
Computing Kernels Implemented with a
Wormhole RTR CCM

Ray A. Bittner, Jr. and Peter M. Athanas,
Virginia Tech

Department of Electrical and Computer Engineering
Blacksburg, Virginia 24061-01 11

ABSTRACT

The Wormhole Run-Time Reconfiguration (RTR)
computing paradigm is a method for creating high
performance computational pipelines. The scalability,
distributed control and data pow features of the
paradigm allow it to fit neatly into the Configiirable
Computing Machine (CCM) domain. To date, the field
has been dominated by lurge bit-oriented devices whose
jlexibility can lead to lowered silicon utilization
eflciencies. In an efort to raise this eficiency, the Colt
CCM has been created based on the Wormhole RTR
paradigm. This paper outlines methods of
implementation and performance for several common
operations using these concepts. They serve as
indicators of the diversity of algorithms that can be
instantiated through the high-speed run-time
reconfiguration that these devices make possible.
Particular attention is paid to floating point
multiplication. Also discussed is the topic of data
dependent computation which would seem to be counter
intuitive to the Wormhole RTR paradigm. The paper
concludes with a summary of performance of the three
computations.

1. INTRODUCTION

The varieties of CCM platforms, the application
domains, and the aggregate of CCM practitioners are all
growing at a rapid rate. Despite the challenges that
contemporary CCM platforms face, namely development
software, dynamic resource allocation strategies, and
hardwarehoftware coherence, the computational benefits
of CCM platforms often prevail over conventional
alternatives. Much progress has been made in CCM
software; however, software alone cannot overcome all
of the challenges mentioned above. It is also necessary
to explore alternative architectures and computing
paradigms which will not only lead to improvements in
computational performance and density, but also
facilitate the application development process and
system integration. To date, there have been a number of
notable endeavors set out to explore various device-level
and system-level architectures [1,2,3,4]; yet, since this
field is still in its infancy, there are many unexplored
avenues that warrant investigation.

Colt is an experimental FPGA-like integrated circuit
designed for configurable computing. Unlike

Stream

Figure 1: The basic architecture of the Colt CCM, including Interconnected Functional Units
(IFUS). Data Ports (DPs) and the MultiDlier (MULT).

Port

98
0-8186-8159497 $10.00 0 1997 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

contemporary bit-oriented FPGAs, the Colt CCM
features both word-wide and bit-wide pathways, targeted
toward digital signal processing applications. As a
research endeavor, Colt attempts to explore a number of
areas that are not currently possible using commercially
available devices. Design attention has be focused on
attaining high operational clock rates and shortened
reconfiguration times. Although Colt is intended for use
in a large, run-time reconfigurable (RTR) environment,
this paper illustrates aspects of Colt through the use of
simple static applications. By focusing on static
applications, the advantages of the word-oriented
architecture can be compared independently of the rapid
run-time reconfiguration features of the Colt device.
Rudimentary computational blocks, such as the ones
presented in this paper. coupled with rapid RTR serve as
the basic framework for the final computing platform.

2. COLT / STALLION ARCHITECTURE
The Colt CCM is based on the Wormhole Run-time
Reconfiguration (RTR) paradigm [5]. Wormhole RTR is
a method of creating custom computational pipelines and
interconnection networks through a pool of configurable
resources in a distributed fashion. These pipelines are
constructed using streams, -- a sequence of words
containing both configuration information and
computational data. The streams are injected into the
resource pool and then independently steer themselves;
programming the functionality of each resource that they
encounter. The steering and programming information is
contained in the stream header. which is broken up into
discrete packets containing programming information for
individual units. Each packet is peeled off of the front of
the stream by the resource it programs as the stream
proceeds through the resource pool. After the header, the
remainder of the stream consists of the data to be
processed through the pipeline.

Figure 2 illustrates the basic principle of Worinhole
RTR. In this figure, a stream is presented to the
boundary of allocatable computing resources. The front
of the stream (right-hand side) contains the stream

Time 1 Time 2

header consisting of a variety of packets (PI through
PS). A computational pathway is created as the stream
tunnels through the resource pool. Note that the size of
the stream header shrinks as the stream progresses
through the platfom.

The architecture of the Colt CCM (Figure 1) has
been designed to support the Wormhole RTR paradigm.
It consists.of a pool of computational resources including
16 Functional Units (Fus) and a 16-bit x 16-bit unsigned
multiplier. A 4x4 cylindrical mesh into which the FUs
are embedded exemplifies local routing resources on the
chip. A segmented bus, called the Skip Bus, au-ments
the connectivity of the mesh with an additional link
between nearest neighbors that can be configured to
allow data to flow in either direction between them.
These additional segments can be connected so that
signals can skip over several underlying FUs in a single
clock pulse; allowing them to overcome the inherently
planar mesh topology. A 12-input by 16-output crossbar
accepts a single output from the bottom of each column
of the mesh and provides two inputs into the top of each
column. Up to 12 independent streams can
simultaneously establish connections through the
crossbar by virtue of 156 distributed state machine.
Crossbar outputs also route directly into the two 16-bit
inputs of the multiplier and the upper and lower 16-bit
words of the result have independent paths back into the
crossbar. The off-chip YO resources are represented by
six 16-bit bi-directional data ports, each of which has
dedicated connections to and from the crossbar.

A stream can be injected into any of the data ports.
The first packet is stripped from the header and is used to
program the behavior of the data port after configuration.
From there, the stream continues to the crossbar, where
the second packet is taken from the header and is used to
program the output from which the stream will emerge.
At that point, the stream can continue to the multiplier, to
one of the mesh inputs, or to all of the mesh inputs
simultaneously using broadcast mode; the destination is
entirely dependent on the configuration desired. A more
complete exposition of the Colt/Stallion architecture and
computing model can be found in [6].

Time 3 Time 4

I
I I

Data I P ~ (P ~ ~ P ~ I P ~] P I] >

Figure 2 - In this two-dimensional depiction. wormhole run-time
reconfiguration uses independently guided streams to configure a resource
pool.

99

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

3. COLT COMPUTATIONAL KERNELS
As mentioned in the introduction. Colt has been designed
and optimized specifically to target digital signal
processing applications. In this section, a few select
example computational structures are presented which
are themselves building blocks of higher signal
processing functions. The basis of selecting the DSP
kernels is familiarity, diversity of computational
requirements and diversity of IIO requirements [7].
These structures are represented in their static form. It
should be noted that one of the key features of
Wormhole RTR is the rapid partial reconfiguration
capability. These features can only be effectively
evaluated in much larger applications in which these
kemels are dynamically paged into and out of the
platform. The advantages of rapid partial
reconfiguration have already be quantified in a number
of applications [8,9,101, and for brevity, will not be
expounded upon here. Each of these applications fits in
a single Colt device with no need for run-time
reconfiguration.

This section details the implementation of three
different functions on Colt. Starting with a simple
example of the implementation of a dot product, the
section introduces basic concepts and eccentricities of
Colt programming. The implementation of a floating
point multiplier is then explored, giving a floating point
format that can be easily manipulated using the
computing resources of Colt. This example introduces
the concept of stream programming and illustrates some
of the unique problems that arise due to architectural
constraints. The section concludes with an example of
conditional execution -- the calculation of an integer
factorial.

4 DOT PRODUCT EXAMPLE
The dot product of two vectors is a common kernel
found in a variety of signal processing, computer
graphics. and system modeling problems. There are
many methods of implementing this function on the Colt
architecture. Which method is the most optimal choice
is dependent on several factors, including the amount of
available resources: the length of the vectors, the desired
speed of execution, the amount of latency that can be
tolerated. the choice of floating or fixed point arithmetic
and the number of bits of precision used. For purposes
of the first example, fixed-point arithmetic using the
fastest execution method possible will be assumed. One
possible implementation is shown in Figure 3.

The stream concept is used to the fullest in this
implementation. The vector elements are presented
sequentially and in order to the Colt data ports. The data
values pass from the data ports through the crossbar to a
built-in multiplier. The pipelined multiplier requires two
cycles to evaluate each product and then passes it on
through the crossbar to an FU that has been configured
as a summing node. The partial sums are sent through
the crossbar to a data port, and from there the partial
sums are written to external memory in sequential order.
The last value written out will be the final sum. Note
that the delta delay for each pipelined stage is given in
clock cycles next to each component. There are several
operating details that are hidden by this diagram;
pertinent issues are identified here, yet refer to [11,12]
for a more complete analysis.

In this particular implementation, the stream for
each input vector finds its way to the Colt chip
boundary. In order for the pipeline calculation to be
correct, the g’s must be matched with the proper bI’s.
Depending on the programmed mode of the data ports,
different flow control measures can be taken. Raw Mode
makes no attempt at synchronizing the inputs to the
various ports, while Synchronization and Loop Modes do
provide this functionality.

I

Chip Boundary -._.-._.-

! !

! I

! !
! !

!
!

!
! !

! A = I A = l !

I

Figure 3: Dot Product Implementation #1.

100

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

a x t Addend

I I
I I

I I

I I
I I
I I

Partial sum
Figure 4: Summing FU Logical Diagram.

Another hidden detail in Figure 3 is the operation of
the Summing FU. Figure 4 shows a logical depiction of
the physical configuration of the Summing FU. The Next
Addend is latched into the Right Input Register on each
clock pulse. The Right Input Register is added to the
Lefr Input Register and the new partial sum is latched
back into the L.efi Input Register, hence the Left Input
Register acts as an accumulator. The partial sum is also
sent to the primary output of the FU. For extended
precision. the accumulation function can be programmed
to span multiple FUs. In this particular implementation,
the Left Input Register must be initialized to zero prior to
the start of each dot product computation. In the Colt,
this problem can be solved by creative use of the valid
bit, which accompanies each data item throughout the
chip.

Note that in this example, if the vectors are n words
long, one output word is produced every n clock pulses
(the data is produced at a rate I/n of the rate in which the
inputs are supplied). Because of this, it is important to
configure Colt to validate only the final summand at the
proper time in the output stream. Once again, this can be
done with creative use of the valid bit computations,
along with the chip data ports. For the sake of brevity,
the details of which are left in [ll], and only the final
confipration is presented here.

5 FLOATING POINT MULTIPLICATION
EXAMPLE
Even though it has been targeted primarily to integer
computations, Colt will be required to perform floating
point operations. Provisions have been made within the
Functional Units to ease the burden when floating point
mathematics is required. To demonstrate these
capabilities, the example of floating point multiplication
will be addressed. There are three main steps to
consider: mantissa multiplication, addition of exponents
and re-normalization.

1 bit 15 bits 16 bits

Figure 5: Floating Point Format used in this example,

The floating-point number format demonstrated here
(shown in Figure 5) is split into two separate 16-bit
words so that they can be easily split into two separate
data streams. Floating point representations often use a
biased exponent representation instead of a true two’s
complement form so that an unsigned comparator can be
used to determine relative numeric magnitudes; however,
signed and unsigned comparators have the same cost on
the Colt, so the advantage of biased arithmetic is
negated. Further, biasing forces the bias to be added and
subtracted during processing, which would require added
resources. Another often used floating point technique is
the assumption of an implied binary digit 1 to the left of
bit 15 of the mantissa. This technique will not be used
here for the sake of simplicity. It will be assumed that
the mantissa is always normalized so that the leading bit
is always a 1. The sign bit for the represented quantity is
stored in bit 15 of the exponent.

Figure 6: Floating Point Multiplier Programming
Method.

101

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

Four streams are required for the floating-point
multiplier and the programming path followed by each of
these is shown in Figure 6. Two floating-point values
are presented to the Colt chip boundary. The “Left”
value is injected through Ports 1 and 2 and the “Right”
value is injected through Ports 3 and 4. Two of the
streams carry the final result out of Ports 5 and 6. The
four streams are color coded for clarification. Each box
indicates a unit that must be traversed by a stream. The
number in parenthesis on the last line of each box
indicates the order in which the stream programs the
unit.

Ldt Exponent Right Exponent
Port I Poll 3 .

I 1

PSOul

...............

... -

Pars S L-r’
:sOut -
.................................

I

proceeds to configure the third column, branching at FU
33.

The full floating point multiplier is shown in Figure
7. Solid lines indicate that a local connection is used. A
dotted line indicates that the Skip Bus is used to pass the
value. The path taken by the pair of mantissa values is
the simplest, and will be the only one examined in detail.
The mantissas enter through Pons 2 and 4 and proceed
directly to the multiplier. After two clock cycles, a 32-
bit result is produced. The leading bit of the 32-bit
mantissa is tested, and if the result is 0, the mantissa is
shifted once to the left and the exponent must be

Ldt Manursa k g h l Manuma

Figure 7: Floating point multiplier structure.

Divergent stream support is also a feature of the
Colt. A divergent stream is define to be one that
configures two or more different data paths emanating
from a single node. This feature is evident in the
configuration of the center columns where that stream
first programs the second column of the mesh and then

decremented by 1 for proper normalization.

The right hand column of the mesh is configured to
perform the re-normalization function (Fus A4. C4 and
D4). The low word of the 32-bit result is latched into the
L.eJ Znprit Register of FU A4, where it is shifted once to

102

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

the left. The bit shifted out may need to be shifted into
the low bit position of the high word of the 32-bit result
if normalization is required. This shifted bit is sent down
the Skip Bus to FU C4; where it is supplied to the Barrel
Shifter as the bit to be shifted in if re-normalization is
required. The high word of the 32-bit result is latched
into both input registers of FU C4 at the same time that
the low word is latched into FU A4.

New Operands
Pol3 1

Multiplier
Delay

i;' Select Valid

Multiplier

Prod L -

Output Valid
If!= 1

Figure 8: Conceptual Factorial Implementation.

Output Valid Select
stall IfFN

The exponents of the floating-point values take a
more convoluted path through the mesh. Each sign bit
must first be separated from its exponent so that the sign
bits may be XORed together to produce the sign bit of
the result. The exponents must be added together and
then tested to determine if an arithmetic overflow
occurred. If an arithmetic overflow is detected, the
number is either too large or too small to be represented
and the exponent of the result will be reset to the smallest
possible value. After testing for overflow, the exponent
may be decremented once more if the mantissa
multiplication result requires re-normalization. This, too.
is tested for arithmetic underflow, and is adjusted back to
the smallest possible exponent if it occurs. Then the sign
and exponent of the final result are reunited and the
upper word of the final result is sent out through Porr 5.

I 1

of the deep level of understanding required. A full
understanding of the valid bit, conditional logic and the
data port modes is necessary. In an attempt to clarify the
design process, the calculation of a 16-bit integer
factorial function will be detailed in this section as an
example.

The block level design of the factorial function is
shown in Figure 8. The calculation of the factorial
function is a data dependent looping problem because the
number of multiplicative iterations required is dependent
on the input operand. The implementation shown can
really be considered as two separate executine processes
that must exchange data at timed intervals. For purposes
of explanation, all blocks shown in Figure 8 can be
considered to incur a single unit delay of latency with the
exception of the Multblier and Multiplier Delay blocks,
which each require two. In the actual implementation
shown in Figure 9, the number of cycles of delay varies
in order to match the delay constraints required by the
hardware to those required by the algorithm. The path
equalization process is a key component of design when
using Colt. and is arguably the trickiest as well.

The functional blocks show the first process in the
left column of the figure. In these blocks. the input
operand is decremented until it reaches 1. Because this
function has an unknown execution time, a collision free
pipeline cannot be constructed. The alternative is to use
the data ports in Loop Mode so that they will guarantee
that only one valid operand exists in the pipeline at any
given time. The Select Valid block shown acts as a
multiplexer that will switch to forward whichever of the
two inputs are flagged as being valid. The pipeline is
initialized with only invalid data and then the first
operand is injected. While that operand is being
processed, it circulates around the loop and the Select
Valid block will continue selecting it until the
computation is complete. The original input value
circulates in the loop shown on the left and each time it
does so it is decremented by one. When the value is
decremented to 1, the Output Valid If != 1 block will
cause the operand to become invalid. When a valid
result is written from Data Port 2, it will trigger the
injection of a new valid operand from Data Port 1, and
because the previous value is now invalid. the Select
Valid block will select the new operand and the process
begins again. One implementation is shown below in
Figure 9.

I

6 FACTORIAL COMPUTATION

The implementation of conditional execution structures
within the Colt architecture can be challenging because

103

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

1 Mult j 1
Rod H prod L

Figure 9: Colt Factorial Implementation.

The multiplicative calculations are performed by the
process that executes in the loop shown on the right side
of Figure 8. The Latch Vulid register shown is used to
hold the partial product computed in each iteration of the
calculation. and is initialized with a valid 1 at
configuration time. The Multiplier will not output a
valid result unless both inputs to it are valid. This
condition will only occur when the operand value being
decremented circulates through to the output of the
Select Vulid block. At that time, the Multiplier will
produce a valid result, which will be sent to the Select
Stan and Oritpiif Vdid If FN blocks. The Select Stun
block will always forward the results of the multiplier
unless the original operand has been decremented to 1
and the calculation is complete. If the calculation is not
finished. the new partial product is forwarded to the Hold
Partial Sion block and then to the Multiplier where the
process will begin again when the original operand re-
circulates. If the calculation has finished, then the Select
Stun block will forward a valid 1 to the Hold Pcirtial
Sim block so that it will be initialized for the next

calculation. At the same time, the Uiifpirt Valid If FN
block will receive the fully computed value and will send
it out Data Pon 2.

7. CONCLUSION
The applications exemplified in this paper illustrate the
diversity of algorithms that can be instantiated through
the high-speed run-time reconfiguration. Characteristics
of the kemels are provided in Table 1. The Colt chip is
a prototype Wormhole RTR device which has been
fabricated using a 3-metal 0.5 pm CMOS process
through MOSIS on a 6.1 mm x 5.5 mm die.

104

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

1

Kernel Die Configuration Configuration Performance
Utilization Words Time

-
Dot Product < 30% 37 740 as 50 MilliodN per Sec .

FP Mult. 100% 142 1360 IIS 50 Mflops

Factorial 72% 94 1880 11s Data Dep.

REFERENCES

R. Amerson, R. Carter, B. Culbertson, P. Kuekes,
and G. Snider, “Teramac- Configurable Custom
Computing,” Proceedings of the Third IEEE
Symposium on FPGAs for Custom Computing
Machines, IEEE Computer Society Press, pp. 32-
38, April, 1995.

R. Hartenstein, R. Kress, and H. Reinig, “A New
FPGA Architecture for Word-Oriented Datapaths,”
Proceedings of the 4’h International Workshop on
Field-Programmable Logic and Applications,
Springer-Verlag, pp. 144-155, September 1994.

I. Page, “Reconfigurable Processor Architectures,”
Microprocessors and Microsystems, vol. 20, no. 3,

E. Mirsky and A. DeHon, “MATRIX: A
Reconfigurable Computing Architecture with
Configurable Instruction Dishbution and
Deployable Resources,“ the Forth IEEE
Symposium on FPGAs for Custom Computing
Machines, IEEE Computer Society Press, pp. 78-
84. April, 1995.

R. Bitmer, P. Athanas, “Wormhole Run-time
Reconfiguration,” to appear at the ACM/FPGA
Conference, Monterey, California, February 1997.

R. Bitmer, M. Musgrove, P. Athanas, “Colt: An
Experiment in Rapid Run-time Reconfiguration,” in
SPIE Proceedings on High-speed Computing,
Digital Signal Processing, and Filtering Using
Reconjigurable Logic, pp. 187-194, November
1996.

D. Buell, J. Amold, W. Klienfelder, Splash 2:
FPGAs in a Custom Computing Machine, IEEE
Computer Society Press, 1996.

J. Hadley and B. Hutchings, “Design
Methodologies for Partially Reconfigured
Systems,” Proceedings of the Third IEEE
Symposium on FPGAs for Custom

pp. 185-196, 1996.

Computing Machines, pp. 78-84, IEEE Computer
Society Press, April, 1995.

[91 E. Lemoine and D. Merceron, “Run-Time
Reconfiguration of FF’GAs for Scanning Genomic
Databases,” Proceedings of the Third IEEE
Symposium on FPGAs for Custom Computing
Machines, IEEE Computer Society Press, pp. 90-
98,ApriL 1995.

[lo] B. Schoner, C. Jones, and J. Villasenor, “Issues in
Wireless Video Coding using Run-time
Reconfigurable FPGAs,” Proceedings of the n i r d
IEEE Symposium on FPGAs for Custom Computing
Machines, IEEE Computer Society Press, pp. 85-
89, April, 1995.

[111 R. Bitmer, “Wormhole Run-Time Reconfiguration:
Conceptualization and VLSI Design of a High
Performance Computing System!” Ph. D
dissertation, Virginia Tech, Department of
Electrical and Computer Engineering, Blacksburg,
Virginia, January 1997.

http://www.ee.vt.edu/athanas/whrtr
[121 “Wormhole RTR”

105

Authorized licensed use limited to: MICROSOFT. Downloaded on October 8, 2009 at 12:15 from IEEE Xplore. Restrictions apply.

http://www.ee.vt.edu/athanas/whrtr

