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Figure 1:An example of automatic foreground/background segmentation in monocular image sequences.Despite the challenging
foreground motion the person is accurately extracted from the sequence and then composited free of aliasing upon a different background;
a useful tool in video-conferencing applications. The sequences and ground truth data used throughout this paper are available from [1].

Abstract

This paper presents an algorithm capable of real-time
separation of foreground from background in monocular
video sequences.

Automatic segmentation of layers from colour/contrast
or from motion alone is known to be error-prone. Heremo-
tion, colourandcontrastcues are probabilistically fused to-
gether withspatialandtemporal priorsto infer layers accu-
rately and efficiently. Central to our algorithm is the fact
that pixel velocities are not needed, thus removing the need
for optical flow estimation, with its tendency to error and
computational expense. Instead, an efficient motion vs non-
motion classifier is trained to operate directly and jointly on
intensity-change and contrast. Its output is then fused with
colour information. The prior on segmentation is repre-
sented by a second order, temporal, Hidden Markov Model,
together with a spatial MRF favouring coherence except
where contrast is high. Finally, accurate layer segmenta-
tion and explicit occlusion detection are efficiently achieved
by binary graph cut.

The segmentation accuracy of the proposed algorithm
is quantitatively evaluated with respect to existing ground-
truth data and found to be comparable to the accuracy of
a state of the art stereo segmentation algorithm. Fore-
ground/background segmentation is demonstrated in the ap-
plication of live background substitution and shown to gen-
erate convincingly good quality composite video.

1. Introduction

This paper addresses the problem of accurately extract-
ing a foreground layer from video in real time. A prime
application is live background substitution in teleconfer-
encing. This demands layer separation to near Computer
Graphics quality, including transparency determination as
in video-matting [8, 9], but with computational efficiency
sufficient to attain live streaming speed.

Layer extraction from images or sequences has long been
an active area of research [2, 4, 10, 13, 20, 21, 22, 23]. The
challenge addressed here is to segment the foreground layer
efficientlywithout restrictions on appearance, motion, cam-
era viewpoint or shape, and sufficientlyaccuratelyfor use
in background substitution and other synthesis applications.
Frequently, motion-based segmentation has been achieved
by estimating optical flow (i.e. pixel velocities) [3] and then
grouping pixels into regions according to predefined motion
models. Spatial priors can also be imposed by means of
graph-cut [7, 12, 13, 22, 23]. However, the grouping prin-
ciple generally requires some assumption about the nature
of the underlying motion (translational, affine etc.), which
is restrictive. Furthermore, regularization to constrain ill
posed optical flow solutions tends to introduce undesirable
inaccuracies along layer boundaries. Lastly, accurate esti-
mation of optical flow is computationally expensive, requir-
ing an extensive search in the neighbourhood of each point.
In our approach, explicit estimation of pixel velocities is al-
together avoided. Instead, an efficient discriminative model,
to separate motion from stasis using spatio-temporal deriv-
atives, is learned from labelled data.
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Recently, interactive segmentation techniques exploiting
colour/contrast cues have been demonstrated to be very ef-
fective for static images [6, 16]. Segmentation based on
colour/contrast alone is nonetheless beyond the capability
of fully automatic methods. This suggests a robust approach
that fuses a variety of cues, for example stereo, colour, con-
trast and spatial priors [11] is known to be effective and
computable comfortably in real time. This paper shows that
comparable segmentation accuracy can be achieved monoc-
ularly, avoiding the need for stereo cameras with their in-
convenient necessity for calibration. Efficency with motion
in place of stereo is actually enhanced, in that stereo match
likelihoods need no longer be evaluated, and the other sig-
nificant computational costs remaining approximately the
same. Additionally, temporal consistency is imposed for
increased segmentation accuracy, and temporal transitions
probabilities are modelled with reduction of flicker artifacts
and explicit detection of temporal occlusions.

Notation and image observables. Given an input se-
quence of images, a frame is represented as an arrayz =
(z1, z2, · · · , zn, · · · , zN ) of pixels in YUV colour space, in-
dexed by the single indexn. The frame at timet is denoted
zt. Temporal derivatives are denoted

ż = (ż1, ż2, · · · , żn, · · · , żN ), (1)

and at each timet, are computed aṡzt
n = |G(zt

n)−G(zt−1
n )|

with G(.) a Gaussian kernel at the scale ofσt pixels. Then,
also spatial gradients

g = (g1, g2, · · · , gn, · · · , gN ) where gn = |∇zn|, (2)

are computed by convolving the images with first-order
derivative of Gaussian kernels with standard deviationσs.
Here we useσs = σt = 0.8, approximating a Nyquist sam-
pling filter. Spatio-temporal derivatives are computed on
the Y colour-space channel only. Motion observables are
denoted

m = (g, ż) (3)

and are used as the raw image features for discrimination
between motion and stasis.

Segmentation is expressed as an array of opacity values
α = (α1, α2, · · · , αn, · · · , αN ). We focus on binary seg-
mentation, i.e.α ∈ {F, B}with F andB denoting foreground
and background, respectively. Fractional opacities are dis-
cussed briefly in section3.

2. Probabilistic segmentation model

This section describes the probabilistic model for fore-
ground/background segmentation, in an energy minimiza-
tion framework. This extends previous energy models for
segmentation [6, 11, 16] by the addition of a second order,

temporal, Markov Chain prior, and an observation likeli-
hood for image motion. The posterior model is a Condi-
tional Random Field (CRF) [15] with a factorisation that
contains some recognisably generative structure, and this is
used to determine the precise algebraic forms of the factors.
Various parameters are then set discriminatively [14]. The
CRF is denoted

p(α1, . . . ,αt | z1, . . . , zt, m1, . . . ,mt)

∝ exp−

{
t∑

t′=1

Et′

}
(4)

where Et = E(αt,αt−1,αt−2, zt,mt). (5)

Note the second order temporal dependence in the Markov
model, to be discussed more fully later. The whole aim is to
estimateα1, . . . ,αt given the image and motion data, and
in principle this would be done by joint maximisation of the
posterior, or equivalently minimisation of energy:

(α̂1, . . . , α̂t) = arg min
t∑

t′=1

Et′ . (6)

However, such batch computation is of no interest for real-
time applications because of the causality constraint — each
α̂t′ must be delivered on the evidence from its past, without
using any evidence from the future. Therefore estimation
will be done by separate minimisation of each termEt and
details are given later.

2.1. Conditional Random Field energy terms

The EnergyEt associated with timet is a sum of terms in
which likelihood and prior are not entirely separated, and so
does not represent a pure generative model, although some
of the terms have clearly generative interpretations. The
energy decomposes as a sum of four terms:

E(αt,αt−1,αt−2, zt,mt) = (7)

V T(αt,αt−1,αt−2) + V S(αt, zt)
+UC(αt, z) + UM(αt,αt−1,mt),

in which the first two terms are “prior-like” and the second
two are observation likelihoods. Briefly, the roles of the
four terms are:

Temporal prior termV T(. . .) is a second-order Markov
chain that imposes a tendency to temporal continuity
of segmentation labels.

Spatial prior term V S(. . .) is an Ising term, imposing a
tendency to spatial continuity of labels, and the term is
inhibited by high contrast.



Figure 2.Spatio-temporal Hidden Markov Model. This graph-
ical model illustrates both the colour likelihood and motion like-
lihoods together with the spatial and temporal priors. The same
temporal chain is repeated at each pixel position. Spatial depen-
dencies are illustrated for a 4-neighborhood system.

Colour likelihood term UC(. . .) evaluates the evidence
for pixel labels based on colour distributions in fore-
ground and background.

Motion likelihood term UM(. . .) evaluates the evidence
for pixel labels based on the expectation of stasis in
the background and frequently occurring motion in the
foreground. Note that motionmt is explained in terms
of the labelling at both the current frameαt and the
previous oneαt−1.

This energy resembles a spatio-temporal Hidden Markov
Model (HMM), and this is illustrated graphically in figure
2. Details of the “prior” and likelihood factors are given in
the remainder of this section.

2.2. Temporal prior term

Figure3 illustrates the four different kinds of temporal
transitions a pixel can undergo in a bilayer scene, based on
a two-frame analysis. For instance, a foreground pixel may
remain in the foreground (pixels labelledFF in fig. 3c) or
move to the background (pixels labelledFB) etc. The crit-
ical point here is that a first-order Markov chain is inad-
equate to convey the nature of temporal coherence in this
problem; a second-order Markov chain is required. For ex-
ample, a pixel that was in the background at timet − 2
and is in the foreground at timet − 1 is far more likely to
remain in the foreground at timet than to go back to the
background. Note thatBF and FB transitions correspond
to temporal occlusion and disocclusion events, and that a
pixel cannot change layer without going through an occlu-
sion event.

a b c
Figure 3.Temporal transitions at a pixel. (a,b) An object moves
towards the right from framet− 2 to framet− 1. (c) Between the
two frames pixels may remain in their own foreground or back-
ground layer (denotedF andB, respectively) or change layer; thus
defining four different kinds of temporal transitions:B → B,
F → B, F → F , B → F . Those transitions influence the label
that a pixel is going to assume at framet.

αt−1 αt−2 p(αt = F|αt−1, αt−2)
F F βFF

F B βFB

B F βBF

B B βBB

Figure 4.Learned priors for temporal transitions. The back-
ground probabilities are the complement of the foreground ones.
See text for details.

These intuitions are captured probabilistically and incor-
porated in our energy minimization framework by means of
a second order Markov chain, as illustrated in the graph-
ical model of fig.2. The temporal transition priors are
learned from labelled data and then stored in a table, as
in fig. 4. Note that despite there being eight (23) possi-
ble transitions, due to probabilistic normalization (p(αt =
B|αt−1, αt−2) = 1 − p(αt = F|αt−1, αt−2)) the temporal
prior table has only four degrees of freedom, represented by
the four parametersβFF, βFB, βBF, βBB. This leads to the
following joint temporal prior term:

V T(αt,αt−1,αt−2) = η

N∑
n

[
− log p(αt

n|αt−1
n , αt−2

n )
]
(8)

in which η < 1 is a discount factor to allow for multiple
counting across non-independent pixels. As explained later
the optimal value ofη (as well as the other parameters of
the CRF) is trained discriminatively from ground-truth.

2.3. Ising spatial energy

There is a natural tendency for segmentation boundaries
to align with contours of high image contrast. Similarly
to [6, 16], this is represented by an energy term of the form

V S(α, z) = γ
∑

(m,n)∈C

[αm 6= αn]

(
ε + e−µ||zm−zn||2

1 + ε

)
(9)

where(m,n) index neighbouring pixel-pairs.C is the set
of pairs of neighbouring pixels. The contrast parameterµ is



chosen to beµ =
(
2
〈
‖zm − zn‖2

〉)−1
; where< . > de-

notes expectation over all pairs of neighbours in an image
sample. The energy termV (α, z) represents a combination
of an Ising prior for labelling coherence together with a con-
trast likelihood that acts to discount partially the coherence
terms. The constantγ is a strength parameter for the coher-
ence prior and also the contrast likelihood. The constantε is
a “dilution” constant for contrast, previously [6] set toε = 0
for pure colour segmentation. However, multiple cue exper-
iments with colour and stereo [11] have suggestedε = 1 as
a more appropriate value.

2.4. Likelihood for colour

The termUC(.) in (7) is the log of the colour likeli-
hood. In [5, 11, 16] colour likelihoods were modeled in
terms of Gaussian Mixture Models (GMM) in RGB, where
foreground and background mixtures were learned via Ex-
pectation Maximization (EM). However, we have found that
issues with the initialization of EM and with local minima
affect the discrimination power of the final likelihood ra-
tio. Instead, here we model the foreground and background
colour likelihoods non-parametrically, as histograms in the
YUV colour space. The colour termUC(.) is defined as:

UC(α, z) = −ρ
N∑
n

log p(zn|αn). (10)

Probabilistic normalization requires that
∑

z p(z|α = F) =
1, and similarly for the background likelihood. This non-
parametric representation negates the need for having to set
the number of GMM components as well as having to wait
for EM convergence.

The foreground colour likelihood model is learned adap-
tively over successive frames, similarly to [11], based on
data from the segmented foreground in the previous frame.
The likelihoods are then stored in 3D look-up tables, con-
structed from the raw colour histograms, with a modest de-
gree of smoothing, to avoid overlearning. The background
colour distribution is constructed from an initial extended
observation of the background, rather as in [17, 18], to build
in variability of appearance. The distribution is then static
over time. It is also shared by the entire background, to
give additional robustness against camera shake, and studies
suggest that the loss of precision in segmentation, compared
with pixelwise colour models (such as those used in [19]),
should not be very great [11]. Again, the distribution is rep-
resented as a smoothed histogram, rather than as a Gaussian
mixture, to avoid the problems with initialisation.

2.5. Likelihood for motion

The treatment of motion could have been addressed via
an intermediate computation of optical flow. However reli-
able computation of flow is expensive and beset with diffi-

culties concerning the aperture problem and regularisation.
Those difficulties can be finessed in the segmentation appli-
cation by bypassing flow and modelling directly the char-
acteristics of the feature normally used to compute flow,
namely the spatial and temporal derivativesm = (g, ż).
The motion likelhood therefore captures the characteristics
of those features under foreground and background condi-
tions respectively.

However, the nature of our generative model suggests an
approach to motion likelihood modelling that should cap-
ture even richer information about segmentation. Referring
back to fig.3, the immediate history of the segmentation of
a pixel falls into one of four classes,FF, BB, FB, BF. We
model the observed image motion featuresmt

n = (gt
n, żt

n),
at time t and for pixeln, as conditioned on those combi-
nations of the segmentation labelsαt−1

n andαt
n. This is a

natural model because the temporal derivativeżt
n is com-

puted from framest − 1 andt, so clearly it should depend
on segmentations of those frames. Illustrations of the joint
distributions learned for each of the four label combinations
are shown in figure5. Empirically, theBB distribution re-
flects the relative constancy of the background state — tem-
poral derivatives are small in magnitude. TheFF distribu-
tion reflects larger temporal change, and as expected that is
somewhat correlated with spatial gradient magnitude. Tran-
sitionalFB andBF distributions show the largest temporal
changes since the temporal samples at timet−1 andt strad-
dle an object boundary. Note that the distributions forBF
andFB are distinct in shape from those forBBandFF, and
this is one indication that the second order model does in-
deed capture additional motion information, compared with
a first order model. (The first order model would be condi-
tioned on justF andB, for which the likelihoods are essen-
tially identical to those forFF andBB, as illustrated in the
figure.)

The four motion likelihoods are learned from some la-
belled ground truth data and then stored as 2D histograms
(smoothed) to use in likelihood evaluation. The likelihoods
are evaluated as part of the total energy, in the term

UM(αt,αt−1,mt) = −
∑

n

log p(mt
n | αt

n, αt−1
n ). (11)

Illustrating the motion likelihoods. Figure6 shows the
results of a likelihood ratio test using the likelihood ratio
R of the FF model versus theBB model, applied totwo
frames of theVK test sequence. Motion and non-motion
events are accurately separated in textured areas. In fact,
moving edges are clearly marked with bright pixels (R > 1)
while stationary edges are marked with dark pixels (R < 1).
However, textureless regions remain ambiguous and are au-
tomatically assigned a likelihood ratio close to unity (mid-
grey in figure). This suggests that motion alone is not suf-
ficient for an accurate segmentation. Fusing motion and
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Figure 5.Learned motion likelihoods. Learned likelihood of motion data, conditioned on the segmentation in the two previous frames.
Yellow indicates high density, red medium density and black zero density. The distributions are modelled simply as normalized histograms.

a b
Figure 6.Testing the motion classifier.(a) A frame from theVK
test sequence. (b) The corresponding motion likelihood map as
output of a likelihood ratio test, see text for details. Bright pix-
els indicate motion (likelihood ratioR > 1) and dark ones stasis
(R < 1). Thanks to our joint motion likelihood strong stationary
edges are assigned a lower (more negative, darker) value ofR than
stationary textureless areas.

colour with CRF spatial and Markov chain temporal pri-
ors as in (7) is expected to help fill the remaining gaps. In
stereo as opposed to motion segmentation [11], it is known
that good segmentation can be achieved even without the
temporal model. However, as we show later, the gaps in
the motion likelihood demand also the temporal model for
satifactory filling in.

2.6. Inference by energy minimisation

At the beginning of this section the principal aim of es-
timation was stated to be the maximisation of the joint pos-
terior (6). However, it was also plain that the constraints
of causality in real-time systems do not allow that. Under
causality, having estimated̂α1, . . . , ˆαt−1, one way to esti-
mateα̂t would simply be:

α̂t = arg min E(αt, α̂t−1, α̂t−2, zt,mt). (12)

Freezing all estimators before generatingt is an extreme
approach, and better results are obtained by acknowledging
the variability in at least the immediately previous timestep.
Therefore, the energy in (12) is replaced by the expected
energy:

Eαt−1|α̂t−1E(αt,αt−1, α̂t−2, zt,mt). (13)

where the conditional density for timet− 1 is modelled as

p(αt−1|α̂t−1) =
∏
n

p(αt−1
n |α̂t−1

n ), (14)

and

p(αt−1|α̂t−1) = ν + (1− ν)δ(αt−1, α̂t−1), (15)

andν (with ν ∈ [0, 1]) is the degree to which the binary
segmentation at timet − 1 is “softened” to give a segmen-
tation distribution. In practice, allowingν > 0 (typically
ν = 0.1), prevents the segmentation becoming erroneously
“stuck” in either foreground or background states.

This factorisation of the segmentation distribution across
pixels makes the expectation computation (13) entirely
tractable. The alternative of fully representing uncertainty
in segmentation is computationally too costly. Finally, the
segmentation̂αt is computed by binary graph cut [7].

3. Experimental results

This section validates the proposed segmentation algo-
rithm through comparison both with stereo-based segmen-
tation, and with hand-labelled ground truth [1].

Bilayer segmentation, alpha matting and background
substitution. In fig. 7 foreground and background of a
video-sequence have been separated automatically. Af-
ter an initial period where the subject is almost stationary
(fig. 7a), the segmentation quickly converges to a good so-
lution. Real-time “border matting” [16] has been used to
compute fractional opacities along the boundary and this is
used for anti-aliased compositing onto a new background
(fig. 1b). Segmentation and background substitution for an-
other test sequence is demonstrated in fig.8. Notice that
good segmentation is achieved even in frames containing
rapid motion, as in figs. 1b,7e and fig.8e.

Detecting temporal occlusions. Figure 9 shows exam-
ples of temporal occlusion detection for theJM sequence,



a b c d e
Figure 7.Bilayer segmentation.(a) A frame from theJM test sequence; (b,...,e) automatic foreground extraction results for several frames.
(b) In the first frames only parts of the person are moving and therefore the segmentation is not accurate. (c,...,e) However, after only a few
frames the segmentation converges to the correct solution. After this initial stage, the model is burnt in, and can tolerate periods of stasis.
The extracted foreground can now be composited with anti-aliasing onto new backgrounds, as in fig.1b.

a b c d e
Figure 8.Bilayer segmentation and background substitution.(a) A frame from theMStest sequence; (b,...,e) foreground extraction and
anti-aliased background substitution, over several frames. (e) The algorithm is capable of handling complex motions.

Figure 9.Foreground extraction and occlusion detection:two
frames from theJM test sequence are shown. Pixels undergoing
anF→ B transition are marked in red.

made possible by the spatio-temporal priors. Pixels transi-
tioning from foreground to background are marked in red.

Quantitative evaluation and comparisons. Follow-
ing [11] error rates are measured as a percentage of misclas-
sified pixels, with respect to ground-truth segmentation1.
Figure10 presents the results for four of the six Microsoft
test sequences [1]. The error rates obtained monocularly
(blue) are compared to those obtained by “Layered Graph-
Cut” (LGC) stereo segmentation [11]. It can be observed
that while monocular segmentation cannot be expected to
perform better than stereo, its accuracy is comparable with
that of LGC segmentation. Figure10 provides an objective
measure of visual accuracy while videos (on our web site)
offer a subjective impression that is hard to capture numeri-
cally. Despite some flicker artefacts the quality of monocu-
lar segmentation is generally convincing.

1The published ground truth based on motion rather than that based on
depth.

a b
Figure 11.The advantages of fusing motion and colour infor-
mation. (a) Segmentation of a frame of theMSsequence with
the fused motion, colour/contrast and spatio-temporal information.
(b) Corresponding segmentation when removing the colour likeli-
hood. The motion cue alone produces incorrect segmentation in
untextured regions. See also fig.10c.

Figure10also shows that fusing colour with motion does
indeed reduce error: removing the colour componentUC

from model (7) considerably increases error rates (dotted
blue lines). This effect can also be observed in fig.11where
motion information alone produces a large (and temporally
persistent) gap in the untextured region of the shirt, which
is filled once colour information is added in.

Figure 12 illustrates the comparison between the mo-
tion likelihoods defined over joint spatio-temporal deriva-
tives (section2.5) and the more conventional likelihoods
over temporal derivatives alone. The figure shows mean er-
ror rates (circles) and the associated 1-std error bars. The
errors associated to spatio-temporal motion vs. stasis clas-
sification are never worse than those of temporal derivatives
alone.

Finally, the contribution of the temporal model is eval-
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Figure 10.Accuracy of segmentation.(a,...,d) Error rates for theAC, JM, VK andMSsequences, respectively. The red curve (dashed)
indicates the error rates obtained by LGC stereo segmentation [11]. The solid blue curve indicates the error rates obtained by the proposed
monocular algorithm. ForACandVK, an initial period of stasis prevents accurate segmentation but, after a few frames the error rates drop
to a value close to that of LGC stereo. After this initial stage, the model is burned in, and can tolerate periods of stasis. Omitting the colour
component of the model increases error (blue dotted line).
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Figure 12.Spatio-temporal derivatives perform well as features
for motion vs. stasis discrimination. Error rates are shown for
a joint density over spatio-temporal derivatives, as compared with
one based on temporal derivative (frame difference) alone. Spatio-
temporal derivatives are never worse than simple frame difference,
and clearly advantageous in two out of the four test sequences.

uated. Fig.13 compares error rates for the following three
cases: i) no temporal modeling, ii) first order HMM, iii)
second order HMM (including both the second order tem-
poral prior and the 2-frame motion likelihood). Error is
computed for theAC test sequence with model parameters
fully optimized for best performance. Colour information
is omitted to avoid confounding factors in the comparison.
From fig.13 it is clear that the second order HMM model
achieves the lowest error, followed by the first order model,
with highest error occurring when the temporal model is en-
tirely absent.

Robustness to photometric variations. Accurate seg-
mentation ofall the six test sequences in [1] has proved
difficult in view of particularly large photometric variabil-
ity in some sequences. The variations have been found to
be due mostly to camera AGC (automatic gain control) —
see the supplementary material. We found that theIJ and
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Figure 13.The advantage of the second order temporal model.
Error plots for different orders of temporal HMM, for theAC test
sequence. Crosses indicate error averaged over all frames. Aver-
ages were computed from frame10 onwards to exclude the burn-in
period. The second order model clearly achieves the lowest rate of
error.

IU sequences exhibit illumination variation about an order
of magnitude higher than in the remaining four sequences.
While stereo-based segmentation is relatively immune to
such problems [11], monocular algorithms are more prone
to be disturbed. However, such large levels of photometric
variation are easily avoided in practice by switching off the
AGC facility.

Background substitution on a new test sequence.As a
final demonstration, fig.14 shows the results of our back-
ground substitution technique on a TV broadcast sequence.
The original weather map has been replaced with a new
one. The background model is calibrated here from a single
hand-segmented frame.

4. Conclusions
This paper has presented a novel algorithm for the ac-

curate segmentation of videos by probabilistic fusion of



a b c
Figure 14.Changing the weather: a final example of back-
ground substitution. (a) A frame from the original TV sequence;
(b,c) Two frames of the corresponding synthetic sequence where
the original weather chart has been replaced with a different one.

motion, colour and contrast cues together with spatial and
temporal priors. The model forms a Conditional Random
Field, and its parameters are trained discriminatively. The
motion component of the model avoids the computation of
optical flow, and instead uses a novel and effective likeli-
hood model based on spatio-temporal derivatives, and con-
ditioned on frame-pairs. Spatio-temporal coherence is ex-
ploited via a contrast sensitive Ising energy, combined with
a second order temporal Markov chain.

In terms of efficiency our algorithm compares favourably
with respect to existing real-time stereo techniques [11], and
achieves comparable levels of accuracy. Computationally
intensive evaluation of stereo match scores is replaced by
efficient motion likelihood and colour model evaluation, us-
ing efficient table look-up.

Quantitative evaluation has confirmed the validity of the
proposed approach and highlighted advantages and limita-
tions with respect to stereo-based segmentation. Finally,
combining the proposed motion likelihoods and second or-
der temporal model with stereo matching information may
well, in the future, lead to greater levels of accuracy and
robustness than either motion or stereo alone.
Acknowledgements.The authors acknowledge helpful dis-
cussions with C. Rother, M. Cohen and C. Zhang.
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