
H E L P I N G D E V E L O P E R S H E L P T H E M S E LV E S :
A U T O M A T I C D E C O M P O S I T I O N O F C O D E
R E V I E W C H A N G E S

M I K E B A R N E T T, C H R I S T I A N B I R D , A N D S H U V E N D U K . L A H I R I
M I C R O S O F T R E S E A R C H

J O Ã O B R U N E T
F E D E R A L U N I V E R S I T Y O F C A M P I N A G R A N D E (U F C G) , B R A Z I L

1

2

25,000 developers
 100,000 reviews per month

CodeFlow

The code review process

The Problem

“Fixed #244 by adding inmethod
binders in between properties and indexers.

Also refactors expression-bodied
member semantic model tests into their own file

and adds some extra tests.”	

3

Developers commit loosely related changes.

It is difficult to review unrelated changes at once.

4

It is difficult to review unrelated changes at once.

4

Literature said so
“The	 more	 files	 and	 diffs	 the	 more	 rela3vely	 independent	 changes”	 [1]	

“Par3cipants	 call	 for	 a	 tool	 that	 can	 automa3cally	 decompose	 a	
change	 into	 separate	 sub-‐changes“	 [2]

Wouldn’t it be nice?

5

Wouldn’t it be nice?

ClusterChanges!

5

6

ClusterChanges

diff regions

7

ClusterChanges
Standard set of diff regions

8

ClusterChanges
Some of them are syntactically and semantically related.

9

ClusterChanges

Partial program analysis

Roslyn

9

ClusterChanges

Partial program analysis

Roslyn
 Entities (nodes)

methods, fields, properties etc

Relationships (edges)
method calls, field access etc

def-use relationship

10

The relationships

def-use relationship

use$

defini&on(

10

The relationships

use-use relationship

11

The relationships

use-use relationship

defini&on(

use(use(

11

The relationships

12

ClusterChanges
non-trivial partition non-trivial partition trivial partitions

12

ClusterChanges
non-trivial partition non-trivial partition trivial partitions

Diffs within the same method are linked together.
We don’t split method across partitions.

2-step Evaluation
Quantitative Qualitative

Distribu3on	 of	 par33ons	

1000	 Bing	 and	 Office	 reviews	

Manual	 inspec3on	

	 	 	 	 	 	 	 100	 reviews	

Interviews:	 20	 developers	 from	 13	 projects

13

Quantitative: trivial partitions

Why?

14

Quantitative: trivial partitions

Why?

14

Quantitative: trivial partitions

Why?
e.g. Log Messages

14

Quantitative: non-trivial partitions

15

Quantitative: non-trivial partitions

15

Quantitative: non-trivial partitions

We found 3 false-negatives from 50 Changesets

15

Qualitative: The ground truth

16

Qualitative: The ground truth

16

Qualitative: The ground truth

RQ1: Do developers agree with our decomposition?

16

Qualitative: The ground truth

RQ1: Do developers agree with our decomposition?

16

Qualitative: The ground truth

RQ1: Do developers agree with our decomposition?

16

Qualitative: The ground truth

RQ1: Do developers agree with our decomposition?

RQ2: Can organizing a changeset using our decomposition
help reviewers?

16

Firehouse interviews
• Monitored review submissions

• Criteria: distance and #partitions

17

Firehouse interviews
• Monitored review submissions

• Criteria: distance and #partitions

50mi%&>%80.5%km%

Rush to the scene!

17

RQ1: Do developers agree
with our decomposition?

18

RQ1: Do developers agree
with our decomposition?

19

RQ1: Do developers agree
with our decomposition?

19

RQ1: Do developers agree
with our decomposition?

Some trivial should be moved to one of non-trivial partitions.
20

RQ1: Do developers agree
with our decomposition?

21

RQ1: Do developers agree
with our decomposition?

“These were actually two different changes and I actually split them in
two different things after this review” [P7]. 

21

RQ1: Do developers agree
with our decomposition?

“These were actually two different changes and I actually split them in
two different things after this review” [P7]. 

“I would like tag partitions” [P14].

21

RQ1: Do developers agree
with our decomposition?

22

RQ1: Do developers agree
with our decomposition?

“In some sort of hypothetical perfect splitting that read my mind, there is
one change in one line which was a variable changed (regular expression)
that could be in a different partition. But I would not expect that, because
it is difficult” [P9].

22

RQ1: Do developers agree
with our decomposition?

23

RQ1: Do developers agree
with our decomposition?

 
[P13] “There is no reason to commit unrelated changes.”

 “The tool should be 95% correct or else I would not use it
 because it would be annoying.”

23

RQ1: Do developers agree
with our decomposition?

 
[P13] “There is no reason to commit unrelated changes.”

 “The tool should be 95% correct or else I would not use it
 because it would be annoying.”

[P17] “What is the why behind it?”

 “If you do not have something showing
 why/how the partitions were created, it is
 difficult to see its value.”

23

RQ2: Can organizing a changeset using
our decomposition help reviewers?

“For large sets it it would be very helpful"

“it is useful because allow different
reviewers with different purposes to
focus on what they want.”

24

RQ2: Can organizing a changeset using
our decomposition help reviewers?

It would speed up the review process.

pre-commit usage

"If I had a way to run this tool before I commit,
I would have even considered splitting this
partition 2 into a second commit" [P4].

25

And, more importantly…

Please,
can I try?

26

Developers mentioned CodeFlow and ask to use or integrate.

Microsoft internal event with developers [Techfest]
• hundreds signed up to be notified
• quite a few asked for the prototype
• a few have joined the project and
are now contributing

Related Work
Tao et al. How do software engineers understand code
changes? An exploratory study in industry. In FSE,
2012.

Kirinuki et al. Hey! are you committing tangled
changes? In ICPC, 2014.

Herzig and Zeller: The impact of tangled code
changes. In MSR, 2013.

27

Summary

28

Summary

28

Summary

28

Summary

28

Summary

28

Summary

28

Summary

28

