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Abstract Assessing the effect of a health-oriented intervention by traditional
epidemiological methods is commonly based only on population segments
that use healthcare services. Here we introduce a complementary framework
for evaluating the impact of a targeted intervention, such as a vaccination
campaign against an infectious disease, through a statistical analysis of user-
generated content submitted on web platforms. Using supervised learning, we
derive a nonlinear regression model for estimating the prevalence of a health
event in a population from Internet data. This model is applied to identify
control location groups that correlate historically with the areas, where a spe-
cific intervention campaign has taken place. We then determine the impact of
the intervention by inferring a projection of the disease rates that could have
emerged in the absence of a campaign. Our case study focuses on the influenza
vaccination program that was launched in England during the 2013/14 season,
and our observations consist of millions of geo-located search queries to the
Bing search engine and posts on Twitter. The impact estimates derived from
the application of the proposed statistical framework support conventional
assessments of the campaign.
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1 Introduction

Infectious diseases are a major concern for public health and a significant
cause of death worldwide (Binder et al. 1999; Morens et al. 2004; Jones et al.
2008). Various health interventions, such as improved sanitation, clean water
and immunization programs, assist in reducing the risk of infection (Cohen
2000). To monitor infectious diseases as well as evaluate the impact of control
and prevention programs, health organizations have established a number of
surveillance systems. Typically, these schemes, apart from requiring an estab-
lished health system, only cover cases that result in healthcare service utiliza-
tion. Therefore, they are not always able to capture the prevalence of a disease
in the general population, where it is likely to be more common (Reed et al.
2009; Briand et al. 2011).

Recent research efforts have proposed various ways for taking advantage
of online information to gain a better understanding of offline, real-world sit-
uations. Particular interest has been drawn on the modeling of user-generated
web content, either in the form of social media text snippets or search engine
query logs. Numerous works have provided statistical proof for the predictive
capabilities of these resources with applications spreading across the domains
of finance (Bollen et al. 2011), politics (O’Connor et al. 2010; Lampos et al.
2013) and healthcare (Ginsberg et al. 2009; Lampos and Cristianini 2010; Cu-
lotta 2010). Focusing on the domain of health, the development of models for
nowcasting infectious diseases, such as influenza-like illness (ILI),1 has been
a central theme (Milinovich et al. 2014). Initial indications that content from
Yahoo’s (Polgreen et al. 2008) or Google’s (Ginsberg et al. 2009) search en-
gine are good ILI indicators, were followed by a series of approaches using the
microblogging platform of Twitter as an alternative, publicly available source
(Lampos et al. 2010; Signorini et al. 2011; Lamb et al. 2013).

Tracking the prevalence of an infectious disease from Internet activities
establishes a complementary and perhaps more sensitive sensor than doctor
visits or hospitalizations because it provides access to the bottom of the dis-
ease pyramid, i.e., potential cases of infection many of whom may not use
the healthcare system. Online data sources do have disadvantages, including
noise and ambiguity, and respond not just to changes in disease prevalence,
but also to other factors, especially media coverage (Cook et al. 2011; Lazer
et al. 2014). Nevertheless, the learning approaches that convert this content to
numeric indications about the rate of a disease aim to eliminate most of the
aforementioned biases.

The United Kingdom (UK) in an effort to reduce the spread of influenza in
the general population has introduced nation-wide interventions in the form of
vaccinations. Recognizing that children are key factors in the transmission of
the influenza virus (Petrie et al. 2013), a pilot live attenuated influenza vaccine
(LAIV) program has been launched in seven geographically discrete areas in

1 ILI is typically defined as the presence of high fever together with cough or sore throat
(Monto et al. 2000; Boivin et al. 2000).
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England (Table 1) during the 2013/14 influenza season, with LAIV offered
to school children aged from 4 to 11 years; this was in addition to offering
vaccinations to all healthy children that were 2 or 3 years old. A report, led
by one of our co-authors, quantified the impact of the school children LAIV
campaign on a range of influenza indicators in pilot compared to non-pilot
areas through traditional influenza surveillance schemes (Pebody et al. 2014).
However, the sparse coverage of the surveillance system as well as the biases in
the population that uses healthcare services, resulted into partially conclusive
and not statistically significant outcomes.

In this work, we extend previous ILI modeling approaches from Internet
content and propose a statistical framework for assessing the impact of a health
intervention. To validate our methodology, we used UK’s 2013/14 pilot LAIV
campaign as a case study. Our experimental setup involved the processing of
millions of Twitter postings and Bing search queries geo-located in the tar-
get vaccinated locations, as well as a broader set of control locations across
England. Firstly, we assessed the predictive capacity of various text regression
models for inferring ILI rates, proposing a nonlinear method for performing
this task based on the framework of Gaussian Processes (Rasmussen and Nick-
isch 2010), which improved predictions on our data set by a degree greater than
22% in terms of Mean Absolute Error (MAE) as compared to linear regular-
ized regression methods such as the elastic-net (Zou and Hastie 2005). Then,
we performed a statistical analysis, to evaluate the impact of the pilot LAIV
program. The extracted impact estimates were in line with Public Health Eng-
land’s (PHE)2 findings (Pebody et al. 2014), providing both supplementary
support for the success of the intervention, and validatory evidence for our
methodology.

2 Data sources

We used two user-generated data sources, namely search query logs from Mi-
crosoft’s Bing search engine and Twitter data. In the following paragraphs, we
describe the process for extracting textual features from queries or tweets, as
well as the additional components of the applied experimental process.

Feature extraction. We manually crafted a list of 36 textual markers (or n-
grams) related to or expressing symptoms of ILI by browsing through related
web pages (on Wikipedia or health-oriented websites). Then, using these mark-
ers as seeds, we extracted a set of frequent, co-occurring n-grams with n ≤ 4,
in a Twitter corpus of approx. 30 million tweets published between February
and March 2014 and geo-located in the UK. This expanded the list of markers
to a set of M = 205 n-grams (see Supplementary Material, Table S1), which
formed the feature space in our experimental process. Overall the number of
n-grams does not reach the quantity explored in previous studies (Ginsberg

2 PHE is an executive agency for the Department of Health in England.
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Table 1 Areas participating in the LAIV program (v) and control areas (c) with their
respective identifiers, population figures and geographical bounding box coordinates.

Areas id Population SWa NEb

Bury v1 186,527 -2.352, 53.550 -2.243, 53.645

Cumbria v2 498,070 -3.640, 54.042 -2.159, 55.189

Gateshead v3 199,998 -1.662, 54.914 -1.516, 54.971

Leicester City v4a NAc -1.216, 52.581 -1.046, 52.692

East Leicestershire v4b 661,575d -0.891, 52.392 -0.664, 52.978

Rutland v4c 37,606 -0.822, 52.525 -0.428, 52.760

London, Havering v5 242,080 0.138, 51.487 0.334, 51.632

London, Newham v6 318,227 -0.021, 51.498 0.098, 51.564

South East Essex v7 175,798e 0.487, 51.494 1.032, 51.760

Brighton c1 278,112f -0.174, 50.807 -0.087, 50.870

Bristol c2 437,492 -3.118, 51.342 -2.510, 51.544

Cambridge c3 126,480 0.0774, 52.159 0.191, 52.238

Exeter c4 121,800 -3.687, 50.566 -3.367, 50.886

Leeds c5 761,481 -1.800, 53.698 -1.290, 53.946

Liverpool c6 470,780 -3.019, 53.312 -2.818, 53.475

Norwich c7 135,893 1.204, 52.555 1.541, 52.685

Nottingham c8 310,837 -1.247, 52.889 -1.086, 53.019

Plymouth c9 259,175 -4.303, 50.211 -3.983, 50.531

Sheffield c10 560,085 -1.801, 53.305 -1.325, 53.503

Southampton c11 242,141 -1.564, 50.743 -1.244, 51.063

York c12 202,433 -1.242, 53.799 -0.922, 54.119

a Longitude and latitude of the South-West edge of the bounding box.
b Longitude and latitude of the North-East edge of the bounding box.
c Figures for Leicester city alone, which is part of Leicestershire, were not included
in (Office for National Statistics, Great Britain 2014a).
d This is a figure for the entire Leicestershire.
e This is a figure for Southend-on-Sea.
f Includes the town of Hove.

et al. 2009; Lampos and Cristianini 2012), although this choice was motivated
by the fact that a small set of keywords is adequate for achieving a good pre-
dictive performance when modeling ILI from user-generated content published
online (Culotta 2013).

Geographic areas of interest. We analyzed data that was either geo-
located in England as a whole or in specific areas within England. Table 1
lists all the specific locations of interest, dividing them into two categories:
the 7 vaccinated areas (vi) where the LAIV program was applied, and the
selected 12 control areas (ci) which represent urban centers in England, with
considerable population figures, that were distant from all vaccinated areas,
and were spread across the geography of the country, to the extent possible.
Each area is specified by a geographical bounding box defined by the longitude
and latitude of its South-West and North-East edge points.
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User-generated web content. To perform a more rigorous experimental ap-
proach, distinct data sets from two different web sources have been compiled.
The first (T ) consists of all Twitter posts (tweets) with geo-location enabled
and pointing to the region of England from 02/05/2011 to 13/04/2014, i.e.,
154 weeks in total. The total number of tweets involved is approx. 308 mil-
lion, whereas the cumulative appearances of ILI-related n-grams is approx. 2.2
million. The vaccinated and control areas account for 5.8% and 12.6% of the
entire content respectively. The second data set (B) consists of search queries
on Microsoft’s web search engine, Bing, from 31/12/2012 to 13/04/2014 (67
weeks in total), geo-located in England. This data set has smaller temporal
coverage as compared to Twitter data due to limitations in acquiring past
search query logs. The number of queries in B is significantly larger than the
number of tweets in T ;3 3.75% of the queries were geo-located in vaccinated
areas, 12.53% in control areas, and flu related n-grams appeared in approx.
7.7 million queries. For all the considered n-grams (Supplementary Material,
Table S1) we extracted their weekly frequency in England as well as in the
designated areas of interest. We performed a more relaxed search, looking for
content (tweets or search queries) that contains all the 1-gram blocks of an
n-gram.

Official health reports. For the period covering data set T , i.e., 02/05/2011
to 13/04/2014, PHE provided ILI estimates from patient data gathered by the
Royal College of General Practitioners (RCGP)4 in the UK. The estimates
represent the number of GP consultations identified as ILI per 100 people for
the geographical region of England and their temporal resolution is weekly
(Fig. 1).

3 Estimating the impact of a healthcare intervention

The proposed methodology consists of two main steps: a) the modeling and
prediction of a disease rate proxy from user-generated content as a regres-
sion problem, and b) the assessment of the health campaign using a statis-
tical scheme that incorporates the regression models for the disease. Among
well studied linear functions for text regression, we also propose a nonlinear
technique, where different n-gram categories (sets of keywords of size n) are
captured by a different kernel function, as a better performing alternative (see
Sections 3.1 and 3.2). The statistical framework for computing the impact of
the intervention program is based on a method for evaluating the impact of
printed advertisements (Lambert and Pregibon 2008); the method is described
in detail in Section 3.3.

3 The exact number cannot be disclosed as this is sensitive product information.
4 RCGP has an established sentinel network of general practitioners in England and to-

gether with PHE publishes ILI rates on a weekly basis. Summaries of surveillance reports
can be found at http://www.gov.uk/sources-of-uk-flu-data-influenza-surveillance-in-the-uk
(accessed May 31, 2015).

http://www.gov.uk/sources-of-uk-flu-data-influenza-surveillance-in-the-uk
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Fig. 1 Weekly ILI rates for England published by RCGP/PHE, covering three consecutive
flu seasons (2011/12, 2012/13 and 2013/14). ∆t labels denote the span of the time peri-
ods used in our experimental process. The end date for all periods is 13/04/2014, whereas
∆t1 commences on 02/05/2011 (154 weeks), ∆t2 on 04/06/2012 (97 weeks) and ∆t3 on
31/12/2012 (67 weeks). ∆tv represents the effective time period of the LAIV program in-
cluding a post-vaccination interval, up until the end of the flu season (green color); blue
color is used to denote the actual vaccination period (September 2013 to January 2014).

3.1 Linear regression models for disease rate prediction

In this supervised learning setting, our observations X consist of n-gram fre-
quencies across time and the responses y are formed by official health reports,
both focused on a particular geographical region. Using N weekly time inter-
vals and the M n-gram features, X ∈ RN×M and y ∈ RN . Each row of X
holds the normalized n-gram frequencies for a week in our data set. Normal-
ization is performed by dividing the number of n-gram occurrences with the
total number of tweets or search queries in the corpus for that week. Previous
work performing text regression on social media content suggested the use
of regularized linear regression schemes (Lampos and Cristianini 2010; Lam-
pos et al. 2010). Here, we employ two well-studied regularization techniques,
namely ridge regression (Hoerl and Kennard 1970) and the elastic-net (Zou
and Hastie 2005), to obtain baseline performance rates.

The core element of regularized regression schemes is the minimization of
the sum of squared errors between a linear transformation of the observations
and the respective responses. In its simplest form, this is expressed by Ordinary
Least Squares (OLS):

argmin
w,β

N∑
i=1

(xiw + β − yi)2 , (1)

where w ∈ RM and β ∈ R denote the regression weights and intercept respec-
tively, and yi ∈ R is the value of the response variable y for a week i. The
regularization of w assists in resolving singularities which lead to ill-posed so-
lutions when applying OLS. Broadly applied solutions suggest the penalization
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of either the L2 norm (ridge regression) or the L1 norm (lasso) of w. Ridge
regression (Hoerl and Kennard 1970) is formulated as

argmin
w,β

 N∑
i=1

(xiw + β − yi)2 + κ

M∑
j=1

w2
j

 , (2)

where κ ∈ R+ denotes the ridge regression’s regularization term. Lasso (Tib-
shirani 1996) encourages the derivation of a sparse solution, i.e., a w with a
number of zero weights, thereby performing feature selection. On a number of
occasions, this sparse solution offers a better predictive accuracy than ridge
regression (Hastie et al. 2009). However, models based on lasso are shown to
be inconsistent in comparison to the true model, when collinear predictors are
present in the data (Zhao and Yu 2006). Collinearities are expected in our task,
since predictors are formed by time series of n-gram frequencies and semanti-
cally related n-grams will exhibit a degree of correlation. This is resolved by
the elastic-net (Zou and Hastie 2005), an optimization function which merges
L1 and L2 norm regularization, maintaining both positive properties of lasso
and ridge regression. It is formulated as

argmin
w,β

 N∑
i=1

(xiw + β − yi)2 + λ1

M∑
j=1

|wj |+ λ2

M∑
j=1

w2
j

 , (3)

where λ1, λ2 ∈ R+ are the L1 and L2 norm regularization parameters re-
spectively. The Least Angle Regression (LAR) algorithm (Efron et al. 2004)
provides an efficient way to compute an optimal lasso or elastic-net solution by
exploring the entire regularization path, i.e., all the candidate values for the
regularization parameter λ1 in Eq. 3. Parameter λ2 is estimated as a function
of λ1, where λ2 = λ1(1 − a)/(2a) (Zou and Hastie 2005); we set a = 0.5 in
our experiments, a common setting that obtains a 66.6%-33.3% regularization
balance between the L1 and L2 norms respectively.

3.2 Disease rate prediction using Gaussian Processes

While the majority of methods for modeling infectious diseases are based on
linear solvers (Ginsberg et al. 2009; Lampos et al. 2010; Culotta 2010), there is
some evidence that nonlinear methods may be more suitable, especially when
features are based on different n-gram lengths (Lampos 2012). Furthermore,
recent studies in natural language processing (NLP) indicate that the usage of
nonlinear methods, such as Gaussian Processes (GPs), in machine translation
or text regression tasks improves performance, especially in cases where the
feature space is not large (Lampos et al. 2014; Cohn et al. 2014). Motivated
by these findings, we also considered a nonlinear model for disease prediction
formed by a composite GP.

GPs can be defined as sets of random variables, any finite number of which
have a multivariate Gaussian distribution (Rasmussen and Williams 2006).
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In GP regression, for the inputs x, x′ ∈ RM (both expressing rows of the
observation matrix X) we want to learn a function f : RM → R that is drawn
from a GP prior

f(x) ∼ GP (µ(x), k(x,x′)) , (4)

where µ(x) and k(x,x′) denote the mean and covariance (or kernel) functions
respectively; in our experiments we set µ(x) = 0. Evidently, the GP kernel
function is applied on pairs of input (x,x′). The aim is to construct a GP that
will apply a smooth function on the input space, based on the assumption that
small changes in the response variable should also reflect on small changes in
the observed term frequencies. A common covariance function that accommo-
dates this is the isotropic Squared Exponential (SE), also known as the radial
basis function or exponentiated quadratic kernel, and defined as

kSE(x,x′) = σ2 exp

(
−‖x− x′‖22

2`2

)
, (5)

where σ2 describes the overall level of variance and ` is referred to as the
characteristic length-scale parameter. Note that ` is inversely proportional to
the predictive relevancy of the feature category on which it is applied (high
values of ` indicate a low degree of relevance), and that σ2 is a scaling factor.
An infinite sum of SE kernels with different length-scales results to another well
studied covariance function, the Rational Quadratic (RQ) kernel (Rasmussen
and Nickisch 2010). It is defined as

kRQ(x,x′) = σ2

(
1 +
‖x− x′‖22

2α`2

)−α
, (6)

where α is a parameter that determines the relative weighting between small
and large-scale variations of input pairs. The RQ kernel can be used to model
functions that are expected to vary smoothly across many length-scales. Based
on empirical evidence, this kernel was shown to be more suitable for our pre-
diction task.

In the GP framework predictions are conducted using Bayesian5 integra-
tion, i.e.,

p(y∗|x∗,O) =

∫
f

p(y∗|x∗, f)p(f |O), (7)

where y∗ denotes the response variable, O the training set and x∗ the cur-
rent observation. Model training is performed by maximizing the log marginal
likelihood p(y|O) with respect to the hyper-parameters using gradient ascent.

Based on the property that the sum of covariance functions is also a valid
covariance function (Rasmussen and Nickisch 2010), we model the different
n-gram categories (1-grams, 2-grams, etc.) with a different RQ kernel. The
reasoning behind this is the assumption that different n-gram categories may
have varied usage patterns, requiring different parametrization for a proper

5 Note that it is not strictly Bayesian in the sense that no prior is assumed for each one
of the hyper-parameters in the GP function.
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modeling. Also as n increases, the n-gram categories are expected to have an
increasing semantic value. The final covariance function, therefore, becomes

k(x,x′) =

(
C∑
n=1

kRQ(gn,g
′
n)

)
+ kN(x,x′) , (8)

where gn is used to express the features of each n-gram category, i.e., x = {g1,
g2, g3, g4}, C is equal to the number of n-gram categories (in our experiments,
C = 4) and kN(x,x′) = σ2

N × δ(x,x′) models noise (δ being a Kronecker delta
function). The summation of RQ kernels which are based on different sets of
features can be seen as an exploration of the first order interactions of these
feature families; more elaborate combinations of features could be studied
by applying different types of covariance functions (e.g., the Matérn (Matérn
1986)) or an additive kernel (Duvenaud et al. 2011). An extended examination
of these and other models is beyond the scope of this work.

Denoting the disease rate time series as y = (y1, . . . , yN ), the GP regression
objective is defined by the minimization of the following negative log-marginal
likelihood function

argmin
σ1,...,σC ,`1,...,`C ,α1,...,αC ,σN

(
(y − µ)ᵀK−1(y − µ) + log |K|

)
, (9)

where K holds the covariance function evaluations for all pairs of inputs, i.e.,
(K)i,j = k(xi,xj), and µ = (µ(x1), . . . , µ(xN )). Based on a new observation
x∗, a prediction is conducted by computing the mean value of the posterior
predictive distribution, E[y∗|y,O,x∗] (Rasmussen and Williams 2006).

3.3 Intervention impact assessment

Conventional epidemiology typically assesses the impact of a healthcare in-
tervention, such as a vaccination program, by comparing population disease
rates in the affected (target) areas to the ones in non participating (control)
areas (Pebody et al. 2014). However, a direct comparison of target and control
areas may not always be applicable as comparable locations would need to be
represented by very similar properties, such as geography, demographics and
healthcare coverage. Identifying and quantifying such underlying characteris-
tics is not something that is always possible or can be resolved in a straight-
forward manner. We, therefore, determine the control areas empirically, but
in an automatic manner, as discussed below.

Firstly, we compute disease estimates (q) for all areas using our input ob-
servations (social media and search query data) and a text regression model.
Ideally, for a target area v we wish to compare the disease rates during (and
slightly after) the intervention program (qv) with disease rates that would
have occurred, had the program not taken place (q∗v). Of course, the latter
information, q∗v, cannot be observed, only estimated. To do so, we adopt a
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methodology proposed for addressing a related task, i.e., measuring the effec-
tiveness of offline (printed) advertisements using online information (Lambert
and Pregibon 2008).

Consider a situation where, prior to the commencement of the intervention
program, there exists a strong linear correlation between the estimated disease
rates of areas that participate in the program (v) and of areas that do not (c).
Then, we can learn a linear model that estimates the disease rates in v based
on the disease rates in c. Hypothesizing that the geographical heterogeneity
encapsulated in this relationship does not change during and after the cam-
paign, we can subsequently use this model to estimate disease rates in the
affected areas in the absence of an intervention (q∗v).

More formally, we first test whether the inferred disease rates in a control
location c for a period of τ = {t1, .., tN} days before the beginning of the inter-
vention (qτc ) have a strong Pearson correlation, r(qτv ,q

τ
c ), with the respective

inferred rates in a target area v (qτv). If this is true, then we can learn a linear
function f(w, β) : R→ R that will map qτc to qτv :

argmin
w,β

N∑
i=1

(
qtic w + β − qtiv

)2
, (10)

where qtiv and qtic denote weekly values for qτv and qτc respectively. By applying
the previously learned function on q∗c , we can predict q∗v using

q∗v = q∗cw + b , (11)

where q∗c denotes the disease rates in the control areas during the intervention
program and b is a column vector with N replications of the bias term (β).

Two metrics are used to quantify the difference between the actual esti-
mated disease rates (qv) and the projected ones had the campaign not taken
place (q∗v). The first metric, δv, expresses the absolute difference in their mean
values

δv = qv − q∗v , (12)

and the second one, θv, measures their relative difference

θv =
qv − q∗v

q∗v
. (13)

We refer to θv as the impact percentage of the intervention. A successful
campaign is expected to register significantly negative values for δv and θv.

Confidence intervals (CIs) for these metrics can be derived via bootstrap
sampling (Efron and Tibshirani 1994). By sampling with replacement the re-
gression’s residuals qτc − q̂τc in Eq. 10 (where q̂τc is the fit of the training data
qτv) and then adding them back to q̂τc , we create bootstrapped estimates for
the mapping function f(ẇ, β̇). We additionally sample with replacement qv
and qc, before applying the bootstrapped function on them. This process is
repeated 100,000 times and an equivalent number of estimates for δv and θv
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is computed. The CIs are derived by the .025 and .975 quantiles in the dis-
tribution of those estimates. Provided that the distribution of the bootstrap
estimates is unimodal and symmetric, we assess an outcome as statistically
significant, if its absolute value is higher than two standard deviations of the
bootstrap estimates (similarly to Lambert and Pregibon (2008)).

4 Results

In the following sections, we apply the previously described framework to
assess the UK’s pilot school children LAIV campaign based on user-generated
Internet data. First, we evaluate the aforementioned regression methods that
provide a proxy for ILI via the modeling of Bing and Twitter content geo-
located in England. As ‘ground truth’ in these experiments, we use ILI rates
(see Fig. 1) published by the RCGP/PHE. We then use the best performing
regression model in the framework for estimating the impact of the vaccination
campaign.

4.1 Predictive performance for ILI inference methods

We have applied a set of inference methods, starting from simple baselines
(ridge regression) to more advanced regularized regression models (elastic-
net), including a nonlinear function based on a composite GP. We evaluate
our results by performing a stratified 10-fold cross validation, creating folds
that maintain a similar sample distribution in the relatively short time-span
covered by our input observations. To allow a better interpretation of the
results, we used two standard performance metrics, the Pearson correlation
coefficient (r), which is not always indicative of the prediction accuracy, and
the MAE between predictions (ŷ) and ‘ground truth’ (y). For N predictions
of a single fold, MAE is defined as

MAE (ŷ,y) =
1

N

N∑
i=1

|ŷi − yi| , (14)

being expressed in the same units as the predictions. Then, the average r and
MAE on the 10 folds are computed together with their corresponding standard
deviations.

Given that the extracted tweets had a more extended temporal coverage
compared to the search queries, we have performed experiments on the fol-
lowing data sets: (a) Twitter data for the period ∆t1 = 154 weeks, from
02/05/2011 to 13/04/2014, a time period that encompasses three influenza
seasons, (b) search query log data from Bing for the period ∆t3 = 67 weeks,
from 31/12/2012 to 13/04/2014, and (c) Twitter data for the same period
∆t3. All data sets are considering content geo-located in England and the re-
spective time periods are depicted on Fig. 1. The latter data set (c) permits a
better comparison between Twitter and Bing data.
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Table 2 Performance of ILI estimators for England under all investigated models and data
sets (T : Twitter, B: Bing) based on a 10-fold cross validation. µ(r) and µ(MAE) denote
the average Pearson correlation and average MAE (the latter is multiplied by 103) between
predictions and response data in the 10 folds; parentheses contain the standard deviation of
the mean. Row result pairs with an asterisk (∗) have a statistically significant difference in
their mean performance, whereas column result pairs with a dagger (†) do not.

Ridge Regression Elastic-Net GP-kernel
µ(r) µ(MAE)×103 µ(r) µ(MAE)×103 µ(r) µ(MAE)×103

T , ∆t1 .640 (.112) 3.074 (.497) .718 (.206) 2.828 (.809)∗ .845 (.062) 2.196 (.477)∗

T , ∆t3 .698 (.181) 4.084 (.879) .744 (.137) 3.198 (.137)∗ .924 (.053) 1.999 (.763)∗,†

B, ∆t3 .814 (.103) 2.963 (.638) .867 (.067) 2.564 (.677)∗ .952 (.041) 1.598 (.504)∗,†

Table 2 enumerates the derived performance figures. For all three data
sets, the GP-kernel method performs best. Due to its larger time span, the
experiment on Twitter data published during ∆t1 provides a better picture
for assessing the learning performance of each of the applied algorithms.
There, the two dominant models, i.e., the elastic-net and the GP-kernel,
have a statistically significant difference in their mean performance, as in-
dicated by a two-sample t-test (p = .0471); this statistically significant dif-
ference is replicated in all experiments (p < .005) indicating that the GP
model handles the ILI inference task better. Bing data provide a better in-
ference performance as compared to Twitter data from the same time period
(µ(r) = .952, µ(MAE) = 1.598 × 10−3), but in that case the difference in
performance between the two sources is not statistically significant at the 5%
level (p = 0.1876). The usefulness of incorporating different n-gram categories
and not just 1-grams has also been empirically verified (see Appendix B, Ta-
ble 5). Experiments, where Bing and Twitter data were combined (by feature
aggregation or different kernels), indicated a small performance drop. How-
ever, this cannot form a generalized conclusion as it may be a side effect of
the data properties (format, time-span) we were able to work with. We leave
the exploration of more advanced data combinations for future work.

4.2 Assessing the impact of the LAIV campaign

Taking into account the results presented in the previous section, we rely on
the best performing GP-kernel model for estimating an ILI proxy. For both
Twitter and Bing, we have used ILI models trained on all data geo-located in
England (time frames∆t1 and∆t3 apply respectively). After learning a generic
model for England, we then use it to infer ILI rates in specific locations.6

To assess the impact of the LAIV campaign, we first need to identify control
areas with estimated ILI rates that are strongly correlated to rates in the target
vaccinated locations before the start of the LAIV program (Table 1 lists all the
considered areas). As the strains of influenza virus may vary between distant
time periods (Smith et al. 2004), invalidating our hypothesis for geographical

6 This decision is also enforced by the lack of ground truth for specific locations.
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Table 3 Statistically significant estimates of the LAIV program’s impact on the vacci-
nated areas using Twitter (T ) or Bing (B) data. Column r(v, c) holds the top discovered
Pearson correlations between the modeled ILI rates in vaccinated target areas (v) and the
corresponding controls (c) during the designated pre-vaccination periods. δv (×103) and θv
denote the estimated mean difference and mean impact percentage on ILI rates respectively
(parentheses include their bootstrap confidence intervals).

Data Targets (v) Controls (c) r(v, c) δv × 103 θv (%)

T all
c1 − c3,

c5 − c8, c10
.861 -2.503 (-4.110,-1.043) -32.772 (-47.428,-15.621)

T v5, v6
c1 − c4, c6,
c7, c12

.738 -1.727 (-2.523,-0.942) -30.453 (-41.751,-17.516)

T v2
c1, c3, c4,
c7 − c9, c11

.769 -1.181 (-2.274,-0.094) -21.060 (-37.136,-1.821)

T v6 c1, c3, c4, c6 .738 -1.633 (-2.782,-0.521) -30.436 (-46.742,-10.627)

B all
c1, c2,

c4 − c7, c11
.866 -1.929 (-3.249,-0.707) -21.705 (-32.120,-9.116)

B v5, v6 c4 − c7, c11 .848 -2.811 (-4.073,-1.566) -28.372 (-36.717,-17.943)

B v3 c7 .618 -3.737 (-6.908,-0.878) -30.246 (-44.624,-9.174)

homogeneity across the considered flu seasons, we look for correlated areas in a
pre-vaccination period that includes the previous flu season only (2012/2013).
For Twitter data, this is from June, 2012 to August, 2013 (all inclusive),
whereas for Bing data, given their smaller temporal coverage, the period was
from January to August, 2013 (all inclusive). To determine the best control
areas, an exhaustive search is performed comparing the correlation between
vaccinated and control areas, for all individual areas and supersets of them.

Table 3 presents results of location pairs with an ILI proxy rate correla-
tion of ≥ .60 during the pre-vaccination period, for which we have computed
statistically significant impact estimates (δv and θv), together with bootstrap
confidence intervals (see Appendix B, Table 6 for all the results, including
statistical significance metrics). The vaccinated areas or supersets of them in-
clude the London borough of Newham (v6), Cumbria (v2), Gateshead (v3),
both London boroughs (Havering and Newham — v5, v6) as well as a joint
representation of all areas (v1− v7). The best correlations between vaccinated
and control areas we were able to discover were: a) r = .866 (p < .001) for
all vaccinated locations based on the Bing data, and b) r = .861 (p < .001)
again for all vaccinated areas, but based on Twitter data. Note that in these
two cases the optimal controls differed per data set, but had a substantial
intersection of areas (c1 − c3, c6, c7).

Fig. 2 depicts the linear relationships between the six most correlated lo-
cation pairs of Table 3. To ease interpretation, the range of the axes has been
normalized from 0 to 1. Red dots denote data pairs prior to the vaccina-
tion program and blue crosses denote pairs during and after the vaccination
period (from October 2013 up until the end of the 2013/14 flu season, i.e.,
13/04/2014). We observe that there is a linear, occasionally noisy, relationship
between pairs of points prior to the vaccination, and between pairs of points
during and after the vaccination. The slope of the best fit line is different for
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Fig. 2 Linear relationship between the ILI rates in vaccinated areas and their respective
controls during the pre-vaccination period (red dots) and during the LAIV program up
until the end of the 2013/14 flu season (blue crosses). Axes are normalized from 0 to 1 to
assist a better visualization across the cases and data sets; the red-solid and blue-dashed
lines denote the least squares fits for the corresponding location pairs before and during the
LAIV program respectively. A: All vaccinated areas with controls c1 − c3, c5 − c8 and c10
(T ). B: London areas with controls c1 − c4, c6, c7 and c12 (T ). C: Cumbria with controls
c1, c3, c4, c7 − c9 and c11 (T ). D: London borough of Newham with controls c1, c3, c4 and
c6 (T ). E: All vaccinated areas with controls c1, c2, c4 − c7 and c11 (B). F: London areas
with controls c4 − c7 and c11 (B).

the two time periods. In particular, the slope during and after the vaccination
period is consistently less than the slope before the vaccination, indicating
that ILI rates in the target regions (y-axis) have reduced in comparison with
the control regions (x-axis) during and after the vaccination.

The linear mappings between control and vaccinated areas before the vacci-
nation are used to project ILI rates in the vaccinated areas during and slightly
after the LAIV program. Fig. 3 depicts these estimates (same layout as in
Fig. 2), showing a comparative plot of the proxy ILI rates (estimated using
Twitter or Bing data) versus the projected ones; to allow for a better visual
comparison, a smoothed time series is also displayed (3-point moving average).
Referring to the moving average curves, we observe that it is almost always
true that the projected ILI rates estimated from the control areas are higher
than the proxy ILI rates estimated directly from Twitter or Bing. This indi-
cates that the primary school children vaccination program may have assisted
in the reduction of ILI in the pilot areas.

The time period used for evaluating the LAIV program includes the weeks
starting from 30/09/2013 and ending at 13/04/2014 (28 weeks in total), i.e.,
the time frame covering the actual campaign (up to January, 2014) plus the
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Fig. 3 Modeled ILI rates inferred via user-generated content (qv , red dots) in comparison
with projected ILI rates (q∗v , black squares) during the LAIV program and up until the end
of the influenza season. The projection represents an estimation of the ILI rates that would
have appeared, had the LAIV program not taken place. The solid lines (3-point moving
average) represent the general trends of the actual data points (dashed lines) to allow for a
better visual comparison. A: All vaccinated areas (T ). B: London areas (T ). C: Cumbria
(T ). D: London borough of Newham (T ). E: All vaccinated areas (B). F: London areas (B).

weeks up until the end of the flu season (see Fig. 1). The bootstrap estimates
for both impact metrics (δt and θt) provide confidence intervals as well as a
measure for testing the statistical significance of an outcome. Given that the
distribution of the bootstrap estimates appears to be unimodal and symmetric
(see Appendix B, Fig. 4), an outcome is considered as statistically significant,
if it is smaller than two standard deviations of the bootstrap sample. The
statistically significant impact estimates (Table 3) indicate a reduction of ILI
rates, with impact percentages ranging from −21.06% to −32.77%. Interest-
ingly, the estimated impact for the London areas is in a similar range for both
Bing and Twitter data (−28.37% to −30.45%).

4.3 Sensitivity of impact estimates

Our analysis so far has been based on the linear relationship between vac-
cinated locations and only the top-correlated set of controls. To assess the
sensitivity of our results to the choice of control regions, we repeated each
impact estimation experiment for all control regions (sets of c1 through c12)
found to have a correlation score (with a target area) greater or equal to 95%
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Table 4 Sensitivity assessment of LAIV campaign’s impact estimates (cases are aligned
with Table 3). The mean values of the impact metrics using Twitter (T ) or Bing (B) data
are computed using the top hundred controls with a linear correlation greater or equal to
95% of the best correlation. Controls with non statistically significant estimates have been
filtered out. Our sensitivity metric, ∆θv , denotes the percentage of difference between µ (θv)
and the original θv estimate (see Table 3).

Data set Targets # Controls µ (r(v, c)) µ (δv)× 103 µ (θv) (%) ∆θv (%)

T all 100 .841 (0.007) -2.506 (0.234) -32.740 (2.066) 0.10

T v5, v6 79 .703 (0.011) -1.532 (0.148) -27.918 (1.955) 8.32

T v2 8 .744 (0.015) -1.236 (0.111) -21.793 (1.516) 3.48

T v6 32 .705 (0.013) -1.340 (0.218) -26.277 (3.149) 13.66

B all 46 .854 (0.003) -1.382 (0.369) -16.417 (3.590) 24.36

B v5, v6 100 .841 (0.002) -1.448 (0.212) -16.899 (1.827) 40.44

B v3 2 .607 (0.016) -3.229 (0.719) -27.120 (4.421) 10.34

of the best correlation. In the case where the number of controls exceeded
100, we used the top-100 correlated controls. Considering only statistically
significant results, we computed the mean δv and θv (and their corresponding
standard deviations) on the outcomes for all the applicable controls. We also
measured the percentage of difference in θv (∆θv) compared to the most highly
correlated control (reported in Table 3) and used it as our sensitivity metric.
Table 4 enumerates the derived averaged impact and sensitivity estimates, to-
gether with the number of applicable controls per case. Generally, we observe
that results stemming from Twitter data are less sensitive (0.10% − 13.7%)
to changes in control regions as compared to Bing data (10.3%− 40.3%). The
most consistent estimate (from Table 3) is the one indicating a −32.77% im-
pact on the vaccinated areas as a whole based on Twitter data, with ∆θv equal
to just 0.1%.

5 Related work

User-generated web content has been used to model infectious diseases, such
as influenza-like illness (Milinovich et al. 2014). Coined as “infodemiology”
(Eysenbach 2006), this research paradigm has been first applied on queries
to the Yahoo engine (Polgreen et al. 2008). It became broadly known, after
the launch of the Google Flu Trends (GFT) platform (Ginsberg et al. 2009).
Both modeling attempts used simple variations of linear regression between
the frequency of specific keywords (e.g., ‘flu’) or complete search queries (e.g.,
‘how to reduce fever’) and ILI rates reported by syndromic surveillance. In the
latter case, the feature selection process, i.e., deciding which queries to include
in the predictive model, was based on a correlation analysis between query
frequency and published ILI rates (Ginsberg et al. 2009). However, GFT has
been criticized as in several occasions its publicly available outputs exhibited
significant deviation from the official ILI rate reports (Cook et al. 2011; Olson
et al. 2013; Lazer et al. 2014).
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Research has also considered content coming from the social platform of
Twitter as a publicly available alternative to access user-generated informa-
tion. Regression models, either regularized (Lampos and Cristianini 2010;
Lampos et al. 2010) or based on a smaller set of features (Culotta 2010),
were used to infer ILI rates. Qualitative properties of the H1N1 pandemic in
2009 have been investigated through an analysis of tweets containing specific
keywords (Chew and Eysenbach 2010) as well as a more generic modeling (Sig-
norini et al. 2011); in the latter work support vector regression (Cristianini and
Shawe-Taylor 2000) was used to estimate ILI rates. Bootstrapped regularized
regression (Bach 2008) has been applied to make the feature selection pro-
cess more robust (Lampos and Cristianini 2012); the same method has been
applied to infer rainfall rates from tweets, indicating some generalization ca-
pabilities of those techniques. Furthermore, proof has been provided that for
Twitter content a small set of keywords can provide an adequate prediction
performance (Culotta 2013). Other studies, focused on unsupervised models
that applied NLP methods in order to identify disease oriented tweets (Lamb
et al. 2013) or automatically extract health concepts (Paul and Dredze 2014).

In this paper, we base our ILI modeling on previous findings, but apart from
relying on a linear model, we also investigate the performance of a nonlinear
multi-kernel GP (Rasmussen and Williams 2006). GPs have been applied in a
number of fields, ranging from geography (Oliver and Webster 1990) to sports
analytics (Miller et al. 2014). Recently, they were also used – as a better
performing alternative – in NLP tasks such as the annotation modeling for
machine translation (Cohn and Specia 2013), text regression (Lampos et al.
2014), and text classification (Preoţiuc-Pietro et al. 2015), where various multi-
modal features were combined in one learning function. To the best of our
knowledge, there has been no previous work aiming to model the impact of
a health intervention through user-generated online content. This evaluation
is usually conducted by an analysis of the various epidemiological surveillance
outputs, if they are available (Pebody et al. 2014; Matsubara et al. 2014).
The core methodology (and its statistical properties) on which we based our
impact analysis has been proposed by Lambert and Pregibon (2008).

6 Discussion

We presented a statistical framework for transforming user-generated content
published on web platforms to an assessment of the impact of a health-oriented
intervention. As an intermediate step, we proposed a kernelized nonlinear GP
regression model for learning disease rates from n-gram features. Assuming
that an ILI model trained on a national level represents sufficiently smaller
parts of the country, we used it as our ILI scoring tool throughout our ex-
periments. Focusing on the theme of influenza vaccinations (Osterholm et al.
2012; Baguelin et al. 2012), especially after the H1N1 epidemic in 2009 (Smith
et al. 2009), we measured the impact of a pilot primary school LAIV program
introduced in England during the 2013/14 flu season. Our experimental re-
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sults are in concordance with independent findings from traditional influenza
surveillance measurements (Pebody et al. 2014). The derived vaccination im-
pact assessments resulted in percentages (per vaccinated area or cumulatively)
ranging from −21.06% to −32.77% based on the two data sources available.

The results from Twitter data, however, demonstrated less sensitivity
across similar controls as compared to Bing data, suggesting a greater reli-
ability. To that end, the most reliable impact estimate from the processed
tweets regarded an aggregation of all vaccinated locations and was equal to
−32.77%. PHE’s own impact estimates looked at various end-points, compar-
ing vaccinated to all non vaccinated areas, and ranged from −66% based on
sentinel surveillance ILI data to −24% using laboratory confirmed influenza
hospitalizations; albeit, these numbers represent different levels of severity or
sensitivity, and notably none of these computations yielded statistical signifi-
cance (Pebody et al. 2014). Thus, we cannot use them as a directly comparable
metric, but mostly as a qualitative indication that the vaccination campaign
is likely to have been effective.

A legitimate question is whether our analysis can yield one number that
quantifies the intervention’s impact. This is a difficult undertaking given that
no definite ground truth exists to allow for a proper verification. In addi-
tion, our estimations are based on models trained on syndromic surveillance
data, which themselves may lack some specificity, hence not forming a solid
gold standard. Interestingly, for the three distinct areas, where our method
delivered statistically significant impact estimates based on Twitter data, i.e.,
Havering (−41.21%; see Appendix B, Table 6), Newham (−30.44%) and Cum-
bria (−21.06%), there exists a clear analogy with the reported level of vaccine
uptake — 63.8%, 45.6% and 35.8% respectively — as published by PHE (Pe-
body et al. 2014); a similar pattern is evident in the Bing data. This observation
provides further support for the applied methodology.

Understanding the properties of the underlying population behind each
disease surveillance metric is instrumental. First of all, the demographics (age,
social class) of people who use a social media tool, a web search engine, or visit
healthcare facilities may vary. For example, we know that 51% of the UK-based
Twitter users are relatively young (15-34 years old), whereas only an 11% of
them is 55 years or older (Ipsos MORI 2014). On the other hand, non-adults
or the elderly are often responsible for the majority of doctor visits or hospital
admissions (O’Hara and Caswell 2012). In addition, the relative volume of
the aforementioned inputs also varies. We estimate that Twitter users in our
experiments represent at most 0.24% of the UK population, whereas Bing has
a larger penetration (approx. 4.2%; see Appendix A for details). On the other
side, in an effort to draw a comparable statistic, a 5-year study (2006-2011)
on a household-level community cohort in England indicated that only 17%
of the people with confirmed influenza are medically attended (Hayward et al.
2014). An other study estimated that 7, 500 (0.01%) hospitalizations occurred
due to the second and strongest wave of the 2009 H1N1 pandemic in England,
when the percentage of the population being symptomatic was approx. 2.7%
(Presanis et al. 2011). It is, therefore, a valid activity to seek complementary
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ways, sensors or population samples for quantifying infectious diseases or the
success of a healthcare intervention campaign.

Our method accesses a different segment of the population compared to
traditional surveillance schemes, given that Internet users provide a potentially
larger sample compared to the people seeking medical attention. The caveat
is that user-generated content will be more noisy, thus, less reliable compared
to doctor reports, and that it will entail certain biases. However, it can be
advantageous, when data from traditional epidemiological sources are sparse,
e.g., due to a mild influenza season, but also useful in other settings, where
either traditional surveillance schemes are not well established or a more ge-
ographically focused signal is required. Despite the fact that our case study
focuses on influenza, the proposed framework can potentially be adapted for
estimating the impact of different health intervention scenarios. Future work
should be focused on improving the various components of such frameworks as
well as in the design of experimental settings that can provide a more rigorous
evaluation ability.
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Appendix A: Twitter and Bing populations in the UK

Knowing that Twitter users represented approx. 13%-15% of the UK popu-
lation in the years 2012 to 2014 (Ipsos MORI 2014) and that only 1.6% of
these users tend to enable the exact geo-location feature (Leetaru et al. 2013),
we can estimate that the Twitter data in our experiments represents at most
0.24% of the population. Bing data have a larger penetration, estimated to
be around 4.2% by combining the search tool’s market share (approx. 5%)
and the percentage of households with Internet access in the UK (Office for
National Statistics, Great Britain 2013, 2014b).

Appendix B: Supplemental outputs

Table 5 Performance figures for ILI prediction under the GP-kernel model using Twitter
data and different sets of n-gram features. The experimental setting corresponds to the
results presented in the first row of Table 2.

µ(r) µ(MAE) ×103

GP-kernel (1-grams) .739 (.177) 2.405 (0.732)

GP-kernel (2-3-4-grams) .836 (.068) 2.246 (0.389)
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Fig. 4 Histograms of bootstrap estimates for δv (×103) and θv (%) on the vaccinates areas.
A, B: All areas using T (δv , θv). C, D: All areas using B (δv , θv). E, F: London areas using
T (δv , θv). G, H: London areas using B (δv , θv).
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Table 6 Estimates of the LAIV program’s impact on the vaccinated areas using Twitter
(T ) or Bing (B) data. Column r(v, c) holds the top discovered Pearson correlations between
the modeled ILI rates in vaccinated target areas (v) and the corresponding controls (c)
before the beginning of the vaccination program. δv (×103) and θv denote the estimated
mean difference and mean impact percentage on ILI rates respectively (parentheses include
their bootstrap confidence intervals). In addition, columns εδ and εθ hold numbers equal to
two standard deviations of the corresponding bootstrap estimates. Results indicating non
statistically significant outcomes are in italics.

Data v c r(v, c) δv × 103 εδ θv (%) εθ

T all
c1 − c3,

c5 − c8, c10
.861 -2.503 (-4.110,-1.043) 1.566 -32.772 (-47.428,-15.621) 16.176

T v5, v6
c1 − c4, c6,
c7, c12

.738 -1.727 (-2.523,-0.942) 0.804 -30.453 (-41.751,-17.516) 12.382

T v1
c1 − c3, c6,

c12
.278 -0.353 (-1.630,0.947) 1.313 -7.545 (-31.590,22.386) 27.578

T v2
c1, c3, c4,
c7 − c9, c11

.769 -1.181 (-2.274,-0.094) 1.114 -21.060 (-37.136,-1.821) 18.085

T v3
c1, c4, c10,

c12
.614 -0.665 (-2.051,0.783) 1.441 -13.369 (-37.566,17.284) 27.985

T v4
c1, c2, c5,
c7 − c9, c11

.725 -0.523 (-1.821,0.793) 1.340 -8.879 (-28.867,14.539) 22.219

T v5
c2, c4, c11,

c12
.420 -2.614 (-3.689,-1.514) 1.107 -41.211 (-54.125,-25.506) 14.621

T v6
c1, c3, c4,

c6
.738 -1.633 (-2.782,-0.521) 1.149 -30.436 (-46.742,-10.627) 18.482

T v7
c1, c2,

c5 − c8, c12
.452 -0.431 (-1.664,0.846) 1.278 -7.238 (-26.343,15.179) 21.114

B all
c1, c2,

c4 − c7, c11
.866 -1.929 (-3.249,-0.707) 1.294 -21.705 (-32.120,-9.116) 11.696

B v5, v6 c4 − c7, c11 .848 -2.811 (-4.073,-1.568) 1.276 -28.372 (-36.717,-17.943) 9.556

B v1 c3, c11 .427 -0.173 (-1.494,0.802) 1.190 -1.919 (-14.504,9.919) 12.668

B v2
c1, c7, c8,

c11
.454 0.507 (-2.605,2.767) 2.737 0.051 (-23.018,31.590) 28.083

B v3 c7 .618 -3.737 (-6.908,-0.878) 3.066 -30.246 (-44.624,-9.174) 18.020

B v4 c1, c3, c4 .583 -1.079 (-4.684,2.702) 3.754 -9.954 (-35.680,30.285) 33.903

B v5
c5, c7, c9,

c12
.512 -3.641 (-6.651,-1.021) 2.871 -33.380 (-48.302,-12.111) 18.447

B v6 c1, c4 .754 -1.972 (-4.248,0.159) 2.247 -21.434 (-37.184,2.233) 20.131

B v7
c1, c4, c8,
c11, c12

.675 0.798 (-1.368,2.777) 4.537 7.136 (-27.149,56.222) 42.840
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