [25, 21, 15] and evaluated their usefulness on a range of applica-

tions [68, 57, 16, 4]. Our results provide a first step in this direction for faster non-volatile

memories.

Researchers have developed a range of emulation, simulation, and prototyping

infrastructures for storage systems. Most of these that target disks are software-based [31,

25, 83, 37, 50]. Recently, several groups have built hardware emulation systems for

exploring flash-based SSD designs: The work in [20, 56, 52] implements flash memory

controllers in one or more FPGAs and attach them to real flash devices. Moneta provides

a similar capability for fast non-volatile memories, but it emulates the memories using

several modifications in the memory controller (described in Appendix A). The work

in [20] uses the same BEE3 platform that Moneta uses.

42

3.7 Summary

We have presented Moneta, a storage array architecture for advanced non-volatile

memories. A series of software and hardware interface optimizations significantly im-

proves Moneta’s performance. Our exploration of Moneta designs shows that optimizing

PCM for storage applications requires a different set of trade-offs than optimizing it as a

main memory replacement. In particular, memory array latency is less critical for storage

applications if sufficient parallelism is available, and durability requirements prevent

some optimizations.

Optimizations to Moneta’s hardware and software reduce software overheads by

62% for 4 KB operations, and enable sustained performance of 1.1M 512-byte IOPS and

541K 4 KB IOPS with a maximum sustained bandwidth of 2.8 GB/s. Moneta’s optimized

IO stack completes a single 512-byte IOP in 9 µs. Moneta speeds up a range of file

system, paging, and database workloads by up to 8.7× compared to a state-of-the-art

flash-based SSD with harmonic mean of 2.1×, while consuming a maximum power of

3.2 W.

Acknowledgements

This chapter contains material from “Understanding the Impact of Emerging

Non-Volatile Memories on High-Performance, IO-Intensive Computing”, by Adrian

M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua He, Arun

Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson, which appears in

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, (SC ’10). The dissertation author was the

primary investigator and author of this paper.

This chapter contains material from “Moneta: A High-Performance Storage Array

43

Architecture for Next-Generation, Non-Volatile Memories”, by Adrian M. Caulfield,

Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, which

appears in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (MICRO ’43). The dissertation author was the primary investigator

and author of this paper. The material in this chapter is copyright c©2010 by the Associa-

tion for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapter 4

User Space Access

The previous chapter examined Moneta’s kernel software stack and showed that

optimizing the existing IO stack and tuning the hardware/software interface can reduce

software overheads by up to 62% and increase sustained bandwidth for small accesses

by up to 19×. However, even with these reduced overheads, IO processing places large

demands on the system’s compute resources – sustaining peak performance on Moneta

for 4 KB requests requires the dedicated attention of 9 Nehalem thread contexts. Entering

the kernel, performing file system checks, and returning to user space account for 30%

(8 µs) of the latency of a 4 KB request. Together those costs reduce sustained throughput

by 85%. However, simply removing those layers is not possible because they provide

essential management and protection mechanisms.

This chapter describes extensions to Moneta that remove these costs by transpar-

ently bypassing the operating and file systems while preserving their management and

protection functions. The extensions provide each process with a private interface, or

channel, to Moneta. Unlike other systems that virtualize an entire device (e.g., a graphics

card or network card), Moneta’s channels are virtual interfaces to a single device. Each

process uses its channel to access Moneta directly, without interacting with the operating

system for most accesses. Hardware permission verification replaces permission checks

in the operating system, preserving all of the protection guarantees the operating system

44

45

normally provides.

To utilize channel-based IO, unmodified applications link with an untrusted user

space library that intercepts IO system calls and performs the operations directly. The

library works with a trusted driver and a slightly modified file system to extract file

protection information and transfer it to Moneta. The library presents a standard POSIX

interface.

We refer to the new system as Moneta Direct (Moneta-D) throughout the remain-

der of this dissertation. Moneta-D’s unique features eliminate file system overheads and

restructure the operating system storage stack to efficiently support direct, user space

access to fast non-volatile storage arrays:

• Moneta-D removes trusted code and the associated overheads from most accesses.

Only requests that affect meta-data need to enter the operating system.

• Moneta-D provides a fast hardware mechanism for enforcing the operating and file

system’s data protection and allocation policy.

• Moneta-D trades off between CPU overhead and performance by using different

interrupt forwarding strategies depending on access size and application require-

ments.

• Moneta-D provides an asynchronous software interface, allowing applications to

leverage its inherently asynchronous hardware interface to increase performance

and CPU efficiency.

We evaluate options for key design decisions in Moneta-D and measure its

performance under a collection of database workloads and direct file access benchmarks.

Our results show that Moneta-D improves performance for simple database operations

by between 2.6× and 5.7×. For full SQL server workloads, performance improves by

46

between 1.1× and 2.0×. For file access benchmarks, our results show that Moneta-D

can reduce the latency for a 512 byte read operation by 64% (to 4.1 µs) relative to the

original Moneta design. The reduction in latency leads to a 14.8× increase in bandwidth

for 512 byte requests in the presence of a file system, allowing the storage array to sustain

up to 1.8 million 512 byte IO operations per second. With a single thread, Moneta-D’s

asynchronous IO interface improves performance by 5.5× for 4 KB accesses compared

to synchronous IO. Asynchronous IO also improves efficiency by up to 2.8×, reducing

CPU utilization and saving power.

The remainder of this chapter is organized as follows. Section 4.1 describes

the baseline Moneta storage array and provides an overview of the changes required

to virtualize it. Section 4.2 places our work in the context of other research efforts.

Section 4.3 describes Moneta-D’s architectural support for virtualization. Section 4.4

evaluates the system. Finally, Section 4.5 concludes.

4.1 System overview

Moneta-D’s goal is to remove operating system and file system overheads from

accesses while maintaining the strong protection guarantees that these software layers

provide. The resulting system should be scalable in that many applications should be able

to access Moneta-D concurrently without adversely affecting performance. Furthermore,

it should not be necessary to modify the applications to take advantage of Moneta-D.

Figures 4.1(a) and (b) summarize the changes Moneta-D makes to the hardware

and software components of the original Moneta system. In Moneta (Figure 4.1(a)), all

interactions with the hardware occur via the operating system and file system. Together,

they set the policy for sharing the device and protecting the data it contains. They also

enforce that policy by performing checks on each access. Performing those checks

requires the file system to be trusted code. The driver is trusted since it accesses a shared,

47

Application

File system
(protection policy and enforcement)

Kernel
(virtualization policy and enforcement)

Kernel driver
(issue and completion)

Moneta
(execution)

(a)

Application

File system
(protection policy)

Kernel
(virtualization

policy)

User space
driver

(issue and
completion)

Moneta-D
(virtualization, protection

enforcement, and execution)

(b)

trusted
code

Figure 4.1. The operating and file systems protect storage devices like Moneta (a) by
requiring a system call on every access. In Moneta-D (b), the OS and file system are
only responsible for setting protection and sharing policy. Moneta-D enforces that policy
in hardware, eliminating the need for most system calls and file system accesses. A
virtualized hardware interface allows for an untrusted driver.

non-virtualized hardware resource.

Figure 4.1(b) shows the revised organization that Moneta-D uses. The kernel

and the file system remain responsible for making policy decisions that control access

to data, but the Moneta-D hardware enforces that policy. The hardware exposes a set of

virtual channels that each provide a single process with access to storage. The kernel

manages these channels, assigns them to processes, and maintains protection information

associated with each channel. Since the hardware enforces protection and each process

has a private channel, there is no need for a privileged driver. Instead, applications access

their channels via an untrusted driver library, avoiding system call overheads.

Our intent is that this new architecture be the default mechanism for file access

rather than a specialized interface for high-performance applications. To make it feasible

for all applications running on a system to use the interface, Moneta-D supports a

large number of virtual channels. This decision has forced us to minimize the cost of

virtualization.

48

Below, we describe the channel interface, the user space driver library, and discuss

the interactions between our system and the file system.

4.1.1 Channels

A channel is a virtual interface to the storage array. Each channel provides all the

facilities necessary for a process to access data in the array and for the kernel to restrict

access to only files that the process has successfully opened.

A channel has two interfaces, a privileged interface for configuration by the kernel

and an unprivileged interface for application access. The privileged interface comprises

a set of control registers that let the kernel manage the channel and install permission

information. The unprivileged interface has three components: 1) a set of user registers

that the user space library uses to access array data, 2) a set of tags that distinguish

between outstanding requests on the channel, and 3) a DMA buffer.

Below, we describe how a process and the kernel use their respective interfaces

to initialize a channel, access data, and manage permission information. Section 4.3

describes these mechanisms in more detail.

Channel initialization The user space driver library initializes a channel by opening

the storage device’s file in /dev/ and mmap()ing several pages into its address space.

Mapping these pages allocates a channel for the process and grants it access to the

hardware and shared-memory software interfaces. The first mapped page contains the

user registers that the process will use to communicate with the hardware. The next pages

provide communication with the kernel via shared memory. The remaining pages make

up the channel’s DMA buffer. Initially, the channel does not have permission to access

any of the data in Moneta-D.

49

Managing permissions To gain access to data in Moneta-D, the user space library

issues a system call that takes a file descriptor and an offset in the file. The system

call returns a description of the file system extent (i.e., the range of physical bytes in

Moneta-D) containing that offset. The process uses this information to populate a user

space table that maps file offsets onto physical extents. If the process does not have

access to that data, the system call returns an error.

The system call also installs the permission record for the extent in the process’s

channel. Moneta-D’s permission record storage is finite, so installing one permission

record may require the kernel to evict another. This also means that the process may

issue a request for data that it should be able to access and have the request fail. In this

case, the process re-issues the system call to re-install the permission record and retries

the request.

Issuing and completing commands Once the process has installed a permission

record, it can start making requests. To initiate a command, the process writes a 64-bit

command word to the channel’s memory-mapped command register. The command

encodes the operation to perform (read or write), the portion of the DMA buffer to use,

the physical location in Moneta-D to access, and a tag to differentiate between requests.

After issuing the command, the thread waits for the command to complete.

When Moneta-D receives the command word, it checks the hardware permission

table to determine whether the channel has permission to access the location. If it does, it

performs the command and signals its completion. In Section 4.3 we describe several

schemes for notifying the thread when a command completes.

50

4.1.2 The user space driver

The user space library for accessing Moneta-D performs the low-level driver

functions including tag management, extent lookup, and command retry. The library

transparently replaces the standard library calls for accessing files using LD PRELOAD.

Dynamically linked applications do not require any modification or recompilation. When

the program open()s a file on Moneta-D, the library allocates a channel if necessary and

then handles all future accesses to that file. The library forwards operations on all other

files to the normal libc functions.

The POSIX compatibility layer implements POSIX calls (e.g. read(), write(),

and seek()) calling Moneta-D specific read and write functions. The layer also tracks file

descriptor manipulation functions (e.g. dup(), dup2(), and close()) to track per-file

descriptor state (e.g. the file pointer’s position) and file descriptor aliasing relationships.

Other, Non-POSIX interfaces are also possible. Moneta-D’s hardware interface

is inherently asynchronous, so a high-performance asynchronous IO library is a natural

fit. In addition, since the channel’s DMA buffers reside in the process’s address space, an

optimized application could avoid copying data to and from the DMA buffer and operate

on the data in place instead. We explore both these options in Section 4.3.

4.1.3 The file system

Moneta-D changes the way applications interact with the file system to increase

performance. These changes require minor modifications in the file system to support

moving protection checking into hardware. They also introduce some challenges to

maintaining existing functionality and consistency in the file system.

The only change required to the file system is the addition of a function to

extract extent information. We implemented this change in XFS [48] and found it to be

straightforward, even though XFS is a very sophisticated file system. The single 30-line

51

function accesses and transfers file extent meta-data into Moneta-D’s data structures. We

expect that adding support to other file systems would also be relatively easy.

All meta-data updates and accesses use the conventional operating system inter-

face. This requirement creates problems when the driver uses the kernel to increase a

file’s size and then accesses the resulting data directly. When it extends a file (or fills a

hole in a sparse file), XFS writes zeros into the kernel’s file buffer cache. Although the

operating system writes out these dirty blocks after a short period of time, the user space

library accesses the newly-allocated blocks as soon as the system call returns and that

access will not ”see” the contents of the buffer cache. If the application updates the new

pages in Moneta-D before the operating system flushes the cached copy, a race will occur

and the flushed pages will overwrite the application’s changes. To avoid this problem,

we flush all blocks associated with a file whenever we fill a hole or extend a file. After

the first access to the file, this is usually a fast operation because the buffer cache will be

empty.

Guaranteeing consistency while accessing files concurrently through Moneta-D

and via the operating system remains a challenge, because of potential inconsistencies

caused by the kernel’s buffer cache. One solution is to detect files that applications

have opened a file using both interfaces and force the application using the user space

interface to switch to the system-call based interface. The library could do this without

that application’s knowledge. Alternatively, disabling the buffer cache for files residing

on Moneta-D would also resolve the problem. Our system does not yet implement either

option.

Moneta-D’s virtual interface also supports arbitrarily sized and aligned reads and

writes, eliminating the need to use read-modify-write operations to implement unaligned

accesses.

52

4.2 Related Work

Our extensions to Moneta touch on questions of virtualization, fast protection

and translation, and light-weight user space IO. Below we describe related work in each

of these areas and how the system we describe differs from and extends the current state

of the art.

4.2.1 Virtualization

Moneta-D differs from other efforts in virtualizing high-speed IO devices in

that it provides virtual interfaces to the device rather than logically separate virtual

devices. In our system, there is a single logical SSD and a single file system to manage it.

However, many client applications can access the hardware directly. Creating multiple,

independent virtual disks or multiple, independent virtual network interfaces for multiple

virtual machines is a simpler problem because the virtual machine monitor can statically

partition the device’s resources across the virtual machines.

Previous work in high-speed networking [102, 10, 73] explores the idea of virtu-

alizing network interfaces and allowing direct access to the interface from user space.

DART [73] implements network interface virtualization while also supporting offload-

ing of some packet processing onto the network card for additional performance en-

hancements. Our work implements similar hardware interface virtualization for storage

accesses while enabling file systems protection checking in hardware.

Many projects have developed techniques to make whole-device virtualization

more efficient [95, 64, 82, 66, 107], particularly for graphics cards and high-performance

message-passing interconnects such as Infiniband. Virtualization techniques for GPUs are

most similar to our work. They provide several “rendering contexts” that correspond to an

application window or virtual machine [22]. A user space library (e.g., OpenGL) requests

53

a context from the kernel, and the kernel provides it a set of buffers and control registers

it can use to transfer data to and from the card without OS involvement. Some Infiniband

cards [36] also provide per-application (or per-virtual machine) channels and split the

interface into trusted and untrusted components. The work in [62] has explored how to

expose these channels directly to applications running inside virtual machines. However,

neither of these applications requires the hardware to maintain fine-grain permission data

as Moneta-D does.

The concurrent, direct network access (CDNA) model [107] is also similar, but

applies to virtual machines. In this model, the network card provides multiple independent

sets of queues for network traffic, and the VMM allows each virtual machine to access

one of them directly. On an interrupt, the OS checks a register to determine which queues

need servicing and forwards a virtual interrupt to the correct VMs.

Recent revisions of the PCIe standard include IO virtualization (IOV) [74] to

support virtual machine monitors. PCIe IOV allows a single PCIe device to appear

as several, independent virtual devices. The work in [110] describes a software-only

approach to virtualizing devices that do not support virtualization, assuming the devices

satisfies certain constraints. In both cases the support is generic, so it cannot provide the

per-channel protection checks that Moneta-D requires. Some researchers have also found

the PCIe approach to be inflexible in the types of virtualized devices it can support [58].

The work in [84] and [78] present new IO architectures with virtualization as

the driving concern. In [84] researchers propose a unified interface to several of the

techniques described above as well as extensions to improve flexibility. [78] proposes a

general approach to self-virtualizing IO devices that offloads many aspects of virtualiza-

tion to a processor core embedded in the IO device.

54

4.2.2 User space IO

Efficiently initiating and completing IO requests from user space has received

some attention in the high-speed networking and message passing communities. In

almost all cases, the VMs issue requests via stores to PIO registers, and the VMM is

responsible for delivering virtual interrupts to the VMs. We describe two alternative

approaches below.

Prior work [102, 10, 8] proposed supporting user space IO and initiating DMA

transfers from user space without kernel intervention. SHRIMP [8] proposes user space

DMA through simple load and store operations, but requires changes to the CPU and

DMA engine to detect and initiate transfers. Our work requires no changes to the CPU or

chipset.

The work in [86, 85] proposes architectural support for issuing multi-word PIO

commands atomically. In effect, it implements a simple form of bounded transactional

memory. Moneta-D would be more flexible if our processors provided such support. The

same work also suggests adding a TLB to the PCIe controller to allow the process to

specify DMA targets using virtual addresses. The PCIe IOV extensions mentioned above

provide similar functions. The combination of multi-word atomic PIO writes and the

DMA TLB would eliminate the need for a dedicated DMA buffer and make it possible to

provide a zero-copy interface on top of Moneta-D that was POSIX-compatible.

The same work also proposes hardware support for delivering interrupts to user

space. The device would populate a user space buffer with the results of the IO operation,

and then transmit data to the CPU describing which process should receive the interrupt.

The OS would then asynchronously execute a user-specified handler. Moneta-D would

benefit from this type of support as well, and one of the request completion techniques we

examine is similar in spirit. More recently, researchers have proposed dedicating an entire

55

core to polling IO device status and delivering notifications to virtual machines through

memory [61]. The driver for recent PCIe-attached flash-based SSDs from Virident

dedicates one processor core solely to interrupt handling.

Several papers have argued against user space IO [63]. They posit that efficient

kernel-level implementations can be as fast as user-level ones and that the kernel should

be the global system resource controller. However, our work and prior work [114] have

found that user-level IO can provide significant benefit without significantly increasing

complexity for application developers. Our work maintains the kernel as the global policy

controller — only policy enforcement takes place in hardware.

4.2.3 Protection and translation

Moneta-D removes file system latency by copying permission information into

hardware and caching the physical layout of data in user space. Some approaches to

distributed, networked storage use similar ideas. The latest version of the network file

system (NFS) incorporates the pNFS [39] extension that keeps the main NFS server from

becoming a bottleneck in cluster-based NFS installations. Under pNFS, an NFS server

manages storage spread across multiple storage nodes. When a client requests access to

a file, it receives a map that describes the layout of the data on the storage nodes. Further

requests go directly to the storage nodes. NASD [34] is similar in that a central server

delegates access rights to clients. However, it uses intelligent drives rather than separate

storage servers to provide access to data. NASD uses cryptographic capabilities to grant

clients access to specific data.

Modern processors provide hardware support for translation and protection (the

TLB) and for servicing TLB misses (the page table walker) in order to reduce both

translation and miss costs. Supporting multiple file systems, many channels, and large

files requires Moneta-D to take a different approach. Our SSD provides hardware support

56

for protection only. Translation must occur on a per-file basis (since “addresses” are file

offsets), and hardware translation would require Moneta-D to track per-file state rather

than per-channel state.

Rather than addressing physical blocks in a storage device, object-based storage

systems [1, 35, 105], store objects addressed by name. They provide a layer of abstraction

mapping between object names and physical storage in the device. Moneta-D performs

a similar mapping in its user space library, mapping between file descriptor and offset.

Shifting these translations into the hardware has several drawbacks for a system like

Moneta-D. First, the file system would require significant alterations, breaking the

generic support that Moneta-D currently enables. Second, performing the translations

directly in hardware could limit Moneta-D’s performance if the lookups take more than a

few hundred nanoseconds. Finally, dedicated DRAM in Moneta-D for storing lookup

information might be better located in the host system where it could be repurposed for

other uses when not needed for translations.

4.3 Moneta-D Implementation

This section describes the changes to the Moneta [12] hardware and software that

comprise Moneta-D. The baseline Moneta system implements a highly optimized SSD

architecture targeting advanced non-volatile memories. The Moneta-D modifications

enable the hardware and software to work together to virtualize the control registers and

tags, efficiently manage permission information, and deliver IO completions to user space.

We discuss each of these in turn. Section 4.4 evaluates their impact on performance.

57

Ta
bl

e
4.

1.
T

he
re

ar
e

th
re

e
in

te
rf

ac
es

th
at

co
nt

ro
lM

on
et

a-
D

:T
he

ke
rn

el
re

gi
st

er
s

th
at

th
e

ke
rn

el
us

es
to

co
nfi

gu
re

ch
an

ne
ls

,t
he

pe
r-

ch
an

ne
lu

se
rr

eg
is

te
rs

th
at

ap
pl

ic
at

io
ns

us
e,

an
d

th
e

pe
r-

ch
an

ne
lm

ap
pe

d
m

em
or

y
re

gi
on

sh
ar

ed
be

tw
ee

n
th

e
ke

rn
el

an
d

th
e

ap
pl

ic
at

io
n

to
m

ai
nt

ai
n

ch
an

ne
ls

ta
te

.

R
/W

N
am

e
K

er
ne

l
U

se
r

H
W

D
es

cr
ip

tio
n

K
er

ne
lg

lo
ba

l
re

gi
st

er
s

C
H

A
N

N
E

L
S

TA
T

U
S

R
-

W
R

ea
d

an
d

cl
ea

rc
ha

nn
el

st
at

us
an

d
er

ro
rb

its
E

R
R

O
R

Q
U

E
U

E
R

-
W

R
ea

d
an

d
po

p
on

e
er

ro
rf

ro
m

th
e

er
ro

rq
ue

ue
U

se
r

pe
r-

ch
an

ne
l

re
gi

st
er

s
C

O
M

M
A

N
D

W
W

R
Is

su
e

a
co

m
m

an
d

to
th

e
de

vi
ce

.
TA

G
S

TA
T

U
S
R

E
G

IS
T

E
R

R
R

W
R

ea
d

an
d

cl
ea

rt
ag

co
m

pl
et

io
n

bi
ts

an
d

er
ro

rfl
ag

.

Pe
r-

ch
an

ne
lm

ap
pe

d
m

em
or

y

TA
G

S
TA

T
U

S
TA

B
L

E
W

R
/W

W
Tr

ac
ks

co
m

pl
et

io
n

st
at

us
of

ou
ts

ta
nd

in
g

re
qu

es
ts

.
C

O
M

P
L

E
T

IO
N

C
O

U
N

T
W

R
-

C
ou

nt
of

co
m

pl
et

ed
re

qu
es

ts
on

ea
ch

ch
an

ne
l.

D
M

A
B

U
FF

E
R

-
R

/W
R

/W
Pi

nn
ed

D
M

A
bu

ff
er

fo
rd

at
a

tr
an

sf
er

s.

58

PIO

DMA

Request
Queue Pe

rm

Ch
ec

k

Re
ta

g

Tag Map and Free List

Error Queue

DMA Ctrl

Ring CtrlStatus Registers

virtual channel support

Perm Table Root Table

Transfer
BuffersSc

or
e-

bo
ar

d

R
in

g
(4

 G
B

/s
)

8 GB8 GB

8 GB8 GB

8 GB8 GB

8 GB8 GB

Figure 4.2. Components inside the dashed box provide support for virtualization and are
the focus of this work. The other components (at right) execute storage access commands.

4.3.1 The baseline Moneta hardware

The right side of Figure 4.2 (outside the dotted box) shows the architecture of the

baseline array. It spreads 64 GB of storage across eight memory controllers connected

via a high-bandwidth ring. An 8-lane PCIe 1.1 interface provides a 2 GB/s full-duplex

connection (4 GB/s total) to the host system. The baseline design supports 64 concurrent,

outstanding requests with unique tags identifying each. The prototype runs at 250 MHz

on a BEE3 FPGA prototyping system [7].

The baseline Moneta array emulates advanced non-volatile memories using

DRAM and modified memory controllers that insert delays to model longer read and

write times. We model phase change memory (PCM) in this work and use the latencies

from [53] — 48 ns and 150 ns for array reads and writes, respectively. The array uses

start-gap wear leveling [77] to distribute wear across the PCM and maximize lifetime.

The baseline Moneta design includes extensive hardware and software optimiza-

tions to reduce software latency (e.g. bypassing the Linux IO scheduler and removing

unnecessary context switches) and maximize concurrency (e.g., by removing all locks in

the driver). These changes reduce latency by 62% compared to the standard Linux IO

59

Time (us)
0 2 4 6 8 10 12 14 16 18

Moneta
Baseline

Moneta−D
Common Case

Moneta−D
Soft Miss

Moneta−D
Hard Miss

HW/DMA

Completion

SysCall

FileSys

PermCheck

ExtentLookup

Copy

SoftMiss

HardMiss

35.5

43.7

Figure 4.3. Software latencies required to manage permissions, tags, and user data all
contribute to operation latency. DMA and copying values are for 512 byte accesses. The
graph shows the latency breakdown for 1K extents and using DMA completion.

stack, but system call and file system overheads still account for 65% of the remaining

software overheads.

The baseline design implements one channel that the operating system alone may

access. It provides a set of configuration and command registers and targets a single

DMA buffer in the kernel’s address space.

Figure 4.3 shows the latency breakdown for 512 B reads and writes on Moneta-

D. The hardware, DMA, and copy overheads are common across the baseline and the

extensions we describe in this work. These, combined with the file system, system call,

and interrupt processing overheads bring the total request latency in the baseline to 15.36

and 16.78 µs for reads and writes, respectively.

60

4.3.2 Virtual channels

Supporting virtual channels on Moneta-D requires replicating the control registers,

tags, and DMA buffers mentioned above, while maintaining file coherency across multiple

processes. This section describes the hardware and software implementation of virtual

channels on Moneta-D. The dashed box in Figure 4.2 contains the components that

implement virtual channels.

Control registers and data structures The interface for a channel comprises several

memory-mapped hardware control registers and a shared memory segment. Together,

these allow the kernel and the user space library to configure the channel, perform

operations on it, and receive notifications when they complete.

Table 4.1 describes the most important control registers and the shared memory

segment. The kernel’s global registers allow the kernel to manage Moneta-D’s functions

that apply to multiple channels, such as error reporting and channel status. The user

per-channel registers allow the process to access the hardware. Finally, the per-channel

mapped memory shared by the kernel and user contains the channel’s DMA buffer and

data structures used to notify threads when operations complete. We discuss the role of

these components in detail below.

In the non-virtualized system, a single set of control registers exposes Moneta’s

interface to the kernel. In the virtualized system, Moneta-D exposes 1024 channels, each

with a private set of control registers located at a unique physical address. Reading or

writing to any of these registers will send a PIO request to Moneta-D. Moneta-D uses the

address bits to determine which channel the command targets. To give a process access

to a particular channel, the kernel maps the registers for the channel into the process’s

address space. The unique mapping of physical addresses to channels allows Moneta-D

61

to reliably know which process issued a particular request and prevents processes from

accessing channels other than their own.

Request tags The baseline design supports 64 concurrent, outstanding requests. To

maximize performance and concurrency, each channel needs its own set of tags. One

option is to support 65,536 tags (64 tags for each of the 1024 channels) in hardware

and statically partition them across the channels. In a custom ASIC implementation this

might be possible, but in our FPGAs maintaining a request scoreboard of that size is not

feasible at our 250 MHz clock frequency.

Instead, we provide each channel with 64 virtual tags and dynamically map them

onto a set of 64 physical tags. The virtual tag number comprises the channel ID and the

tag number encoded in the command word. The “retag” unit shown in Figure 4.2 assigns

physical tags to requests by drawing physical tags from a hardware free tag list. If a

physical tag is not available, the retag unit stalls until a request completes and releases its

physical tag.

DMA buffer Each channel has a private 1 MB DMA buffer pinned in system DRAM

that Moneta-D uses as the source and destination for writes and reads. The target DMA

address for a request depends on its tag with each tag corresponding to one 16 KB slice

of the channel’s DMA buffer. If the process issues a command on tag k, the DMA

transfer will start at the kth slice. The access that uses the tag can be larger than 16 KB,

but it is the software’s responsibility to not issue requests that overlap in the buffer.

Moneta-D supports arbitrarily large DMA buffers, but since they must be contiguous in

physical memory allocating bigger DMA buffers is challenging. Better kernel memory

management would eliminate this problem.

62

Asynchronous interface Moneta-D’s user space library provides asynchronous ver-

sions of its pread() and pwrite() calls (i.e., read/write to a given offset in a file). The

asynchronous software interface allows applications to take advantage of the inherently

asynchronous hardware by overlapping storage accesses with computation. For example,

double buffering allows a single thread to load a block of data at the same time as it

processes a different block. The asynchronous calls return immediately after issuing the

request to the hardware and return an asynchronous IO state structure that identifies and

tracks the request. The application can continue executing and only check for completion

when it needs the data from a read or to know that a write has completed.

4.3.3 Translation and protection

The Moneta-D hardware, the user space library, and the operating system all work

together to translate file-level accesses into hardware requests and to enforce permissions

on those accesses. Translations between file offsets and physical storage locations occur

in the user space library while the hardware performs permission checks. Below, we

describe the role of both components and how they interact with the operating system

and file system.

Hardware permission checks Moneta-D checks permissions on each request it re-

ceives after it translates virtual tags into physical tags (”Perm Check” in Figure 4.2). Since

the check is on the critical path for every access, the checks can potentially limit Moneta-

D’s throughput. To maintain the baseline’s throughput of 1.8 M IOPS, permissions

checks must take no more than 500 ns.

Moneta-D must also cache a large amount of permission information in order

to minimize the number of “misses” that will occur when the table overflows and the

system must evict some entries. These hard permission misses require intervention from

63

both the user space driver and the operating system to remedy, a process that can take

10s of microseconds (Figure 4.3).

To minimize the number of permission entries it must store for a given set of

files, Moneta-D keeps extent-based permission information for each channel and merges

entries for adjacent extents. All the channels share a single permission table with 16K

entries. To avoid the need to scan the array linearly and to allow channels to dynamically

share the table, Moneta-D arranges the extent information for each channel as a balanced

red-black binary tree, with each node referring to a range of physical blocks and the

permission bits for that range. The ”Root Table” (Figure 4.2) holds the location of the

root of each channel’s tree. Using balanced trees keeps search times fast despite the

potentially large size of the permission tree: The worst-case tree traversal time is 180 ns,

and in practice the average latency is just 96 ns. With a linear scan, the worst-case time

would exceed 65 µs.

To reduce hardware complexity, the operating system maintains the binary trees,

and the hardware only performs look ups. The OS keeps a copy of the trees in system

DRAM. When it needs to update Moneta-D’s permission table, it performs the updates

on its copy and records the changes it made in a buffer. Moneta-D then reads the buffer

via DMA, and applies the updates to the tree while temporarily suspending protection

checking.

User space translation When the user space library receives a read or write request

for a file on Moneta-D, it is responsible for translating the access address into a physical

location in Moneta-D and issuing requests to the hardware.

The library maintains a translation map for each file descriptor it has open. The

map has one entry per file extent. To perform a translation, the library looks up the target

file location in the map. If the request spans multiple extents, the library will generate

64

Table 4.2. Software latencies required to manage permissions, tags, and user data all
contribute to operation latency. DMA and copying values are for 512 byte accesses. Cells
with a single value have the same latency for both read and write accesses.

Component Latency R/W (µs)
1 extent 1K extents

Hardware + DMA 1.26 / 2.18
Copy 0.17 / 0.13
SW Extent lookup 0.12 0.23
HW Permission check 0.06 0.13
Soft miss handling 7.28 29.9
Hard miss handling 14.7 38.1
Permission update 3.23 3.26

File System
Baseline 4.21/4.64
Moneta-D 0.21/0.29

System call
Baseline 3.90/3.96
Moneta-D 0.00/0.00

Completion

Baseline (interrupts) 5.82 / 5.87
OS forwarding 2.71 / 2.36
DMA 2.32 / 2.68
issue-sleep 14.65 / 14.29

65

multiple IO requests.

The library populates the map on-demand. If a look up fails to find an extent

for a file offset, we say that a soft permissions miss has occurred. To service a soft

miss, the library requests information for the extent containing the requested data from

the operating system. The request returns the mapping information and propagates the

extent’s protection and physical location information to hardware.

Once translation is complete, the library issues the request to Moneta-D and waits

for it complete. If the request succeeds, the operation is complete. Permission record

eviction or an illegal request may cause the request to fail. In the case of an eviction, the

permission entry is missing in hardware so the library reloads the permission record and

tries again.

Permission management overheads Permission management and checking add some

overhead to accesses to Moneta-D, but they require less time than the conventional system

call and file system overheads that provide the same functions in conventional systems.

Figure 4.3 shows the latencies for each component of an operation in the Moneta-D

hardware and software. To measure them, we use a microbenchmark that performs 512 B

random reads and writes to a channel with one permission record and another with 1000

records present. The microbenchmark selectively enables and disables different system

components to measure their contribution to latency.

In the common case, accesses to Moneta-D incur software overhead in the user

space library for the file offset-to-extent lookup. This requires between 0.12 and 0.23 µs,

depending on the number of extents. The hardware permission check time is much faster

– between 60 ns and 130 ns.

The miss costs are significantly higher: Handling a soft miss requires between

4.1 µs and 26.8 µs to retrieve extent information from the file system and 3.2 µs to

66

update the permission tree in hardware. In total, a soft miss increases latency for a 512 B

access by between 7.3 µs and 30 µs, depending on the number of extents in use. The

hard miss adds another 7.7 µs of latency on average, because the user space library does

not detect it until the initial request fails and reports an error.

In the best case, only one soft miss should occur per file extent. Whether hard

misses are a problem depends on the number of processes actively using Moneta-D

and the number of extents they are accessing. Since fragmented files will place more

pressure on the permission table, the file system’s approach to preventing fragmentation

is important.

XFS uses aggressive optimizations to minimize the number of extents per file,

but fragmentation is still a problem. We measured fragmentation on a 767 GB XFS

file system that holds a heavily-used Postgres database [59] and found that, on average,

each file contained 21 extents, and ninety-seven percent of files contained a single extent.

However, several files on the file system contain 1000s of extents, and one database table

contained 23,396.

We have implemented two strategies to deal with fragmentation. The first is to

allocate space in sparse files in 1 MB chunks. When the library detects a write to an

unallocated section of a file, it allocates space by writing up to 1 MB of zeroed data to

that location before performing the user’s request. This helps reduce fragmentation for

workloads that perform small writes in sparse files. The second is to merge contiguous

extents in the hardware permission table even if the file contents they contain are logically

discontiguous in the file. This helps in the surprising number of cases in which XFS

allocates discontinuous portions of a file in adjacent physical locations.

Figure 4.4 shows the benefits of merging permission entries. It shows aggregate

throughput for a single process performing random 4 KB accesses to between 2048 and

32,768 extents. The two lines depict the workload running on Moneta-D with (labeled

67

Number of Extents (in thousands)

0 4 8 12 16 20 24 28 32

K
ilo

−
op

er
at

io
ns

/S
ec

on
d

0

100

200

300

400

500

600

700

Moneta−D NoMerge
Moneta−D Merge

Figure 4.4. Merging permission entries improves performance because it allows Moneta-
D to take advantage of logically discontinuous file extents that the file system allocates
in physically adjacent storage.

”Moneta-D Merge”) and without (”Moneta-D NoMerge”) combining permission table

entries. Moneta-D Merge combines entries if they belong to the same channel, represent

data from the same file, have the same permission bits set, and cover physically adjacent

blocks. Moneta-D NoMerge does not merge extents.

Throughput remains high for Moneta-D NoMerge when there are enough per-

mission table entries to hold all the extent information. Once all 16K permission table

entries are in use, throughput drops precipitously as the hard miss rate rises. For Moneta-

D Merge, performance remains high even when the number of extents exceeds the

permission table size by 2×, because many extents merge into a smaller number of

entries.

Avoiding hard misses requires having a sufficient number of permission table

entries available for the process accessing Moneta-D directly. There are (at least) three

ways to achieve this. The first is to increase the permission table size. In a custom ASIC

implementation this would not be difficult, although it would increase cost. The second

is to detect over-subscription of the permission table and force some processes to use the

68

conventional system call interface by evicting all their permission table entries, refusing

to install new ones, and returning an error code informing the process of the change in

policy. Finally, enhancements can be made to more aggressively avoid fragmention in

the file system block allocator.

4.3.4 Completing requests and reporting errors

Modern hardware provides no mechanism for delivering an interrupt directly to

a process, so virtualizing this aspect of the interface efficiently is difficult. Moneta-D

supports three mechanisms for notifying a process when a command completes that trade-

off CPU efficiency and performance. Moneta-D also provides a scalable mechanism for

reporting errors (e.g., permission check failures).

Forwarding interrupts The first notification scheme uses a traditional kernel interrupt

handler to notify channels of request status through a shared memory page. Moneta-D’s

kernel driver receives the interrupt and reads the CHANNELSTATUS register to determine

which channels have completed requests. The kernel increments the COMPLETION-

COUNT variable for each of those channels.

After issuing a request, the user space library spins on both COMPLETIONCOUNT

and the TAGSTATUSTABLE entry for the request. Once the kernel increments COM-

PLETIONCOUNT one thread in the user space library sees the change and reads the

per-channel TAGSTATUSREGISTER from Moneta-D. This read also clears the register,

ensuring that only one reader will see each bit that is set. The thread updates the TAGSTA-

TUSTABLE entries for all of the completed tags, signalling any other threads that are

waiting for requests on the channel.

DMA completion The second command completion mechanism bypasses the operat-

ing system entirely. Rather than raise an interrupt, Moneta-D uses DMA to write the

69

request’s result code (i.e., success or an error) directly to the tag’s entry in the channel’s

TAGSTATUSTABLE. In this case, the thread spins only on the TAGSTATUSTABLE.

Issue-sleep The above techniques require the issuing thread to spin. For large requests

this is unwise, since the reduction in latency that spinning provides is small compared to

overall request latency, and the spinning thread occupies a CPU, preventing it from doing

useful work.

To avoid spinning, issue-sleep issues a request to hardware and then asks the OS

to put it to sleep until the command completes. When an interrupt arrives, the OS restarts

the thread and returns the result code for the operation. This approach incurs the system

call overhead but avoids the file system overhead, since permission checks still occur in

hardware. The system call also occurs in parallel with the access.

It is possible to combine issue-sleep on the same channel with DMA completions,

since the latter does not require interrupts. This allows the user library to trade-off

between completion speed and CPU utilization. A bit in the command word that initiates

a requests tells Moneta-D which completion technique to use. We explore this trade-off

below.

Reporting errors Moving permission checks into hardware and virtualizing Mon-

eta’s interface complicates the process of reporting errors. Moneta-D uses different

mechanisms to report errors depending on which completion technique the request is

using.

For interrupt forwarding and issue-sleep, the hardware enqueues the type of error

along with its virtual tag number and channel ID in a hardware error queue. It then sets

the error bit in the CHANNELSTATUS register and raises an interrupt.

The kernel detects the error when it reads the CHANNELSTATUS register. If the

70

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Issue−sleep
Forwarding
DMA completion

Figure 4.5. This graph compares performance for our three completion strategies for
32 threads performing a 50/50 mix of random reads and writes. It measures maximum
sustained bandwidth. For small accesses, DMA completion is the best alternative by
both measures. For larger accesses, however, issue-sleep enjoys a large advantage in
efficiency.

error bit is set, it extracts the error details from the queue by reading repeatedly from the

ERRORQUEUE register. Each read dequeues an entry from the error queue. For interrupt

forwarding the kernel copies the error codes into the TAGSTATUSREGISTERs for the

affected channels. For issue-sleep completion it returns the error when it wakes up the

sleeping thread. The kernel reads from ERRORQUEUE until it returns zero.

For DMA completion, the hardware writes the result code for the operation

directly into the TAGSTATUSTABLE when the operation completes.

Completion technique performance The four completion method lines of Figure 4.3

measure the latency of each complation strategy in addition to the interrupt processing

overhead for the baseline Moneta design. Interrupt forwarding and DMA completion all

have similar latencies – between 2.5 and 2.7 µs. Issue-sleep takes over 14 µs, but for

large requests, where issue-sleep is most useful, latency is less important.

Figures 4.5 and 4.6 compare the performance of the three completion techniques.

71

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (

G
B

/s
)

pe
r

C
P

U

0.0

0.5

1.0

1.5

Figure 4.6. This graph compares CPU behavior for our three completion strategies for
32 threads performing a 50/50 mix of random reads and writes. It measures efficiency
as the ratio of bandwidth to CPU utilization. For small accesses, DMA completion is
the best alternative by both measures. For larger accesses, however, issue-sleep enjoys a
large advantage in efficiency.

The data are for 32 threads performing random accesses of the size given on the horizontal

axis. Half of the accesses are reads and half are writes. Figure 4.5 measures aggregate

throughput and shows that DMA completion outperforms the other schemes by between

21% and 171%, for accesses up to 8 KB. Issue-sleep performs poorly for small accesses,

but for larger accesses its performance is similar to interrupt forwarding. We use DMA

completion throughout the rest of this work.

Figure 4.6 measures efficiency in terms of GB/s of bandwidth per CPU. The two

spinning-based techniques fare poorly for large requests. Issue-sleep does much better and

can deliver up to 7× more bandwidth per CPU. The drop in issue-sleep performance for

requests over 128 KB is an artifact of contention for tags in our microbenchmark: Threads

spin while waiting for a tag to become available and yield the processor between each

check. Since our microbenchmark does not do any useful work, the kernel immediately

reschedules the same thread. In a real application, another thread would likely run instead,

reducing the impact of the spinning thread.

72

Access Size

0.5 kB 2 kB 8 kB 32 kB

La
te

nc
y

(u
s)

0
5

10
15
20
25
30
35
40
45
50
55
60

Moneta FS
Moneta NoFS
Moneta−D FS
Moneta−D NoFS

Figure 4.7. Moneta-D’s user space interface eliminates most of the file system and
operating system overheads to reduce file system access latency by between 42% and
69%.

The data show that DMA completion is a good choice for all request sizes, but

that issue-sleep has a slight advantage for CPU-intensive workloads. Issue-sleep is the

best choice for accesses of 8 KB or larger because it is more CPU-efficient.

4.4 Results

Moneta-D’s virtualized interface reduces both file and operating system overhead,

but it also introduces new sources of potential latency as described in Section 4.3.

This section quantifies the overall impact of these changes on Moneta-D’s performance

using an IO microbenchmark and several database applications. We also evaluate the

benefits of using asynchronous IO on Moneta-D rather than the conventional synchronous

operations.

4.4.1 Operation latency

Figure 4.7 shows how end-to-end single thread access latency varies over a range

of write request sizes from 512 B to 32 KB on the baseline Moneta design and Moneta-

73

D. Read latencies are similar. The graph shows data for accesses running with 1000

permission table entries installed. We collect these data using XDD [109], a flexible IO

benchmarking tool. Moneta-D extends the baseline Moneta’s performance by a wide

margin, while Moneta outperforms state-of-the-art flash-based SSDs by up to 8.7×,

with a harmonic mean speedup of 2.1× on a range of file system, paging, and database

workloads [12].

Figure 4.7 shows that Moneta-D eliminates most file system and operating system

overheads from requests of all sizes, since the lines for Moenta-D FS and NoFS lay on

top of each other. Figure 4.3 provides details on where the latency savings come from

for small requests. Assuming the access hits in the permission table, Moneta-D all of

this, reducing latency by 60%. Reducing software overheads for small (512 B) requests

is especially beneficial because as request size decreases, hardware latency decreases and

software latency remains constant.

4.4.2 Raw bandwidth

Since removing the operating and file systems from common case accesses

reduces software overhead per IO operation, it also increases throughput, especially for

small accesses. Figures 4.8 and 4.9 compares the bandwidth for Moneta-D and baseline

Moneta with and without the file system. For writes, the impact of virtualization is large:

Adding a file system reduces performance for the original Moneta system by up to 13×,

but adding a file system to Moneta-D has almost no effect. Moneta-D eliminates the gap

for reads as well, although the impact of the file system on the baseline is smaller (at

most 34%).

Reducing software overheads also increases the number of IO operations the

system can complete per second, because the system must do less work for each operation.

For small write accesses with a file system, throughput improves by 26×, and Moneta-D

74

Ta
bl

e
4.

3.
W

e
us

e
ei

gh
td

at
ab

as
e

be
nc

hm
ar

ks
an

d
w

or
kl

oa
ds

to
ev

al
ua

te
M

on
et

a-
D

.T
he

se
be

nc
hm

ar
ks

in
cl

ud
e

bo
th

lig
ht

w
ei

gh
t

B
er

ke
le

y-
D

B
da

ta
ba

se
tr

an
sa

ct
io

ns
an

d
si

m
pl

e
an

d
co

m
pl

ex
tr

an
sa

ct
io

ns
ag

ai
ns

th
ea

vy
w

ei
gh

tS
Q

L
da

ta
ba

se
s.

N
am

e
D

at
a

fo
ot

pr
in

t
D

es
cr

ip
tio

n
B

er
ke

le
y-

D
B

B
tr

ee
45

G
B

Tr
an

sa
ct

io
na

lu
pd

at
es

to
a

B
+t

re
e

ke
y/

va
lu

e
st

or
e

B
er

ke
le

y-
D

B
H

as
h

41
G

B
Tr

an
sa

ct
io

na
lu

pd
at

es
to

a
ha

sh
ta

bl
e

ke
y/

va
lu

e
st

or
e

M
yS

Q
L

-S
im

pl
e

46
G

B
Si

ng
le

va
lu

e
ra

nd
om

se
le

ct
qu

er
ie

s
on

M
yS

Q
L

da
ta

ba
se

M
yS

Q
L

-U
pd

at
e

46
G

B
Si

ng
le

va
lu

e
ra

nd
om

up
da

te
qu

er
ie

s
on

M
yS

Q
L

da
ta

ba
se

M
yS

Q
L

-C
om

pl
ex

46
G

B
M

ix
of

re
ad

/w
ri

te
qu

er
ie

s
in

tr
an

sa
ct

io
ns

on
M

yS
Q

L
da

ta
ba

se
PG

SQ
L

-S
im

pl
e

55
G

B
Si

ng
le

va
lu

e
ra

nd
om

se
le

ct
qu

er
ie

s
on

Po
st

gr
es

da
ta

ba
se

PG
SQ

L
-U

pd
at

e
55

G
B

Si
ng

le
va

lu
e

ra
nd

om
up

da
te

qu
er

ie
s

on
Po

st
gr

es
da

ta
ba

se
PG

SQ
L

-C
om

pl
ex

55
G

B
M

ix
of

re
ad

/w
ri

te
qu

er
ie

s
in

tr
an

sa
ct

io
ns

on
Po

st
gr

es
da

ta
ba

se

75

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

Baseline FS
Baseline NoFS
Moneta−D FS
Moneta−D NoFS

Figure 4.8. Each pair of lines compares bandwidth with and without the file system for
writes for the baseline system and Moneta-D. The data show that giving the applications
direct access to the hardware nearly eliminates the performance penalty of using a file
system and the cost of entering the operating system.

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB 512 kB

B
an

dw
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

Figure 4.9. Each pair of lines compares bandwidth with and without the file system for
writes for the baseline system and Moneta-D. The data show that giving the applications
direct access to the hardware nearly eliminates the performance penalty of using a file
system and the cost of entering the operating system.

76

sustains 1.8 M 512 B IO operations per second.

4.4.3 Application level performance

Table 4.3 describes the workloads we use to evaluate the application level perfor-

mance of Moneta-D compared to the baseline Moneta design. The first two workloads

are simple database applications that perform random single-value updates to a large

key-value store in Berkeley-DB, backed either by a B+tree or a hash table. The six

MySQL and PGSQL workloads consist of full OLTP database servers that aggressively

optimize storage accesses and have strong consistency requirements. They are running

the OLTP portion of the SysBench benchmark suite [96] which includes a variety of

OLTP operations including read-only lookups, single-value increments, and complex

transactions with multiple lookups and updates.

Table 4.4 shows the performance results for baseline Moneta and the Moneta-D

systems for all of our workloads. We also include performance numbers from a FusionIO

80 GB Flash SSD for comparison. Moneta-D speeds up the Berkeley-DB applications

by between 2.6× and 5.7× in terms of operations/second, compared to baseline Moneta

and by between 5.3× and 9.8× compared to FusionIO. We attribute the difference in

performance between these two workloads to higher data structure contention in the

B+tree database implementation.

Figure 4.10 shows application performance speedup for varying thread counts

from 1 to 16 for the Berkeley-DB and complex MySQL and Postgres databases. Other

MySQL and Postgres results are similar. The results are normalized to 1-thread baseline

Moneta performance. Baseline Moneta out-performs FusionIO for all thread counts

across all of workloads, while Moneta-D provides additional speedup. Increasing thread

counts on Moneta-D provides significantly more speedup than on Moneta or FusionIO

for the Berkeley-DB workloads, and improves scaling on PGSQL-Complex.

77

Ta
bl

e
4.

4.
M

on
et

a-
D

pr
ov

id
es

si
gn

ifi
ca

nt
sp

ee
du

ps
co

m
pa

re
d

to
ba

se
lin

e
M

on
et

a
an

d
Fu

si
on

IO
ac

ro
ss

a
ra

ng
e

of
w

or
kl

oa
ds

.T
he

B
er

ke
le

y-
D

B
w

or
kl

oa
ds

be
ne

fit
m

or
e

di
re

ct
ly

fr
om

th
e

in
cr

ea
se

d
IO

th
ro

ug
hp

ut
,w

hi
le

th
e

fu
ll

SQ
L

da
ta

ba
se

s
se

e
la

rg
e

ga
in

s
fo

r
w

ri
te

in
te

ns
iv

e
qu

er
ie

s.
A

ll
of

th
e

da
ta

us
e

th
e

be
st

pe
rf

or
m

in
g

th
re

ad
co

un
t(

be
tw

ee
n

1
an

d
16

)
fo

r
ea

ch
w

or
kl

oa
d.

Fu
si

on
IO

pe
rf

or
m

an
ce

is
pr

ov
id

ed
fo

rr
ef

er
en

ce
.

R
aw

Pe
rf

or
m

an
ce

Sp
ee

du
p

of
M

on
et

a-
D

vs
.

W
or

kl
oa

d
Fu

si
on

IO
M

on
et

a
M

on
et

a-
D

Fu
si

on
IO

M
on

et
a

B
er

ke
le

y-
D

B
B

tr
ee

40
66

op
s/

s
82

02
op

s/
s

21
65

2
op

s/
s

5.
3
×

2.
6
×

B
er

ke
le

y-
D

B
H

as
h

63
49

op
s/

s
10

98
8

op
s/

s
62

12
4

op
s/

s
9.

8
×

5.
7
×

M
yS

Q
L

-S
im

pl
e

13
15

5
op

s/
s

13
84

0
op

s/
s

15
49

8
op

s/
s

1.
2
×

1.
1
×

M
yS

Q
L

-U
pd

at
e

15
21

op
s/

s
18

10
op

s/
s

26
13

op
s/

s
1.

7
×

1.
4
×

M
yS

Q
L

-C
om

pl
ex

39
0

op
s/

s
58

6
op

s/
s

86
6

op
s/

s
2.

2
×

1.
5
×

PG
SQ

L
-S

im
pl

e
23

69
7

op
s/

s
49

85
4

op
s/

s
63

30
8

op
s/

s
2.

7
×

1.
3
×

PG
SQ

L
-U

pd
at

e
21

32
op

s/
s

25
23

op
s/

s
50

73
op

s/
s

2.
4
×

2.
0
×

PG
SQ

L
-C

om
pl

ex
56

9
op

s/
s

11
90

op
s/

s
18

09
op

s/
s

3.
2
×

1.
5
×

H
ar

m
on

ic
m

ea
n

2.
4
×

1.
7
×

78

Btree

1 2 4 8 16

S
pe

ed
up

 v
s

1
T

hr
ea

d

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0 Hashtable

1 2 4 8 16

FusionIO
Moneta
Moneta−D

Thread Count

MySQL−Complex

1 2 4 8 16

PGSQL−Complex

1 2 4 8 16

Figure 4.10. For most workloads, Moneta-D allows application performance to scale
better with additional threads, especially for workloads with little inter-thread contention,
like Hashtable. Changing Hashtable from 1 to 8 threads on Moneta-D increases perfor-
mance by 2.2 ×more than the same change on either FusionIO or baseline Moneta.

The larger database applications, MySQL and Postgres, see performance im-

provements from 1.1× to 2.0× under Moneta-D, compared to baseline Moneta. The data

show that for these workloads, write-intensive operations benefit most from Moneta-D,

with transaction throughput increases of between 1.4× to 2.0×. Read-only queries also

see benefits but the gains are smaller — only 1.1× to 1.3×. This is consistent with

Moneta-D’s smaller improvements for read request throughput.

We found that Postgres produces access patterns that interact poorly with Moneta-

D, and that application level optimizations enable better performance. Postgres includes

many small extensions to the files that contain its database tables. With Moneta-D these

file extensions each result in a soft miss. Since Postgres extends the file on almost all

write accesses, these soft misses eliminate Moneta-D’s performance gains. Pre-allocating

zeroed out data files before starting the database server enables Postgres to take full

advantage of Moneta-D. Although Moneta-D requires no application level changes to

function, this result suggests that, large performance improvements could result from

additional optimizations at the application level, such as allocating large blocks in the

file system rather than many small file extensions.

79

Access Size

0.5 kB 2 kB 8 kB 32 kB 128 kB

B
an

dw
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sync 1T
Sync 8T
Async 1T
Async 8T

Figure 4.11. Moneta-D’s asynchronous interface improves single threaded performance
by up to 3.5× by eliminating time spent waiting for completions.

4.4.4 Asynchronous IO

Providing an asynchronous IO interface to Moneta-D allows applications to take

advantage of its inherently asynchronous hardware interface. Figures 4.11 and 4.12

compares the performance of Moneta-D with and without asynchronous IO. Figure 4.11

shows sustained bandwidth for the synchronous and asynchronous interfaces with 1 and

8 threads. Asynchronous operations increase throughput by between 1.1× and 3.0× on

access sizes of 512 B to 256 KB when using 1 thread. With 8 threads, asynchronous

operations boost performance for requests of 4 KB or larger. Small request performance

suffers from software overheads resulting from maintaining asynchronous request data

structures and increased contention during tag allocation.

Figure 4.12 shows the efficiency gains from using asynchronous requests on

16 KB accesses for varying numbers of threads. The data show that for one thread,

asynchronous requests are 2.8× more efficient than synchronous requests with respect to

the amount of bandwidth per CPU. As the number of threads increases, the asynchronous

accesses slowly lose their efficiency advantage compared to synchronous accesses. As the

80

Thread Count

0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 (

G
B

/s
)

pe
r

C
P

U

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Sync
Async

Figure 4.12. measures efficiency in terms of bandwidth per CPU with synchronous and
asynchronous 16 KB accesses for varying numbers of threads.

number of threads increases, the per-thread performance decreases because of increased

contention for hardware bandwidth and tags.

To understand the application-level impact of an asynchronous interface, we

modified the ADPCM codec from Mediabench [54] to use Moneta-D’s asynchronous

IO interface and then used it to decode a 100 MB file. Using the asynchronous IO

interface results in an 1.4× speedup over the basic Moneta-D interface. By using three

buffers, ADPCM can process one block while reading in another and writing out a

third. ADPCM’s performance demonstrates how overlapping data accesses with data

processing enables significant gains. In this case, Moneta-D transformed an IO bound

workload into a CPU bound one, shifting from 41% CPU utilization for one thread on

the baseline Moneta system to 99% CPU utilization with the asynchronous interface.

4.5 Summary

As emerging non-volatile memory technologies shrink storage hardware latencies,

hardware interfaces and system software must adapt or risk squandering the performance

81

these memories offer. Moneta-D avoides this danger by moving file system permission

checks into hardware and using an untrusted, user space driver to issue requests. These

changes reduce latency for 4 KB write requests through the file system by up to 58%

and increase throughput for the same requests by 7.6×. Reads are 60% faster. These

increases in raw performance translate into large application level gains. Throughput for

an OLTP database workload increased 2.0× and our Berkeley-DB based workloads sped

up by 5.7×. Asynchronous IO support provides 5.5× better 4 KB access throughput

with 1 thread, and 2.8× better efficiency for 512-B operations, resulting in a 1.7×

throughput improvement for a streaming application. Overall, out results demonstrate

the importance of eliminating software overheads in IO-intensive applications that will

use these emerging memories and point to several opportunities to improve performance

further by modifying the applications themselves.

Acknowledgements

This chapter contains material from “Providing Safe, User Space Access to Fast,

Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De,

Joel Coburn, and Steven Swanson, which appears in ASPLOS ’12: Proceedings of the

17th International Conference on Architectural Support for Programming Languages

and Operating Systems. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2012 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

82

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapter 5

Distributed Storage

Modern storage systems rely on complex software and interconnects to provide

scalable, reliable access to large amounts of data across multiple machines. In conven-

tional, disk-based storage systems the overheads from file systems, remote block device

protocols (e.g., iSCSI and Fibre Channel), and network stacks are tiny compared to the

storage media access time, so software overheads do not limit scalability or performance.

The emergence of non-volatile, solid-state memories (e.g., NAND flash, phase

change memory, and spin-torque MRAM) changes this landscape completely by dra-

matically improving storage media performance. As a result, software shifts from being

the least important component in overall storage system performance to being a critical

bottleneck.

The software costs in scalable storage systems arise because, until recently,

designers could freely compose existing system components to implement new and

useful storage system features. For instance, the software stack running on a typical,

commodity storage area network (SAN) will include a file system (e.g., GFS [94]), a

logical volume manager (e.g., LVM), remote block transport layer client (e.g., the iSCSI

initiator), the client side TCP/IP network stack, the server network stack, the remote

block device server (e.g., the iSCSI target), and the block device driver. The combination

of these layers (in addition to the other operating system overheads) adds 288 µs of

83

84

latency to a 4 kB read. Hardware accelerated solutions (e.g., Fibre Channel) eliminate

some of these costs, but still add over 90 µs per access.

Software latencies of hundreds of microseconds are inconsequential for disk

accesses (with a hardware latency measured in many milliseconds), but storage systems

like Moneta and Moneta-Direct, introduced in the previous chapters, will deliver <10 µs

latencies. At those speeds, conventional software and block transport latencies will

cripple performance.

This chapter describes a new SAN architecture called QuickSAN. QuickSAN re-

examines the hardware and software structure of distributed storage systems to minimize

software overheads and let the performance of the underlying storage technology shine

through.

QuickSAN improves SAN performance in two ways. First, it provides a very

low-latency, hardware-accelerated block transport mechanism (based on 10 Gbit ethernet)

and integrates it directly into an SSD. Second, it extends the OS bypass mechanism

introduced in the previous chapter to allow an application to access remote data without

(in most cases) any intervention from the operating system while still enforcing file

system protections.

We examine two different structures for QuickSAN. Centralized QuickSAN sys-

tems mirror conventional SAN topologies that use a centralized data storage server.

Distributed QuickSAN enables distributed storage by placing one slice of a globally

shared storage space in each client node. As a result, each node has very fast access to its

local slice, and retains fast, direct access to the slices at the other nodes as well. In both

architectures, clients see storage as a single, shared storage device and access data via a

shared-disk file system and the network.

We evaluate QuickSAN using GFS2 [32] and show that it reduces software

and block transfer overheads by 94%, reduces overall latency by 93% and improves

85

Table 5.1. Software stack and block transport latencies add overhead to storage accesses.
Software-based SAN interfaces like iSCSI takes 100s of microseconds. Fibre Channel
reduces this costs, but the additional latency is still high compared to the raw performance
of fast non-volatile memories. The Fibre Channel numbers are estimates based on [3]
and measurements of QuickSAN.

Existing interfaces
Component Latency R/W (µs)

iSCSI Fibre Channel
OS Entry/Exit & Block IO 4.0 / 3.4
GFS2 0.1 / 1.5
Block transport 284.0 / 207.7 86.0 / 85.9
4 kB non-media total 288.1 / 212.6 90.1 / 90.8

QuickSAN
Latency R/W (µs)
Kernel Direct

3.8 / 3.4 0.3 / 0.3
1.4 / 2.3 n/a

17.0/16.9 17.0/16.9
22.2/22.6 17.2/17.1

bandwidth by 14.7× for 4 KB requests. We also show that leveraging the fast access

to local storage that distributed QuickSAN systems provide can improve performance

by up to 3.0× for distributed sorting, the key bottleneck in MapReduce systems. We

also measure QuickSAN’s scalability, its impact on energy efficiency, and the impact of

adding mirroring to improve reliability. Finally, we show how distributed QuickSAN can

improve cluster-level efficiency under varying load.

The remainder of this chapter is organized as follows. Section 5.1 describes

existing SAN-based storage architectures and quantifies the software latencies they incur.

Section 5.2 describes QuickSAN’s architecture and implementation in detail. Section 5.3

places QuickSAN in the context of previous efforts. Section 5.4 evaluates both centralized

and distributed QuickSAN to compare their performance on a range of storage workloads.

Section 5.5 presents our conclusions.

5.1 Motivation

Non-volatile memories that offer order of magnitude increases in performance

require us to reshape the architecture of storage area networks (SANs). SAN-based

storage systems suffer from two sources of overhead that can obscure the performance

86

of the underlying storage. The first is the cost of the device-independent layers of the

software stack (e.g., the file system), and the second is the block transport cost, the

combination of software and interconnect latency required to access remote storage.

These costs range from 10s to 100s of microseconds in modern systems.

As non-volatile memories become more prevalent, the cost of these two com-

ponents grows relative to the cost of the underlying storage. For disks, with latencies

typically between 7 and 15 ms, the costs of these layers is almost irrelevant. Flash-based

SSDs, however, have access times under 100 µs and SSDs based on more advanced

memories will have <10 µs latencies. In these systems, the cost of conventional storage

software and block transport will completely dominate storage costs.

This section describes the sources of these overheads in more detail and places

them in context of state-of-the-art solid-state storage devices.

5.1.1 Storage overheads

Figure 5.1 shows the architecture of two typical SAN-based shared-disk remote

storage systems. Both run under Linux and GFS2 [32], a distributed, shared-disk file

system. In Figure 5.1(a) a software implementation of the iSCSI protocol provides block

transport. An iSCSI target (i.e., server) exports a block-based interface to a local storage

system. Multiple iSCSI client initiators (i.e., clients) connect to the target, providing a

local interface to the remote device.

Fibre Channel, Figure 5.1(b), provides block transport by replacing the software

below the block interface with a specialized SAN card that communicates with Fibre

Channel storage devices. Fibre Channel devices can be as simple as a hard drive or as

complex as a multi-petabyte, multi-tenancy storage system, but in this work we focus

on performance-optimized storage devices (e.g., the Flash Memory Arrays [101] from

Violin Memory).

87

Ethernet

iSCSI Target

PCIe Block Dev

Net Stack iSCSI Initiator
Net Stack

GFS2

Applications

Block I/O Stack Block I/O Stack

PCIe Driver

NICNIC

Fibre Channel

FC Driver

GFS2

Applications

Block I/O Stack

FC AdapterFC Block dev

OS
HW

Userspace

(a) (b)

block interface
boundary

OS
HW

Userspace

Figure 5.1. Existing SAN systems use software-based architectures like software iSCSI
(a) or specialized hardware solutions like Fibre Channel (b). Both hide ample complexity
behind the block device interface they present to the rest of the system. That complexity
and the software that sits above it in OS both add significant overheads to storage access.

The values in Table 5.1 measure the OS and block transport latency for a 4 kB

request from the applications perspective for iSCSI and Fibre Channel. The first three

rows are the generic OS storage stack. The fourth row measures the minimum latency

for a remote storage access starting at the block interface boundary in Figure 5.1, and

excluding the cost of the actual storage device. These latencies seem small compared to

the 7-11 ms required for the disk access, but next-generation SSDs fundamentally alter

this balance.

5.1.2 The Impact of Fast SSDs

Fast non-volatile memories are already influencing the design of storage devices

in the industry. As faster memories become available the cost of software and hardware

overheads on storage accesses will become more pronounced.

Commercially available NAND flash-based SSDs offer access latencies of tens of

microseconds, and research prototypes targeting more advanced memory technologies

have demonstrated latencies as low as 4-5 µs [13].

Violin Memory’s latest 6000 Series Flash Memory Arrays [101] can perform read

accesses in 80-100 µs and writes in 20 µs with aggressive buffering. FusionIO’s latest

88

iS
C

S
I D

is
k

iS
C

S
I F

la
sh

F
ib

re
 C

ha
n.

 F
la

sh

iS
C

S
I P

C
M

Q
ui

ck
S

A
N

 P
C

M

La
te

nc
y

(u
s)

0

10

100

1000

10000
Software

Storage Media

Block Transport

Figure 5.2. As storage shifts from disks to solid-state media, software and block transport
account for a growing portion of overall latency. This shift requires us to rethink
conventional SAN architectures.

ioDrives [29] do even better: 68 µs for reads and 15 µs for writes, according to their data

sheets. Similar drives from Intel [44] report 65 µs for reads and writes.

At least two groups [12, 13, 112] have built prototype SSDs that use DRAM to

emulate next-generation memories like phase-change memories, spin-torque MRAMs,

and the memristor. These devices can achieve raw hardware latencies of between 4 and

5 µs [13, 112].

Figure 5.2 illustrates the shift in balance between the cost of underlying storage

and the cost of software and the block transport layers. For a disk-based SAN, these

overheads represent between 1.2 and 3.8% of total latency. For flash-based SSDs the

percentage climbs as high as 59.6%, and for more advanced memories software overheads

will account for 98.6-99.5% of latency.

Existing software stacks and block transport layers do not provide the low-latency

89

access that fast SSDs require to realize their full potential. The next section describes our

design for QuickSAN that removes most of those costs to expose the full performance of

SSDs to software.

5.2 QuickSAN

This section describes the hardware and software components of QuickSAN. The

QuickSAN hardware adds a high-speed network interface to a PCIe-attached SSD, so

SSDs can communicate directly with one another and retrieve remote data to satisfy local

IO requests. The QuickSAN software components leverage this capability (along with

existing shared-disk file systems) to eliminate most of the software costs described in the

previous section.

5.2.1 QuickSAN Overview

We explore two different architectures for QuickSAN storage systems. The first

resembles a conventional SAN storage system based on Fibre Channel or iSCSI. A central

server (at left in Figure 5.3) exports a shared block storage device, and client machines

access that device via the network. We refer to this as the centralized architecture.

The second, distributed, architecture replaces the central server with a distributed

set of SSDs, one at each client (Figure 5.3, right). The distributed SSDs combine to

expose a single, shared block device that any of the clients can access via the network.

To explore ways of reducing software overheads in these two architectures, we

have implemented two hardware devices: A customized network interface card (the

QuickSAN NIC) and a custom SSD (the QuickSAN SSD) that integrates both solid state

storage and QuickSAN NIC functionality. In some of our experiments we also disable

the network interface on the QuickSAN SSD, turning it into a normal SSD.

The QuickSAN NIC is similar to a Fibre Channel card: It exports a block device

90

Ethernet

OS
HW

Userspace
GFS2

Applications

Block I/O

QuickSAN SSD

QuickSAN Driver

QuickSAN Drv

GFS2

QuickSAN Driver

Applications

Block I/O Stack

QuickSAN NIC

GFS2

QuickSAN Driver
Block I/O Stack

QuickSAN SSDQuickSAN SSDQuickSAN SSDQuickSAN SSD

Figure 5.3. QuickSAN supports multiple storage topologies and two software interfaces.
At left, a single machine hosts multiple QuickSAN SSDs, acting a central block server.
The center machine hosts a QuickSAN NIC that provides access to remote SSDs. The
machine at right hosts a single SSD and is poised to access its local (for maximum
performance) or remote data via the userspace interface.

interface and forwards read and write requests over a network to a remote storage device

(in our case, a QuickSAN SSD). The QuickSAN SSD responds to remote requests

without communicating with the operating system, so it resembles a Fibre Channel client

and target device.

The QuickSAN SSD also exports a block device interface to the host system.

The interface’s block address space includes the SSD’s local storage and the storage on

the other QuickSAN SSDs it is configured to communicate with. The QuickSAN SSD

services accesses to local storage directly and forwards requests to external storage to the

appropriate QuickSAN SSD.

This organization allows QuickSAN SSDs to communicate in a peer-to-peer

fashion, with each SSD seeing the same global storage address space. This mode of

operation is not possible with conventional SAN hardware.

QuickSAN further reduces software latency by applying the OS-bypass tech-

niques described in [13]. These techniques allow applications to bypass the system

call and file system overheads for common-case read and write operations while still

enforcing file system protections.

91

The following subsections describe the implementation of the QuickSAN SSD

and NIC in detail, and then review the OS bypass mechanism and its implications for file

system semantics.

5.2.2 The QuickSAN SSD and NIC

The QuickSAN NIC and the QuickSAN SSD share many aspects of their design

and functionality. Below, we describe the common elements of both designs and then the

SSD- and NIC-specific hardware. Then we discuss the hardware platform we used to

implement them both.

Common elements The left half of Figure 5.4 contains the common elements of the

SSD and NIC designs. These implement a storage-like interface that the host system can

access. It supports read and write operations from/to arbitrary locations and of arbitrary

sizes (i.e., accesses do not need to be aligned or block-sized) in 64 bit address space.

The hardware includes the host-facing PIO and DMA interfaces, the request

queues, the request scoreboard, and internal buffers. These components are responsible

for accepting IO requests, executing them, and notifying the host when they are complete.

Communication with the host occurs over a PCIe 1.1x8 interface, which runs at 2 GB/s,

full-duplex. This section also includes the virtualization and permission enforcement

hardware described below (and in detail in [13]).

Data storage The storage-related portions of the design are shown in the top-right of

Figure 5.4. The SSD contains eight high-performance, low-latency non-volatile memory

controllers attached to an internal ring network. The SSD’s local storage address space is

striped across these controllers with a stripe size of 8 kB.

In this work, the SSD uses emulated phase change memory, with the latencies

from [53] — 48 ns and 150 ns for array reads and writes, respectively. The array uses

92

PIO

Pe
rm

Ch

ec
k

In
te

rf
ac

e
Vi

rt
.

Ring Ctrl

Status Registers

Transfer
Bu�ers

Score-
board

Ring (4 GB/s)

8 GB

EthernetNetwork
Control

Request
Queue

Net Rx FIFO

Net Tx FIFO

8 GB 8 GB 8 GB

8 GB 8 GB 8 GB 8 GB

DMA DMA
Control

Storage

Network

Figure 5.4. The QuickSAN NIC and SSD both expose a virtualized, storage interface to
the host system via PCIe (at left). The network interface attaches to a 10 Gbit network
port (bottom-right), while the QuickSAN SSD adds 64 GB of non-volatile storage (top-
left). The device services requests that arrive via either the network or host interface and
forwards requests for remote storage over the network.

start-gap wear leveling [77] to distribute wear across the phase change memory and

maximize lifetime.

The network interface QuickSAN’s network interface communicates over a standard

10 Gbit CX4 ethernet port, providing connectivity to other QuickSAN devices on the

same network. The network interfaces plays two roles: It is a source of requests, like

the PCIe link from the host, and it is also a target for data transfers, like the memory

controllers.

The link allows QuickSAN to service remote requests without operating system

interaction on the remote node and even allows access to storage on a remote node when

that node’s CPU is powered off (assuming the SSD has an independent power supply).

QuickSAN requires a lossless interconnect. To ensure reliable delivery of network

packets, QuickSAN uses ethernet but employs flow control as specified in the IEEE

802.3x standard. Fibre Channel over ethernet (FCoE) uses the same standards to provide

reliable delivery. Ethernet flow control can interact poorly with TCP/IP’s own flow

control and is usually disabled on data networks, but a more recent standard, 802.1qbb,

93

extends flow control to cover multiple classes of traffic and alleviates these concerns. It

is part of the “data center bridging” standard pushing for converged storage and data

networks in data centers [18].

Ethernet flow control provides the necessary reliability guarantees that QuickSAN

needs, but it runs the risk of introducing deadlock into the network if insufficient buffering

is available. For example, deadlock can occur if an SSD must pause incoming traffic due

to insufficient buffer space, but it also requires an incoming response from the network

before it can clear enough buffer space to unpause the link.

We have carefully designed QuickSAN’s network interface to ensure that it always

handles incoming traffic without needing to send an immediate response on the network,

thus breaking the conditions necessary for deadlock. We guarantee sufficient buffer space

for (or can handle without buffering) all incoming small (non-payload bearing) incoming

messages. Read requests allocate buffers at the source before sending the request, and

a dedicated buffer is available for incoming write requests, which QuickSAN clears

without needing to send an outgoing packet.

Userspace access The host-facing interface of the QuickSAN SSD and NIC includes

support for virtualization and permissions enforcement, similar to the mechanisms

presented in [13]. These mechanisms allow applications to issue read and write requests

directly to the hardware without operating system intervention while preserving file

system permissions. This eliminates, for most operations, the overheads related to those

software layers.

The virtualization support exposes multiple, virtual hardware interfaces to the

NIC or SSD, and the operating system assigns one virtual interface to each process. This

enables the process to issue and complete IO operations. A user space library interposes

on file operations to provide an almost (see below) POSIX-compliant interface to the

94

device.

The permissions mechanism associates a permissions table with each virtual

interface. The hardware checks each request that arrives via the PCIe interface against the

permission table for the appropriate interface. If the interface does not have permission

to perform the access, the hardware notifies the process that the request has failed.

The operating system populates the permission table on behalf of the process by

consulting the file system to retrieve file layout and permission information.

Permission checks in QuickSAN occur at the source NIC or SSD rather than at

the destination. This represents a trade off between scalability and security. If permission

checks happened at the destination, the destination SSD would need to store permission

records for all remote requestors and would need to be aware of remote virtual interfaces.

Checking permissions at the source allows the number of system wide permission

entries and virtual interfaces to scale with the number of clients. A consequence is

that QuickSAN SSDs trust external requests, an acceptable trade-off in most clustered

environments.

Since the userspace interface provides direct access to storage, it can lead to

violations of the atomicity guarantees that POSIX requires. For local storage devices

hardware support for atomic writes [19] can restore atomicity. For distributed storage

systems, however, achieving atomicity requires expensive distributed locking protocols,

and implementing these protocols in hardware seems unwieldly.

Rather than provide atomicity in hardware, we make the observation that most

applications that require strong consistency guarantees and actively share files (e.g.,

databases) rely on higher-level, application-specific locking primitives. Therefore, we

relax the atomicity constraint for accesses through the userspace interface. If applications

require the stronger guarantees, they can perform accesses via the file system and rely

on it to provide atomicity guarantees. The userspace library automatically uses the file

95

system for append operations since they must be atomic.

Implementation We implemented QuickSAN on the BEE3 prototyping platform [7].

The BEE3 provides four FPGAs which each host 16 GB of DDR2 DRAM, two 10 Gbit

ethernet ports, and one PCIe interface. We use one of the ethernet ports and the PCIe link

on one FPGA for external connectivity. The design runs at 250 MHz.

To emulate the performance of phase change memory using DRAM, we used a

modified DRAM controller that allows us to set the read and write latency to the values

given earlier.

5.2.3 QuickSAN software

Aside from the userspace libray described above, most of the software that

QuickSAN requires is already commonly available on clustered systems.

QuickSAN’s globally accessible storage address space can play host to con-

ventional, shared-disk file systems. We have successfully run both GFS2 [32] and

OCSF2 [71] on both the distributed and local QuickSAN configurations. We expect it

would work with most other shared-disk file systems as well. Using the userspace inter-

face requires that the kernel be able to query the file system for file layout information

(e.g., via the fiemap ioctl), but this support is common across many file systems.

In a production system, a configuration utility would set control registers in each

QuickSAN device to describe how the global storage address space maps across the

QuickSAN devices. The hardware uses this table to route requests to remote devices.

This software corresponds to a logical volume management interface in a conventional

storage system.

96

5.3 Related Work

Systems and protocols that provide remote access to storage fall into several

categories. Network-attached storage (NAS) systems provide file system-like interfaces

(e.g., NFS and SMB) over the networks. These systems centralize metadata management,

avoiding the need for distributed locking, but their centralized structure limits scalability.

QuickSAN most closely resembles existing SAN protocols like Fibre Channel

and iSCSI. Hardware accelerators for both of these interfaces are commonly available,

but iSCSI cards are particularly complex because they typically also include a TCP

offload engine. Fibre Channel traditionally runs over a specialized interconnect, but new

standards for Converged Enhanced Ethernet [18] (CEE) allow for Fibre Channel over

lossless Ethernet (FCoE) as well. QuickSAN uses this interconnect technology. ATA over

Ethernet (AoE) [41] is a simple SAN protocol designed specifically for SATA devices

and smaller systems.

Systems typically combine SAN storage with a distributed, shared-disk file system

that runs across multiple machines and provides a single consistent file system view of

stored data. Shared-disk file systems allow concurrent access to a shared block-based

storage system by coordinating which servers are allowed to access particular ranges

of blocks. Examples include the Global File System (GFS2) [94], General Parallel File

System [88], Oracle Cluster File System [71], Clustered XFS [91], and VxFS [103].

Parallel file systems (e.g., Google FS [33], Hadoop Distributed File System [93],

Lustre [51], and Parallel NFS [39]) also run across multiple nodes, but they spread data

across the nodes as well. This gives applications running at a particular node faster access

to local storage.

Although QuickSAN uses existing shared-disk file systems, it actually straddles

the shared-disk and parallel file system paradigms depending on the configuration. On

97

one hand, the networked QuickSAN SSDs nodes appear as a single, distributed storage

device that fits into the shared disk paradigm. On the other, each host will have a

local QuickSAN SSD, similar to the local storage in a parallel file system. In both cases,

QuickSAN can eliminate the software overhead associated with accessing remote storage.

Parallel NFS (pNFS) [39] is a potential target for QuickSAN, since it allows

clients to bypass the central server for data accesses. This is a natural match for Quick-

SAN direct access capabilities.

QuickSAN also borrows some ideas from remote DMA (RDMA) systems.

RDMA allows one machine to copy the contents of another machine’s main memory

directly over the network using a network protocol that supports RDMA (e.g., Infiniband).

Previous work leveraged RDMA to reduce processor and memory IO load and improve

performance in network file systems [11, 113]. RamCloud [72] utilizes RDMA to reduce

remote access to DRAM used as storage. QuickSAN extends the notion of RDMA to

storage and realizes many of the same benefits, especially in configurations that can

utilize its userspace interface.

QuickSAN’s direct-access capabilities are similar to those provided by Network

Attached Secure Disks (NASD) [34]. NASD integrated SAN-like capabilities into storage

devices directly exposed them over the network. QuickSAN extends this notion by also

providing fast access to the local host to fully leverage the performance of solid state

storage.

Alternate approaches to tackling large-scale data problems have also been pro-

posed. Active Storage Fabrics [28], proposes combining fast storage and compute

resources at each node. Processing accelerators can then run locally within the node.

QuickSAN also allows applications to take advantage of data locality, but the architecture

focuses on providing low-latency access to all of the data distributed throughout the

network.

98

5.4 Results

This section evaluates QuickSAN’s latency, bandwidth, and scalability along with

other aspects of its performance. We measure the cost of mirroring in QuickSAN to

improve reliability, and evaluate its ability to improve the energy efficiency of storage

systems. Finally, we measure the benefits that distributed QuickSAN configurations

can provide for sorting, a key bottleneck in MapReduce workloads. First, however, we

describe the three QuickSAN configurations we evaluated.

5.4.1 Configurations

We compare performance across both centralized and distributed SAN architec-

tures using three different software stacks.

For the centralized topology, we attached four QuickSAN SSDs to a single host

machine and expose them as a single storage device. Four clients share the resulting

storage device. In the distributed case, we attach one QuickSAN SSD to each of four

machines to provide a single, distributed storage device. In both cases, four clients access

the device. In the distributed case, the clients also host data.

We run three different software stacks on each of these configurations.

iSCSI This software stack treats the QuickSAN SSD as a generic block device and

implements all SAN functions in software. In the centralized case, Linux’s clustered

Logical Volume Manager (cLVM) combines the four local devices into a single logical

device and exposes it as an iSCSI target. In the distributed case, each machine exports its

local SSD as an iSCSI target, and cLVM combines them into a globally shared device.

Client machines use iSCSI to access the device, and issue requests via system calls.

99

Table 5.2. Request latencies for 4 KB transfer to each of the configurations to either
local or remote storage. The distributed configurations have a mix of local and remote
accesses, while the centralized configurations are all remote.

Local Remote
Read Write Read Write

iSCSI 92.3 111.7 296.7 236.5
QuickSAN-OS 15.8 17.5 27.0 28.6
QuickSAN-D 8.3 9.7 19.5 20.7

QuickSAN-OS The local QuickSAN device at each client (a NIC in the centralized

case and an SSD in the distributed case) exposes the shared storage device as a local

block device. Applications access the device through the normal system call interface.

QuickSAN-D The hardware configuration is the same as QuickSAN-OS, but applica-

tions use the userspace interface to access storage.

Our test machines are dual-socket Intel Xeon E5520-equipped servers running at

2.27 GHz. The systems run CentOS 5.8 with kernel version 2.6.18. The network switch

in all experiments is a Force10 S2410 CX4 10 GBit Ethernet Switch. In experiments that

include a file system, we use GFS2 [32].

5.4.2 Latency

Reducing access latency is a primary goal of QuickSAN, and Table 5.2 contains

the latency measurements for all of our configurations. The measurements use a single

thread issuing requests serially and report average latency.

Replacing iSCSI with QuickSAN-OS reduces remote write latency by 92% –

from 296 µs to 27 µs. Savings for reads are similar. QuickSAN-D reduces latency by

an additional 2%. Based on the Fibre Channel latencies in Table 5.1, we expect that the

saving for QuickSAN compared to a Fibre Channel-attached QuickSAN-like SSD would

be smaller – between 75 and 81%.

100

Read

0.5 2 8 32 128M
ea

n
B

an
dw

id
th

/N
od

e
(M

B
/s

)

0
100
200
300
400
500
600
700
800
900

1000 Write

Random Request Size (KB)

0.5 2 8 32 128

iSCSI−Dist
iSCSI−Cent
QSAN−OS−Dist
QSAN−OS−Cent
QSAN−D−Dist
QSAN−D−Cent 50% Read, 50% Write

0.5 2 8 32 128

Figure 5.5. Eliminating software and block transport overheads improves bandwidth
performance for all configurations. QuickSAN-D’s userspace interface delivers especially
large gains for small accesses and writes.

Read

1 2 4 8 16

A
gg

re
ga

te
 B

an
dw

id
th

 (
G

B
/s

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0 Write

Node Count

1 2 4 8 16

Network
Local
Combined

50% Read, 50% Write

1 2 4 8 16

Figure 5.6. For random requests spread across the shared storage address space, aggre-
gate bandwidth improves as more nodes are added. Local bandwidth scales more slowly
since a smaller fraction of accesses go to local storage as the number of nodes grows.

Read

0.5 2 8 32 128M
ea

n
B

an
dw

id
th

/N
od

e
(M

B
/s

)

0
100
200
300
400
500
600
700
800
900

1000 Write

Random Request Size (KB)

0.5 2 8 32 128

QuickSAN−OS
QuickSAN−OS−Rep
QuickSAN−D
QuickSAN−D−Rep

50% Read, 50% Write

0.5 2 8 32 128

Figure 5.7. Mirroring in QuickSAN improves bandwidth for read operations because
two SSDs can service any given request and, in some cases, the extra copy will be located
on the faster, local SSD. Write performance drops because of the extra update operations
mirroring requires.

101

5.4.3 Bandwidth

Figure 5.5 compares the sustained, mean per-host bandwidth for all six config-

urations for random accesses of size ranging from 512 bytes to 256 kB. Comparing

the distributed configurations, QuickSAN-D outperforms the iSCSI baseline by 72.7×

and 164.4× for small 512 B reads and writes, respectively. On larger 256 kB accesses,

QuickSAN-D’s advantage shrinks to 4.6× for reads and 4.4× for writes.

For QuickSAN, the distributed architecture outperforms the centralized archi-

tecture by 100 MB/s per node for 4 kB requests and maintains a 25 MB/s performance

advantage across all request sizes for both kernel and userspace interfaces. Userspace

write performance follows a similar trend with a 110 MB/s gain at 4 kB and at least a

45 MB/s gain for other sizes.

Write performance through the kernel is much lower due to the distributed file

system overheads. Some of that cost goes towards enforcing atomicity guarantees. The

performance advantage for the distributed configuration stems from having fast access to

a portion of the data and from better aggregate network bandwidth to storage.

Interestingly, for a 50/50 mix of reads and writes under QuickSAN-D, the central-

ized architecture outperforms the distributed architecture by between 90 and 180 MB/s

(17-25%) per node across all request sizes. This anomaly occurs because local and

remote accesses compete for a common set of buffers in the QuickSAN SSD. This limits

the SSD’s ability to hide the latency of remote accesses. In the centralized case, the

QuickSAN NICs dedicate all their buffer space to remote accesses, hiding more latency,

and improving performance. The read/write workloads exacerbates this problem for the

distributed configuration because the local host can utilize the full-duplex PCIe link,

putting more pressure on local buffers than in write- or read-only cases. The random

access nature of the workload also minimizes the benefits of having fast access to local

102

storage, a key benefit of the distributed organization.

The data show peak performance at 4 kB for most configurations. This is the

result of a favorable interactions between the available buffer space and network flow

control requirements for transfer 4 kB and smaller. As requests get larger, they require

more time to move into and out of the transfer buffers causing some contention. 4 kB

appears to be the ideal request size for balancing performance buffer access between the

network and the internal storage.

5.4.4 Scaling

QuickSAN is built to scale to large clusters of nodes. To evaluate its scalability

we ran our 4 kB, random access benchmark on between one and sixteen nodes. There

are two competing trends at work: As the number of nodes increases, the available

aggregate network bandwidth increases. At the same time, the fraction of the random

accesses that target a nodes local storage drops. For this study we change the QuickSAN

architecture slightly to include only 16 GB of storage per node, resulting in slightly

decreased per-node memory bandwidth.

Figure 5.6 illustrates both trends and plots aggregate local and remote bandwidth

across the nodes as well as total bandwidth. Aggregate local bandwidth scales poorly

for small node counts as more requests target remote storage. Overall, bandwidth scales

well for the mixed read/write workload: Quadrupling node count from two to eight

increase total bandwidth by 2.0× and network bandwidth by 3.2×. Moving from two to

eight nodes increases total bandwidth by 2.5× and network bandwidth by 4.5×. Writes

experience similar improvements, two to sixteen node scaling increases total bandwidth

by 3.3× and network bandwidth by 5.9×. For reads, total and network bandwidth scale

well from two to eight nodes (2.5× and 2.8×, respectively), but the buffer contention

mentioned above negatively impacts bandwidth. Additional buffers would remedy this

103

QuickSAN
SSD 0

QuickSAN
SSD 1

QuickSAN
SSD 3

QuickSAN
SSD 2

Temp Temp TempTemp

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Partition

Sort Sort Sort

(a)

(b)

(c)

Sort

Figure 5.8. Our sorting algorithm uses a partition stage followed by parallel, local sorts.
The input and output stages utilize the fast access to local storage the QuickSAN provides,
while the partitioning stage leverages SSD-to-SSD communicatio.

problem. Network bandwidth continues to scale well for reads with two to sixteen node

scaling producing a 4.4× increase.

Latency scaling is also an important consideration. As node counts grow, so

must the number of network hops required to reach remote data. The minimum one-way

latency for our network is 1 µs which includes the delay from two network interface

cards, two network links, and the switch. Our measurements show that additional hops

add 450 ns of latency each way in the best case.

5.4.5 Replication

SAN devices (and all high-end storage systems) provide data integrity protection

in the form of simple mirroring or more complex RAID- or erasure code-based mech-

anisms. We have implemented mirroring in QuickSAN to improve data integrity and

availability. When mirroring is enabled, QuickSAN allocates half of the storage capacity

104

on each QuickSAN SSD as a mirror of the primary portion of another SSD. QuickSAN

transparently issues two write requests for each write. QuickSAN can also select from

any replicas to service remote read requests using a round-robin scheme, although it

always selects a local replica, if one is available. With this scheme, QuickSAN can

tolerate the failure of any one SSD.

Mirroring increases write latency by 1.7 µs for 512 B accesses and 7.7 µs for

4 KB accesses in both QuickSAN-D and QuickSAN-OS. The maximum latency impact

for QuickSAN is 1.6 ×. Figure 5.7 measures the impact of mirroring on bandwidth.

Sustained write bandwidth through the kernel interface drops by 23% for 4 kB requests

with a maximum overhead of 35% on large transfers. The userspace interface, which has

lower overheads and higher throughput, experiences bandwidth reductions of between

49 and 52% across all request sizes, but write bandwidth for 512 B requests is still

9.5 ×better than QuickSAN-OS without replication.

Replication improves read bandwidth significantly, since it spreads load more

evenly across the SSDs and increases the likelihood that a copy of the data is available

on the local SSD. For 4 KB accesses, performance rises by 48% for QuickSAN-D and

26% for QuickSAN-OS. Adding support for QuickSAN to route requests based on target

SSD contention would improve performance further.

5.4.6 Sorting on QuickSAN

Our distributed QuickSAN organization provides non-uniform access latency

depending on whether an access targets data on the local SSD or a remote SSD. By

leveraging information about where data resides, distributed applications should be able

to realize significant performance gains. Many parallel file systems support this kind of

optimization.

To explore this possibility in QuickSAN, we implemented a distributed exter-

105

nal sort on QuickSAN. Distributed sort is an important benchmark in part because

MapReduce implementations rely on it to partition the results of the map stage. Our

implementation uses the same approach as TritonSort [81], and other work [80] describes

how to implement a fast MapReduce on top of an efficient, distributed sorting algorithm.

Our sort implementation operates on a single 102.4 GB file filled with key-value

pairs comprised of 10-byte keys and 90-byte values. The file is partitioned across the

eight QuickSAN SSDs in the system. A second, temporary file is also partitioned across

the SSDs.

Figure 5.8 illustrates the algorithm. In the first stage, each node reads the values

in the local slice the input file (a) and writes each of them to the portion of the temporary

file that is local to the node on which that value will eventually reside (b). During the

second stage, each node reads its local data into memory, sorts it, and writes the result

back to the input file (c), yielding a completely sorted file. We apply several optimizations

described in [81], including buffering writes to the temporary file to minimize the number

of writes and using multiple, smaller partitions in the intermediate file (c) to allow the

final sort to run in memory.

Figure 5.9 displays the average runtime of the partition and sort stages of our

sorting implementation. The data show the benefits of the distributed storage topology

and the gains that QuickSAN provides by eliminating software and block transport

overheads. For distributed QuickSAN, the userspace driver improves performance 1.3×

compared to the OS interface and 2.9× compared to iSCSI. Although the distributed

organization improves performance for all three interfaces, QuickSAN-D sees the largest

boost – 2.14× versus 1.96× for iSCSI and 1.73× for the QuickSAN-OS interface.

106

iSCSI QSAN
OS

QSAN
Direct

La
te

nc
y

(s
ec

on
ds

)

0

100

200

300

400

500

600

700

800

900

Sort−Centralized

Partition−Centralized

Sort−Distributed

Partition−Distributed

Figure 5.9. Removing iSCSI’s software overheads improves performance as does ex-
ploiting fast access to local storage that a distributed organization affords.

Read

iS
C

S
I

Q
ui

ck
S

A
N

−
O

S

Q
ui

ck
S

A
N

−
D

Jo
ul

es
/IO

P

0.00

0.01

0.02

0.03

0.04

0.05

0.06 Write

iS
C

S
I

Q
ui

ck
S

A
N

−
O

S

Q
ui

ck
S

A
N

−
D

50% Read, 50% Write

iS
C

S
I

Q
ui

ck
S

A
N

−
O

S

Q
ui

ck
S

A
N

−
D

Figure 5.10. Depending on the software stack and block transport mechanism, the energy
cost of storage access varies. Removing the high software overheads of iSCSI account for
most of the gains, but the userspace interface saves 76% of energy for writes compared
to the kernel version.

107

5.4.7 Energy efficiency

Since software runs on power-hungry processors, eliminating software costs for

IO requests can significantly reduce the energy that each IO operation requires. Fig-

ure 5.10 plots the Joules per 4 kB IOP across the three distributed storage configurations.

To collect the numbers, we measured server power at the power supply. We assume a

QuickSAN SSD implemented as a product would consume 24 W (the maximum power

consumed by a FusionIO ioDrive [30]), and, conservatively, that power does not vary

with load. The network switch’s 150 W contribution does not vary significantly with

load. The trends for the centralized configurations are similar.

The graph illustrates the high cost of software-only implementations like iSCSI.

The iSCSI configurations consume between 6.2 and 12.7× more energy per IOP than the

QuickSAN-OS and between 13.2 and 27.4× more than QuickSAN-D.

The data for writes and the mixed read/write workload also demonstrates the

energy cost of strong consistency guarantees. For writes, accessing storage through the

file system increases (QuickSAN-OS) energy costs by 4× relative to QuickSAN-D.

5.4.8 Workload consolidation

An advantage of centralized SANs over distributed storage systems that spread

data across many hosts is that shutting down hosts to save power does not make any data

unreachable. Distributed storage systems, however, provide fast access to local data,

improving performance.

The QuickSAN SSD’s ability to service requests from remote nodes, even if their

host machine is powered down can achieve the best of both worlds: Fast local access

when the cluster is under heavy load and global data visibility to support migration.

To explore this application space, we use four servers running a persistent key-

value store (MemCacheDB [17]). During normal, fully-loaded operation each server runs

108

Aggregate Watts

0 400 800 1200 1600

T
ra

ns
/S

ec
 (

T
ho

us
an

ds
)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

iSCSI
QuickSAN−Dist
QuickSAN−Cent

Figure 5.11. QuickSAN’s ability to access remote data without host intervention allows
for more efficient server consolidation. QuickSAN provides better overall efficiency with
any number of servers.

a single instance of the MemCacheDB. We use four machines running memslap [65] to

drive the key-value stores on the four machine under test.

As system load drops, we can migrate the key-value store to another server. On

their new host, they can access the same data and transparently resume operation. We

assume that a front-end steering mechanism redirects traffic as necessary using DNS. We

can perform the same migration in both the centralized QuickSAN and centralized iSCSI

configurations.

We measure the performance and power consumption of the system under three

different configurations: centralized iSCSI, centralized QuickSAN, and distributed Quick-

SAN.

Figure 5.11 plots performance versus total power consumption for each sys-

109

tem. The data show that the distributed QuickSAN reduces the energy cost of each

request by 58 and 42% relative to the iSCSI and centralized QuickSAN implementations,

respectively.

5.5 Summary

We have described QuickSAN a new SAN architecture designed for solid state

memories. QuickSAN integrates network functionality into a high-performance SSD to

allow access to remote data without operating system intervention. QuickSAN reduces

software and block transport overheads by between 82 and 95% compared to Fibre

Channel and iSCSI-based SAN implementations and can improve bandwidth for small

requests by up to 167×. We also demonstrated that QuickSAN can improve energy

efficiency by 58% compared to a iSCSI-based SAN. QuickSAN illustrates the ongoing

need to redesign computer system architectures to make the best use of fast non-volatile

memories.

Acknowledgements

This chapter contains material from “QuickSAN: A Storage Area Network for

Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield and Steven Swanson,

which appears in ISCA ’13: Proceeding of the 40th Annual International Symposium on

Computer Architecture. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2013 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

110

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapter 6

Summary

Emerging non-volatile memory technologies promise to significantly alter the

storage performance landscape. Technologies such as phase-change memory, spin-torque

transfer MRAMs, and the memristor promise orders of magnitude latency reductions

and improvements in reliability over traditional hard disks and even flash memory based

SSDs.

Along with these vast performance improvements, these technologies promise

to dramatically alter the software landscape needed to access them efficiently. Without

any changes, software overheads for accessing fast storage will quickly constitute the

majority of storage request latency, approaching 97% of the total latency, and limiting

the potential of these technologies.

This dissertation has focused on exploring the integration of these emerging

memory technologies into computer systems through a prototype SSD called Moneta.

Moneta uses a custom SSD architecture to expose fast non-volatile memories to a host

system with minimal hardware overheads. Moneta’s architecture is implemented in a fully

functional system using an FPGA platform. Future non-volatile memory technologies

are emulated using DRAM and modified memory controllers. Through this platform we

can study the effects of fast storage on the whole system from hardware to applications.

Moneta gives us the opportunity to explore the correct way of redesigning the

111

112

storage software stack to expose fast storage technologies without squandering their

potential. Decades of system design centered on slow storage devices like disk drives

has lead to thick abstraction and optimization layers in the IO path. These layers attempt

to hide long storage latencies by re-ordering and scheduling IO operations. With fast,

low-latency, high-throughput storage devices these software layers present significant

bottlenecks to achieving the best performance from the storage array.

This work has characterized the existing IO stack and explored a series of opti-

mizations to the SSD architecture and software stack that help eliminate these bottlenecks.

We first found ways of reducing bottlenecks within the operating system IO stack by

eliminating the IO scheduler and bottlenecks to concurrent access to the SSD.

Moneta’s flexible prototype hardware also gives us the flexibility to study different

memory latencies. Our exploration of different latencies shows that optimizing these

technologies for storage applications requires a different set of trade-offs than optimizing

it as a main memory replacement. We showed that Moneta’s parallelism allows it

to effectively hide longer access latencies, allowing for different optimizations in the

memory technologies.

Optimizations to Moneta’s hardware and software reduce software overheads by

62% for 4 KB operations, and enable sustained performance of 1.1M 512-byte IOPS and

541K 4 KB IOPS with a maximum sustained bandwidth of 2.8 GB/s. Moneta’s optimized

IO stack completes a single 512-byte IOP in 9 µs. Moneta speeds up a range of file

system, paging, and database workloads by up to 8.7× compared to a state-of-the-art

flash-based SSD with harmonic mean of 2.1×, while consuming a maximum power of

3.2 W.

Although, the in-kernel optimizations discussed for Moneta in Chapter 3 offer

significant benefits, file system and operating system protection checks still limit per-

formance by as much as 85%. Using Moneta-Direct, a second iteration of the Moneta

113

prototype, we refactor the IO stack and provide a method for completely bypassing the

operating system and file system on most accesses, without giving up on the sharing

and protection features they provide. By allowing applications to directly talk to the

hardware, IO latency is reduced by a further 64%. In addition, device throughput for

small IO requests increases from 1.1M operations per seconds to 1.8M.

Moneta-Direct explores several completion techniques for notifying applications

that requests have completed. These include traditional kernel interrupts and direct DMA

updates to application-mapped memory regions. We show that for small requests up to

8 KB, DMA completions provide up to 171% more throughput than interrupts. However,

for larger requests, issuing requests from the application and then calling the kernel and

context-switching until a completion interrupt arrives provides up to 7× better bandwidth

per CPU.

Moneta-Direct also provided an opportunity to implement alternative interfaces

for applications to issue and complete IO requests. Using a specially designed asyn-

chronous IO interface we showed that application level speedups of up to 1.4× are

possible if users are willing to modify their applications. The asynchronous interface can

also provide efficiency gains of 2.8× for a single thread in terms of CPU time used per

request.

Moneta-Direct shows the benefits of carefully rethinking the IO stack across all

of the system from application to hardware. By refactoring permissions and sharing code

from the trusted kernel space into the hardware, Moneta-Direct exposes a much leaner

interface to applications and gains significant performance benefits as well as increased

interface flexibility.

In Chapter 5 we explore the implications of fast non-volatile storage in the

construction of distributed storage systems. Traditionally, remote storage involves the

use of a separate IO stack and network protocol overheads. Using QuickSAN, a version

114

of the Moneta SSD with a network interface attached directly to the SSD, we distribute

storage throughout the network. This allows applications to continue to take advantage

of the operating system bypass optimizations, while also exploiting the data locality that

comes with having a section of the storage located at each node. The direct network

interface allows local and remote storage to appear as one unified address space, and

remote accesses have little extra overhead beyond the additional network latency to reach

the remote node.

Overall, Moneta and its variations allow us to explore the impact of fast non-

volatile storage technologies before they become widely available. Using our prototype

SSD we have been able to carefully examine the existing IO stack. In doing so, we have

uncovered and proposed many design alternatives that will help to eliminate existing

storage stack bottlenecks that prevent the best use of these emerging technologies.

Acknowledgements

This chapter contains material from “Moneta: A High-Performance Storage Array

Architecture for Next-Generation, Non-Volatile Memories”, by Adrian M. Caulfield,

Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, which

appears in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (MICRO ’43). The dissertation author was the primary investigator

and author of this paper. The material in this chapter is copyright c©2010 by the Associa-

tion for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

115

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Providing Safe, User Space Access to Fast,

Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De,

Joel Coburn, and Steven Swanson, which appears in ASPLOS ’12: Proceedings of the

17th International Conference on Architectural Support for Programming Languages

and Operating Systems. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2012 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “QuickSAN: A Storage Area Network for

Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield and Steven Swanson,

which appears in ISCA ’13: Proceeding of the 40th Annual International Symposium on

Computer Architecture. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2013 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

116

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Appendix A

Moneta Hardware

The Moneta hardware platform implements a high-performance SSD architecture

targeting next-generation non-volatile memories. These technologies demand high-

throughput, low-latency data paths to avoid squandering their performance potential.

Moneta’s architecture consists of several main components: a PCIe interface with as-

sociated registers and DMA controller, the request pipeline, a ring based network, and

banks of memory controllers. This appendix explores each of these components and the

hardware platform as a whole.

This dissertation refers to these components and describes their roles and integra-

tion with the whole system in more detail. These descriptions attempt to fill in more of

the technical design of the SSD architecture.

A.1 Moneta Overview

Figure A.1 shows the high-level architecture of the Moneta storage array. Mon-

eta’s architecture provides low-latency access to a large amount of non-volatile memory

spread across eight memory controllers. A scheduler manages the entire array by coordi-

nating data transfers over the PCIe interface and the ring-based network that connects the

independent memory controllers to a set of input/output queues. Moneta attaches to the

computer system via an eight-lane PCIe 1.1 interface that provides a 2 GB/s full-duplex

117

118

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Start

Gap

Start

Gap

Start

Gap

Start

Gap

Ring (4 GB/s)

DMA

PCIe 1.1 x8 (2 GB/s Full Duplex)

Request

Queue

16 GB 16 GB 16 GB 16 GB

2x 8 KB Buffers

Scoreboard
Ctrl 0
Ctrl 1
Ctrl 2
Ctrl 3

Request

Processor

Scheduler

Figure A.1. Moneta’s PCM memory controllers connect to the scheduler via a 4 GB/s
ring. A 2 GB/s full duplex PCIe link connects the scheduler and DMA engine to the
host. The scheduler manages 8 KB buffers as it processes IO requests in FIFO order. A
scoreboard tracks the state of the memory controllers.

119

Table A.1. Moneta exposes a number of registers on the PCI-express bus to allow the
host to configure the device and issue and complete I/O requests. This table shows the
registers accessible on the trusted channel 0 interface.

0x7 0x6 0x5 0x4 0x3 0x2 0x1 0x0
BUILDTIMESTAMP VERS SVNREVISION 0x0010

CAPABILITIES 0x0018
TAGCOUNT CHANCOUNT 0x0020

CAPACITY 0x0028
PROTECTION/ERROR 0x0038
CHANNELSTATUS0 0x0048
CHANNELSTATUS1 0x0050

LENGTH INTADDR 0x0080
CMD TAG DMA 0x0088

FPGA MACADDRESS 0x0090
LOCALREQUESTMASK LOCALREQUESTTAG 0x0098

MACTABLECOMMAND 0x00A0
CHANNELBASE0 0x0800
CHANNELBASE1 0x0808
CHANNELBASE2 0x0810

...
CHANNELBASE255 0x0FF8

TAGSTATUS0 0x1000
TAGSTATUS1 0x1008
TAGSTATUS2 0x1010

...
TAGSTATUS255 0x17F8

connection (4 GB/s total).

A.1.1 Registers

Moneta exposes a set of registers that the host uses to configure the device and

issue commands for the hardware to process. Table A.1 shows the register layout for

the first 4 KB of address space exposed by the device. The remaining space replicates

the layout depicted in Table A.2 for every 4 KB range. These replicated registers have

identical functionality, but can be mapped directly into application address spaces - one

120

Table A.2. Moneta exposes a number of registers on the PCI-express bus to allow the
host to configure the device and issue and complete I/O requests. This table shows the
registers accessible on the untrusted channels.

0x7 0x6 0x5 0x4 0x3 0x2 0x1 0x0
LENGTH INTADDR 0x0080

CMD TAG DMA 0x0088

4 KB replica per application. By using unique addresses for each application, we can

use the TLB in the processor to guarantee that the written address uniquely identifies the

application.

There are three main register groups. The request issuing registers, configuration

registers and request status registers.

The registers for issuing requests capture information about each I/O request

and are written in a single atomic operation by the host’s CPU. Commands are 16 bytes

in length and contain the following set of information: an identifying tag (TAG), a

destination address (INTADDR), a length in bytes (LENGTH), a command (CMD), and

an indicator of the request method for completing the request (DMA).

Configuration registers allow the host system to configure Moneta for general use.

These include a set of read-only information registers:

1. BUILDTIMESTAMP, VERS, and SVNREVISION give general information about

the system date/time when the hardware was build, what version of the hardware,

and the source code control revision number at the time of the build, respectively.

2. CAPABILITIES provides a bit-vector of features that the hardware build provides.

Possible features include networking and virtualization support.

3. TAGCOUNT and CHANCOUNT signal to the host the number of outstanding

requests the hardware can track at once per channel, and the number simultaneous

channels, or virtual interfaces, the hardware can support.

121

4. CAPACITY lists the capacity of the SSD in bytes.

5. FPGA gives the current FPGA id that the hardware is running on

6. MACADDRESS gives the current device ethernet MAC address

The following read/write registers configure the device for use:

1. PROTECTION is a write-only 64-bit register used by the driver to issue commands

to the protection management block. The commands are described in that section.

2. ERROR is a read-only 64-bit register that reads the first element off an error queue

to communicate errors in requests back to the host system.

3. LOCALREQUESTMASK, in combination with LOCALREQUESTTAG, is used by

the hardware to identify which requests belong to this device, and which requests

should be handled by other devices in the storage area network. LOCALREQUEST-

MASK is bitwise-ANDed with the upper bits of INTADDR when a request is

received. If the result matches the value in LOCALREQUESTTAG, the request is

processed lcoally.

4. MACTABLECOMMAND is used to issue commands to the network interface to

setup the list of additional devices that make up a storage area network.

5. CHANNELBASE# stores a pointer to the start of a contiguous region of host mem-

ory to be used by this channel. Each channel has its own base pointer. The memory

region contains both DMA buffers and control pages used for communication

between the device and host.

Finally, the remaining registers are used during the completion phase of each

request. These registers are:

122

1. CHANNELSTATUS# store bit-vectors, where each bit in these registers represent a

single channel. If the bit is set, that channel has completed one or more requests

since the last read from this register. Reads atomically reset all of the bits in this

register to zero. The driver will read these registers to determine which of the

TAGSTATUS# registers to read.

2. TAGSTATUS# store bit-vectors, where each bit in these registers represent a single

tag in the relevant channel. Each bit is set when a request with the correct channel

and tag complete and issue an interrupt. Reads atomically reset all of the bits in

this register to zero.

A.1.2 DMA

The Moneta DMA controller interfaces between the buffers in the request pipeline

and an instance of the Xilinx PCIe endpoint core [111]. It can split large transfers into

pieces to meet the various PCIe 1.1 specification requirements [75]. The DMA engine

can issue an unlimited number of transfers to the host system at once and can track 8

outstanding transfers from the host. The disparity occurs because PCIe transfers to the

host do not require responses, and thus no state must be tracked for those request.

To ensure that the link is fully utilized, the DMA engine is designed to never

block incoming data. This requires that the client interface must be ready to accept data

as soon as it is available. The controller must (and clients should) also be capable of both

receiving and transmitting data at the same time to fully saturate the PCIe link. Moneta

is capable of this and can transfer more than 3 GB/s when performing both reads and

writes at the same time, even though the link provides only 2 GB/s of bandwidth in each

direction.

When the host system boots, the PCIe endpoint core and the host negotiate

address ranges and maximum request and packet sizes to be used by the clients. The

123

Registers

Virt.
Support

Protection
Checks

Request
Issue

Read Q

Write Q

DMA

Ethernet

Router

Figure A.2. The Request Pipeline receives requests from the registers and passes them
through a number of state machines that support virtualization, protection checking, and
request execution functions. Once issued, requests are processed and transferred in the
request buffers between the host via DMA, memory controllers through the local router,
or a remote device through Ethernet.

DMA controller uses these parameters to break up DMA transfers into valid sizes before

issuing them to the host. Individual responses can result in responses returning out of

order, and the client should be able to handle this. The DMA controller calculates the

offset that each response belongs at, and provides this information to the client along

with the data.

The host systems currently in use with Moneta always return data in-order and so

we simplify the buffer logic by using FIFOs instead of fully addressable rams to store the

incoming data from DMA transfers.

A.2 Request Pipeline

Figure A.2 shows the components that, together, form the request pipeline. Re-

quests arrive from the host over PCIe as PIO writes and are decoded by the registers.

The “Virtualization Support” block provides the hardware support necessary to allow

applications to directly talk to the hardware, bypassing the operating system, as described

in Chapter 4. The “Protection” block implements basic access control to limit what

subset of the device requests can access. The “Request Queues” implement one or more

124

FIFOs to sort and store requests until they are processed.

A.2.1 Virtualization

The virtualization support block has one main function: to assign and translate

between physical tags and virtual channel and tag pairs. The Moneta hardware can track

64 in-flight operations in the hardware at once. Many more can exist in the hardware

queues written by the virtual channels. Limiting the number of in-flight requests reduces

the number of bits of data dedicated to tracking which request is which throughout the

rest of the system.

By locating this translation early in the request pipeline, the remainder of the

pipeline can choose to store only the physical tag, which requires just 6 bits instead of

14-16 depending on the number of supported virtual channels.

As requests pass through this block, the virtual channel and tag are recorded in

a table and a physical tag is assigned. The request will own that tag until it completes -

either successfully or in error. Once the request finishes, the physical tag is freed and can

be allocated to a waiting request.

A.2.2 Protection

Moneta implements a hardware protection block to verify that each request

accesses only the set of blocks the issuing process and channel are permitted to access.

To facilitate this, the protection checking block contains a memory buffer that stores

16 thousand extent-based protection records. These records contain pointers to other

records, through which a balanced binary tree can be built.

A set of root pointers, one per channel, locates the top of the binary tree of records

for each channel.

Using the channel number provided by the registers and virtualization block, the

125

protection block first looks up the head pointer for the given channel. It then begins

comparing the range of blocks requested to the START and LEN fields of each record in

the tree to determine if the supplied request is permitted or not.

Each verification step takes 3 cycles (12 ns). This includes reading a record from

memory and matching it against the request. Since the tree is maintained with a balanced

layout, the maximum depth of the 16 K entry tree is 14, making the maximum lookup

time 168 ns.

Once a request has been validated, it gets passed on to the next block in the

request pipeline.

Failed requests generate an error, which gets passed back up to the application

and operating system for handling. Requests can fail in two ways. The first is a missing

permission record, in which no channel and address combination matched the given

request. The second is a permission failure, which occurs when a record exists covering

the requested address range, but does not provide the necessary permission for the request

(i.e. write request received, but only read permissions granted). Applications and the

operating system can choose to handle these cases differently. The software level is

discussed in more detail in the rest of this dissertation.

A.2.3 Request Queues

There are two request queues between the protection block and the request issue

and buffers. These queues hold read and write requests separately so that when requests

are issued Moneta can alternate between read and write requests. By alternating, the

DMA engine will handle roughly half reads and half writes, maximizing the throughput

achievable on the PCIe link.

Moneta can also be configured to use a single queue holding both reads and writes

when ordering constraints are more important than throughput. In this case requests are

126

issued in order, as they are received over the PCIe link.

A.2.4 Transfer Buffers and Scheduler

The transfer buffers and scheduler control logic are the main state machines for

request processing. The scheduler orchestrates Moneta’s operation, assigning requests to

buffers and generating the accesses to the DMA controller and memory controllers over

the ring network.

Moneta includes up to 8 buffers, each able to hold an 8 KB segment of a request.

The size was picked to match the memory buffer sizes and to facilitate striping of data

across multiple memory controllers.

Requests are split into segments of up to 8 KB in size, or whenever an 8 KB

boundary would be crossed. By splitting at these points, the request both fit in the

available buffer and will be directed at a single memory controller.

Both read and write requests are allocated buffers immediately. Write requests

generate a request to the DMA controller (described earlier), and wait for the data to

return before proceeding. Read requests perform a memory access first, with the DMA

request generated once the data is received from the ring or ethernet networks.

A.3 Host-Interface

The host-interface defines the set of interfaces that the host system and the

Moneta hardware use to communicate. This includes a set of registers that the kernel and

applications can read and write to configure the hardware and issue and complete I/O

requests. Moneta uses a PCI-express interface to connect to the host. This link uses the

PCIe 1.1 specification with eight lanes, providing 2 GB/s of bandwidth in each direction

between then host and the hardware. The link runs at full duplex, so the total effective

bandwidth is 4 GB/s when reads and writes occur at the same time.

127

A.3.1 Completing Requests in Hardware

Throughout the development of Moneta, we have explored several different

techniques for completing requests. At the hardware level, these translate into two

distinct mechanisms. The first is the traditional hardware interrupt. Moneta raises an

interrupt through the PCIe core which causes the operating system to run an interrupt

handler. The second is writing a value using DMA transfers to a known memory location.

In this case, the software must periodically check for a change in value at that location.

DMA completions are useful because they allow the hardware to communicate to an

application without operating system involvement (if the physical address is mapped into

that application’s address space).

We cover completions in more detail when discussing user-space access and

device virtualization in Chapter 4.

A.4 Ring Network

Moneta uses a 128-bit wide data path to move data between its memory controllers

and transfer buffers. The data path is organized into a ring topology, with an instance

of the router shown in Figure A.3 interfacing between the ring and the various client

components. The figure shows the router interfaces and the data signal with a mux

controlling the source of the output data. The other output signals would also have

similar muxes. Only one component can transmit data onto the ring at a time, with

ownership controlled by a token. When the token is held, the muxes on the output pins

direct the source of data to come from the client TX port. Routers release the token at

the conclusion of each packet, ensuring that all transmitters are given a chance to make

forward progress.

Data moves around the ring at 250 MHz. The 128-bit data width at 250 MHz

128

Data

SOP

EOP

Valid

YPNC

Data

SOP

EOP

Valid

YPNC

D
at

a

SO
P

EO
P

Va
lid Re

ad
y

D
at

a

SO
P

EO
P

Va
lid

Re
ad

y

RT
S

Ring Router

Client RX Port Client TX Port

From Left Router To Right Router

Token Token
TX

Control

Figure A.3. The router provides an interface to the ring network for the request pipeline
and the memory controllers. It has input and output ports for the ring interface which
connect to other routers and the client port, which provides a input/output interface to
send and receive packets.

translates to a maximum bandwidth of 4 GB/s.

The routers implement a basic form of flow-control, by allowing the receiving

router to leave flits of data on the ring. When a receiving router is unable to read data

from the network, it sets the YPNC flag and leaves the data circulating on the network.

When the transmitting router notices an incoming flit of data with the YPNC flag set, it

halts transmission and passes the YPNC flit on. In this way, the ring is used as a buffer

for all of the unread data. When the destination is again ready to accept data, it waits for

the YPNC flag to arrive on its input port and begins removing flits from the ring. When

the original transmitter sees a flit with no valid data it knows it can once again resume

transmitting.

129

A.5 Memory Controllers

Each of Moneta’s memory controllers manages an independent bank of memory.

The controllers connect to the scheduler via the ring network and provide a pair of 8 KB

queues to buffer incoming and outgoing data. The memory array at each controller

comprises two DIMM-like memory modules that present a 72 bit (64 + 8 for ECC)

interface.

Each DIMM contains four internal banks and two ranks, each with an internal

row buffer. The banks and their row buffers are 8 KB wide, and the DIMM reads an

entire row from the memory array into the row buffer. Once that data is in the row buffer,

the memory controller can access it at 250 MHz DDR (500M transfers per second), so

the peak bandwidth for a single controller is 4 GB/s.

The memory controller implements the start-gap wear-leveling and address ran-

domization scheme [76] to evenly distribute wear across the memory it manages.

Moneta is designed to study emerging memory technologies that are not yet

commercially available or have not yet reached their projected performance targets. To

facilitate this, an emulation layer allows Moneta to slow down regular DDR2 DRAM to

match the performance characteristics of future technologies. This is described in more

detail in the next section.

A.5.1 Non-Volatile Memory Emulation

The Moneta prototype implements an emulation layer that slows down DRAM ac-

cess latencies to match the performance targets of new non-volatile storage technologies,

in real-time. This emulation layer provides two benefits. First, the memory emulation

gives us a head-start on designing systems for these fast memories. By running complete

systems in real-time we are able to run whole applications to completion, rather than

130

microbenchmarks or whole-system simulations that only cover a small fraction of an

application’s execution. At the same time, we can examine all of the impacts that fast

non-volatile memories will have on storage and system performance.

Second, emulating non-volatile memory in real-time allows us to explore the

impact that different memory latencies will have on the overall system performance. This

allows us to explore how sensitive system performance is to an emerging technology

missing its projected performance numbers.

The BEE3 [7] platform contains the physical wiring to support 2 banks of DDR2

DRAM on each of its four Xilinx FPGAs. Moneta populates these banks with 2 4 GB

DIMMs on each bank which connect to an instantiated Xilinx memory interface core. In

total these DIMMs provide 64 GB of storage in each Moneta device – 16 GB on each

FPGA.

Moneta’s memory controllers emulate non-volatile devices on top of DRAM

using a modified version of the Xilinx Memory Interface Generator DDR2 controller.

It adds latency between the read address strobe and column address strobe commands

during reads and extends the precharge latency after a write. The controller can vary the

apparent latencies for accesses to memory from 4 ns to over 500 µs. We use the values

from [53] (48 ns and 150 ns for array reads and writes, respectively) to model PCM in

this work, unless otherwise stated.

The width of memory arrays and the corresponding row buffers are important

factors in the performance and energy efficiency of PCM memory [53]. The memory

controller can vary the effective width of the arrays by defining a virtual row size

and inserting latencies to model opening and closing rows of that size. The baseline

configuration uses 8 KB rows.

131

Ethernet
MAC

TX Queue

RX Queue

“DMA”

“Ring”

Local
M

oneta
Encode

Decode

N
et Scheduler

+ A
rbitration

Figure A.4. The network interface includes an Ethernet MAC core, packet buffers, and
the network state machine. The state machine processes incoming requests and wraps
outgoing requests in ethernet frames a custom low level protocol.

A.6 Ethernet Network

The inclusion of an ethernet network interface in the Moneta hardware provides

the mechanism for connecting multiple Moneta devices together on a network and

allowing multiple hosts to share the same storage device. Figure A.4 shows the network

interface flow and its interfaces to the existing buffers and the rest of the Moneta design.

Moneta uses a 10 Gb ethernet interface with passive, copper CX4 connections.

The network state machine interfaces to the request buffers and to the request queues.

As packets arrive from the ethernet interface, they are written into the receive

packet buffer. This buffer has room for 4096 8-byte words, or 32 KB of data. Packets

are written into the buffer completely before the next state machine is notified that any

data has arrived. By delaying the start of processing until the whole packet is received,

corrupt and invalid packets can be safely dropped. The ethernet frame checksum is used

to verify the validity of the packet and payload. The downside is the introduction of

slightly longer latencies. Writing an 8 KB packet into the buffer takes 1024 clock cycles,

at ethernet line rate of 125 MHz that means an additional 8192 ns.

The receive buffer capacity was chosen to hold several maximum sized packets

132

and minimize the amount of flow control needed to prevent packet loss. When the receive

buffer reaches one-quarter full the flow control state machine kicks in and issues pause

requests to the ethernet MAC core. Once the buffer falls below an eighth full, the pause

requests are cancelled. The threshold is set relatively low because several packets may be

in transit before the pause request is processed by the device at the other end of the link.

Received packets exit the packet buffer and the receive state machine processes

them. There are only four types of packets that the state machine recognizes and the

packet formats are shown in Table A.3. There are two request formats, for reads and

writes, and two completion formats, for signalling that read and write requests have

finished. The request headers are nearly identical and contain the normal source and

destination MAC addresses, we also include a Source Index which is just a lookup

into the preconfigured, identical MAC address tables on each node. A tag is set along

with the request so the origin can identify the completion when it arrives. The request

also includes a request length, storage address, and a few other flags that Moneta uses

during request processing. These fields almost map directly onto the existing fields in

a local-only version of Moneta. The Source Index is split across the VirtualTag and

ChannelID as these fields don’t change during the processing of the requests locally.

Once the type of packet is identified, the state machine branches to a handler for

that packet type. Read requests are simply output into the request queue as they have

no payload. Write requests are also output, but the state machine will wait for a buffer

allocation for the request and then transferring the data from the packet buffer into the

main request buffer. Completions are handled in a similar manner, read completions

contain a payload which is written directly into the buffer (allocated during the initial

read request), write completions require no buffer and simply use the normal mechanisms

to signal that the request is complete.

To interface the network with the rest of Moneta, the network controller emulates

133

Table A.3. Moneta uses raw ethernet frames with minimal overhead to communicate
between nodes on the network. This table shows the general format of these packets.
This packet represents a write request and includes a data payload. Read requests, simply
change the OP field and include no payload. Completion packets are also sent, these
return the TAG and a data payload if necessary.

0x7 0x6 0x5 0x4 0x3 0x2 0x1 0x0
SRC MAC DEST MAC 0x0000

INDEX,OP[3:0] 0x70 0x88 SRC MAC 0x0008
WRITE ADDRESS 0x0010

SIZE TAG OFFSETS CMD CTRL 0x0018
PAYLOAD - WRITE DATA 0x0020

two of the existing Moneta components – the DMA controller and the Ring network. This

simplifies the integration by allowing the existing scheduler and state machines to use

the same interfaces for both local and remote data transfers. When a request needs to be

forwarded to a remote node, instead of talking to the existing ring controller, the network

“ring” interface is used. Because the interfaces are the same, just a few of the control

signals need to be changed in the existing state machines. Similarly, remote requests that

arrive from the network are inserted into the request queue and then a network “DMA”

read is used to fetch the associated data from the network buffers.

A.7 Summary

This appendix explores the Moneta prototype SSD hardware architecture and

implementation in extensive detail. The Moneta prototype targets emerging non-volatile

memory technologies that have performance characteristics approaching that of DRAM.

Suitable technologies include phase-change memory, spin-torque transfer memory, and

the memristor. The low-latency, high-endurance characteristics of these memories make

them appealing choices for very fast storage arrays like Moneta.

Moneta focuses on providing a high-throughput simple data-path to move data

134

between the storage devices and the host machine. By ensuring adequate buffering and a

high-speed network to connect the memory devices to the PCIe link, Moneta can saturate

the full-duplex connection to the host network and sustain almost 2 million IO operations

per second.

Acknowledgements

This chapter contains material from “Moneta: A High-Performance Storage Array

Architecture for Next-Generation, Non-Volatile Memories”, by Adrian M. Caulfield,

Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, which

appears in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (MICRO ’43). The dissertation author was the primary investigator

and author of this paper. The material in this chapter is copyright c©2010 by the Associa-

tion for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Providing Safe, User Space Access to Fast,

Solid State Disks”, by Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De,

Joel Coburn, and Steven Swanson, which appears in ASPLOS ’12: Proceedings of the

17th International Conference on Architectural Support for Programming Languages

and Operating Systems. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2012 by the Association for

135

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “QuickSAN: A Storage Area Network for

Fast, Distributed, Solid State Disks”, by Adrian M. Caulfield and Steven Swanson,

which appears in ISCA ’13: Proceeding of the 40th Annual International Symposium on

Computer Architecture. The dissertation author was the primary investigator and author

of this paper. The material in this chapter is copyright c©2013 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Bibliography

[1] The lustre project. http://www.lustre.org/.

[2] International technology roadmap for semiconductors: Emerging research devices,
2007.

[3] Maxim Adelman. Principle Engineer, Violin Memory. Personal communication.

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. FAWN: a Fast Array of Wimpy Nodes.
In SOSP ’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 1–14, New York, NY, USA, 2009. ACM.

[5] Hyokyung Bahn, Soyoon Lee, and Sam H. Noh. P/PA-SPTF: Parallelism-aware
Request Scheduling Algorithms for MEMS-based Storage Devices. Trans. Storage,
5(1):1–17, 2009.

[6] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro, F. Pellizzer,
F. Ottogalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and G. Casagrande. An
8mb demonstrator for high-density 1.8v phase-change memories. VLSI Circuits,
2004. Digest of Technical Papers. 2004 Symposium on, pages 442–445, June 2004.

[7] http://www.beecube.com/platform.html.

[8] M. A. Blumrich, C. Dubnicki, E. W. Felten, and Kai Li. Protected, user-level DMA
for the SHRIMP network interface. In Proceedings of the 2nd IEEE Symposium on
High-Performance Computer Architecture, HPCA ’96, pages 154–, Washington,
DC, USA, 1996. IEEE Computer Society.

[9] Matthew J. Breitwisch. Phase change memory. Interconnect Technology Confer-
ence, 2008. IITC 2008. International, pages 219–221, June 2008.

[10] Greg Buzzard, David Jacobson, Milon Mackey, Scott Marovich, and John Wilkes.
An implementation of the hamlyn sender-managed interface architecture. In
Proceedings of the second USENIX symposium on Operating systems design and
implementation, OSDI ’96, pages 245–259, New York, NY, USA, 1996. ACM.

136

http://www.lustre.org/

137

[11] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach, and Omer
Asad. Nfs over rdma. In Proceedings of the ACM SIGCOMM workshop on
Network-I/O convergence: experience, lessons, implications, NICELI ’03, pages
196–208, New York, NY, USA, 2003. ACM.

[12] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta,
and Steven Swanson. Moneta: A high-performance storage array architecture for
next-generation, non-volatile memories. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages
385–395, Washington, DC, USA, 2010. IEEE Computer Society.

[13] Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De, Joel Coburn, and
Steven Swanson. Providing Safe, User Space Access to Fast, Solid State Disks.
In Proceeding of the 17th international conference on Architectural support for
programming languages and operating systems, New York, NY, USA, March
2012. ACM.

[14] Yu-Bin Chang and Li-Pin Chang. A self-balancing striping scheme for nand-flash
storage systems. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied
computing, pages 1715–1719, New York, NY, USA, 2008. ACM.

[15] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based Solid State
Drives. In SIGMETRICS ’09: Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, pages 181–192,
New York, NY, USA, 2009. ACM.

[16] Shimin Chen. FlashLogging: Exploiting Flash Devices for Synchronous Logging
Performance. In SIGMOD ’09: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pages 73–86, New York, NY, USA, 2009.
ACM.

[17] Steve Chu. Memcachedb. http://memcachedb.org/.

[18] Cisco. Lossless 10 gigabit ethernet: The unifying infrastructure for san and lan
consolidation, 2009.

[19] Joel Coburn, Trevor Bunker, Rajesh K. Gupta, and Steven Swanson. From
ARIES to MARS: Reengineering transaction management for next-generation,
solid-state drives. Technical Report CS2012-0981, Department of Computer
Science & Engineering, University of California, San Diego, June 2012.
http://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd cse/CS2012-0981.

[20] John D. Davis and Lintao Zhang. FRP: A Nonvolatile Memory Research Platform
Targeting NAND Flash. In Proceedings of First Workshop on Integrating Solid-
State Memory in the Storage Hierarchy, 2009.

138

[21] Cagdas Dirik and Bruce Jacob. The Performance of PC Solid-State Disks (SSDs)
as a Function of Bandwidth, Concurrency, Device Architecture, and System Orga-
nization. In ISCA ’09: Proceedings of the 36th Annual International Symposium
on Computer Architecture, pages 279–289, New York, NY, USA, 2009. ACM.

[22] Micah Dowty and Jeremy Sugerman. Gpu virtualization on vmware’s hosted
i/o architecture. In Proceedings of the First conference on I/O virtualization,
WIOV’08, pages 7–7, Berkeley, CA, USA, 2008. USENIX Association.

[23] Ivan Dramaliev and Tara Madhyastha. Optimizing Probe-Based Storage. In FAST
’03: Proceedings of the 2nd USENIX Conference on File and Storage Technologies,
pages 103–114, Berkeley, CA, USA, 2003. USENIX Association.

[24] Marcus Dunn and A. L. Narasimha Reddy. A new i/o scheduler for solid state
devices. Technical Report TAMU-ECE-2009-02-3, Department of Electrical and
Computer Engineering Texas A&M University, 2009.

[25] Kaoutar El Maghraoui, Gokul Kandiraju, Joefon Jann, and Pratap Pattnaik. Mod-
eling and Simulating Flash Based Solid-State Disks for Operating Systems. In
WOSP/SIPEW ’10: Proceedings of the First Joint WOSP/SIPEW International
Conference on Performance Engineering, pages 15–26, New York, NY, USA,
2010. ACM.

[26] Elpida. Elpida DDR2 SDRAM EDE1104AFSE Datasheet, 2008. http://www.
elpida.com/pdfs/E1390E30.pdf.

[27] Everspin Technologies. Spin-Torque MRAM Technical Brief. http://www.everspin.
com/PDF/ST-MRAM Technical Brief.pdf.

[28] Blake G. Fitch, Aleksandr Rayshubskiy, Michael C. Pitman, T. J. Christopher
Ward, and Robert S. Germai n. Using the Active Storage Fabrics Model to Address
Petascale Storage Challenges. In Proceedings of the 4th Annual Workshop on
Petascale Data Storage, PDSW ’09, pages 47–54, New York, NY, USA, 2009.
ACM.

[29] http://www.fusionio.com/.

[30] iodrive2 data sheet. http://www.fusionio.com/data-sheets/iodrive2/.

[31] Greg Ganger, Bruce Worthington, and Yale Patt. Disksim.
http://www.pdl.cmu.edu/DiskSim/.

[32] http://sourceware.org/cluster/gfs/.

[33] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

http://www.elpida.com/pdfs/E1390E30.pdf
http://www.elpida.com/pdfs/E1390E30.pdf
http://www.everspin.com/PDF/ST-MRAM_Technical_Brief.pdf
http://www.everspin.com/PDF/ST-MRAM_Technical_Brief.pdf

139

[34] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang,
Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka.
A cost-effective, high-bandwidth storage architecture. In Proceedings of the eighth
international conference on Architectural support for programming languages
and operating systems, ASPLOS-VIII, pages 92–103, New York, NY, USA, 1998.
ACM.

[35] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang,
Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka.
A cost-effective, high-bandwidth storage architecture. SIGOPS Oper. Syst. Rev.,
32:92–103, October 1998.

[36] Dror Goldenberg. Infiniband device virtualization in xen. http://www.mellanox.
com/pdf/presentations/xs0106 infiniband.pdf.

[37] John Linwood Griffin, Jiri Schindler, Steven W. Schlosser, John C. Bucy, and Gre-
gory R. Ganger. Timing-accurate Storage Emulation. In FAST ’02: Proceedings
of the 1st USENIX Conference on File and Storage Technologies, page 6, Berkeley,
CA, USA, 2002. USENIX Association.

[38] Jiahua He, Arun Jagatheesan, Sandeep Gupta, Jeffrey Bennett, and Allan Snavely.
DASH: a Recipe for a Flash-based Data Intensive Supercomputer, 2010.

[39] Dean Hildebrand and Peter Honeyman. Exporting Storage Systems in a Scalable
Manner with pNFS. In Symposium on Mass Storage Systems, pages 18–27, 2005.

[40] Yenpo Ho, G.M. Huang, and Peng Li. Nonvolatile Memristor Memory: Device
Characteristics and Design Implications. In Computer-Aided Design - Digest of
Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on,
pages 485 –490, 2-5 2009.

[41] S. Hopkins and B. Coile. Aoe (ata over ethernet), 2009.
http://support.coraid.com/documents/AoEr11.txt.

[42] Amber Huffman and Joni Clark. Serial ATA Native Command Queuing, July
2003. http://www.seagate.com/content/pdf/whitepaper/D2c tech paper intc-stx
sata ncq.pdf.

[43] IBM 3340 Disk Storage Unit. http://www-03.ibm.com/ibm/history/exhibits/
storage/storage 3340.html.

[44] http://www.intel.com/content/www/us/en/solid-state-drives/ssd-910-series-
specification.html.

[45] Intel. Intel system controller hub datasheet, 2008.
http://download.intel.com/design/chipsets/embedded/datashts/319537.pdf.

http://www.mellanox.com/pdf/presentations/xs0106_infiniband.pdf
http://www.mellanox.com/pdf/presentations/xs0106_infiniband.pdf
http://www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://www-03.ibm.com/ibm/history/exhibits/storage/storage_3340.html
http://www-03.ibm.com/ibm/history/exhibits/storage/storage_3340.html

140

[46] Intel X58 Express Chipset Product Brief, 2008. http://www.intel.com/products/
desktop/chipsets/x58/x58-overview.htm.

[47] Intel Corporation. Intel X25-E SATA Solid State Drive Product Man-
ual. http://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-
datasheet.pdf.

[48] Silicon Graphics International. XFS: A high-performance journaling filesystem.
http://oss.sgi.com/projects/xfs.

[49] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H.
Noh. Disk schedulers for solid state drivers. In EMSOFT ’09: Proceedings of the
seventh ACM international conference on Embedded software, pages 295–304,
New York, NY, USA, 2009. ACM.

[50] David Kotz, Song B Toh, and Sriram Radhakrishnan. A Detailed Simulation Model
of the HP 97560 Disk Drive. Technical report, Dartmouth College, Hanover, NH,
USA, 1994.

[51] Petros Koutoupis. The lustre distributed filesystem. Linux J., 2011(210), October
2011.

[52] Laura M. Grupp and Adrian M. Caulfield and Joel Coburn and John Davis and
Steven Swanson. Beyond the Datasheet: Using Test Beds to Probe Non-Volatile
Memories’ Dark Secrets. In IEEE Globecom 2010 Workshop on Application
of Communication Theory to Emerging Memory Technologies (ACTEMT 2010),
2010.

[53] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable dram alternative. In ISCA ’09: Proceedings of the
36th annual international symposium on Computer architecture, pages 2–13, New
York, NY, USA, 2009. ACM.

[54] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-smith. Mediabench:
A tool for evaluating and synthesizing multimedia and communications systems.

[55] Eunji Lee, Kern Koh, Hyunkyoung Choi, and Hyokyung Bahn. Comparison of I/O
Scheduling Algorithms for High Parallelism MEMS-based Storage Devices. In
SEPADS’09: Proceedings of the 8th WSEAS International Conference on Software
Engineering, Parallel and Distributed Systems, pages 150–155, Stevens Point,
Wisconsin, USA, 2009. World Scientific and Engineering Academy and Society
(WSEAS).

[56] S. Lee, K. Fleming, J. Park, Ha K., Adrian M. Caulfield, Steven Swanson, Arvind,
and J. Kim. BlueSSD: An Open Platform for Cross-layer Experiments for NAND
Flash-based SSDs. In Proceedings of the 2010 Workshop on Architectural Research
Prototyping, 2010.

http://www.intel.com/products/desktop/chipsets/x58/x58-overview.htm
http://www.intel.com/products/desktop/chipsets/x58/x58-overview.htm

141

[57] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo
Kim. A Case for Flash Memory SSD in Enterprise Database Applications. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, pages 1075–1086, New York, NY, USA, 2008. ACM.

[58] Joshua LeVasseur, Ramu Panayappan, Espen Skoglund, Christo du Toit, Leon
Lynch, Alex Ward, Dulloor Rao, Rolf Neugebauer, and Derek McAuley. Stan-
dardized but flexible i/o for self-virtualizing devices. In Proceedings of the First
conference on I/O virtualization, WIOV’08, pages 9–9, Berkeley, CA, USA, 2008.
USENIX Association.

[59] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Márk
Félegyházi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich,
He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker, and
Stefan Savage. Click Trajectories: End-to-End Analysis of the Spam Value Chain.
In Proceedings of the IEEE Symposium and Security and Privacy, Oakland, CA,
May 2011.

[60] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 469–480, 2009.

[61] Jiuxing Liu and Bulent Abali. Virtualization polling engine (vpe): using dedicated
cpu cores to accelerate i/o virtualization. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages 225–234, New York, NY, USA,
2009. ACM.

[62] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High per-
formance vmm-bypass i/o in virtual machines. In Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, pages 3–3, Berkeley,
CA, USA, 2006. USENIX Association.

[63] K. Magoutis, M. Seltzer, and E. Gabber. The case against user-level networking.
In Proceedings of the Workshop on Novel Uses of System-Area Networks, SAN-3,
2004.

[64] Derek McAuley and Rolf Neugebauer. A case for virtual channel processors.
In Proceedings of the ACM SIGCOMM workshop on Network-I/O convergence:
experience, lessons, implications, NICELI ’03, pages 237–242, New York, NY,
USA, 2003. ACM.

[65] Memcached. http://memcached.org/.

142

[66] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing network
virtualization in Xen. In Proceedings of the annual conference on USENIX ’06
Annual Technical Conference, pages 2–2, Berkeley, CA, USA, 2006. USENIX
Association.

[67] Young Jin Nam and Chanik Park. Design and Evaluation of an Efficient
Proportional-share Disk Scheduling Algorithm. Future Gener. Comput. Syst.,
22(5):601–610, 2006.

[68] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and
Antony Rowstron. Migrating Server Storage to SSDs: Analysis of Tradeoffs. In
EuroSys ’09: Proceedings of the 4th ACM European Conference on Computer
Systems, pages 145–158, New York, NY, USA, 2009. ACM.

[69] Spencer W. Ng. Improving Disk Performance Via Latency Reduction. IEEE Trans.
Comput., 40(1):22–30, 1991.

[70] Numonyx. Numonyx Omneo P8P PCM 128-Mbit Parallel Phase Change Memory
Datahseet, April 2010. http://numonyx.com/Documents/Datasheets/316144 P8P
DS.pdf.

[71] https://oss.oracle.com/projects/ocfs2/.

[72] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast crash recovery in ramcloud. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 29–41, New
York, NY, USA, 2011. ACM.

[73] R. Osborne, Q. Zheng, J. Howard, R. Casley, D. Hahn, and T. Nakabayashi. Dart –
a low overhead atm network interface chip. In Proceedings of the 1996 4th IEEE
Symposium on High Performance Interconnects, pages 175–186, 1996.

[74] Pci-sig - i/o virtualization. http://www.pcisig.com/specifications/iov/.

[75] Pci-sig - pcie base specification 1.1. http://www.pcisig.com/specifications/
pciexpress/base.

[76] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Last ras, and Bulent Abali. Enhancing Lifetime and Security of PCM-
Based Main Memory with Start-Gap Wear Leveling. In MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 14–23, New York, NY, USA, 2009. ACM.

[77] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of pcm-
based main memory with start-gap wear leveling. In MICRO 42: Proceedings

http://numonyx.com/Documents/Datasheets/316144_P8P_DS.pdf
http://numonyx.com/Documents/Datasheets/316144_P8P_DS.pdf
http://www.pcisig.com/specifications/pciexpress/base
http://www.pcisig.com/specifications/pciexpress/base

143

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 14–23, New York, NY, USA, 2009. ACM.

[78] Himanshu Raj and Karsten Schwan. High performance and scalable i/o virtu-
alization via self-virtualized devices. In Proceedings of the 16th international
symposium on High performance distributed computing, HPDC ’07, pages 179–
188, New York, NY, USA, 2007. ACM.

[79] The ramp project. http://ramp.eecs.berkeley.edu/index.php?index.

[80] Alexander Rasmussen, Vinh The Lam, Michael Conley, George Porter, Rishi
Kapoor, and Amin Vahdat. Themis: an i/o-efficient mapreduce. In Proceedings of
the Third ACM Symposium on Cloud Computing, SoCC ’12, pages 13:1–13:14,
New York, NY, USA, 2012. ACM.

[81] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,
Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. Tritonsort: a
balanced large-scale sorting system. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation, NSDI’11, pages 3–3, Berkeley,
CA, USA, 2011. USENIX Association.

[82] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current technol-
ogy and future trends. Computer, 38:39–47, May 2005.

[83] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling.
Computer, 27(3):17–28, 1994.

[84] Julian Satran, Leah Shalev, Muli Ben-Yehuda, and Zorik Machulsky. Scalable i/o -
a well-architected way to do scalable, secure and virtualized i/o. In Proceedings
of the First conference on I/O virtualization, WIOV’08, pages 3–3, Berkeley, CA,
USA, 2008. USENIX Association.

[85] Lambert Schaelicke and Al Davis. Improving i/o performance with a conditional
store buffer. In Proceedings of the 31st annual ACM/IEEE international sympo-
sium on Microarchitecture, MICRO 31, pages 160–169, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[86] Lambert Schaelicke and Alan L. Davis. Design trade-offs for user-level i/o
architectures. IEEE Trans. Comput., 55:962–973, August 2006.

[87] Steven W. Schlosser, John Linwood Griffin, David F. Nagle, and Gregory R.
Ganger. Designing Computer Systems with MEMS-based Storage. SIGOPS Oper.
Syst. Rev., 34(5):1–12, 2000.

[88] Frank B. Schmuck and Roger L. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In USENIX Conference on File and Storage
Technologies, pages 231–244, 2002.

144

[89] Margo Seltzer, Peter Chen, and John Ousterhout. Disk Scheduling Revisited. In
Proceedings of the 1990 Winter Usenix, pages 313–324, 1990.

[90] Eric Seppanen, Matthew T. OKeefe, and David J. Lilja. High performance solid
state storage under linux. In Proceedings of the 30th IEEE Symposium on Mass
Storage Systems, 2010.

[91] Cxfs. http://www.sgi.com/products/storage/software/cxfs.html.

[92] Prashant J. Shenoy and Harrick M. Vin. Cello: a Disk Scheduling Framework for
Next Generation Operating Systems. SIGMETRICS Perform. Eval. Rev., 26(1):44–
55, 1998.

[93] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop Distributed File System. In Symposium on Mass Storage Systems, 2010.

[94] Steven R. Soltis, Grant M. Erickson, Kenneth W. Preslan, Matthew T. O’Keefe,
and Thomas M. Ruwart. The Global File System: A File System for Shared Disk
Storage. IEEE Transactions on Parallel and Distributed Systems, 1997.

[95] Jeremy Sugerman, PUanesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o
devices on vmware workstation’s hosted virtual machine monitor. In Proceedings
of the General Track: 2002 USENIX Annual Technical Conference, pages 1–14,
Berkeley, CA, USA, 2001. USENIX Association.

[96] http://sysbench.sourceforge.net/index.html.

[97] Toby J. Teorey and Tad B. Pinkerton. A Comparative Analysis of Disk Scheduling
Policies. Commun. ACM, 15(3):177–184, 1972.

[98] Alexander Thomasian and Chang Liu. Disk Scheduling Policies with Lookahead.
SIGMETRICS Perform. Eval. Rev., 30(2):31–40, 2002.

[99] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P.
Jouppi. Cacti 5.1. Technical Report HPL-2008-20, HP Labs, Palo Alto, 2008.

[100] Mustafa Uysal, Arif Merchant, and Guillermo A. Alvarez. Using MEMS-Based
Storage in Disk Arrays. In FAST ’03: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, pages 89–101, Berkeley, CA, USA, 2003.
USENIX Association.

[101] Violin memory 6000 series flash memory arrays. http://www.violin-
memory.com/products/6000-flash-memory-array/.

[102] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: a user-level network
interface for parallel and distributed computing. SIGOPS Oper. Syst. Rev., 29:40–
53, December 1995.

145

[103] http://www.symantec.com/cluster-file-system.

[104] WD VelociRaptor: SATA Hard Drives. http://www.wdc.com/wdproducts/library/
SpecSheet/ENG/2879-701284.pdf.

[105] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: a scalable, high-performance distributed file system. In Pro-
ceedings of the 7th symposium on Operating systems design and implementation,
OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006. USENIX Association.

[106] Western Digital. WD Caviar Block Desktop Hard Drives, 2010. http://www.wdc.
com/wdproducts/library/SpecSheet/ENG/2879-701276.pdf.

[107] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott Rixner, Alan L.
Cox, and Willy Zwaenepoel. Concurrent direct network access for virtual machine
monitors. In Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, pages 306–317, Washington, DC, USA,
2007. IEEE Computer Society.

[108] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling Al-
gorithms for Modern Disk Drives. In SIGMETRICS ’94: Proceedings of the
1994 ACM SIGMETRICS conference on Measurement and modeling of computer
systems, pages 241–251, New York, NY, USA, 1994. ACM.

[109] Xdd version 6.5. http://www.ioperformance.com/.

[110] Lei Xia, Jack Lange, Peter Dinda, and Chang Bae. Investigating virtual
passthrough i/o on commodity devices. SIGOPS Oper. Syst. Rev., 43:83–94,
July 2009.

[111] Inc. Xilinx. Virtex-5 Endpoint Block Plus Wrapper for PCI Express
(PCIe). http://www.xilinx.com/products/intellectual-property/V5 PCI Express
Block Plus.htm.

[112] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better than inter-
rupt. In in proceedings of the 10th USENIX Conference on File and Storage
Technologies, February 2012.

[113] Weikuan Yu, Shuang Liang, and Dhabaleswar K. Panda. High performance support
of parallel virtual file system (pvfs2) over quadrics. In Proceedings of the 19th
annual international conference on Supercomputing, ICS ’05, pages 323–331,
New York, NY, USA, 2005. ACM.

[114] Yuanyuan Zhou, Angelos Bilas, Suresh Jagannathan, Cezary Dubnicki, James F.
Philbin, and Kai Li. Experiences with VI communication for database storage. In
Proceedings of the 29th annual international symposium on Computer architecture,
ISCA ’02, pages 257–268, Washington, DC, USA, 2002. IEEE Computer Society.

http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701284.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701284.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701276.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701276.pdf
http://www.xilinx.com/products/intellectual-property/V5_PCI_Express_Block_Plus.htm
http://www.xilinx.com/products/intellectual-property/V5_PCI_Express_Block_Plus.htm

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Technologies and Trends
	Hard Disks
	NAND Flash Memory
	Phase Change RAM
	Spin-Torque MRAM and the Memristor
	Trends in Storage Technology

	The Moneta Kernel Stack
	The Moneta prototype
	Moneta array architecture
	Implementing the Moneta prototype

	Baseline Moneta performance
	Software Optimizations
	IO scheduler
	Issuing and completing IO requests
	Avoiding interrupts
	Other overheads

	Tuning the Moneta hardware
	Read/Write bandwidth
	Balancing bandwidth
	Non-volatile memory latency
	Moneta power consumption

	Evaluation
	Microbenchmarks
	Applications

	Related work
	Summary

	User Space Access
	System overview
	Channels
	The user space driver
	The file system

	Related Work
	Virtualization
	User space IO
	Protection and translation

	Moneta-D Implementation
	The baseline Moneta hardware
	Virtual channels
	Translation and protection
	Completing requests and reporting errors

	Results
	Operation latency
	Raw bandwidth
	Application level performance
	Asynchronous IO

	Summary

	Distributed Storage
	Motivation
	Storage overheads
	The Impact of Fast SSDs

	QuickSAN
	QuickSAN Overview
	The QuickSAN SSD and NIC
	QuickSAN software

	Related Work
	Results
	Configurations
	Latency
	Bandwidth
	Scaling
	Replication
	Sorting on QuickSAN
	Energy efficiency
	Workload consolidation

	Summary

	Summary
	Moneta Hardware
	Moneta Overview
	Registers
	DMA

	Request Pipeline
	Virtualization
	Protection
	Request Queues
	Transfer Buffers and Scheduler

	Host-Interface
	Completing Requests in Hardware

	Ring Network
	Memory Controllers
	Non-Volatile Memory Emulation

	Ethernet Network
	Summary

	Bibliography

