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ABSTRACT 

The Wormhole Run-Time Reconfiguration (RTR) 
computing paradigm is a method for creating high 
performance computational pipelines. The scalability, 
distributed control and data pow features of the 
paradigm allow it to fit neatly into the Configiirable 
Computing Machine (CCM) domain. To date, the field 
has been dominated by lurge bit-oriented devices whose 
jlexibility can lead to lowered silicon utilization 
eflciencies. In an efort to raise this eficiency, the Colt 
CCM has been created based on the Wormhole RTR 
paradigm. This paper outlines methods of 
implementation and performance for several common 
operations using these concepts. They serve as 
indicators of the diversity of algorithms that can be 
instantiated through the high-speed run-time 
reconfiguration that these devices make possible. 
Particular attention is paid to floating point 
multiplication. Also discussed is the topic of data 
dependent computation which would seem to be counter 
intuitive to the Wormhole RTR paradigm. The paper 
concludes with a summary of performance of the three 
computations. 

1. INTRODUCTION 

The varieties of CCM platforms, the application 
domains, and the aggregate of CCM practitioners are all 
growing at a rapid rate. Despite the challenges that 
contemporary CCM platforms face, namely development 
software, dynamic resource allocation strategies, and 
hardwarehoftware coherence, the computational benefits 
of CCM platforms often prevail over conventional 
alternatives. Much progress has been made in CCM 
software; however, software alone cannot overcome all 
of the challenges mentioned above. It is also necessary 
to explore alternative architectures and computing 
paradigms which will not only lead to improvements in 
computational performance and density, but also 
facilitate the application development process and 
system integration. To date, there have been a number of 
notable endeavors set out to explore various device-level 
and system-level architectures [1,2,3,4]; yet, since this 
field is still in its infancy, there are many unexplored 
avenues that warrant investigation. 

Colt is an experimental FPGA-like integrated circuit 
designed for configurable computing. Unlike 

Stream 

Figure 1: The basic architecture of the Colt CCM, including Interconnected Functional Units 
(IFUS). Data Ports (DPs) and the MultiDlier (MULT). 
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contemporary bit-oriented FPGAs, the Colt CCM 
features both word-wide and bit-wide pathways, targeted 
toward digital signal processing applications. As a 
research endeavor, Colt attempts to explore a number of 
areas that are not currently possible using commercially 
available devices. Design attention has be focused on 
attaining high operational clock rates and shortened 
reconfiguration times. Although Colt is intended for use 
in a large, run-time reconfigurable (RTR) environment, 
this paper illustrates aspects of Colt through the use of 
simple static applications. By focusing on static 
applications, the advantages of the word-oriented 
architecture can be compared independently of the rapid 
run-time reconfiguration features of the Colt device. 
Rudimentary computational blocks, such as the ones 
presented in this paper. coupled with rapid RTR serve as 
the basic framework for the final computing platform. 

2. COLT / STALLION ARCHITECTURE 
The Colt CCM is based on the Wormhole Run-time 
Reconfiguration (RTR) paradigm [5].  Wormhole RTR is 
a method of creating custom computational pipelines and 
interconnection networks through a pool of configurable 
resources in a distributed fashion. These pipelines are 
constructed using streams, -- a sequence of words 
containing both configuration information and 
computational data. The streams are injected into the 
resource pool and then independently steer themselves; 
programming the functionality of each resource that they 
encounter. The steering and programming information is 
contained in the stream header. which is broken up into 
discrete packets containing programming information for 
individual units. Each packet is peeled off of the front of 
the stream by the resource it programs as the stream 
proceeds through the resource pool. After the header, the 
remainder of the stream consists of the data to be 
processed through the pipeline. 

Figure 2 illustrates the basic principle of Worinhole 
RTR. In this figure, a stream is presented to the 
boundary of allocatable computing resources. The front 
of the stream (right-hand side) contains the stream 

Time 1 Time 2 

header consisting of a variety of packets (PI through 
PS). A computational pathway is created as the stream 
tunnels through the resource pool. Note that the size of 
the stream header shrinks as the stream progresses 
through the platfom. 

The architecture of the Colt CCM (Figure 1) has 
been designed to support the Wormhole RTR paradigm. 
It consists.of a pool of computational resources including 
16 Functional Units (Fus) and a 16-bit x 16-bit unsigned 
multiplier. A 4x4 cylindrical mesh into which the FUs 
are embedded exemplifies local routing resources on the 
chip. A segmented bus, called the Skip Bus, au-ments 
the connectivity of the mesh with an additional link 
between nearest neighbors that can be configured to 
allow data to flow in either direction between them. 
These additional segments can be connected so that 
signals can skip over several underlying FUs in a single 
clock pulse; allowing them to overcome the inherently 
planar mesh topology. A 12-input by 16-output crossbar 
accepts a single output from the bottom of each column 
of the mesh and provides two inputs into the top of each 
column. Up to 12 independent streams can 
simultaneously establish connections through the 
crossbar by virtue of 156 distributed state machine. 
Crossbar outputs also route directly into the two 16-bit 
inputs of the multiplier and the upper and lower 16-bit 
words of the result have independent paths back into the 
crossbar. The off-chip YO resources are represented by 
six 16-bit bi-directional data ports, each of which has 
dedicated connections to and from the crossbar. 

A stream can be injected into any of the data ports. 
The first packet is stripped from the header and is used to 
program the behavior of the data port after configuration. 
From there, the stream continues to the crossbar, where 
the second packet is taken from the header and is used to 
program the output from which the stream will emerge. 
At that point, the stream can continue to the multiplier, to 
one of the mesh inputs, or to all of the mesh inputs 
simultaneously using broadcast mode; the destination is 
entirely dependent on the configuration desired. A more 
complete exposition of the Colt/Stallion architecture and 
computing model can be found in [6]. 
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Figure 2 - In this two-dimensional depiction. wormhole run-time 
reconfiguration uses independently guided streams to configure a resource 
pool. 
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3. COLT COMPUTATIONAL KERNELS 
As mentioned in the introduction. Colt has been designed 
and optimized specifically to target digital signal 
processing applications. In this section, a few select 
example computational structures are presented which 
are themselves building blocks of higher signal 
processing functions. The basis of selecting the DSP 
kernels is familiarity, diversity of computational 
requirements and diversity of IIO requirements [7].  
These structures are represented in their static form. It 
should be noted that one of the key features of 
Wormhole RTR is the rapid partial reconfiguration 
capability. These features can only be effectively 
evaluated in much larger applications in which these 
kemels are dynamically paged into and out of the 
platform. The advantages of rapid partial 
reconfiguration have already be quantified in a number 
of applications [8,9,101, and for brevity, will not be 
expounded upon here. Each of these applications fits in 
a single Colt device with no need for run-time 
reconfiguration. 

This section details the implementation of three 
different functions on Colt. Starting with a simple 
example of the implementation of a dot product, the 
section introduces basic concepts and eccentricities of 
Colt programming. The implementation of a floating 
point multiplier is then explored, giving a floating point 
format that can be easily manipulated using the 
computing resources of Colt. This example introduces 
the concept of stream programming and illustrates some 
of the unique problems that arise due to architectural 
constraints. The section concludes with an example of 
conditional execution -- the calculation of an integer 
factorial. 

4 DOT PRODUCT EXAMPLE 
The dot product of two vectors is a common kernel 
found in a variety of signal processing, computer 
graphics. and system modeling problems. There are 
many methods of implementing this function on the Colt 
architecture. Which method is the most optimal choice 
is dependent on several factors, including the amount of 
available resources: the length of the vectors, the desired 
speed of execution, the amount of latency that can be 
tolerated. the choice of floating or fixed point arithmetic 
and the number of bits of precision used. For purposes 
of the first example, fixed-point arithmetic using the 
fastest execution method possible will be assumed. One 
possible implementation is shown in Figure 3. 

The stream concept is used to the fullest in this 
implementation. The vector elements are presented 
sequentially and in order to the Colt data ports. The data 
values pass from the data ports through the crossbar to a 
built-in multiplier. The pipelined multiplier requires two 
cycles to evaluate each product and then passes it on 
through the crossbar to an FU that has been configured 
as a summing node. The partial sums are sent through 
the crossbar to a data port, and from there the partial 
sums are written to external memory in sequential order. 
The last value written out will be the final sum. Note 
that the delta delay for each pipelined stage is given in 
clock cycles next to each component. There are several 
operating details that are hidden by this diagram; 
pertinent issues are identified here, yet refer to [11,12] 
for a more complete analysis. 

In this particular implementation, the stream for 
each input vector finds its way to the Colt chip 
boundary. In order for the pipeline calculation to be 
correct, the g’s must be matched with the proper bI’s. 
Depending on the programmed mode of the data ports, 
different flow control measures can be taken. Raw Mode 
makes no attempt at synchronizing the inputs to the 
various ports, while Synchronization and Loop Modes do 
provide this functionality. 
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Figure 3: Dot Product Implementation #1. 
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Partial sum 
Figure 4: Summing FU Logical Diagram. 

Another hidden detail in Figure 3 is the operation of 
the Summing FU. Figure 4 shows a logical depiction of 
the physical configuration of the Summing FU. The Next 
Addend is latched into the Right Input Register on each 
clock pulse. The Right Input Register is added to the 
Lefr Input Register and the new partial sum is latched 
back into the L.efi Input Register, hence the Left  Input 
Register acts as an accumulator. The partial sum is also 
sent to the primary output of the FU. For extended 
precision. the accumulation function can be programmed 
to span multiple FUs. In this particular implementation, 
the Left  Input Register must be initialized to zero prior to 
the start of each dot product computation. In the Colt, 
this problem can be solved by creative use of the valid 
bit, which accompanies each data item throughout the 
chip. 

Note that in this example, if the vectors are n words 
long, one output word is produced every n clock pulses 
(the data is produced at a rate I/n of the rate in which the 
inputs are supplied). Because of this, it is important to 
configure Colt to validate only the final summand at the 
proper time in the output stream. Once again, this can be 
done with creative use of the valid bit computations, 
along with the chip data ports. For the sake of brevity, 
the details of which are left in [ll], and only the final 
confipration is presented here. 

5 FLOATING POINT MULTIPLICATION 
EXAMPLE 
Even though it has been targeted primarily to integer 
computations, Colt will be required to perform floating 
point operations. Provisions have been made within the 
Functional Units to ease the burden when floating point 
mathematics is required. To demonstrate these 
capabilities, the example of floating point multiplication 
will be addressed. There are three main steps to 
consider: mantissa multiplication, addition of exponents 
and re-normalization. 

1 bit 15 bits 16 bits 

Figure 5: Floating Point Format used in this example, 

The floating-point number format demonstrated here 
(shown in Figure 5) is split into two separate 16-bit 
words so that they can be easily split into two separate 
data streams. Floating point representations often use a 
biased exponent representation instead of a true two’s 
complement form so that an unsigned comparator can be 
used to determine relative numeric magnitudes; however, 
signed and unsigned comparators have the same cost on 
the Colt, so the advantage of biased arithmetic is 
negated. Further, biasing forces the bias to be added and 
subtracted during processing, which would require added 
resources. Another often used floating point technique is 
the assumption of an implied binary digit 1 to the left of 
bit 15 of the mantissa. This technique will not be used 
here for the sake of simplicity. It will be assumed that 
the mantissa is always normalized so that the leading bit 
is always a 1. The sign bit for the represented quantity is 
stored in bit 15 of the exponent. 

Figure 6: Floating Point Multiplier Programming 
Method. 
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Four streams are required for the floating-point 
multiplier and the programming path followed by each of 
these is shown in Figure 6. Two floating-point values 
are presented to the Colt chip boundary. The “Left” 
value is injected through Ports 1 and 2 and the “Right” 
value is injected through Ports 3 and 4. Two of the 
streams carry the final result out of Ports 5 and 6. The 
four streams are color coded for clarification. Each box 
indicates a unit that must be traversed by a stream. The 
number in parenthesis on the last line of each box 
indicates the order in which the stream programs the 
unit. 

Ldt Exponent Right Exponent 
Port I Poll 3 . 

I 1  

PSOul 

............... 

... - 

Pars S L-r’ 
:sOut - 
................................. 

I 

proceeds to configure the third column, branching at FU 
33. 

The full floating point multiplier is shown in Figure 
7. Solid lines indicate that a local connection is used. A 
dotted line indicates that the Skip Bus is used to pass the 
value. The path taken by the pair of mantissa values is 
the simplest, and will be the only one examined in detail. 
The mantissas enter through Pons 2 and 4 and proceed 
directly to the multiplier. After two clock cycles, a 32- 
bit result is produced. The leading bit of the 32-bit 
mantissa is tested, and if the result is 0, the mantissa is 
shifted once to the left and the exponent must be 

Ldt Manursa k g h l  Manuma 

Figure 7: Floating point multiplier structure. 

Divergent stream support is also a feature of the 
Colt. A divergent stream is define to be one that 
configures two or more different data paths emanating 
from a single node. This feature is evident in the 
configuration of the center columns where that stream 
first programs the second column of the mesh and then 

decremented by 1 for proper normalization. 

The right hand column of the mesh is configured to 
perform the re-normalization function (Fus A4. C4 and 
D4). The low word of the 32-bit result is latched into the 
L.eJ Znprit Register of FU A4, where it is shifted once to 
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the left. The bit shifted out may need to be shifted into 
the low bit position of the high word of the 32-bit result 
if normalization is required. This shifted bit is sent down 
the Skip Bus to FU C4; where it is supplied to the Barrel 
Shifter as the bit to be shifted in if re-normalization is 
required. The high word of the 32-bit result is latched 
into both input registers of FU C4 at the same time that 
the low word is latched into FU A4. 

New Operands 
Pol3 1 

Multiplier 
Delay 

i;' Select Valid 

Multiplier 

Prod L - 

Output Valid 
If!= 1 

Figure 8: Conceptual Factorial Implementation. 

Output Valid Select 
stall IfFN 

The exponents of the floating-point values take a 
more convoluted path through the mesh. Each sign bit 
must first be separated from its exponent so that the sign 
bits may be XORed together to produce the sign bit of 
the result. The exponents must be added together and 
then tested to determine if an arithmetic overflow 
occurred. If an arithmetic overflow is detected, the 
number is either too large or too small to be represented 
and the exponent of the result will be reset to the smallest 
possible value. After testing for overflow, the exponent 
may be decremented once more if the mantissa 
multiplication result requires re-normalization. This, too. 
is tested for arithmetic underflow, and is adjusted back to 
the smallest possible exponent if it occurs. Then the sign 
and exponent of the final result are reunited and the 
upper word of the final result is sent out through Porr 5. 

I 1 

of the deep level of understanding required. A full 
understanding of the valid bit, conditional logic and the 
data port modes is necessary. In an attempt to clarify the 
design process, the calculation of a 16-bit integer 
factorial function will be detailed in this section as an 
example. 

The block level design of the factorial function is 
shown in Figure 8. The calculation of the factorial 
function is a data dependent looping problem because the 
number of multiplicative iterations required is dependent 
on the input operand. The implementation shown can 
really be considered as two separate executine processes 
that must exchange data at timed intervals. For purposes 
of explanation, all blocks shown in Figure 8 can be 
considered to incur a single unit delay of latency with the 
exception of the Multblier and Multiplier Delay blocks, 
which each require two. In the actual implementation 
shown in Figure 9, the number of cycles of delay varies 
in order to match the delay constraints required by the 
hardware to those required by the algorithm. The path 
equalization process is a key component of design when 
using Colt. and is arguably the trickiest as well. 

The functional blocks show the first process in the 
left column of the figure. In these blocks. the input 
operand is decremented until it reaches 1. Because this 
function has an unknown execution time, a collision free 
pipeline cannot be constructed. The alternative is to use 
the data ports in Loop Mode so that they will guarantee 
that only one valid operand exists in the pipeline at any 
given time. The Select Valid block shown acts as a 
multiplexer that will switch to forward whichever of the 
two inputs are flagged as being valid. The pipeline is 
initialized with only invalid data and then the first 
operand is injected. While that operand is being 
processed, it circulates around the loop and the Select 
Valid block will continue selecting it until the 
computation is complete. The original input value 
circulates in the loop shown on the left and each time it 
does so it is decremented by one. When the value is 
decremented to 1, the Output Valid If != 1 block will 
cause the operand to become invalid. When a valid 
result is written from Data Port 2, it will trigger the 
injection of a new valid operand from Data Port 1, and 
because the previous value is now invalid. the Select 
Valid block will select the new operand and the process 
begins again. One implementation is shown below in 
Figure 9. 

I 

6 FACTORIAL COMPUTATION 

The implementation of conditional execution structures 
within the Colt architecture can be challenging because 
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1 Mult j 1 
Rod H prod L 

Figure 9: Colt Factorial Implementation. 

The multiplicative calculations are performed by the 
process that executes in the loop shown on the right side 
of Figure 8. The Latch Vulid register shown is used to 
hold the partial product computed in each iteration of the 
calculation. and is initialized with a valid 1 at 
configuration time. The Multiplier will not output a 
valid result unless both inputs to it are valid. This 
condition will only occur when the operand value being 
decremented circulates through to the output of the 
Select Vulid block. At that time, the Multiplier will 
produce a valid result, which will be sent to the Select 
Stan and Oritpiif Vdid If FN blocks. The Select Stun 
block will always forward the results of the multiplier 
unless the original operand has been decremented to 1 
and the calculation is complete. If the calculation is not 
finished. the new partial product is forwarded to the Hold 
Partial Sion block and then to the Multiplier where the 
process will begin again when the original operand re- 
circulates. If the calculation has finished, then the Select 
Stun block will forward a valid 1 to the Hold Pcirtial 
Sim block so that it will be initialized for the next 

calculation. At the same time, the Uiifpirt Valid If FN 
block will receive the fully computed value and will send 
it out Data Pon 2. 

7. CONCLUSION 
The applications exemplified in this paper illustrate the 
diversity of algorithms that can be instantiated through 
the high-speed run-time reconfiguration. Characteristics 
of the kemels are provided in Table 1. The Colt chip is 
a prototype Wormhole RTR device which has been 
fabricated using a 3-metal 0.5 pm CMOS process 
through MOSIS on a 6.1 mm x 5.5 mm die. 
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1 

Kernel Die Configuration Configuration Performance 
Utilization Words Time 

- 
Dot Product < 30% 37 740 as 50 MilliodN per Sec .  

FP Mult. 100% 142 1360 IIS 50 Mflops 

Factorial 72% 94 1880 11s Data Dep. 
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