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Abstract. Live sequence charts (LSCs) have been defined recently as
an extension of message sequence charts (MSCs; or their UML variant,
sequence diagrams) for rich inter-object specification. One of the main
additions is the notion of universal charts and hot, mandatory behavior,
which, among other things, enables one to specify forbidden scenarios.
LSCs are thus essentially as expressive as statecharts. This paper deals
with synthesis, which is the problem of deciding, given an LSC specifi-
cation, if there exists a satisfying object system and, if so, to synthesize
one automatically. The synthesis problem is crucial in the development
of complex systems, since sequence diagrams serve as the manifestation
of use cases — whether used formally or informally — and if synthesiz-
able they could lead directly to implementation. Synthesis is considerably
harder for LSCs than for MSCs, and we tackle it by defining consistency,
showing that an entire LSC specification is consistent iff it is satisfiable
by a state-based object system, and then synthesizing a satisfying system
as a collection of finite state machines or statecharts.

1 Introduction

1.1 Background and Motivation

Message sequence charts (MSCs) are a popular means for specifying scenarios
that capture the communication between processes or objects. They are partic-
ularly useful in the early stages of system development. MSCs have found their
way into many methodologies, and are also a part of the UML [UMLdocs], where
they are called sequence diagrams. There is also a standard for the MSC lan-
guage, which has appeared as a recommendation of the ITU [Z120] (previously
called the CCITT).

Damm and Harel [DH99] have raised a few problematic issues regarding
MSCs, most notably some severe limitations in their expressive power. The se-
mantics of the language is a rather weak partial ordering of events. It can be used
to make sure that the sending and receiving of messages, if occurring, happens
in the right order, but very little can be said about what the system actually
does, how it behaves when false conditions are encountered, and which scenarios
are forbidden. This weakness prevents sequence charts from becoming a serious
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means for describing system behavior, e.g., as an adequate language for sub-
stantiating the use-cases of [J92,UMLdocs]. Damm and Harel [DH99] then go
on to define live sequence charts (LSCs), as a rather rich extension of MSCs.
The main addition is liveness, or universality, which provides constructs for
specifying not only possible behavior, but also necessary, or mandatory behav-
ior, both globally, on the level of an entire chart and locally, when specifying
events, conditions and progress over time within a chart. Liveness allows for the
specification of “anti-scenarios” (forbidden ones), and strengthens structuring
constructs like as subcharts, branching and iteration. LSCs are essentially as
expressive as statecharts. As explained in [DH99], the new language can serve as
the basis of tools supporting specification and analysis of use-cases and scenarios
— both formally and informally — thus providing a far more powerful means
for setting requirements for complex systems.

The availability of a scenario-oriented language with this kind of expressive
power is also a prerequisite to addressing one of the central problems in behav-
ioral specification of systems: (in the words of [DH99]) to relate scenario-based
inter-object specification with state machine intra-object specification. One of
the most pressing issues in relating these two dual approaches to specifying
behavior is synthesis , i.e., the problem of automatically constructing a behav-
iorally equivalent state-based specification from the scenarios. Specifically, we
want to be able to generate a statechart for each object from an LSC specifi-
cation of the system, if this is possible in principle. The synthesis problem is
crucial in the development of complex object-oriented systems, since sequence
diagrams serve to instantiate use cases. If we can synthesize state-based systems
from them, we can use tools such as Rhapsody (see [HG97]) to generate running
code directly from them, and we will have taken a most significant step towards
going automatically from instantiated use-cases to implementation, which is an
exciting (and ambitious!) possibility. See the discussion in the recent [H00]. And,
of course, we couldn’t have said this about the (far easier) problem of synthesiz-
ing from conventional sequence diagrams, or MSCs, since their limited expressive
power would render the synthesized system too weak to be really useful; in par-
ticular, there would be no way to guarantee that the synthesized system would
satisfy safety constraints (i.e., that bad things — such as a missile firing with
the radar not locked on the target — will not happen).

In this paper we address the synthesis problem in a slightly restricted LSC
language, and for an object model in which behavior of objects is described by
state machines with synchronous communication. For the most part the resulting
state machines are orthogonality-free and flat, but in the last section of the paper
we sketch a construction that takes advantage of the more advanced constructs
of statecharts.

An important point to be made is that the most interesting and difficult as-
pects in the development of complex systems stem from the interaction between
different features, which in our case is modeled by the requirements made in
different charts. Hence, a synthesis approach that deals only with a single chart
— even if it is an LSC — does not solve the crux of the problem.
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The paper is organized as follows. Section 2 introduces the railcar system
of [HG97] and shows how it can be specified using LSCs. This example will be
used throughout the paper to explain and illustrate our main ideas. Section 3
then goes on to explain the LSC semantics and to define when an object system
satisfies an LSC specification. In Section 4 we define the consistency of an LSC
specification and prove that consistency is a necessary and sufficient condition for
satisfiability. We then describe an algorithm for deciding if a given specification
is consistent. The synthesis problem is addressed in Section 5, where we present
a synthesis algorithm that assumes fairness. We then go on to show how this
algorithm can be extended to systems that do not guarantee fairness. (Lacking
fairness, the system synthesized does not generate the most general language
as it does in the presence of fairness.) In Section 6 we outline an algorithm for
synthesizing statecharts, with their concurrent, orthogonal state components.

1.2 Related Work

As far as the limited case of classical message sequence charts goes, there has
been quite some work on synthesis from them. This includes the SCED method
[KM94,KSTM98] and synthesis in the framework of ROOM charts [LMR98].
Other relevant work appears in [SD93,AY99,AEY00,BK98,KGSB99,WS00]. The
full paper [HKg99] provides brief descriptions of these efforts.1 In addition, there
is the work described in [KW00], which deals with LSCs, but synthesizes from
a single chart only: an LSC is translated into a timed Büchi automaton (from
which code can be derived).

In addition to synthesis work directly from sequence diagrams of one kind or
another, one should realize that constructing a program from a specification is
a long-known general and fundamental problem. There has been much research
on constructing a program from a specification given in temporal logic.

The early work on this kind of synthesis considered closed systems, that do
not interact with the environment [MW80,EC82]. In this case a program can be
extracted from a constructive proof that the formula is satisfiable. This approach
is not suited to synthesizing open systems that interact with the environment,
since satisfiability implies the existence of an environment in which the program
satisfies the formula, but the synthesized program cannot restrict the environ-
ment. Later work in [PR89a,PR89b,ALW89,WD91] dealt with the synthesis of
open systems from linear temporal logic specifications. The realizability prob-
lem is reduced to checking the nonemptiness of tree automata, and a finite state
program can be synthesized from an infinite tree accepted by the automaton.

In [PR90], synthesis of a distributed reactive system is considered. Given an
architecture — a set of processors and their interconnection scheme — a solution
to the synthesis problem yields finite state programs, one for each processor,
whose joint behavior satisfies the specification. It is shown in [PR90] that the
realizability of a given specification over a given architecture is undecidable.
1 See technical report MCS99-20, October 1999, The Weizmann Institute of Science,
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Previous work assumed the easy architecture of a single processor, and then
realizability was decidable. In our work, an object of the synthesized system
can share all the information it has with all other objects, so the undecidability
results of [PR90] do not apply here.

Another important approach discussed in [PR90] is first synthesizing a sin-
gle processor program, and then decomposing it to yield a set of programs for
the different processors. The problem of finite-state decomposition is an easier
problem than realizing an implementation. Indeed, it is shown in [PR90] that
decompositionality of a given finite state program into a set of programs over
a given architecture is decidable. The construction we present in Section 5 can
be viewed as following parts of this approach by initially synthesizing a global
system automaton describing the behavior of the entire system and then dis-
tributing it, yielding a set of state machines, one for each object in the system.
However, the work on temporal logic synthesis assumes a model in which the
system and the environment take turns making moves, each side making one
move in its turn. We consider a more realistic model, in which after each move
by the environment, the system can make any finite number of moves before the
environment makes its next move.

2 An Example

In this section we introduce the railcar system, which will be used throughout
the paper as an example to explain and illustrate the main ideas and results.
A detailed description of the system appears in [HG97], while [DH99] uses it to
illustrate LSC specifications. To make this paper self contained and to illustrate
the main ideas of LSCs, we now show some of the basic objects and scenarios of
the example.

The automated railcar system consists of six terminals, located on a cyclic
path. Each pair of adjacent terminals is connected by two rail tracks. Several
railcars are available to transport passengers between terminals.

Here now is some of the required behavior, using LSC’s. Fig. 1 describes a car
departing from a terminal. The objects participating in this scenario are cruiser,
car, carHandler. The chart describes the message communication between the
objects, with time propagating from top to bottom. The chart of Fig. 1 is uni-
versal. Whenever its activation message occurs, i.e., the car receives the message
setDest from the environment, the sequence of messages in the chart should
occur in the following order: the car sends a departure request departReq to
the car handler, which sends a departure acknowledgment departAck back to
the car. The car then sends a start message to the cruiser in order to activate
the engine, and the cruiser responds by sending started to the car. Finally, the
car sends engage to the cruiser and now the car can depart from the terminal.

A scenario in which a car approaches the terminal is described in Fig. 2.
This chart is also universal, but here instead of having a single message as an
activation, the chart is activated by the prechart shown in the upper part of the
figure (in dashed line-style, and looking like a condition, since it is conditional
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setDest

cruiser car carHandler

departReq

departAck

start

started

engage

Fig. 1. Perform Departure

in the cold sense of the word — a notion we explain below): in the prechart, the
message departAck is communicated between the car handler and the car, and
the message alert100 is communicated between the proximity sensor and the
car. If these messages indeed occur as specified in the prechart, then the body
of the chart must hold: the car sends the arrival request arrivReq to the car
handler, which sends an arrival acknowledgment arrivAck back to the car.

proxSensor car carHandler

departAck

arrivReq

alert100

arrivAck

Fig. 2. Perform Approach

Figs. 3 and 4 are existential charts, depicted by dashed borderlines. These
charts describe two possible scenarios of a car approaching a terminal: stop at
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terminal and pass through terminal, respectively. Since the charts are existential,
they need not be satisfied in all runs; it is only required that for each of these
charts the system has at least one run satisfying it. In an iterative development
of LSC specifications, such existential charts may be considered informal, or
underspecified, and can later be transformed into universal charts specifying
the exact activation message or prechart that is to determine when each of the
possible approaches happens.

proxSensor cruiser car carHandler

arrivReq

arrivAck

alertStop

disengage

stop

Fig. 3. Stop at terminal

car carHandler

arrivReq

arrivAck

departReq

departAck

Fig. 4. Pass through terminal

The simple universal chart in Fig. 5 requires that when the proximity sensor
receives the message comingClose from the environment, signifying that the
car is getting close to the terminal, it sends the message alert100 to the car.
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This prevents a system from satisfying the chart in Fig. 2 by never sending the
message alert100 from the proximity sensor to the car, so that the prechart is
never satisfied and there is no requirement that the body of the chart hold.

proxSensor car

comingClose

alert100

Fig. 5. Coming close to terminal

The set of charts in Figs. 1–5 can be considered as an LSC specification for
(part of) the railcar system. Our goal in this paper is to develop algorithms to
decide, for any such specification, if there is a satisfying object system and, if so,
to synthesize one automatically. As mentioned in the introduction, what makes
our goal both harder and more interesting is in the treatment of a set of charts,
not just a single one.

3 LSC Semantics

The semantics of the LSC language is defined in [DH99], and we now explain
some of the basic definitions and concepts of this semantics using the railcar
example.

Consider the Perform Departure chart of Fig. 1. In Fig. 6 it appears with
a labeling of the locations of the chart. The set of locations for this chart is
thus:

{〈cruiser, 0〉, 〈cruiser, 1〉, 〈cruiser, 2〉, 〈cruiser, 3〉, 〈car, 0〉, 〈car, 1〉, 〈car, 2〉,
〈car, 3〉, 〈car, 4〉, 〈car, 5〉, 〈carHandler, 0〉, 〈carHandler, 1〉, 〈carHandler, 2〉}

The chart defines a partial order <m on locations. The requirement for order
along an instance line implies, for example, 〈car, 0〉 <m 〈car, 1〉. The order in-
duced from message sending implies, for example, 〈car, 1〉 <m 〈carHandler, 1〉.
From transitivity we get that 〈car, 0〉 <m 〈carHandler, 1〉.
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cruiser

0 0 0

1

2

3

1

2

3

5

4

1

2

car carHandler

setDest

start

engage

started

departAck

departReq

Fig. 6.

One of the basic concepts used for defining the semantics of LSCs, and later
on in our synthesis algorithms, is the notion of a cut. A cut through a chart
represents the progress each instance has made in the scenario. Not every “slice”,
i.e., a set consisting of one location for each instance, is a cut. For example,

(〈cruiser, 1〉, 〈car, 2〉, 〈carHandler, 2〉)
is not a cut. Intuitively the reason for this is that to receive the message start
by the cruiser (in location 〈cruiser, 1〉), the message must have been sent, so
location 〈car, 3〉 must have already been reached.

The cuts for the chart of Fig. 7 are thus:

{(〈cruiser, 0〉, 〈car, 0〉, 〈carHandler, 0〉), (〈cruiser, 0〉, 〈car, 1〉, 〈carHandler, 0〉),
(〈cruiser, 0〉, 〈car, 1〉, 〈carHandler, 1〉), (〈cruiser, 0〉, 〈car, 1〉, 〈carHandler, 2〉),
(〈cruiser, 0〉, 〈car, 2〉, 〈carHandler, 2〉), (〈cruiser, 0〉, 〈car, 3〉, 〈carHandler, 2〉),
(〈cruiser, 1〉, 〈car, 3〉, 〈carHandler, 2〉), (〈cruiser, 2〉, 〈car, 3〉, 〈carHandler, 2〉),
(〈cruiser, 2〉, 〈car, 4〉, 〈carHandler, 2〉), (〈cruiser, 2〉, 〈car, 5〉, 〈carHandler, 2〉),
(〈cruiser, 3〉, 〈car, 5〉, 〈carHandler, 2〉)}

The sequence of cuts in this order constitutes a run. The trace of this run
is:

(env, car.setDest), (car, carHandler.departReq), (carHandler, car.departAck),
(car, cruiser.start), (cruiser, car.started), (car, cruiser.engage)

This chart has only one run, but in general a chart can have many runs.
Consider the chart in Fig. 7. From the initial cut (0, 0, 0, 0) 2 it is possible to
2 We often omit the names of the objects, for simplicity, when listing cuts.
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progress either by the car sending departReq to the car handler, or by the
passenger sending pressButton to the destPanel. Similarly there are possible
choices from other cuts. Fig. 8 gives an automaton representation for all the
possible runs. This will be the basic idea for the construction of the synthesized
state machines in our synthesis algorithms later on. Each state, except for the
special starting state s0, represents a cut and is labeled by the vector of locations.
Successor cuts are connected by edges labeled with the message sent. Assuming
a synchronous model we do not have separate edges for the sending and receiving
of the same message. A path starting from s0 that returns to s0 represents a
run.

1

2

1

2

1

2

1

2

destPanel passenger

setDest

car handlercar
0 0

departReq

departAck

pressButton

flashSign

00

Fig. 7.

setDest

departReq pressButton

departAck pressButton

pressButtonflashSign departAck

departReq flashSign

flashSign departReq

(0,0,0,0)

(1,1,0,0) (0,0,1,1)

(2,2,0,0) (1,1,1,1) (0,0,2,2)

(2,2,1,1) (1,1,2,2)

S0

departAck

Fig. 8.
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Here are two sample traces from these runs:

(env, car.setDest), (car, carHandler.departReq), (carHandler, car.departAck),
(passenger, destPanel.pressButton), (destPanel, passenger.flashSign)

(env, car.setDest), (car, carHandler.departReq), (passenger, destPanel.
pressButton),
(carHandler, car.departAck), (destPanel, passenger.flashSign)

As part of the “liveness” extensions, the LSC language enables
forcing progress along an instance line. Each location is given a temperature
hot or cold, graphically denoted by solid or dashed segments of the instance
line. A run must continue down solid lines, while it may continue down dashed
lines. Formally, we require that in the final cut in a run all locations are cold.
Consider the perform approach scenario appearing in Fig. 9. The dashed seg-
ments in the lower part of the car and carHandler instances specify that it is
possible that the message arrivAck will not be sent, even in a run in which the
prechart holds. This might happen in a situation where the terminal is closed or
when all the platforms are full.

arrivReq

arrivAck

alert100

departAck

proxSensor car carHandler

Fig. 9.

When defining the languages of a chart in [DH99], messages that do not
appear in the chart are not restricted and are allowed to occur in-between the
messages that do appear, without violating the chart. This is an abstraction
mechanism that enables concentrating on the relevant messages in a scenario. In
practice it may be useful to restrict messages that do not appear explicitly in the
chart. Each chart will then have a designated set of messages that are not allowed
to occur anywhere except if specified explicitly in the chart; and this applies even
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if they do not appear anywhere in the chart. A tool may support convenient
selection of this message set. Consider the perform departure scenario in
Fig. 1. By taking its set of messages to include those appearing therein, but
also alert100, arrivReq and arrivAck, we restrict these three messages from
occurring during the departure scenario, which makes sense since we cannot
arrive to a terminal when we are just in the middle of departing from one.

As in [DH99], an LSC specification is defined as:

LS = 〈M, amsg, mod〉,

where M is a set of charts, and amsg and mod are the activation messages3 and
the modes of the charts (existential or universal), respectively.

A system satisfies an LSC specification if, for every universal chart and every
run, whenever the activation message holds the run must satisfy the chart, and
if, for every existential chart, there is at least one run in which the activation
message holds and then the chart is satisfied. Formally,

Definition 1. A system S satisfies the LSC specification
LS = 〈M, amsg, mod〉,
written S |= LS, if:

1. ∀m ∈ M, mod(m) = universal ⇒ ∀η Lη
S ⊆ Lm

2. ∀m ∈ M, mod(m) = existential ⇒ ∃η Lη
S ∩ Lm 6= ∅

Here Lη
S is the trace set of object system S on the sequence of directed

requests η. We omit a detailed definition here, which can be found, e.g., in
[HKp99]. Lm is the language of the chart m, containing all traces satisfying the
chart. We say that an LSC specification is satisfiable if there is a system that
satisfies it.

4 Consistency of LSCs

Our goal is to automatically construct an object system that is correct with
respect to a given LSC specification. When working with an expressive language
like LSCs that enables specifying both necessary and forbidden behavior, and
in which a specification is a well-defined set of charts of different kinds, there
might very well be self contradictions, so that there might be no object system
that satisfies it.

Consider an LSC specification that contains the universal charts of Figs. 10
and 11. The message setDest sent from the environment to the car activates Fig.
10, which requires that following the departReq message, departAck is sent
from the car handler to the car. This message activates Fig. 11, which requires
the sending of engage from the car to the cruiser before the start and started
messages are sent, while Fig. 10 requires the opposite ordering. A contradiction.
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departReq

departAck

start

started

engage

setDest

car carHandlercruiser

Fig. 10.

cruiser

engage

start

started

departAck

car carHandler

Fig. 11.

This is only a simple example of an inconsistency in an LSC specification.
Inconsistencies can be caused by such an “interaction” between more than two
universal charts, and also when a scenario described in an existential chart can
never occur because of the restrictions from the universal charts. In a compli-
cated system consisting of many charts the task of finding such inconsistencies
manually by the developers can be formidable, and algorithmic support for this
process can help in overcoming major problems in early stages of the analysis.

3 In the general case we allow a prechart instead of only a single activation message.
However, in this paper we provide the proofs of our results for activation messages,
but they can be generalized rather easily to precharts too.
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4.1 Consistency = Satisfiability

We now provide a global notion of the consistency of an LSC specification. This
is easy to do for conventional, existential MSCs, but is harder for LSCs. In
particular, we have to make sure that a universal chart is satisfied by all runs,
from all points in time.

We will use the following notation: Ain is the alphabet denoting messages
sent from the environment to objects in the system, while Aout denotes messages
sent between the objects in the system.

Definition 2. An LSC specification LS = 〈M, amsg, mod〉 is consistent if
there exists a nonempty regular language L1 ⊆ (Ain · A∗

out)
∗ satisfying the fol-

lowing properties:

1. L1 ⊆ ⋂
mj∈M, mod(mj)=universal Lmj

2. ∀w ∈ L1 ∀a ∈ Ain ∃r ∈ A∗
out, s.t. w · a · r ∈ L1.

3. ∀w ∈ L1, w = x · y · z, y ∈ Ain ⇒ x ∈ L1.

4. ∀m ∈ M , mod(m) = existential ⇒ Lm ∩ L1 6= ∅.
The language L1 is what we require as the set of satisfying traces. Clause 1

in the definition requires all universal charts to be satisfied by all the traces in
L1, Clause 2 requires a trace to be extendible if a new message is sent in from
the environment, Clause 3 essentially requires traces to be completed before new
messages from the environment are dealt with, and Clause 4 requires existential
charts to be satisfied by traces from within L1.

Now comes the first central result of the paper, showing that the consistency
of an LSC specification is a necessary and sufficient condition for the existence
of an object system satisfying it.

Theorem 1. A specification LS is satisfiable if and only if it is consistent.

Proof. Appears in the Appendix.

A basic concept used in the proof of Theorem 1 is the notion of a global
system automaton, or a GSA. A GSA describes the behavior of the entire
system — the message communication between the objects in the system in
response to messages received from the environment. A rigorous definition of
the GSA appears in the appendix. Basically, it is a finite state automaton with
input alphabet consisting of messages sent from the environment to the system
(Ain), and output alphabet consisting of messages communicated between the
objects in the system (Aout). The GSA may have null transitions, transitions
that can be taken spontaneously without the triggering of a message. We add a
fairness requirement: a null transition that is enabled an infinite number of
times must be taken an infinite number of times. A fair cycle is a loop of states
connected by null transitions, which can be taken repeatedly without violating
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the fairness requirement. We require that the system has no fair cycles, thus
ensuring that the system’s reactions are finite.

In the proof of Theorem 1 (the Consistency ⇒ Satisfiability direction in the
Appendix) we show that it is possible to construct a GSA satisfying the specifi-
cation. This implies the existence of an object system (a separate automaton for
each object) satisfying the specification. Later on, when discussing synthesis, we
will show methods for the distribution of the GSA between the objects to obtain
a satisfying object system. In section 5.5 we show that the fairness requirement
is not essential for our construction — it is possible to synthesize a satisfying
object system that does not use null transition and the fairness requirement,
although it does not generate the most general language.

4.2 Deciding Consistency

It follows from Theorem 1 that to prove the existence of an object system satis-
fying an LSC specification LS, it suffices to prove that LS is consistent. In this
section we present an algorithm for deciding consistency.

A basic construction used in the algorithm is that of a deterministic finite
automaton accepting the language of a universal chart. Such an automaton for
the chart of Fig. 7 is shown in Fig. 12. The initial state s0 is the only accepting
state. The activation message setDest causes a transition from state s0, and
the automaton will return to s0 only if the messages departReq, departAck,
pressButton and flashSign occur as specified in the chart. Notice that the
different orderings of these messages that are allowed by the chart are represented
in the automaton by different paths. Each such message causes a transition to a
state representing a successor cut. The self transitions of the nonaccepting states
allow only messages that are not restricted by the chart. The initial state s0 has
self transitions for message comingClose sent from the environment and for all
other messages between objects in the system. To avoid cluttering the figure we
have not written the messages on the self transitions.

The construction algorithm of this automaton and its proof of correctness
are omitted from this version of the paper.

An automaton accepting exactly the runs that satisfy all the universal charts
can be constructed by intersecting these separate automata. This intersection
automaton will be used in the algorithm for deciding consistency. The idea is
to start with this automaton, which represents the “largest” regular language
satisfying all the universal charts, and to systematically narrow it down in order
to avoid states from which the system will be forced by the environment to violate
the specification. At the end we must check that there are still representative
runs satisfying each of the existential charts.

Here, now is our algorithm for checking consistency:

Algorithm 2 1. Find the minimal DFA A = (A, S, s0, ρ, F ) that accepts the
language

L =
⋂

mj∈M, mod(mj)=universal

Lmj
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setDest

comingClose

pressButton

pressButtondepartAck departReq flashSign

departReqflashSign

0
S

departReq

pressButton departAck flashSign departAck

Fig. 12.

(The existence of such an automaton follows from the discussion above and
is proved in the full version of the paper [HKg99].)

2. Define the sets Badi ⊆ S, for i = 0, 1, ..., as follows:
Bad0 = {s ∈ S | ∃a ∈ Ain, s.t. ∀x ∈ A∗

out ρ(s, a · x) 6∈ F},
Badi = {s ∈ S | ∃a ∈ Ain, s.t. ∀x ∈ A∗

out ρ(s, a · x) 6∈ F − Badi−1}.
The series Badi is monotonically increasing, with Badi ⊆ Badi+1, and since
S is finite it converges. Let us denote the limit set by Badmax.

3. From A define a new automaton A′ = (A, S, s0, ρ, F ′), where the set of
accepting states has been reduced to F ′ = F − Badmax

4. Further reduce A, by removing all transitions that lead from states in S−F ′,
and which are labeled with elements of Ain. This yields the new automaton
A′′.

5. Check whether L(A′′) 6= ∅ and whether, in addition, Lmi
∩ L(A′′) 6= ∅ for

each mi ∈ M with mod(mi) = existential. If both are true output YES;
otherwise output NO.

Proposition 1. The algorithm is correct: given a specification LS, it terminates
and outputs Yes iff LS is consistent.

Proof. Omitted in this version of the paper. See [HKg99].

In case the algorithm answers YES, the specification is consistent and it is
possible to proceed to automatically synthesize the system, as we show in the
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next section. However, for the cases where the algorithm answers NO, it would
be very helpful to provide the developer with information about the source of
the inconsistency. Step 5 of our algorithm provides the basis for achieving this
goal. Here is how.

The answer is NO if L(A′′) = ∅ or if there is an existential chart mi such that
Lmi

∩ L(A′′) = ∅. In the second case, this existential chart is the information
we need. The first case is more delicate: there is a sequence of messages sent
from the environment to the system (possibly depending on the reactions of the
system) that eventually causes the system to violate the specification. Unlike
verification against a specification, where we are given a specific program or
system and can display a specific run of it as a counter-example, here we want
to synthesize the object system so we do not yet have any concrete runs. A
possible solution is to let the supporting tool play the environment and the user
play the system, with the aim of locating the inconsistency. The tool can display
the charts graphically and highlight the messages sent and the progress made
in the different charts. After each message sent by the environment (determined
by the tool using the information obtained in the consistency algorithm), the
user decides which messages are sent between the objects in the system. The
tool can suggest a possible reaction of the system, and allow the user to modify
it or choose a different one. Eventually, a universal chart will be violated, and
the chart and the exact location of this violation can be displayed.

5 Synthesis of FSMs from LSCs

We now show how to automatically synthesize a satisfying object system from
a given consistent specification. We first use the algorithm for deciding consis-
tency (Algorithm 2), relying on the equivalence of consistency and satisfiability
(Theorem 1) to derive a global system automaton, a GSA, satisfying the spec-
ification. Synthesis then proceeds by distributing this automaton between the
objects, creating a desired object system.

The synthesis is demonstrated on our example, taking the charts in Figs. 1–5
to be the required LSC specification. For the universal charts, Figs. 1, 2 and
5, we assume that the sets of restricted messages (those not appearing in the
charts) are { alertStop, alert100, arrivReq, arrivAck, disengage, stop },
{ departReq, start, started, engage } and { departAck}, respectively.

Figs. 13, 14 and 15 show the automata for the perform departure, per-
form approach and coming close charts, respectively. Notice that in Fig. 14
there are two accepting states s0 and s1, since we have a prechart with messages
departAck and alert100 that causes activation of the body of the chart. To
avoid cluttering the figures we have not written the messages on the self tran-
sitions. For nonaccepting states these messages are the non-restricted messages
between objects in the system, while for accepting states we take all messages
that do not cause a transition from the state, including messages sent by the
environment.
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setDest

departReq

departAck

start

comingClose

S0

engage

started

Fig. 13. Automaton for Perform Departure

departAck

alert100

arrivReq

S0

1S
arrivAck

Fig. 14. Automaton for Perform Approach
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alert100comingClose

0S

Fig. 15. Automaton for Coming Close

The intersection of the three automata of Figs. 13, 14 and 15 is shown in Fig.
16. It accepts all the runs that satisfy all three universal charts of our system.

setDest

departReq

departAck

start

started

engage

comingClose

alert100

alert100

S0

comingClose

setDest departAck

alert100

arrivReq

arrivAck

Fig. 16. The Intersection Automaton

The global system automaton (GSA) derived from this intersection automa-
ton is shown in Fig. 17. The two accepting states have as outgoing transitions
only messages from the environment. This has been achieved using the tech-
niques described in the proof of Theorem 1 (see the Appendix). Notice also the
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existence of runs satisfying each of the existential charts. We have used the path
extraction methods of Section 5.5 to retain these runs.

setDest

departReq

departAck

start

started

engage

comingClose

alert100

alertStop

stop

q

q

q

q

alert100

arrivReq
arrivAck

comingClose

0

1

2

4

q 5

disengage

setDest

arrivAck

departAck

q 3

departReq

Fig. 17. The Global System Automaton

After constructing the GSA, the synthesis proceeds by distributing the au-
tomaton between the objects, creating a desired object system. To illustrate the
distribution we focus on a subautomaton of the GSA consisting of the states
q0, q1, q2, q3, q4 and q5, as appearing in Fig. 17. This subautomaton is shown in
Fig. 18. In this figure we provide full information about the message, the sender
and receiver, since this information is important for the distribution process.

In general, let A = 〈Q, q0, δ〉 be a GSA describing a system with objects
O = {O1, ..., On} and messages Σ = Σin ∪ Σout. Assume that A satisfies the
LSC specification LS. Our constructions employ new messages taken from a set
Σcol, where Σcol ∩ Σ = ∅. They will be used by the objects for collaboration in
order to satisfy the specification, and are not restricted by the charts in LS.

There are different ways to distribute the global system automaton between
the objects. In the next three subsections we discuss three main approaches —
controller object, full duplication, and partial duplication — and illus-
trate them on the GSA subautomaton of Fig. 18. The first approach is trivial and
is shown essentially just to complete the proof of the existence of an object sys-
tem satisfying a consistent specification. The second method is an intermediate
stage towards the third approach, which is more realistic.
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(carHandler, car.arrivAck)

(car, carHandler.departReq)

q

q

q q

q q

(proxSensor, car.alertStop)

(car, cruiser.disengage) (carHandler, car.departAck)

0

1

2

4

3

5

Fig. 18. Subautomaton of the GSA

5.1 Controller Object

In this approach we add to the set of objects in the system O an additional
object Ocon which acts as the controller of the system, sending commands to all
the other objects. These will have simple automata to enable them to carry out
the commands.

Let |Σcol| = |Ain| + |Aout|, and let f be a one-to-one function

f : Ain ∪ Aout → Σcol

We define the state machine of the controller object Ocon to be 〈Q, q0, δcon〉,
and the state machines of object Oi ∈ O to be 〈{qOi

}, qOi
, δOi

〉.
The states and the initial state of Ocon are identical to those of the GSA. The

transition relation δcon and the transition relations δOi are defined as follows:
If (q, a, q′) ∈ δ where a ∈ Ain, a = (env, Oi.σi) then

(q, f(a), q′) ∈ δcon and (qOi
, σi/Ocon.f(a), qOi

) ∈ δOi
.

If (q, /a, q′) ∈ δ where a ∈ Aout, a = (Oi, Oj .σj) then

(q, /Oi.f(a), q′) ∈ δcon and (qOi
, f(a)/Oj .σj , qOi

) ∈ δOi .

This construction is illustrated in Fig. 19, which shows the object system ob-
tained by the synthesis from the GSA of Fig. 18. It includes the state machine of
the controller object Ocon, and the transitions of the single-state state machines
of the objects carHandler, car and proxSensor.

The size of the state machine of the controller object Ocon is equal to that
of the GSA, while all other objects have state machines with one state. Section
5.4 discusses the total complexity of the construction.
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/carHandler->send_ arrivAck_to_car

q

q

q q

q q

0

1

2 3

4 5

/car->send_departReq_to_carHandler/proxSensor->send_ alertStop_to_car

/car->send_disengage_to_cruiser /carHandler->send_departAck_to_car

    

                                     send_departAck_to_car/car->departAck

                                     send_disengage_to_cruiser/cruiser->disengage
                                     setDest/control->car_got_setDest         

                 

                                                                                           carHandler:                  send_arrivAck_to_car/car->arrivAck

car:                               send_departReq_to_carHandler/carHandler->departReq

proxSensor:                 send_alertStop_to_car/car->alertStop
                                    comingClose/control->proxSensor_got_comingClose
                                     

Fig. 19. Controller

5.2 Full Duplication

In this construction there is no controller object. Instead, each object will have
the state structure of the GSA, and will thus “know” what state the GSA would
have been in.

Recalling that A = 〈Q, q0, δ〉 is the GSA, let k be the maximum outdegree of
the states in Q. A labeling of the transitions of A is a one-to-one function tn:

tn : δ → {1, ..., k}
Let |Σcol| = k and let f be a one-to-one function

f : {1, ..., k} → Σcol

The state machine for object Oi in O is defined to be 〈Q, q0, δOi
〉.

If (q, a, q′) ∈ δ, where a ∈ Ain, a = (env, Oi.σi) and a′ = f(tn(q, a, q′)) ∈ Σcol,
then (q, σi/Oi+1.a

′) ∈ δOi
and for every j 6= i, (q, a′/Oj+1.a

′, q′) ∈ δOj
.

If (q, /a, q′) ∈ δ, where a ∈ Aout, a = (Oi, Oj .σj) and a′ = f(tn(q, /a, q′)) ∈ Σcol,
then (q, /Oj .σj ;Oi+1.a

′, q′) ∈ δOi
and for every j 6= i, (q, a′/Oj+1.a

′, q′) ∈ δOj
.

This construction is illustrated in Fig. 20 on the sub-GSA of Fig. 18. The
maximal outdegree of the states of the GSA in this example is 2, and the set of
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collaboration messages is Σcol = {1, 2}. Again, complexity is discussed in Section
5.4.

carHandler: car:

proxSensor:

/car->arrivAck; car->1

/car->1 /car->2

1/proxSensor->1

2/carHandler->departReq;proxSensor->2

1/proxSensor->1

q

q

q q

q q

q

q

q q

q q

q

q

q q

q q

1/cruiser->disengage; proxSensor->1/car->departAck;car->11/car->1

1/proxSensor->1

1/car->alertStop; carHandler->1

1

2

1 1

0

1

2 3

4 5

0

1

2

4 5

3

0

1

2 3

4 5

Fig. 20. Full Duplication

5.3 Partial Duplication

The idea here is to distribute the GSA as in the full duplication construction,
but to merge states that carry information that is not relevant to this object in
question. In some cases this can reduce the total size, although the worst case
complexity remains the same.

The state machine of object Oi is defined to be 〈QOi
∪ qidle, q0, δOi

〉, where
QOi

⊆ Q is defined by

QOi
=




q ∈ Q

∣∣∣∣∣∣∣∣

∃q′ ∈ Q ∃a ∈ Aout s.t.
a = (Oi, Oj .σj), (q, /a, q′) ∈ δ or
∃q′ ∈ Q ∃a ∈ Ain s.t.
a = (env, Oi.σi), (q′, a, q) ∈ δ




Thus, in object Oi we keep the states that the GSA enters after receiving a
message from the environment, and the states from which Oi sends messages.
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Let |Σcol| = |Q|, and let f be a one-to-one function

f : Q → Σcol

The transition relation δOi for object Oi is defined as follows:
If (q, a, q′) ∈ δ, a = (env, Oi.σi) then (q, σi/Oi+1.f(q′), q′) ∈ δOi

.
If (q, /a, q′) ∈ δ, a = (Oj , Oi.σi), then
either q′ ∈ QOj

and then (q, /Oi.σi;Oj+1.f(q′), q′) ∈ δOj
,

or q′ 6∈ QOj
and then (q, /Oi.σi;Oj+1.f(q′), qidle) ∈ δOj

.
If q ∈ QOi , q′ ∈ QOi then (q, f(q′), q′) ∈ δOi .
If q ∈ QOi

, q′ 6∈ QOi
then (q, f(q′), qidle) ∈ δOi

.
For every q ∈ QOi , (qidle, f(q), q) ∈ δOi .

carHandler: car:

proxSensor:

/car->arrivAck; car->1

2/car->alertStop; carHandler->2

/car->departAck;car->5

q

q

q

q

q q

q

q

0

3

i

1

2

54

/carHandler->departReq;proxSensor->3 1/proxSensor->1

5/proxSensor->5

/cruiser->disengage; proxSensor->4

/proxSensor->2

i

3

i

1

5

1

5

Fig. 21. Partial Duplication

This construction is illustrated in Fig. 21. The states of the GSA of Fig. 18
that were eliminated are q1, q2, q4 and q5 for carHandler, q0 and q3 for car and
q0, q2, q3 and q4 for proxSensor.
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5.4 Complexity Issues

In the previous sections we showed how to distribute the satisfying GSA between
the objects, to create an object system satifying the LSC specification LS. We
now discuss the size of the resulting system, relative to that of LS.

We take the size of an LSC chart m to be

|m| = |dom(m)| = |# of locations in m|,

and the size of an LSC specification LS = 〈M, amsg, mod〉 to be

|LS| =
∑

m∈M

|m|.

The size of the GSA A = 〈Q, q0, δ〉 is simply the number of states |Q|. We ignore
the size of the transition function δ which is polynomial in the number of states
|Q|. Similarly, the size of an object is the number of states in its state machine.

Let LS be a consistent specification, where the universal charts in M are
{m1, m2, ..., mt}. Let A be the satisfying GSA derived using the algorithm for
deciding consistency (Algorithm 2). A was obtained by intersecting the automata
A1, A2, ..., At that accept the runs of charts m1, m2, ..., mt, respectively, and then
performing additional transformations that do not change the number of states
in A. The states of automaton Ai correspond to the cuts through chart mi, as
illustrated, for example, in Fig. 9.

Proposition 2. The number of cuts through a chart m with n instances is
bounded by |m|n.

Proof. Omitted in this version of the paper.

This is consistent with the estimate given in [AY99] for their analysis of the
complexity of model checking for MSCs. We now estimate the size of the GSA.

Proposition 3. The size of the GSA automaton A constructed in the proof of
Theorem 1 satisfies

|A| ≤
t∏

i=1

|mi|ni ≤ |LS|nt,

where ni is the number of instances appearing in chart mi, n is the total number
of instances appearing in LS, and t is the number of universal charts in LS.

Proof. Omitted in this version of the paper.

The size of the GSA A is thus polynomial in the size of the specification
LS, if we are willing to treat the number of objects in the system and the
number of charts in the specification as constants. In some cases a more realistic
assumption would be to fix one of these two, in which case the synthesized
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automaton would be exponential in the remaining one. The time complexity of
the synthesis algorithm is polynomial in the size of A.

The size of the synthesized object system is determined by the size of the
GSA A. In the controller object approach (Section 5.1), the controller object is
of size |A| and each of the other objects is of constant size (one state). In the
full duplication approach (Section 5.2), each of the objects is of size |A|, while
in the partial duplication approach (Section 5.3), the size of each of the objects
can be smaller than |A|, but the total size of the system is at least |A|.

5.5 Synthesis without Fairness Assumptions

We have shown that for a consistent specification we can find a GSA and then
construct an object system that satisfies the specification. This construction
used null transitions and a fairness assumption related to them, i.e., that a null
transition that is enabled an infinite number of times is taken an infinite number
of times. We now show that consistent specifications also have satisfying object
systems with no null transitions.

Let A = 〈Q, q0, δ〉 be the GSA satisfying the specification LS, derived using
the algorithm for deciding consistency. We partition Q into two sets: Qstable,
the states in Q that do not have outgoing null transitions, and Qtransient, the
states of which all the outgoing transitions are null transitions. Such a partition
is possible, as implied by the proof of Theorem 1. Now, A may have a loop of null
transitions consisting of states in Qtransient. Such a loop represents an infinite
number of paths and it will not be possible to maintain all of them in a GSA
without null transitions. To overcome this, we create a new GSA A′ = 〈Q′, q0, δ

′〉,
with Q′ ⊆ Q and δ′ ⊆ δ, as follows.

Let m ∈ M be an existential chart, mod(m) = existential. A satisfies the
specification LS, so there exists a word w, with w ∈ LA∩Lm. Let q0, q1, ... be the
sequence of states that A goes through when generating w, and let δ0, δ1... be the
transitions taken. Since w ∈ Lm, let i1, ..., ik, such that wi1 · wi2 · · ·wik

∈ Ltrc
m .

Let j be the minimal index such that j > ik and qj ∈ Qstable. The new GSA
A′ will retain all the states that appear in the sequence q0, ..., qj and all the
transitions that were used in δ0, ..., δj . This is done for every existential chart
m ∈ M .

In addition, for every qi, qj ∈ Q and for every a ∈ Ain, if there exists a
sequence of states qi, q

1, ..., ql, qj such that (qi, a, q1) ∈ δ and for every 1 ≤ k < l
there is a null transition δk ∈ δ between qk and qk+1, then for one such sequence
we keep in A′ the states q1, ..., qk and the transitions δ1, ..., δk.

All other states and transition of A are eliminated in going from A to A′.

Proposition 4. The GSA A′ satisfies the specification LS.

Proof. Omitted in this version of the paper.
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6 Synthesizing Statecharts

We now outline an approach for a synthesis algorithm that uses the main suc-
cinctness feature of statecharts [H87] (see also [HG97]), namely, concurrency, via
orthogonal states.

Consider a consistent specification LS = 〈M, amsg, mod〉, where the univer-
sal charts in M are Muniversal = {m1, m2, ..., mt}. In the synthesized object
system each object Oi will have a top-level and state with t orthogonal compo-
nent or states, s1, s2, ..., st. Each sj has substates corresponding to the locations
of object Oi in chart mj .

Assume that in a scenario described by one of the charts in Muniversal, object
Oi has to send message σ to object Oj . If object Oi is in a state describing a loca-
tion just before this sending, Oi will check whether Oj is in a state corresponding
to the right location, and is ready to receive. (This can be done using one of the
mechanisms of statecharts for sensing another object’s state.) The message σ
can then be sent and the transition taken. All the other component states of Oi

and Oj will synchronously take the corresponding transitions if necessary.
This was a description of the local check that an object has to perform before

sending a message and advancing to the next location for one chart. Actually,
the story is more complicated, since when advancing in one chart we must check
that this does not contradict anything in any of the other charts. Even more
significantly, we also must check that taking the transition will not get the system
into a situation in which it will not be able to satisfy one of the universal charts.

To deal with these issues the synthesis algorithm will have to figure out which
state configurations should be avoided. Specifically, let ci be a cut through chart
mi. We say that C = (c1, c2, ..., ct) is a supercut if for every i, ci is a cut
through mi. We say that supercut C ′ = (c′

1, c
′
2, ..., c

′
t) is a successor of supercut

C = (c1, c2, ..., ct), if there exists i with succmi
(ci, (j, lj), c′

i) and such that for all
k 6= i the cut c′

k is consistent with communicating the message msg(j, lj) while
in cut ck.
Now, for i = 0, 1, ..., define the sets

Badi ⊆ {all supercuts s.t. at least one of the cuts has at least one hot location}

as follows:

Bad0 =
{
C

∣∣C has no successors
}

Badi = {C|C ∈ Badi−1 or all successors of C are in Badi−1}
The series Badi is monotonically increasing under set inclusion, so that

Badi ⊆ Badi+1. Since the set of all supercuts is finite the series converges. De-
note its limit by Badmax. The point now is that before taking a transition the
synthesized object system will have to check that it does not lead to a supercut
in Badmax.

The construction is illustrated in Figs. 22, 23, 24 and 25 which show the
statecharts for car, carHandler, proxSensor and cruiser, respectively, obtained
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car

Perform_Departure

setDest/cruiser
->PD_active

/carHandler->
departReq

departAck

/cruiser->
 start

started

/cruiser
->engage

Perform_Approach

alert100/
carHandler->     
PA_active

/carHandler->
arrivReq

arrivAck

departAck

cruiser->disengage

alertStop/

cruiser->stop

stop

arrivAck/
proxSensor
->PA_over

Fig. 22. Statechart of car

from the railcar system specification. Notice that an object that does not actively
participate in some universal chart, does not need a component in its statechart
for this scenario, for example proxSensor does not have a Perform Departure
component. Notice the use of the in predicate in the statechart of the proxSensor
for sensing if the car is in the stop state.

Perform_Departure Perform_Approach

carHandler

PD_active

departReq arrivReq

proxSensor->
PA_active

arivAck
/car->
departAck

/car->

PA_active/

Fig. 23. Statechart of carHandler

The number of states in this kind of synthesized statechart-based system is on
the order of the total number of locations in the charts of the specification. Now,
although in the GSA solution the number of states was exponential in the number
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Perform_Approach

proxSensor

Coming_Close

[car->in(stop)]

/car->
alert100

PA_overcomingClose

/car->
alertStop

PA_active

Fig. 24. Statechart of proxSensor

Perform_Departure

engage

/car->started

start

cruiser

PD_active/
carHandler->
PD_active

Fig. 25. Statechart of cruiser

of universal charts and in the number of objects in the system, which seems to
contrast sharply with the situation here, the comparison is misleading; the guards
of the transitions here may involve lengthy conditions on the states of the system.
In practice, it may prove useful to use OBDD’s for efficient representation and
manipulation of conditions over the system state space.
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APPENDIX: Proof of Theorem 1

Proof. The proof relies on the definitions of an object system appearing in
[HKp99], somewhat modified. In [HKp99] a basic computational model for
object-oriented designs is presented. It defines the behavior of systems com-
posed of instances of object classes, whose behavior is given by conventional
state machines. In our work we assume a single instance of each class during
the entire evolution of the system — we do not deal with dynamic creation and
destruction of instances. We assume all messages are synchronous and that there
are no failures in the system — every message that is sent is received.

(⇒) Let the object system S be such that S |= LS. We let LS = ∪η∈A∗
in

Lη
S ,

and show that LS satisfies the four requirements of L1 in the definition of a
consistent specification, Def. 2.

(1) From the definition of an object system it follows that LS is regular and
nonempty. The system S satisfies the specification LS. Hence, if we set L =⋂

mj∈M,mod(mj)=universal Lmj
, Clause 1 of the definition of satisfaction (Def. 1)

implies ∀η Lη
S ⊆ L. Thus, LS = ∪ηLη

S ⊆ L.
(2 and 3) Let w ∈ LS . There exists a sequence of directed requests sent by

the environment, η = O0.σ0 ·O1.σ1 · · ·On.σn, such that w is the behavior of the
system S while reacting to the sequence of requests η. Now, w belongs to the
trace set of S on η, so that w = w0 ·w1 · · ·wn, wi ∈ A∗, first(wi) = (env, Oi.σi),
and there exists a sequence of stable configurations c0, c1, ..., cn+1 such that c0
is initial and for all 0 ≤ i ≤ n, leads(ci, wi, ci+1). The leads predicate is defined
in [HKp99]. It describes the reaction of the system to a message sent from the
environment to the system that causes a transition of the system from the stable
configuration ci to a new stable configuration ci+1, passing through a set of
unstable configurations. The trace describing this behavior is wi.

As to Clause 2 in Def. 2, the system reaches the stable configuration cn+1 at
the end of the reactions to η. For any object Oi and request σ, there is a reaction
of the system to the directed request Oi.σ from the stable configuration cn+1. If
we denote by wn+1 the word that captures such a reaction, wn+1 is in the trace
set of S on Oi.σ from cn+1, from which we obtain w · wn+1 ∈ LS .

For Clause 3, assuming that w = x · y · z, y ∈ Ain, there exists i with
x = w0 · · ·wi and therefore x ∈ LS .

(4) The system S satisfies the specification LS. Hence, from Clause 2 of Def. 1
we have

∀m ∈ M, mod(m) = existential ⇒ ∃η Lη
S ∩ Lm 6= ∅

Since Lη
S ⊆ LS = ∪ηLη

S , we obtain

∀m ∈ M, mod(m) = existential ⇒ LS ∩ Lm 6= ∅

(⇐) Let LS be consistent. We have to show that there exists an object
system S satisfying LS. To prove this we define the notion of a global system
automaton, or a GSA. We will show that there exists a GSA satisfying the
specification and that it can be used to construct an object system satisfying
LS.
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A GSA A describing a system with objects O = {O1, ..., On} and message
set
Σ = Σin ∪ Σout is a tuple A = 〈Q, q0, δ〉, where Q is a finite set of states, q0
is the initial state, and δ ⊆ Q × B × Q is a transition relation. Here B is a
set of labels, each one of the form σ/τ , where σ ∈ Ain = (env) × (O.Σin) and
τ ∈ A∗

out = ((O)× (O.Σout))∗. Let η = a0 · a1 · · · where ai ∈ Ain. The trace set
of A on η is the language Lη

A ⊆ (A∗ ∪ Aω), such that a word w = w0 · w1 · w2 · · ·
is in Lη

A iff wi = ai · xi, xi = xi0 · · ·xiki−1 ∈ A∗
out and there exists a sequence

of states q01 , q11 , ..., q1k1 , q21 , ..., q2k2 , ... with q01 = q0, and such that for all i, j
(qij , /xi−1j , qij+1) ∈ δ and (qiki , ai/xi0 , qi+11) ∈ δ.

The satisfaction relation between a GSA and an LSC specification is defined
as for object systems: the GSA A satisfies LS = 〈M, amsg, mod〉, written A |=
LS, if ∀m ∈ M, mod(m) = universal ⇒ ∀η Lη

A ⊆ Lm, and ∀m ∈ M,
mod(m) = existential ⇒ ∃η Lη

A ∩ Lm 6= ∅.
Since LS is consistent, there exists a language L1 as in Def. 2. Since L1 is

regular, there exists a DFA A = (A, S, s0, ρ, F ) accepting it. We may assume
that A is minimal, so all states in S are reachable and each state leads to some
accepting state.

From Clause 2 of Def. 2, for every accepting state s of A and for every
a ∈ Ain there exists an outgoing transition with label a leading to a state that
is connected to an accepting state by a path labeled r ∈ A∗

out. Formally,

∀s ∈ F ∀a ∈ Ain ρ(s, a) = s′ ⇒ ∃r ∈ A∗
out s.t. ρ(s′, r) ∈ F

From Clause 3 of Def. 2, no nonaccepting states of A have any outgoing
transitions with label a ∈ Ain. This is true since if there were such a state s 6∈ F
reachable from the initial state by x, we would have ρ(s0, x) = s and ρ(s, a) = s′,
and from s′ we can reach an accepting state ρ(s′, z) ∈ F . Then w = x ·a ·z would
violate Clause 3.

We have shown that A has transitions labeled by Ain only for accepting
states, and for an accepting state there is such a transition for every letter
from Ain. We now convert A into an NFA A′ with the same properties, but, in
addition, accepting states do not have outgoing transitions labeled Aout. This
can be done by adding, for each state s ∈ F , an additional state s′ 6∈ F . All
incoming transitions into s are duplicated so that they also enter s′ and all
outgoing transitions from s labeled Aout are transferred to s′. A′ accepts the
same language as A since it can use nondeterminism to decide if to take a
transition to s or s′.

We now transform the automaton A′ into a GSA B by changing all transitions
with a label from Aout into null transitions with that letter as an action. All
transitions with a label from Ain are left unchanged.

We have to show that B satisfies the specification LS. From the construction
of B, we have

LB = ∪ηLη
B = L1
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From Clause 1 of Def. 2, we have

L1 ⊆
⋂

mj∈M,mod(mj)=universal

Lmj

Hence,
∀m ∈ M, mod(m) = universal ⇒ L1 ⊆ Lm,

yielding
∀m ∈ M, mod(m) = universal ⇒ ∀η Lη

B ⊆ L1 ⊆ Lm

This proves Clause 1 of Def. 1.
Now, from Clause 4 of Def. 2, we have

∀m ∈ M, mod(m) = existential ⇒ Lm ∩ L1 6= ∅

But since L1 = ∪ηLη
B , this becomes

∀m ∈ M, mod(m) = existential ⇒ ∃η Lη
B ∩ Lm 6= ∅,

thus proving Clause 2 of Def. 1.
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