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Abstract. We assess the resources needed to identify a reversible quantum gate

among a finite set of alternatives, including in our analysis both deterministic and

probabilistic strategies. Among the probabilistic strategies, we consider unambiguous

gate discrimination—where errors are not tolerated but inconclusive outcomes are

allowed—and we prove that parallel strategies are sufficient to unambiguously identify

the unknown gate with minimum number of queries. This result is used to provide

upper and lower bounds on the query complexity and on the minimum ancilla

dimension. In addition, we introduce the notion of generalized t-designs, which includes

unitary t-designs and group representations as special cases. For gates forming a

generalized t-design we give an explicit expression for the maximum probability of

correct gate identification and we prove that there is no gap between the performances

of deterministic strategies an those of probabilistic strategies. Hence, evaluating of

the query complexity of perfect deterministic discrimination is reduced to the easier

problem of evaluating the query complexity of unambiguous discrimination. Finally,

we consider discrimination strategies where the use of ancillas is forbidden, providing

upper bounds on the number of additional queries needed to make up for the lack of

entanglement with the ancillas.
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1. Introduction

Identifying an unknown unitary evolution, available as a black box, is a fundamental

problem in quantum theory [1, 2, 3, 4, 5, 6, 7, 8, 9], with a wide range of applications in

quantum information and computation. In quantum computation, the problem is known

as oracle identification [10, 11, 12, 13, 14] and is the core of paradigmatic quantum

algorithms such as Grover’s [15] and Bernstein-Vazirani’s [16]. In quantum information

processing, the identification of an unknown unitary gate plays a key role in the stabilizer

formalism of quantum error correction [17, 18] and in its generalization to unitary error

bases [19, 20, 21, 22, 23], in the security analysis of quantum cryptographic protocols

that encode secret data into unitary gates [24, 25, 26, 27, 28, 29], in the alignment

of reference frames via quantum communication [30, 31, 32, 33, 34], in the design of

quantum communication protocols that work in the absence of shared reference frames

[36, 37, 38] and quantum machines that learn to execute a desired operation from a

training set of examples [39]. For all these applications, the crucial step is to find efficient

strategies that discriminate among a set of unknown gates with minimum expenditure

of resources. Typical resources considered are: the number of black box queries needed

to identify the unknown gate, the number of time steps and the size of the auxiliary

systems (ancillas) employed in the discrimination strategy, and the total number of

elementary gates needed to implement the discrimination strategy.

A striking feature of gate discrimination is that any two distinct unitaries can be

perfectly distinguished from one another in a finite number of queries, either using

entanglement [1, 2] or using a sequential strategy where different queries are called

at different time steps [5]. This feature implies that an unknown gate in a finite set

U := (Ux)x∈X can be perfectly identified in a finite number of queries, e.g. by running

|U| − 1 pairwise tests each of which eliminates one wrong alternative [1]. However, in

terms of efficiency the method of pairwise elimination leaves large room for improvement:

For example, when the unitaries are mutually orthogonal, one can identify the black box

in a single query using an ancilla, following the lines of the dense coding protocol [40].

In general, finding the minimum number of queries needed for perfect discrimination is

a hard problem: solving it would automatically give a general solution for the query

complexity of oracle identification. One way to approach the problem is to consider

the less demanding task of unambiguous gate discrimination [3, 4, 6, 7, 41], where the

unknown gate is identified without errors but one allows for an inconclusive result.

General conditions for unambiguous discrimination were given in Refs. [4, 7, 41] under

the assumption that the available queries are used in parallel. However, the case of

general strategies and the quantification of the resources required for unambiguous gate

discrimination have remained largely unaddressed up to now.

In this paper we provide a systematic study of the resources needed to identify an

unknown gate, focussing in particular on the following resources: number of queries, size

of the ancillary systems, and number of time steps in the discrimination strategy. We

start from the observation that parallel strategies are sufficient for unambiguous gate
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discrimination: if unambiguous discrimination can be achieved in N queries, then it can

be achieved by applying the N queries in parallel (in general, using ancillas). Based on

the reductions to parallel strategies, we provide lower and upper bounds on the query

complexity of unambiguous discrimination and on the size of the ancilla systems needed

by the discrimination strategy. The bounds are general and can often be improved in

specific cases. Nevertheless, they suffice to show that unambiguous discrimination of

the gates U is always possible with no more than |U| − 1 queries. Since |U| − 1 is the

minimum number of queries that would be needed by the method of pairwise elimination,

our result shows that a joint discrimination strategy typically offers an advantage.

After having discussed the resources for unambiguous discrimination, we ask

under which conditions one can achieve the stronger task of perfect discrimination,

where inconclusive outcomes are not allowed. This is important because in practice

the usefulness of unambiguous discrimination can be undermined by the fact that

the inconclusive outcome occurs too frequently. To this purpose, we introduce the

notion of generalized t-designs, which includes as special cases the unitary t-designs

of Refs. [43, 44, 45, 46] and all the examples where the unknown gates form a

group [47, 48, 49, 50]. Relative to gate identification, generalized t-designs have three

important features:

(i) there is no difference between the performances of deterministic and probabilistic

strategies allowing for inconclusive outcomes

(ii) there is no difference between the performances of strategies using the queries in

parallel and general strategies using the queries in a sequence of time steps

(iii) there is a simple analytic formula for the maximum probability of correct gate

identification with given number of queries.

The feature i) implies that, if unambiguous discrimination is possible in N queries,

then also perfect deterministic discrimination must be possible in N queries. This

result reduces the query complexity of perfect discrimination to the query complexity

of unambiguous discrimination, which is much simpler to evaluate. The reduction to

unambiguous discrimination has a fairly large range of applications, especially in the case

when the set of gates forms a group. Particular examples are the group of all Boolean

oracles [10], the groups of linear [16] and quadratic [42] Boolean functions, the group of

permutations [30], and the group of all oracles corresponding to functions from a given

finite set to another [7]. The feature ii) implies that the number of time steps needed

to identify a gate picked from a generalized t-design is minimum: applying the queries

in parallel one can reduce the discrimination strategy to three steps: the preparation of

an entangled state, the parallel application of the unitary gates, and the execution of a

suitable measurement. Note that the number of time steps in a discrimination strategy

should not be confused with the number of elementary gates needed to implement the

strategy: preparing the joint state and performing the joint measurement may require

a large number of elementary gates. Nevertheless, the fact that in principle the number

of time steps can be reduced to the minimum is an interesting and non-trivial property.
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In general, such a property does not hold when the unitaries do not form a generalized

t-design: for example, using the available queries in parallel would spoil the quadratic

speed-up in Grover’s algorithm [51, 52].

Finally, we address the quantification of resources for strategies where the use of

ancillary systems is forbidden. This analysis is important for applications to reference

frame alignment [30, 31, 32, 33, 34, 35] and quantum communication in the absence

of shared reference frames [36, 37, 38]. Our contribution to these research topics is a)

to show that every gate discrimination using ancillas can be converted into a strategy

using a number of extra queries to the unknown gate and b) to provide bounds on

the number of extra queries. When the dimension of the ancilla used in the original

strategy is large, we show that the number of extra queries scales logarithmically with

the ancilla dimension: a strategy using NA ≫ 1 ancillary qubits can be replaced by a

strategy using O(NA) extra queries. More specific bounds ben be obtained when the

unitaries form a generalized t-design or a group. In all these cases, we show that, again,

there is no difference between the performances of deterministic strategies and those of

probabilistic strategies allowing for inconclusive outcomes.

The paper is structured as follows. In section 2 we give a synopsis of the main

results. The basic facts about general gate discrimination strategies, along with

the ovservation that unambiguous discrimination can be parallelized, are provided in

Section 3, and exploited in Section 4 to derive upper and lower bounds on the query

complexity of unambiguous discrimination. In Section 5 we introduce the notion of

generalized t-designs, giving an explicit formula for the maximum probability of correct

gate identification and showing that parallel deterministic strategies achieve the same

performances of arbitrary probabilistic strategies. Bounds on the size of the ancilla

needed for unambiguous/perfect discrimination with minimum queries are provided in

Section 6, while Section 7 considers discrimination schemes where the ancilla is not

allowed, providing estimates for the query overhead. The conclusions are drawn in

Section 8. The Appendix contains all the technical proofs of the results presented in

the paper.

2. Main results

We provide here a synopsis of the main results of the paper. A more extended discussion,

including the precise definition of the framework, additional results and applications will

be the object of the following Sections.

Unambiguous gate discrimination: parallelizability and bounds on the query complexity.

We start by showing that unambiguous gate discrimination can be parallelized: if the

gates in a given set can be distinguished unambiguously with N queries, then they

can be distinguished unambiguously by applying the queries in parallel, possibly using

ancillas. This fact is extremely useful to provide bounds of the query complexity of

unambiguous discrimination. Denoting by Nmin the minimum number of queries needed
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to unambiguously identify a unitary gate in the set U, we prove the bounds

|U| ≤
(

Nmin + d2 − 1

d2 − 1

)

(1)

and

Nmin ≤ |U| − dim(U) + 1, (2)

where d is the dimension of the Hilbert space where the gates act and dim(U) is the

number of linearly independent unitaries in U. Both bounds are tight, in the sense that

for every size |U| one can find a set of gates achieving the equality. The upper bound

of Eq. (2) proves that a joint discrimination strategy typically needs less queries than

a strategy based on pairwise eliminations. The bound of Eq. (1) contains implicitly a

lower bound on Nmin, which can be estimated as

Nmin > |U|
1

d2−1 − 1 (3)

When d is fixed and |U| is large, this estimate gives the actual scaling of the tight bound

of Eq. (1).

In addition to the above bounds, we also provide a bound in term of the maximum

fidelity between pairs of gates. The bound is obtained from a simple observation about

unambiguous state discrimination of pure states, which to the best of our knowledge did

not appear in the previous literature on the subject: the states in a generic set {|ψx〉}x∈X
can be unambiguously discriminated using N identical copies whenever N satisfies

N >
log(|X| − 1)

log
(

F− 1
2

) F := max
x 6=y

|〈ψx|ψy〉|2. (4)

In the case of gate discrimination, this result can be applied to the set of bipartite

states |Ψx〉 := (Ux ⊗ I)|Ψ〉, where |Ψ〉 is a bipartite input state. Optimizing over |Ψ〉,
we then get the fidelity bound

Nmin ≤









log(|U| − 1)

log
(

F
−1/2
U

)







+ 1, (5)

where FU is the minimax fidelity FU := min|Ψ〉∈H⊗H,||Ψ||=1maxx 6=y
∣

∣〈Ψ|(U †
xUy ⊗ I)|Ψ〉

∣

∣

2
.

The fidelity bound is important because it connects a measure of pairwise

distinguishability with the the performances of general joint strategies for unambiguous

discrimination. Moreover, in several examples it gives a better estimate than the linear

bound of Eq. (2).

Generalized t-designs: maximum error probability and optimality of parallel

deterministic strategies. We introduce the notion of generalized t-designs, which includes

as special cases the unitary t-designs of Refs. [43, 44, 45, 46] and all the examples

where the unknown gates form a group [47, 48, 49, 50]. When the unitary gates form a

generalized t-design, we consider the problem of gate discrimination with minimum error

probability, or, equivalently, with maximum probability of correct gate identification.
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Optimizing over all possible discrimination strategies, we show that the that maximum

probability of correct identification with N ≤ t queries (conditional to the occurrence

of conclusive outcomes) is given by

pmax
N =

dimUN

|U| UN :=
(

U⊗N
x

)

x∈X
. (6)

Moreover, we show that this optimum value can be achieved by a deterministic strategy

that uses the N queries in parallel. As a consequence, this shows that i) there is no

difference between the performances of deterministic and probabilistic discrimination

strategies, and ii) there is no difference between the performances of parallel strategies

and those of strategies using a sequence of multiple time steps. In particular, if a

set of gates U is a generalized |U|-design, then there is no difference between perfect

and unambiguous discrimination: whenever unambiguous discrimination is possible, the

probability of the inconclusive result can be reduced to zero. This result is important

from the practical point of view, because unambiguous discrimination by itself may not

be a useful primitive if the probability of the inconclusive result is too high. Moreover,

thanks to the reduction to deterministic strategies, Eqs. (1), (2) and (5) become bounds

on the query complexity of perfect deterministic gate discrimination.

Minimum ancilla dimension. Another important resource, in addition to the number of

queries, is the dimension of the ancilla needed to achieve gate discrimination [48, 53].

The ancilla dimension quantifies the extra memory space used for the discrimination

task. We show that, when N queries to the black boxes are used, the minimum ancilla

dimension can be upper bounded as

dmin
A,N ≤

(

N + d− 1

d− 1

)

. (7)

Since the binomial can be upper bounded as (N +1)d−1, our result implies that the size

of the ancilla scales at most polynomially in the number of queries. In other words, this

means that the number of ancillary qubits needed for gate discrimination in N queries

is at most logarithmic in N . The bound is independent of the gate set U. When more

information on the gates is available, further estimates can be provided: For example,

if the set U is contained in a representation of a finite group G, the dimension of the

ancilla can be upper bounded as

dmin
A,N ≤

√

|G|, (8)

independently of the number of queries and of the dimension of the Hilbert space. This

bound provides a fast estimate of the ancilla dimension, and, in several situations, the

estimate is actually accurate. For example, in the case of the Pauli matrices {I,X, Y, Z}
the bound gives correctly dmin

A,N ≤ 2, meaning that unambiguous discrimination is possible

using a single ancilla qubit. This is indeed what is achieved by the dense coding protocol

[40]. An even stronger result holds if the unitaries in U commute: in this case, no ancilla

at all is needed, a result that was already known for discrimination strategies using

parallel queries [48, 7].
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Ancilla-free gate discrimination. For applications in reference frame alignment [30, 31,

32, 33, 34, 35] and quantum communication in the absence of shared reference frames

[36, 37, 38], it is useful to consider discrimination strategies that do not use ancillas,

here referred to as ancilla-free. In this case, one can make up for the lack of ancillas

using a number of additional queries to the black box, using the invariant encoding of

Ref. [54]. For a strategy using a large number of ancilla qubits NA, we show that the

scaling of the minimum overhead ∆Nmin is upper bounded as

∆Nmin ≤ O(NA). (9)

In other words, the NA ancilla qubits can be replaced with (order of) NA extra queries

to the black box, showing that the use of extra queries is a more powerful resource

than the use of ancillas. In addition, we provide the ancilla-free version of the upper

bounds of Eqs. (2) and (5), showing that, even if the use of ancillas is prohibited, a

joint discrimination strategy will still outperform the method of pairwise elimination.

The conditions for unambiguous discrimination are sufficient to guarantee perfect

deterministic discrimination when the set U is a generalized t-design. Indeed, also in the

ancilla-free case we show that for generalized t-designs there is no difference between

probabilistic and deterministic discrimination strategies. Finally, when the gates in U

form a representation of a group G, one can prove more specific results [55]:

(i) A perfect discrimination strategy using dA-dimensional ancilla can be replaced by

a perfect ancilla-free discrimination strategy using

∆Nmin ≤
⌈

log dA + log
√

|G|
log d

⌉

(10)

extra queries. This result is consistent with the scaling with the number of qubits

promised by Eq. (9): for a strategy using a large number of ancillary qubits

NA ≫ log
√

|G|, the number of extra queries to the black box scales as O(NA).

(ii) The query complexity of ancilla-free discrimination can be upper bounded with an

expression involving the maximum entanglement fidelity between pairs of different

gates (cf. Subsection 7.2 for the actual expression). This is quite surprising because

the operational interpretation of the entanglement fidelity is the fidelity between

the output states obtained by applying the unitaries on one side of the maximally

entangled state, a strategy that is forbidden in ancilla-free gate discrimination.

When the entanglement fidelity is zero, we obtain that the minimum number of

queries needed for ancilla-free discrimination is given by

NAF
min = ⌈logd |G|⌉ . (11)

In principle, this is the most favourable scaling possible: indeed, with less than

⌈logd |G|⌉ queries it would be impossible to pack |G| orthogonal vectors in the

joint Hilbert space of the systems used by the discrimination strategy.

Eqs. (10) and (11) allow one to quantify the resources needed for protocols of

quantum communication [36] and decoherence-free encoding [38] in the absence of shared
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reference frames. Indeed, in these cases Nmin is equal to the number of physical systems

needed to construct the “token state” used in the communication protocol [36, 38]. In

the case of the alignment protocols [30, 31, 32, 33, 34, 35], NAF
min is the minimum number

of quantum systems that have to be exchanged in order to establish a reference frame.

3. Gate discrimination: framework and basic definitions

We consider the problem of identifying an unknown unitary gate under the promise that

the gate belongs to a finite set U. For simplicity, we assume that the gates act on a

system with Hilbert space H of finite dimension d < ∞. Moreover, all throughout the

paper we assume that every two unitaries Ux, Uy ∈ U are statistically distinguishable,

that is, there exists at least one input state, with density matrix ρ, such such that

UxρU
†
x 6= UyρU

†
y . (12)

If this were not the case, there would be no point in making an experiment to distinguish

between Ux and Uy, because these two gates would give rise to the same outcome

probabilities for every possible experiment, and, therefore, there would be no operational

way to tell them apart.

3.1. Discrimination strategies

In order to identify the action of the unknown gate, one is allowed to make queries to

the corresponding black box and to use them in an arbitrary quantum circuit. As long

as there is no constraint on the use of ancillas, one can focus without loss of generality

on circuits consisting of pure states and unitary gates, of the form

Ψ
GF
@A

H Ux
H

U1

H Ux H ... H Ux
H

UN

H

HA HA ... HA HA

(13)

where

(i) |Ψ〉 ∈ H ⊗ HA is the joint state state of the input of Ux and of an ancilla with

Hilbert space HA

(ii) Ut is a unitary gate representing a joint evolution of the system and the ancilla

at the time step t ∈ {1, . . . , N} (the unitary UN is added just for convenience of

notation).

Once the input state |Ψ〉 and the unitaries (Ut)
N
t=1 have been chosen, identifying

the unitary Ux is equivalent to identifying the output state

|Ψx〉 :=
[

N
∏

n=1

Un(U ⊗ IA)

]

|Ψ〉 . (14)

To this purpose, one has to perform a suitable quantum measurement, described by

a joint POVM (Py)y∈Y. Here we allow for measurements with a set of outcomes

Y = X∪{?}, including an inconclusive outcome y =?, which corresponds to the case when
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the experimenter abstains from producing a guess [3]. Among all possible strategies, the

deterministic ones are those for which the inconclusive outcome never occurs, namely

P? = 0.

3.2. Optimal, error-free, unambiguous, and perfect discrimination

As a figure of merit for gate discrimination, we choose the probability that that the

unknown gate is identified correctly, provided that the measurement does not output

the inconclusive outcome y =?. This probability is given by

pN :=

∑

x∈X pN(x|x) px
∑

x,y∈X pN(y|x) px
. (15)

where px is the prior probability of Ux and pN(y|x) = 〈Ψx|Py|Ψx〉 is the conditional

probability of the measurement outcome y given that the gate is Ux and that N queries

are used.

The optimal discrimination strategy is the one that maximizes the success

probability pN . We denote the corresponding probability by pmax
N . Note that, in general,

a deterministic strategy may not be able to reach the value pmax
N : in order to achieve

the optimal performances one may be forced to have an inconclusive outcome. For this

reason, the probability pmax
N is an upper bound on the maximum probability of success

over deterministic strategies, which is the quantity normally considered in minimum-

error discrimination.

In this paper we will be particularly interested in discrimination strategies that are

error-free, in the sense that they never misidentify the gate (pN = 1). Note that the

error-free condition pN = 1 is much weaker than it may seem at first sight: this can be

seen in the example of the qubit gates

U0 = (I + Z)/
√
2 Uk = cos(2π/K)I + i sin(2π/K)X k = 1, . . . , K,

where K is an arbitrary integer number. In this case, one can achieve success probability

pN = 1 by applying the unknown unitary on one side of the maximally entangled state

|Φ+〉 = (|0〉|0〉 + |1〉|1〉)/
√
2 and by measuring the output state with the POVM given

by

P0 = (Z ⊗ I)|Φ+〉〈Φ+|(Z† ⊗ I) Pk = 0 ∀k = 1, . . . , K P? = I − P0.

Clearly, when the inconclusive result does not occur, the unknown gate has been

identified with certainty: indeed, the outcome 0 can only occur when the gate is U0.

In some situations, having a discrimination strategy that detects only one gate

and aborts otherwise may not be useful. Instead, one may require that every gate in

the set U have a non-zero probability of being identified. We say that a discrimination

strategy achieves unambiguous discrimination if it is error-free (pN = 1) and, in addition,

p(x|x) > 0 for every x. For example, the two unitaries U0 = I and U1 = exp[iθZ] can
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be distinguished unambiguously by preparing the input state |+〉 = (|0〉+ |1〉)/
√
2 and

by measuring the POVM defined by

P0 =
U1|−〉〈−|U †

1

1 + cos(θ/2)
P1 =

U0|−〉〈−|U †
0

1 + cos(θ/2)
P? = I − P0 − P1,

with |−〉 = (|0〉 − |1〉)/
√
2. This strategy is error-free pN = 1 and both gates have

the chance of being detected: in this particular case, one has p(0|0) = p(1|1) =

[sin(θ/2)]2/[1 + cos(θ/2)].

Note, that the definition of unambiguous discrimination does not include any

requirement on the probability of the inconclusive outcome, which in principle can be

arbitrarily close to 1. In some situations, this feature can undermine the usefulness

of the discrimination scheme. On the opposite end, one can restrict the attention to

discrimination strategies such that the probability of the inconclusive outcome is equal

to 0. We refer to these strategies as perfect discrimination strategies.

3.3. Basic facts about error-free and unambiguous discrimination

Error-free and unambiguous discrimination can be nicely characterized in terms of linear

independence:

Theorem 1 The unitaries in U can be discriminated in N queries

(i) in an error-free way if and only if there exists a unitary Ux0 that is not a linear

combination of the other unitaries in U

(ii) in an unambiguous way if and only if the unitaries (U⊗N
x )x∈X are linearly

independent.

The equivalence between unambiguous gate discrimination and linear independence of

the unitaries was previously observed in Ref. [7] in the case of parallel strategies, i.e.

strategies where the N queries are applied in parallel to a suitable multipartite state

|Ψ〉 ∈ H⊗N ⊗HA, thus producing the output state |Ψx〉 =
(

U⊗N
x ⊗ IA

)

|Ψ〉, as in figure

Ψ

GF

@A

H Ux
H

H Ux
H

...
...

...

H Ux
H

HA

(16)

Parallel strategies are a special case of the strategies of Eq. (13), where one has the

freedom to apply the N queries at different time steps in a quantum circuit. The parallel

strategies of Eq. (17) can be recovered as a special case from the general strategies of
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Eq. (13) by setting the gates (Ut)
N
t=1 to be suitable swap gates, as in the following

example

Ψ

GF

@A

H Ux
H

SWAP

H Ux H

SWAP

H

HA1
≃H HA1

HA1 =

HA2

Ψ

GF

@A

H Ux
H

HA1 Ux
HA1

HA2

(17)

Theorem 1 has an important consequence: it implies that error-free discrimination and

unambiguous discrimination discrimination can be parallelized:

Corollary 1 (Parallelization of error-free and unambiguous discrimination) If

the gates U can be distinguished unambiguously (respectively, in a error-free fashion) with

N queries, then they can be distinguished unambiguously (respectively, in a error-free

fashion) using the N queries in parallel.

In other words, the identification of the gate can be achieved in the shortest possible

number of time-steps: in the problem of error-free and unambiguous discrimination the

time resource can be completely replaced by spatial resources. This fact is also useful

as a technical tool: it implies that the query complexity of error-free/unambiguous

discrimination—defined as minimum number Nmin needed to unambiguously identify a

gate in U—does not change if one restricts to parallel strategies. Note, however, that

general sequential strategies can help in reducing the probability of the inconclusive

result. This fact is well illustrated by the example of Grover’s algorithm:

Example 1 (Discrimination of Grover’s oracles) Grover’s algorithm is designed

to identify a unitary gate in the set U containing the gates Ux = I − 2|x〉〈x|, x ∈ X =

{1, . . . , d}. Clearly, the gates U are linearly independent for every d > 2 and therefore

they can be unambiguously discriminated in a single query, as originally observed by

Chefles et al in Ref. [7]. However, the probability of unambiguous discrimination in

a single query must be necessarily low. One way to see it is the following: as showed

by Brassard, Hoyer, Boyer, and Tapp [51] and Zalka [52], Grover’s algorithm cannot

be efficiently parallelized: there is no deterministic parallel strategy that can achieve in

N queries the same probability of correct gate identification as in Grover’s algorithm.

Now, if the probability of unambiguous discrimination were sufficiently large, one could

run different rounds of unambiguous discrimination, and use this fact to construct

an efficient parallel strategy. In the case of search in a large database (d ≫ 1),

denoting by NG is the number of queries needed by Grover’s algorithm to achieve

maximum probability of correct gate identification, one can show that the probability

of unambiguous discrimination in one query must be upper bounded by O(logNG/NG).

4. General bounds on the query complexity of unambiguous gate

discrimination

The possibility of parallelizing unambiguous gate discrimination, established by theorem

1, leads immediately to general bounds on the query complexity. These bounds do not
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assume any structure of the set of unitaries U and can typically be improved when more

information about U is available.

4.1. Lower bound

Here we give a lower bound to the number of queries that are necessary to for

unambiguous gate identification.

Proposition 1 (Dimensional bound) If the the gates in U can be unambiguously

discriminated using N queries, then

|U| ≤
(

N + d2 − 1

d2 − 1

)

. (18)

If we do not impose any structure on the set of unitaries U, then the bound of

Eq. (18) is the best we can hope for. Indeed, for any fixed Hilbert space dimension d

and for every size |U| we can always find a set of unitaries U such that the minimum

number of queries needed to unambiguously identify a gate in U is exactly the minimum

N compatible with Eq. (18) (cf. the proof in the Appendix).

Eq. (18) can be used to provide an easy lower bound on the query complexity:

Combining it with the inequality
(

N + k

k

)

< (N + 1)k, (19)

we obtain the bound N > |U|
1

d2−1 − 1, which is a necessary condition for unambiguous

discrimination with N queries. The bound is not tight, but provides the right scaling

with |U| in the regime when d is fixed and N is large compared to d2. Indeed, in this

case one has
(

N + d2 − 1

d2 − 1

)

=
Nd2−1

(d2 − 1)!
+O(d2/N),

which means that the scaling of the tight bound associated to Eq. (18) is actually

N = Ω
(

|U|
1

d2−1

)

.

4.2. Upper bounds

An upper bound on the query complexity can be obtained by observing that the number

of linearly independent unitaries in UN grows at least linearly with N , a fact that can

be proved using an earlier result by Chefles [57]:

Proposition 2 (Linear bound) The query complexity of unambiguous discrimination

of the gates in U is upper bounded by

Nmin ≤ |U|+ 1− dim(U). (20)
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In general, the bound of Eq. (20) can be achieved: for every fixed Hilbert space

dimension d and for every fixed cardinality |U| we can find a set of unitaries such that

Nmin = |U| − dim(U) + 1. This can be seen in the following

Example 2 (Unambiguous discrimination of discrete phase-shifts) Consider the

problem of identifying an unknown phase shift

Ux := ωx |1〉〈1|+ (I − |1〉〈1|) ω := e
2πi
|X| ,

with x = 1, . . . , |X|. In this case the number of linearly independent unitaries in

(U⊗N
x )x∈X is exactly equal to N + 1, as it can be seen from the fact that the unitaries

(U⊗N
x )x∈X are in one-to-one correspondence with the vectors of their eigenvalues,

given by (vx)x∈X ⊂ CN+1 where vx := (1, ω, ω2, . . . , ωN)T . Since the number of

linearly independent unitaries in (U⊗N
x )x∈X is N + 1, the minimum number needed for

unambiguous discrimination is exactly Nmin = |X| − 1 = |U| − dim(U) + 1.

Another example where the bound of Eq. (20) gives the exact value is the

identification of a “shift-and-multiply” gate:

Example 3 (Unambiguous discrimination of shift-and-multiply gates) Consider

the problem of identifying a shift-and-multiply gate

Upq = SpM q (p, q) ∈ Zd × Zd , (21)

where S =
∑d

k=1 |(k + 1)mod d〉〈k| and M =
∑d

k=1 e
(2πik)/d|k〉〈k|. In this case,

the unitaries (Upq)(p,q)∈Zd×Zd
are linearly independent, and therefore the bound gives

Nmin = 1. Note that, in fact, the unitaries are orthogonal in the Hilbert-Schmidt product,

and, therefore, an unknown unitary Upq can be identified perfectly and deterministically,

as in the dense coding protocol [40].

Proposition 2 provides an estimate of Nmin that is always better than the number

of pairwise tests |U| − 1 that would be needed to identify a gate in U with the method

of pairwise eliminations outlined in [1, 2]. Note however that Eq. (20) only ensures

unambiguous discrimination, while the pairwise elimination method ensures perfect

discrimination. In the next Section we will see that the distinction between unambiguous

and perfect discrimination disappears when the gates in U form a group representation,

or, more generally, a generalized t-design.

Before adding more structure on the set U, we give here a second upper bound that

often yields a better estimate than Proposition 2. To state the bound we introduce the

minimax fidelity of the unitaries in U, defined as

FU := min
|Ψ〉∈H⊗H,||Ψ||=1

max
x,y∈X,x 6=y

∣

∣〈Ψ|(U †
xUy ⊗ I)|Ψ〉

∣

∣ .

The minimax fidelity quantifies the pairwise distinguishability of the gates in U when

single-shot ancilla-assisted strategies are used. Clearly, if FU = 0, the unitaries can be

perfectly distinguished in one shot using a suitable input state. Note also that, under

the standing assumption of this paper, FU must be strictly smaller than 1: indeed, the
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distinguishability condition of Eq. (12) implies that for every two distinct unitaries Ux
and Uy there exists at least an input state |ψ〉 such that

∣

∣〈ψ|U †
xUy|ψ〉

∣

∣

2
< 1. In terms of

the minimax fidelity, we have the following

Proposition 3 (Fidelity bound) The query complexity of unambiguous discrimina-

tion of the gates in U is upper bounded as

Nmin ≤









log(|U| − 1)

log
(

F
− 1

2
U

)







+ 1. (22)

The proof of the bound is based on a simple observation about unambiguous state

discrimination, which is interesting per se:

Lemma 1 Let (|ψx〉)x∈X ∈ H be a set of pure states and let F := maxx 6=y |〈ψx|ψy〉|2 be

the maximum fidelity between two distinct states in the set. If FN/2 < 1/(|X| − 1),

then the states (|ψx〉⊗N)x∈X are linearly independent, and, therefore, unambiguously

distinguishable.

For qubits, this simple observation gives exactly the minimum number of copies

needed for unambiguous discrimination of the states in a symmetric informationally-

complete (SIC) POVM [58, 59]. Recall that a SIC-POVM in dimension d is a set of d2

unit vectors with the property that the overlap between any two distinct vectors is the

same:

|〈ψx|ψy〉|2 =
1

d+ 1
∀x 6= y.

In general, for d2 pure states one can easily see from dimensional arguments that

unambiguous discrimination requires at least 3 copies (cf. the lower bound in Ref. [57]).

On the other hand, Lemma 1 shows that for qubits N = 3 copies are sufficient, thus

implying that N = 3 is actually the minimum number of copies needed for unambiguous

discrimination of a SIC-POVM. For general d-dimensional systems, Lemma 1 gives the

upper bound N ≤ 4, almost matching the dimensional lower bound [60], and thus

showing that the number of copies does not scale up with the dimension of the system.

The exact value of the minimum number of copies is equal to Nmin = 3 for all the known

examples of SIC-POVMs, except for the one example of SIC POVM in dimension d = 3,

which actually requires Nmin = 4 copies [60].

Let us now comment on the tightness of the fidelity bound for gate discrimination.

The bound gives good estimates when FU is close to zero (in particular, in the extreme

case where FU = 0 it predicts correctly Nmin = 1). However, it tends to overestimate

Nmin when FU approaches 1. To understand this fact, note that for F ≥ 1 − ǫ, the

estimate of Nmin becomes

Nmin ≤
2 ln(|U| − 1)

ǫ
,

having chosen the logarithm in base e. Now, two unitaries can have fidelity arbitrarily

close to 1 and still be linearly independent. For example, the unitaries U0 = I and
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U1 = eiθZ are linearly independent, and their fidelity is F = cos θ. This implies that for

every set U containing these two unitaries one has FU ≥ cos θ and, therefore, the fidelity

bound gives Nmin ≤ 4 ln(|U|−1)
θ2

, where the r.h.s. can be arbitrarily large when the angle

θ is small. Hence, for FU ≈ 1 the fidelity bound can be arbitrarily far from the correct

value (think of the case when the unitaries U are linearly independent, and the correct

value is Nmin = 1). Another example of the gap between the value of the upper bound

and true value of Nmin for FU ≈ 1 is illustrated in the following

Example 4 (Permutation gates) Consider identification of an unknown permuta-

tion gate

Uπ =

d
∑

k=1

|π(k)〉〈k|, (23)

where π is an element of the permutation group Sd. In this case it is clear that the unitary

Uπ can be perfectly identified with d queries (applying Uπ to all the d vectors in the

computational basis we can surely identify the permutation π ∈ Sd). One the other hand,

applying the unitary Uπ on a maximally entangled state gives the bound FU ≥
(

d−2
d

)2
,

which inserted in the fidelity bound gives Nmin ≤ log(d!)/ log[d/(d − 2)] = O(d2 log d),

which is off by a factor d log d from the actual value.

5. Discrimination of generalized t-designs

Here we impose additional structure on the set of gates U. Our analysis includes the case

where the set X labelling the gates in U is a finite group and x 7→ Ux is a representation of

X. Also, it includes the case where the unitaries U from a unitary t-design [43, 44, 45, 46].

In order to treat these two cases in a unified way, we introduce the notion of generalized

t-designs. For the discrimination of generalized t-designs we will show the following

properties

(i) among all possible discrimination strategies using N ≤ t queries, the deterministic

strategies using all queries in parallel maximize the probability of correct gate

identification

(ii) for strategies using N ≤ t queries, there is no difference between error-free,

unambiguous, and perfect discrimination.

(iii) the maximum probability of correct gate identification with N ≤ t queries has a

simple analytic formula.

5.1. Generalized t-designs: definition and characterization

The notion of unitary t-design plays an important role in quantum information, with

applications essentially in all protocols that require to extract a random gate from the

uniform distribution over all possible unitaries [43, 44, 45, 46]. Unitary t-designs are
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defined as follows: Consider an ensemble (Ux, px)x∈X where Ux is a unitary and px is a

probability. The ensemble is a unitary t-design iff
∑

x∈X

pxU
⊗t
x ⊗ U

⊗t

x =

∫

U. U
⊗t ⊗ U

⊗t
,

where U denotes the complex conjugate of the matrix U and the integral in the l.h.s.

runs over the normalized Haar measure on the unitary group U(d).

We will now generalize the above definition considering, instead of the full unitary

group, a smaller group of unitary gates:

Definition 1 (Generalized t-designs) Let U : G 7→ Ug be a representation of a group

G and let X be a subset of G. An ensemble (Ux, px)x∈X is a generalized t-design iff
∑

x∈X

px U
⊗t
x ⊗ U

⊗t

x =

∫

g. U
⊗t
g ⊗ U

⊗t

g , (24)

where
∫

g.f(g) denotes the integral of f with respect to the normalized Haar measure.

Note that, by definition, every generalized t-design is also a generalized (t − 1)-

design. Of course, a special case of generalized t-design is obtained by taking G to be

a finite group and X = G:

Example 5 The ensemble consisting of unitary gates in a representation of a finite

group G, randomly sampled with uniform probability distribution pg = 1/|G|, is a

generalized t-design for every t.

The definition of t-designs is extremely convenient, because it allows to easily

transfer properties of groups to finite sets of quantum gates. In the next sections we will

use this trick to prove strong properties of gate discrimination in the case of generalized

t-designs.

5.2. Optimal discrimination of generalized t-designs

We start from general result about optimal probabilistic gate discrimination. Precisely,

we show that the maximum probability pmax
N of correct gate identification can be always

achieved with a parallel strategy. In addition, we give an analytic expression for pmax
N .

Theorem 2 (Optimal probabilistic gate discrimination) For every choice of

prior probabilities, the maximum success probability pmax
N [cf.Eq. (15)] is achieved by

applying the N queries in parallel on an entangled state. The probability pmax
N is given

by

pmax
N = max

x∈X
px〈〈Ux|⊗N R−1

N |Ux〉〉⊗N , (25)

with |Ux〉〉 := (Ux⊗ I)|I〉〉, |I〉〉 :=
∑d

n=1 |n〉|n〉, RN :=
∑

x∈X px (|Ux〉〉〈〈Ux|)⊗N , and R−1
N

being the inverse of RN on its support.
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The explicit formula of Eq. (25) is useful even if one is interested in deterministic

strategies, rather than probabilistic ones. Indeed, by definition pmax
N provides an upper

bound to the probability of success of arbitrary deterministic strategies. In some cases,

one may even be able to achieve the upper bound with a deterministic strategy. This is

actually the case for generalized t-designs:

Theorem 3 (Optimal gate discrimination for generalized t-designs) Let (Ux, px)x∈X
be a generalized t-design. Then, the maximum of the probability of correct discrimination

over all probabilistic strategies consisting of N ≤ t queries is

pmax
N = dim (UN) max

x∈X
px (26)

For uniform prior px = 1/|U|, the maximum probability pmax
N = dim(UN )/|U| can be

achieved by a deterministic strategy that uses the N queries in parallel.

The general result of theorem 3 is well illustrated by the case of discrete phase

shifts:

Example 6 (Discrete phase shifts) Consider problem of identifying a discrete

phase-shift gate

Ux =
d−1
∑

y=0

ωxy |y〉〈y| ω = e
2πi
|X| , (27)

Ux chosen at random with uniform probability px = 1/|U|. Here U : x 7→ Ux is a unitary

representation of the Abelian group X = ZK , and, therefore, it is a generalized t-design

for every t. Now, the number of linearly independent unitaries in U is d. Hence, the

probability of correct identification of a unitary with a single query is pmax
1 = d/|U|.

Similarly, the number of linearly independent unitaries in UN is min{N(d−1)+1, |U|},
and therefore, Eq. (26) gives

pmax
N =

Nd −N + 1

|U| N ≤ |U| − 1

d− 1
. (28)

5.3. Perfect discrimination of generalized t-designs

From now on, we restrict our attention to generalized t-designs with uniform probability

distribution px = 1/|X|. Since there is no ambiguity, we will just refer to them as

“generalized t-designs”. An immediate consequence of Theorem 3 is that for generalized

t-designs there is no difference between error-free, unambiguous, and perfect gate

discrimination:

Corollary 2 If the unitaries (Ux)x∈X form a generalized t-design, then the following are

equivalent:

(i) error-free discrimination is possible with N ≤ t queries

(ii) unambiguous discrimination is possible with N ≤ t queries

(iii) perfect discrimination is possible in N ≤ t queries.
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In particular, for a generalized |U|-design there is no difference between error-free,

unambiguous, and perfect discrimination.

For generalized t-designs the evaluation of the query complexity of perfect

discrimination is reduced to the simpler problem of evaluating the query complexity

of unambiguous discrimination. In particular, the bounds in Propositions 1, 2, and 3

become automatically bounds on the query complexity of perfect discrimination.

6. Bounding the dimension of the ancilla

In addition to the query complexity, it is useful to bound the size of the ancilla needed

for gate discrimination [48, 53]. Here we show that the size of the optimal ancilla scales

at most polynomially with the number of queries N . We prove this result as a particular

case of a more powerful statement about discrimination of unitaries picked from a group

representation.

Proposition 4 Let U : g 7→ Ug be a representation of a group G and let U be a

subset of (Ug)g∈G Then, the minimum dimension of the ancilla needed for unambiguous

discrimination of the gates U in N queries is upper bounded by

dmin
A,N ≤ max

µ∈Irr(U⊗N )

⌈

dµ
mµ

⌉

, (29)

where the maximum runs over the set Irr
(

U⊗N
)

of irreducible representations contained

in the decomposition of U⊗N , dµ and mµ are the dimension and the multiplicity of

the irreducible representation µ (see the Appendix for some background information on

representation theory).

Proposition 4 has many useful consequences. The first is that ancillas are not

needed for the unambiguous discrimination of commuting unitaries, a fact that was

noted in Ref. [7] for parallel discrimination strategies.

Corollary 3 If the unitaries in U commute, then no ancilla is needed for unambiguous

discrimination.

The proof is immediate: a commuting set of unitaries is a subset of the Abelian group

of all unitaries diagonal in a given basis. Since in this case the irreducible subspaces are

one-dimensional, Eq. (29) gives dmin
A,N ≤ 1, which means that no ancilla is required.

As anticipated, another consequence of Proposition 4 is the fact that, no matter

which set of gates U we are considering, the dimension of the ancilla needed for

discrimination in N queries cannot grow faster than a polynomial in N .

Corollary 4 The minimal dimension of the ancilla needed for unambiguous discrimi-

nation with N queries is upper bounded by dmin
A,N ≤

(

N + d− 1

d− 1

)

.
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The proof is provided in the Appendix. Bounding the binomial with Eq. (19), we

have that the dimension of the ancilla is upper bounded by (N +1)d−1. In other words,

the number of ancillary qubits needed for unambiguous discrimination scales at most as

the logarithm of the number of queries.

Another application of Proposition 4 can be found when the group G is finite. In

this case, one can provide an upper bound on the size of the ancilla that is independent

of the number of queries:

Corollary 5 The minimum dimension of the ancilla needed for unambiguous

discrimination of the gates U ⊆ (Ug)g∈G is upper bounded by dmin
A,N ≤

√

|G|,
independently of the number of queries.

The bound follows from the fact that, for a finite group G, the dimensions of the

irreducible subspaces are upper bounded by
√
G (cf. the background on representation

theory provided in the Appendix). Corollary 5 is useful to give a quick estimate of

the size of the ancilla. Such an estimate is actually tight in the example of the shift-

and-multiply gates Upq (cf. Example 3), which form a representation of the group

G = Zd × Zd. Since the size of the group is |G| = d2, the bound gives dmin
A,N ≤ d.

In other words, this means that unambiguous discrimination can be achieved with an

ancilla that is of the same size of the input system. This is exactly what is done by the

dense coding protocol [40].

7. Ancilla-free gate discrimination

We conclude the paper by briefly discussing parallel discrimination strategies that do

not use ancillas. These strategies involve the preparation of a multipartite input state

|Ψ〉 ∈ H⊗N and on the application of the unknown gate on each of the N systems, thus

obtaining the output state |Ψx〉 = (U⊗N
x )|Ψ〉, as in figure

Ψ

GF

@A

H Ux
H

H Ux
H

...
...

...

H Ux
H

(30)

We refer to these strategies as ancilla-free. Note that the only difference between an

ancilla-free strategy and a general parallel strategy, as in Eq. (17), is the presence of

a non-trivial ancilla system. We will now show that the ancilla system can be always

traded for an additional number of queries:

Theorem 4 Every parallel discrimination strategy using a dA-dimensional ancilla can

be replaced by an ancilla-free strategy using a finite number of extra queries. For large

dA, the minimum number of extra queries scales as O(logd(dA)).
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This result guarantees that a discrimination strategy using a large number NA

of ancillary qubits can be replaced by an ancilla-free strategy that uses O(NA) extra

queries to the black box. Essentially, this means that the black box queries are a stronger

resource than the use ancillary qubits, as the latter can be efficiently simulated using

the former.

7.1. Upper bounds on the query complexity of ancilla-free unambiguous discrimination

Let us denote by NAF
min the query complexity of ancilla-free unambiguous discrimination,

i.e. the minimum number of queries needed to distinguish the gates U unambiguously in

an ancilla-free way. It is immediate to see that ancilla-free unambiguous discrimination

is possible in N queries if and only if there exist a state |Ψ〉 ∈ H⊗N such that the output

states |Ψx〉 = U⊗N
x |Ψ〉 are linearly independent. Using this fact, the upper bounds of

Propositions 2 and 3 can be easily adapted, by replacing the dimension dim(U) and the

minimax fidelity FU with the corresponding ancilla-free quantities:

Proposition 5 The query complexity of ancilla-free unambiguous discrimination of the

gates U is upper bounded as

NAF
min ≤ |U| − dimloc(U) + 1, (31)

where dimloc(U) is the maximum over all possible input states |ψ〉 ∈ H of the dimension

of the subspace spanned by the vectors (Ux|ψ〉)x∈X. Another upper bound is given by

NAF
min ≤









log(|U| − 1)

log
(

F
− 1

2

loc,U

)







+ 1 , (32)

where Floc,U is the local minimax fidelity Floc,U := min|ψ〉∈H maxx 6=y |〈ψ|U †
xUy|ψ〉|2.

The proof is the obvious adaptation of proof for general parallel strategies, provided in

the Appendix. Note that, due to the prohibition to use ancillas, one has dimloc(U) ≤
dim(U) and FU,loc ≥ FU. Therefore, the values of the upper bounds in Proposition 5 are

larger than the values of the upper bounds in Propositions 2 and 3. Nevertheless, even

without the use of ancillas, the minimum number of queries needed for unambiguous

discrimination is always less than |U| − 1, the minimum number of tests that would be

needed to identify a gate in U via pairwise eliminations. The local fidelity bound of Eq.

(32) provides an even better estimate when the unitaries in U generate a SIC-POVM

[58, 59], in which case one has Floc,U ≤ (d + 1)−1, implying that N = 4 queries are

sufficient for ancilla-free discrimination. This estimate is much better than the estimate

coming from the linear bound of Eq. (31), which in the case under consideration gives

a quadratic scaling with the dimension NAF
min ≤ d2 − d+ 1.

7.2. Perfect ancilla-free discrimination of generalized t-designs

For generalized t-designs, one can prove that unambiguous discrimination coincides with

perfect discrimination, even in the case of ancilla-free strategies :
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Proposition 6 Let U be a generalized t-design. Then, the following are equivalent

(i) there exists an ancilla-free strategy for unambiguous discrimination using N ≤ t

queries

(ii) there exists an ancilla-free strategy for perfect deterministic discrimination of the

gates using N ≤ t queries.

A case of special interest is when unitaries form a group representation, namely

U ≡ (Ug)g∈G. Two group-theoretic lower bounds on the query complexity were

originally derived in [55]. We include them here for completeness, concluding our general

investigation of gate identification with multiple queries:

Proposition 7 ([55]) For every perfect discrimination strategy using N parallel

queries and a dA-dimensional ancilla there exists a perfect ancilla-free strategy using

N +∆Nmin queries, with

∆Nmin ≤
⌈

log dA + log
√

|G|
log d

⌉

. (33)

Note that for a strategy using a large number of ancillary qubits NA ≫ log
√

|G|,
the number of extra queries to the black box scales as O(NA), as anticipated by theorem

4. Note also that the bound is independent of the number of queries of the initial ancilla-

assisted strategy: in order to apply the bound, we only need to know that the original

strategy allowed for perfect discrimination.

The last bound is expressed in terms of the maximum entanglement fidelity between

pairs of unitaries. The entanglement fidelity between two unitaries Ug and Uh, defined

as

Fent(Ug, Uh) :=

∣

∣Tr[U †
gUh]

∣

∣

2

d2
,

is the fidelity between the states |Φg〉 = (Ug ⊗ I)|Φ〉 and |Φh〉 = (Uh ⊗ I)|Φ〉,
obtained by applying the two unitaries on one side of the maximally entangled state

|Φ〉 = (
∑d

n=1 |n〉|n〉)/
√
d. Thanks to the group structure, the maximum entanglement

fidelity over all pairs of unitaries in U is given by Fent,U = maxg∈G |Tr[Ug]|2/d2.
The other quantity appearing in the bound is the number of unitaries Ug that can

be confused with the identity, given by

C = |{Ug 6= I | Fent(Ug, I) 6= 0}| .
With the above definitions we have the following

Proposition 8 (Entanglement fidelity bound [55]) If

dN
(

1− F
N/2
ent,U C

)

≥ |G|, (34)

then the unitaries in U can be perfectly distinguished with an ancilla-free strategy using

N queries.
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The condition of Eq. (34) contains implicitly an upper bound on the query

complexity of ancilla-free discrimination. The fact that an upper bound on NAF
min can

be expressed in terms of the entanglement fidelity is quite surprising, because applying

the unitaries on one side of a maximally entangled state is not an allowed strategy in

ancilla-free gate discrimination.

Let us discuss the consequences of Eq. (34). The most immediate consequence is

that when the entanglement fidelity is zero, perfect ancilla-free discrimination is possible

with N = ⌈logd |G|⌉ queries. This value is actually the optimal one, because ⌈logd |G|⌉
is the minimum number of copies that is needed to pack |G| orthogonal vectors in the

N -fold tensor product of a d-dimensional Hilbert space. An example of this situation is

the discrimination of shift-and-multiply gates, already discussed in Example 3:

Example 7 (Ancilla-free discrimination of shift-and-multiply gates) For a d-

dimensional quantum system, the shift-and-multiply gates Upq = SpM q are d2 mutually

orthogonal unitaries. Eq. (34) then predicts that perfect ancilla-free discrimination is

possible with NAF
min = 2 queries. A concrete discrimination strategy consists in preparing

two probe systems in the state |0〉|f0〉, where |f0〉 =
(

∑d
n=1 |n〉

)

/
√
d is the first vector

of the Fourier basis. Applying two queries of the unknown gate Upq we then obtain the

output state |p〉|q〉, from which p and q can be read out in a perfect deterministic way.

Before concluding, we note that, more generally, the optimal scaling NAF
min =

O(logd |G|) can be achieved whenever the condition

log
(

C
1−α

)

log
(

F
− 1

2
ent,U

) ≤ logd |G| (35)

is satisfied for some constant α > 0. Indeed, under this condition the query

complexity of ancilla-free gate discrimination can be bounded between ⌈logd |G|⌉ and

⌈logd |G|⌉+ logd α
−1, thus implying

NAF
min = O(logd |G|).

The argument is simple and is provided in the Appendix.

8. Conclusion

In this paper we investigated the problem of identifying an unknown unitary gate in

a finite set of alternatives, using both deterministic and probabilistic discrimination

strategies, and allowing the unknown gate to be queried multiple times and to be be

used in parallel or in series in arbitrary quantum circuits. In this scenario, we provided

upper and lower bounds on the amount of resources needed to achieve unambiguous and

perfect gate identification. Specifically, we gave bounds on the query complexity and

the minimum size of the ancillas.

Most of our results stem from two key observations. The first observation is that

unambiguous gate discrimination can be parallelized: if unambiguous discrimination is
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possible with N queries, then unambiguous gate discrimination must also be possible

by applying the N queries in parallel on a suitable entangled state. The second key

observation is based on the definition of generalized t-designs, a definition that includes

unitary t-designs and group representations as special cases. The remarkable feature

of generalized t-designs is that for strategies using N ≤ t queries there is no difference

between unambiguous and perfect discrimination. Using this fact, one can reduce the

analysis of perfect gate discrimination to the simpler analysis of unambiguous gate

discrimination. Finally, motivated by the application to quantum communication in the

lack of shared reference frames, we considered discrimination strategies where ancillas

are not allowed, providing upper bounds on the number of extra queries that are needed

to make up for this limitation.

Our results suggest several directions of further research. First of all, up to now we

considered the question whether or not unambiguous discrimination is possible with a

certain number of queries. However, as the example of Grover’s algorithm clearly shows,

sometimes the probability of unambiguous discrimination could be too small to have a

useful application. Hence, for future developments it is important to have bounds on the

probability of the inconclusive outcome as a function of the number of queries. Our work

addressed the question in the simplest case, namely the case of generalized t-designs,

where the probability of the inconclusive outcome is always zero. In other cases, like the

discrimination of Grover’s unitaries, an estimate of the probability of the inconclusive

outcome as a function of the number of queries can be obtained with the techniques

developed by Eldar [61]. Our work provides a useful first step in this direction, because

knowing that the unitaries are unambiguously distinguishable, and therefore, that they

produce linearly independent output states is a necessary condition for the application of

the techniques of Ref. [61]. Besides the evaluation of the probability of the inconclusive

outcome, it is also worth relaxing the requirement of perfect gate identification, allowing

for a small probability of error pe ≤ ǫ. In this case, the interesting quantity would be

the minimum number of queries Nmin,ǫ needed to achieve gate identification with error

probability smaller than ǫ. For generalized t-designs, our expression for the maximum

probability of correct discrimination, given by pmax
N = dim(UN )/|U| (cf. theorem 3),

gives a starting point for the evaluation of Nmin,ǫ.

Another interesting development suggested by our work is the experimental

demonstration of quantum advantages in gate discrimination with multiple queries.

While the viability of unambiguous state discrimination has been demonstrated in many

experiments (see e.g. [62, 63, 64, 65]), the experimental realization of gate discrimination

strategies is a rather unexplored territory. A recent experiment demonstrating

unambiguous discrimination of two non-orthogonal gates was reported in Ref. [66] in

the single-query scenario. As the level of control in the experiments increases, it would

be highly desirable to have proof of principle demonstrations of the advantage of joint

multi-query discrimination strategies over strategies based on pairwise elimination, both

in the case of perfect discrimination and of unambiguous gate discrimination. Moreover,

our results on gate discrimination without ancillas show suggest one may have quantum
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advantages even with relatively small amounts of entanglement.
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Appendix

Proof of theorem 1.

We first prove necessity. The condition for error-free discrimination is equivalent to

the existence of at least one x0 ∈ X such that pN(x0|x) = 0 ∀x 6= x0, which

in turn is equivalent to the condition that the output state |Ψx0〉 in Eq. (14) is

linearly independent from the states (|Ψx〉)x 6=x0. Since the function U⊗N
x 7→ |Ψx〉 is

linear, the condition U⊗N
x0

6∈ Span(U⊗N
x )x 6=x0 is necessary for error-free discrimination.

Similarly, the condition for unambiguous discrimination is equivalent to requirement

that pN(x0|x) = 0 ∀x 6= x0, which in turn is equivalent to the requirement that

the output states (|Ψx〉)x∈X are linearly independent. Independence of the states

(|Ψx〉)x∈X implies independence of the unitaries (U⊗N
x )x∈X. Both conditions are also

sufficient, because the linear function U⊗N
x 7→ |Φx〉⊗N defined by |Φx〉 := (Ux ⊗ I)|Φ〉,

|Φ〉 :=∑d
n=1 |n〉|n〉/

√
d is invertible, and therefore preserves linear independence. Note

that the states |Φx〉 can be obtained from a parallel strategy where N pairs of systems

are prepared in the state |Φ〉⊗N and the unitary Ux is applied on the first system of each

pair. �

Proof of proposition 1

By theorem 1, unambiguous discrimination is possible only if dim(UN ) = |U|. On the

other hand, thinking of each unitary U⊗N as a vector in the symmetric subspace of
(

Cd2
)⊗N

we have dimUN ≤
(

N + d2 − 1

d2 − 1

)

. The bound is tight, because one can

always choose the unitaries UN to be a spanning set for the symmetric subspace of
(

C
d2
)⊗N

. �
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Proof of proposition 2

Let S = (vx)x∈X be a finite set of vectors in a vector space V , with the property that

every two distinct vectors in S are linearly independent. Under this hypothesis, Chefles

proved that dim Span(v⊗N+1
x ) ≥ dim Span(v⊗Nx ) + 1 [57]. Applying the result to the set

UN := (U⊗N
x )x∈X gives dim(UN ) ≥ dim(U) +N − 1. Hence, for the unitaries in UN are

linearly independent for N = |U| − dim(U) + 1. �

Proof of lemma 2

Suppose that
∑

y∈X cy|ψy〉⊗N = 0. Multiplying by 〈ψx|⊗N , taking the modulus, and

summing over x we obtain

∑

x∈X

|cx| =
∑

x∈X

∣

∣

∣

∣

∣

∑

y∈X,y 6=x

cy〈ψx|ψy〉N
∣

∣

∣

∣

∣

≤
∑

x∈X

∑

y∈X,y 6=x

|cy|FN/2

= (|X| − 1)FN/2

(

∑

x∈X

|cx|
)

.

Clearly, if (|X| − 1)F
N/2
S < 1, the only possible solution is cx = 0 ∀x ∈ X. Hence, the

states (|ψx〉⊗N)x∈X are linearly independent. �

An alternative proof of lemma 2 can be obtained from the application of the Welch

bound [67].

Proof of proposition 3

Choose the input state |Ψ〉 ∈ H⊗H so that maxx,y∈X,x 6=y |〈Ψ|(U †
xUy⊗I)|Ψ〉|2 = FU. For

F
N/2
U ≤ 1/(|U|−1) the states (|Ψx〉⊗N)x∈X, |Ψx〉 := (Ux⊗I)|Ψ〉 are linearly independent.

Therefore, also the unitaries (U⊗N
x )x∈X are linearly independent, i.e. unambiguously

distinguishable. �

Proof of theorem 2

Using the formalism of quantum combs [56, 68], we express the probability pN(y|x)
as pN (y|x) = 〈〈Ux|⊗N Ty |Ux〉〉⊗N where (Ty)y∈Y is a collection of positive operators

satisfying suitable normalization conditions [69, 56] (the actual form of the conditions

is irrelevant here). The probability of correct identification can be bounded as

pN =

∑

x∈X px 〈〈Ux|⊗NR
− 1

2
N

(

R
1
2
NTxR

1
2
N

)

R
− 1

2
N |Ux〉〉⊗N

∑

y∈X Tr[TyRN ]

≤
∑

x∈X

px Tr[ρx R
− 1

2
N (|Ux〉〉〈〈Ux|)⊗NR

− 1
2

N ] ρx :=
R

1
2
NTxR

1
2
N

∑

y∈X Tr[R
1
2
NTyR

1
2
N ]
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≤
∑

x∈X

px Tr[ρx] ‖R
− 1

2
N (|Ux〉〉〈〈Ux|)⊗NR

− 1
2

N ‖∞

≤ max
x∈X

px 〈〈Ux|⊗N R−1
N |Ux〉〉⊗N ,

the last inequality coming from the condition
∑

x∈X Tr[ρx] = 1. Defining

xmax := argmax px 〈〈Ux|⊗N R−1 |Ux〉〉⊗N ,
the bound can be saturated by applying the N queries of Ux in parallel on the maximally

entangled state |Φ〉⊗N ,|Φ〉 := |I〉〉/
√
d, and by performing the POVM (Py)y∈Y defined

by Pxmax = R−1(|Uxmax〉〉〈〈Uxmax |)⊗NR−1/〈〈Uxmax|)⊗NR−2|Uxmax〉〉, P? = I − Pxmax, Py = 0

for every y 6= xmax. �

Basic representation-theoretic facts

Since generalized t-designs have an underlying group-theoretic structure, before

proceeding to the next proofs it is useful to recall some basic facts about group

representations.

Let us denote by Lin(H the set of linear operators acting on H and consider a

representation U : G → Lin(H), g 7→ Ug of some (compact) group G. Here we allow

U to be a a unitary projective representation (UPR), with multiplier ω : G ×G → C.

In short, this means that UgUh = ω(g, h)Ugh, ∀g, h ∈ G. The most familiar case is the

case of the unitary representations (UR), for which ω(g, h) = 1 ∀g, h ∈ G.

With a suitable choice of basis, the Hilbert space can be decomposed as a direct

sum of tensor product pairs

H =
⊕

µ∈Irr(U)

(Rµ ⊗Mµ) , (36)

where the sum runs over the set Irr(U) of all inequivalent irreducible representations

(irreps) contained in the decomposition of U , Rµ is a representation space of dimension

dµ, carrying the irrep Uµ, and Mµ is a multiplicity space of dimension mµ, mµ being

the multiplicity of the irrep Uµ in the decomposition of U . Eq. (36) implies that the

representation U can be written in the block diagonal form

U =
⊕

µ∈Irr(U)

(

Uµ ⊗ IMµ

)

, (37)

where IMµ denotes the identity matrix on Mµ. Note that all the irreps Uµ ∈ Irr(U)

must have the same multiplier ω.

Using Eq. (37) and the orthogonality of matrix elements, one can prove that the

set of unitaries U := (Ug)g∈G satisfies

dim(U) =
∑

µ∈Irr(U)

d2µ. (38)

Due to the importance of linear independence in the gate discrimination problem, this

equation will become very useful in the following section.
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A representation that plays a key role in gate discrimination is the regular

representation, which for finite groups is a representation of G on the Hilbert space

H = C|G|, equipped with the orthonormal basis {|g〉 | g ∈ G}. Precisely, the regular

representation with multiplier ω is the projective representation U reg,ω : G → Lin(C|G|)

defined by

U reg,ω
g |h〉 = ω(g, h) |gh〉 , ∀g, h ∈ G (39)

The regular decomposition is reducible and its decomposition is

U reg,ω
g =

⊕

µ∈Irr(G,ω)

(

Uµ
g ⊗ IMµ

)

Mµ ≃ C
dµ (40)

where Irr(G, ω) denotes the set of all the irreps of G with multiplier ω [in particular,

Irr(G, 1) is the set of all unitary irreps of G]. Note that every irrep appears with

multiplicity mµ = dµ. Choosing g = e (the identity element in the group) and taking

the trace on both sides of Eq. (40) one obtains

|G| =
∑

µ∈Irr(G,ω)

d2µ , (41)

which holds for every possible multiplier ω. Finally, combining Eqs. (38) and (41), one

gets the following statement:

Proposition 9 Let G be a finite group and let U : G → Lin(H) be a UPR with

multiplier ω. Then, the unitaries (Ug)g∈G are linearly independent if and only if the

decomposition of U contains all the irreps in Irr(G, ω).

Proof of theorem 3

LetG the compact group such that
∑

x∈X(Ux⊗Ux)
⊗N =

∫

g. (Ug⊗U g)
⊗N , or equivalently,

∑

x∈X U
⊗N
x AU †⊗N

x =
∫

g. U
⊗N
g AU †⊗N

g for every operator A ∈ Lin(H⊗N ). Exploiting

the decomposition of U⊗N , one can write U⊗N
x =

⊕

µ∈Irr(U)

(

Uµ
x ⊗ IMµ

)

and, therefore,

|Ux〉〉⊗N =
⊕

µ∈Irr(U⊗N ) |Uµ
x 〉〉|IMµ〉〉. The operator RN in theorem 2 can be directly

computed as

RN =
∑

x∈X

px (|Ux〉〉〈〈Ux|)⊗N

=

∫

g. (|Ug〉〉〈〈Ug|)
⊗N

=
⊕

µ∈Irr(U⊗N )

mµ

dµ

(

IRµ ⊗ IRµ ⊗
|IMµ〉〉〈〈IMµ|

mµ

)

,

so that, computing the inverse, one has 〈〈Ux|⊗N R−1
N |Ux〉〉⊗N =

∑

µ∈Irr(U⊗N ) d
2
µ =

dim(U⊗N) [cf. Eq. (38)]. Inserting this value in Eq. (25) proves Eq. (26). We now

prove that for the uniform prior the maximum success probability can be obtained with
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a deterministic strategy that uses the N queries in parallel. To this purpose, consider

the maximum likelihood input state [47, 49]: this is the state in H⊗N ⊗HA given by

|ΦML〉 :=
⊕

µ∈Irr(U⊗N )

√

dµ
dim(U⊗N )

|IRµ〉〉,

where |IRµ〉〉 =
∑dµ

n=1 |αµn〉|βµn〉, (|αµn〉)
dµ
n=1 being an orthonormal basis for Rµ and

(|βµn〉)
dµ
n=1 being an orthonormal set of vectors in Mµ ⊗HA [here the dimension of HA

is chosen in order to satisfy the relation dµ ≤ mµdA, ∀µ ∈ Irr(U⊗N)]. Applying the N

queries in parallel one obtains the output states |ΦML,x〉 := (U⊗N
x ⊗ IA)|ΦML〉. Optimal

discrimination can be achieved deterministically using the square root measurement

[70], which in this case has POVM elements Px :=
dim(UN )

|U|
|ΦML,x〉〈ΦML,x|. �

Proof of proposition 4

The proof is an immediate generalization of the proof of Lemma 1 in Ref. [48]. We

provide it here just for the sake of completeness. Consider the irreducible decomposition

H⊗N =
⊕

µ∈Irr(U⊗N )Rµ ⊗Mµ associated to the group representation U : g 7→ Ug. Take

an ancillary Hilbert space HA of dimension dA = maxµ∈Irr(U⊗N ) ⌈dµ/mµ⌉ and define

|Φ〉 ∈ H⊗N ⊗HA to be the unit vector |Φ〉 =
⊕

µ∈Irr(U⊗N ) cµ|Φµ〉, where cµ are non-zero

coefficients and |Φµ〉 is a maximally entangled state inRµ⊗M′
µ,M′

µ := Mµ⊗HA. Then,

the number of linearly independent states of the form |Φx〉 := (U⊗N
x ⊗ IA)|Φ〉, x ∈ X is

equal to the number of linearly independent unitaries in the set (U⊗N
x )x∈X. In particular,

the unitaries (U⊗N
x )x∈X are linearly independent (i.e. unambiguously distinguishable) iff

the states (|Φx〉)x∈X are linearly independent (i.e. unambiguously distinguishable), that

is, iff unambiguous discrimination is possible using a dA-dimensional ancilla satisfying

dA = maxµ∈Irr(U⊗N ) ⌈dµ/mµ⌉. �

Proof of corollary 4

Every unitary set U is contained in the group U(d). The irreps of the tensor

representation U 7→ U⊗N are labelled by Young diagrams of N boxes arranged in at

most d rows and their dimensions (multiplicities) are given by [71]

dµ =
∏

(i,j)∈µ

d+ j − i

|hij|

(

mµ =
N !

∏

(i,j)∈µ |hij |

)

, (42)

where the products runs over the boxes in the Young diagram µ, each box being identified

by its row-column coordinates (i, j). Here, |hij | is the length of the hook centred on the

box (i, j). Taking the ratio, one obtains

dµ
mµ

≤
∏

(i,j)∈µ d+ j − i

N !
≤
(

N + d− 1

d− 1

)

∀µ ∈ Irr(U⊗N ).

�
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Proof of theorem 4

The idea is to encode the ancilla space into one of the multiplicity spaces Mµ0 contained

in the decomposition of the M-fold tensor representation of U(d). This can be done

using the invariant encoding of Ref. [54]. Precisely, choosing µ0 ∈ Irr(U⊗M ) such

that mµ0 ≥ dA, one can encode the input state |Ψ〉 ∈ H⊗N ⊗ HA through the

isometric embedding Vµ0 : H⊗N ⊗ HA → H⊗N ⊗ Rµ0 ⊗ Mµ0 ⊂ H⊗(N+M) defined

by Vµ0 |α〉|β〉 := |α〉|ψ0〉|β〉, |ψ0〉 ∈ Rµ being a fixed unit vector. One way to satisfy the

condition mµ0 ≥ dA is to choose M = d · l and to set µ0 to be the Young diagram with

d rows of length l. By Eq. (42) one has

mµ0 =
M !

(l!)d
∏d−1

k=0

(

l + k

k

) ≥ M !

(l!)d
∏d−1

k=0(l + 1)k
=

M !

(l!)d(l + 1)d(d−1)/2
.

Hence, for large M the Stirling approximation yields logd(mµ0) = M logd(M/e) −
M logd(l/e) − O(logd l) = M − O(logM). For large dA, the condition mµ0 ≥ dA is

then satisfied whenever M ≥ (1 + ǫ) logd(dA), ǫ > 0. �

Proof of proposition 6

Suppose that the states |Ψx〉 := U⊗N
x |Ψ〉 are linearly independent and define

ρ := 1/|U|
∑

x∈X |Ψx〉〈Ψx|. Then, the states |Φx〉 :=
√

1/|U|ρ−1/2|Ψx〉 are mutually

orthogonal. Since the unitaries form an t-design, we have [ρ, U⊗N
x ] = 0 ∀x ∈ X.

Hence, the orthogonal states |Φx〉 are generated by applying U⊗N
x to the state |Φ〉 :=

√

1/|U|ρ−1/2|Ψ〉. This yields the desired strategies for perfect discrimination. �

Proof of proposition 7

The proof invokes the following bound on the sum of the multiplicities arising in a tensor

representation:

Lemma 2 Let mµ be the multiplicity of the irrep µ in the decomposition of U⊗M . Then,

∑

µ∈Irr(U⊗M )

mµ ≥ dM
√

|G|
(43)

Proof. Setting g = e in the decomposition U⊗M
g =

⊕

µ∈Irr(U⊗M)

(

Uµ
g ⊗ IMµ

)

, and taking

the trace of U⊗M
g one gets dM =

∑

µ∈Irr(U⊗M ) dµmµ. On the other hand, dµ ≤
√

|G| for
any µ, whence Eq. (43). �

Proof of proposition 7. Since N queries are sufficient for perfect discrimination

using an ancilla, the unitaries (U⊗N
g )g∈G are linearly independent (lemma 1). Now,

suppose thatM additional queries are available and consider the decomposition U⊗M =
⊕

µ∈Irr(U⊗M) (Uν ⊗ IMν ). Since the tensor product cannot decrease the number of linearly

independent vectors, the unitaries (U⊗N
g ⊗ Uµ

g )g∈G are linearly independent for every
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µ ∈ Irr(U⊗M). Equivalently, this means that the representation U⊗N ⊗ Uµ contains all

the irreps with multiplier ωN+M , namely Irr(U⊗N⊗Uµ) ≡ Irr(G, ωN+M) ≡ Irr(U⊗(N+M)).

Denoting by mν,N+M the multiplicity of the representation ν ∈ Irr(U⊗N+M) and by

Mν,N+M the corresponding multiplicity space, we have

mν,N+M ≥
∑

µ∈Irr(U⊗M )

mµ ≥ dM
√

|G|
,

the last inequality due to lemma 2. Now, the condition dM ≥ dA
√

|G| guarantees
mν,N+M ≥ dA for every possible irrep ν ∈ Irr(G, ωM+N). Hence, by proposition 4

the optimal discrimination can be achieved without ancilla. Since dim(UN ) = |G| =
dim(UN+M), the discrimination is perfect (theorem 3). �

Proof of proposition 8

The proof takes advantage of the connection between perfect distinguishability and the

regular representation:

Lemma 3 [55, 38] Let U : G → Lin(H) be a UPR with multiplier ω. Then the following

are equivalent

(i) the gates (U⊗N
g )g∈G are perfectly/unambiguously distinguishable without ancilla

(ii) U⊗N contains as a sub-representation the regular representation with multiplier ωN ,

defined by

U reg
g |h〉 = ωN(g, h) |gh〉 , ∀g, h ∈ G,

where (|g〉)g∈G are orthonormal vectors.

(iii) the decomposition of U⊗N contains every irrep µ ∈ Irr(G, ωN) with multiplicity

mµ ≥ dµ.

Proof of proposition 8 . Let U⊗N =
⊕

µ∈Irr(U⊗N ) U
µ⊗ IMµ be the decomposition

of U⊗N . By the orthogonality of the characters, the multiplicity mµ is given by

mµ =
1

|G|
∑

g∈G

Tr[Uµ
g ] Tr[Ug]

N .

Hence, defining the normalized characters ν(g) := Tr[Ug]/d and νµ(g) := Tr[Uµ
g ]/dµ, one

has

mµ =
dµd

N

|G|
∑

g∈G

νµ(g) ν
N(g)

≥ dµd
N

|G| (1−
∑

g∈Supp(ν)\{e}

|νµ(g) νN (g)|)

≥ dµd
N

|G| (1− F
N/2
U,ent C).

If N is such that dN(1−FN/2
U,ent C) ≥ |G|, then we have mµ ≥ dµ for every µ ∈ Irr(G, ωN).

This means that U⊗N contains the regular representation U reg,ωN

as a subrepresentation,

and, therefore, perfect discrimination is possible by proposition 3. �
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8.1. Scaling of the ancilla-free query complexity under the condition of Eq. (35)

Eq. (35) can be rewritten as
(

1

F
1/2
ent,U

)logd |G|

≥ C

1− α
,

or, equivalently, F
logd |G|/2
ent,U C ≤ 1 − α. By monotonicity of the exponential, this implies

that, for every N ≥ logd |G|, one has F
N/2
loc,U C ≤ 1− α, which in turn implies

dN
(

1− F
N/2
loc,U C

)

≥ α dN .

Hence, choosing N = ⌈logd |G|⌉ + logd α
−1 the condition of Eq. (34) is satisfied. In

conclusion, the query complexity has been bounded has NAF
min ≤ ⌈logd |G|⌉+ logd α

−1.
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