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Abstract 

On-line adaptation to nonstationary distributions is essential to good perform-
ance in image coding.  Fixed-size contexts (with adaptive tables) are also 
widely used, in conjunction with arithmetic encoders, in state-of-the-art co-
decs.  In contrast, we propose a simple two-dimensional filter that directly 
outputs the probability distribution function (PDF) estimate necessary to 
drive an adaptive arithmetic encoder.  The filter is isotropic, in the sense that 
the impact of a previously encoded bit depends only on its value and distance 
to the bit to be coded.  Surprisingly, this simple filter yields results compara-
ble to or better than JPEG2000.  It also brings an interesting distinction be-
tween on-line and off-line learning, and their relative importance in compres-
sion. 

1. Introduction 

Many wavelet signal coders [1] are based on the structure shown in Figure 1. The wavelet 
coefficients are quantized (divided by a quantization step Q and then rounded to nearest 
integers), and the resulting indices are encoded without loss by an entropy encoder.  The 
entropy coder typically uses a probability distribution function (PDF) over the quantized 
values, and the number of bits it produces is close (typically within less than 1%) to the 
entropy of the PDF.  The PDF is computed adaptively from previously encoded coeffi-
cients (kept in the “store” box), by counting frequencies for each context, for example.  

 

Wavelets Quantizer

Store
Adaptive

PDF

Entropy
coder

Q

 
 

Figure 1. Simplified block diagram of a wavelet-based signal coder. 
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Higher compression is obtained by increasing Q, which decreases the entropy of the PDF 
because more coefficients quantize to zero. 

The “Adaptive PDF” box typically consists of a table that associates a probability to 
the values of the pixel to be encoded, as a function of a context of neighboring pixels.  
Interestingly, it is widely believed that the context of neighboring pixels captures essen-
tial information, such as edges and patterns, and that this information is necessary to 
achieve high compression. 

This paper challenges that view by showing that an isotropic filter can achieve similar 
compression rates for grayscale images, with little optimization.  By isotropic we mean 
that the filter response has circular symmetry centered on the pixel to be predicted.  In 
other words, the filter is the same regardless of the (causal) direction through which we 
look at past data.  This isotropic nature of the filter prevents it from capturing information 
such as edge positions or other complex patterns.   

In the next section we describe the filter and its implementation.  In Section 3 we 
compare our performance to that of JPEG2000 on a popular grayscale image set. An ex-
tension to binary (fax) image coding is discussed in Section 4, and conclusions are pre-
sented in Section 5. 

2. The Tarp Filter 

Consider the task of processing a long series of binary symbols and estimating the prob-
ability that the next bit will be equal to one.  A typical assumption is that such probability 
varies smoothly.  Such an assumption is generally true for wavelet images, especially in 
places where there is little activity.  Then the probability of the next symbol being one is 
small and highly correlated with how far away the other nonzero symbols are.  We as-
sume that the probability of the predicted symbol being one is proportional to an expo-
nential decay of the distance of the current symbol to the other ones. That allows for 
probability estimation with simple recursive filters, as we discuss next. 

2.1. A simple 1-D filter for density estimation 

Let us start by considering a one-dimensional scenario. We can build an estimate of the 
probability that the symbol to be predicted is one by the simple first-order recursive filter: 

 [ ] [ ] [ ]1 (1 )p t ap t a v t= − + −  (1) 

where p[t] is the estimate of the probability of getting a one for position t + 1, v[t] is the 
observed value (0 or 1) at position t, and a is a learning rate parameter between 0 and 1, 
which controls how quickly the probability estimate adapts to the data. 

It is easy to show that p is the convolution of v[t] with the filter impulse response 

[ ] (1 )tf t a a= −  for t > 0, and 0 otherwise.  It is also easy to show that f is a probability 
density function (bounded by 0 and 1, with the integral summing to unity), and that for 
every one in the data stream v[t], p[t] is a sum of Parzen windows, shaped by f.  From the 
properties of Parzen windows [2], we know that p/n (where n is the number of ones) is a 
legitimate density estimation function with the expected value of p being equal to the true 
probability of the source. The parameter a controls adaptation speed, i.e. the size of the 
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equivalent Parzen window.  It can also be viewed as a smoothing factor; the noisier the 
data, the higher we should set the value of a. 

The main advantage of this algorithm is simplicity, since very few operations are in-
volved. However, to achieve good performance we need to adjust the parameter a appro-
priately, and that depends on the probability distribution of v, which we usually do not 
know a priori. However, in many compression systems filters similar to f are used with 
good results, when v comes from quantized wavelet coefficients [1]. 

2.2. Combining three 1-D filters to create the Tarp 2-D filter 

If we generalize the simple filter discussed before to 2-D, scanning order becomes an is-
sue.  One possibility is to use a 1-D filter, scanning the pixels in blocks, or to use a Peano 
scan [3] to capture some of the 2-D correlation.  We chose instead the usual raster scan-
ning for images, line-by-line, from left to right, trying to extract the maximum informa-
tion from all previously seen pixels (i.e. located in a line above or located to the left of the 
current pixel).  This is done by using three 1-D filtering steps. The first filter goes from 
left to right and is similar to the 1-D filter described above.  The second filter goes from 
right to left, and is done after each full line has been processed.  The resulting probabili-
ties are kept in a buffer.  The third filter goes from top to bottom for each column, using 
the probability computed in the previous line.  The resulting 2-D filter impulse response 
is shown in Figure 2 and Table 1. Because of the appearance of that response when plot-
ted in a 3-D graph, we call it a “Tarp” filter. 

The computation of the Tarp filter is summarized by two sets of equations.  The first 
set implements the top-to-bottom and left-to-right 1-D filter: 
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Figure 2. Typical 2-D response of a “Tarp” filter. 
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where p is the true probability of v being one (it can’t depend on [ , ]v i j , which has not yet 
been seen), and i and j are respectively the line and column indices. The probability p is 
computed from the left probability estimate 1[ , 1]p i j−  and the above probability estimate 

2[ 1, ]p i j− .  Next, the left probability estimate is updated using the actual value [ , ]v i j .  

Note that the normalizing coefficient 2(1 ) / 2a a−  ensures that the sum of all the prob-

abilities is 1.  Finally, the probability 2[ , ]p i j  is updated for use in the next row computa-

tion. Note that 2[ , ]p i j  implements a vertical decay of the probabilities for each column.  

It also requires that one row of estimates 2[ 1,:]p i−  be kept in memory. 

Once a full row has been coded, the row probabilities 2p  are updated one more time 

by running a third filter 3p  backwards (from right to left) on the line that was just proc-

essed:   
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This whole computation can be viewed as an effective way to implement a convolution 
with the function in Figure 2.  Note that the support of this function is strictly causal (only 
depends on previously seen pixel).  The convolution can be viewed as a sum of Parzen 
windows (with the shape depicted in Figure 2), and the result is an accurate density 
estimator for 1s of  the binary stream [ , ]v i j .  As with the 1-D filter previously described, 

 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.1250 0.0625 0.0313 0.0156 0.0078 

0.0078 0.0156 0.0313 0.0625 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 

0.0039 0.0078 0.0156 0.0313 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 

0.0020 0.0039 0.0078 0.0156 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010 

0.0010 0.0020 0.0039 0.0078 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 

Table 1. Typical impulse response of a 2-D Tarp filter, for a pixel 
centered at the rectangle (for a = 0.5). 
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the Tarp filter ensures that the expected value of the probability estimate p matches that 
of the signal, under stationary assumptions. 

The initial conditions at the boundaries are given by: 
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where ε=0.001 is an a priori estimate of the probability of [ , ]v i j  being equal to one.   

2.3. Using the Tarp filter for coding/encoding 

The Tarp filter can be used to encode bit planes of quantized wavelet coefficients, as in 
[4], for example.  For a given bit plane, [ , ]p i j  is the probability that the symbol to be 
encoded, [ , ]v i j , is equal to one.  On both the encoder and the decoder, an arithmetic en-
coder encodes (decodes) [ , ]v i j  using the probability [ , ]p i j  computed using (2).  Once 

[ , ]v i j  has been processed, the next probability [ , 1]p i j +  is computed, and so on until the 
end of the line.  At the end of the line, a backward pass is made over the whole line using 
(3).  The next line is then processed. 

An appropriate value for a must be determined empirically.  For bit-plane encoding of 
quantized wavelets coefficients, we found that a = 0.6 is experimentally optimal (in the 
sense of producing the lowest bit rate at the output of the entropy encoder) for all planes 
and subbands.  Each bit plane can be encoded independently, although some refinement 
strategy can also be used (if the higher bits are one, a probability of 0.5 might be a better 
estimate than [ , ]p i j  (although [ , ]p i j  would probably be very close to 0.5 already).  The 
sign bit is encoded when needed using 0.5 as the probability, as usual (although for some 
images sign prediction could lead to improvement [5]). 

It is also possible to use the Tarp filter on the magnitude of the quantized wavelet co-
efficients.  The drawback of doing so is that encoding is no longer progressive.  The two 
main advantages are speed, since only one Tarp filter needs to be updated, instead of one 
per bit plane, and slightly better compression.  The Tarp filter can also be interpreted dif-
ferently than as a probability estimator; the Tarp is essentially computing a 2-D running 
average of the magnitude of coefficients.  For each magnitude, we need to associate a 
PDF over all the possible quantized values, resulting in a table indexed by magnitude and 
quantized value.  The table can be adaptive or pre-stored. In that sense, the Tarp filter is 
similar to the transform coefficient energy estimator of the EQ coder [6].   Our prelimi-
nary results using a Tarp on the magnitude indicates an improvement of 2% to 3% over 
the results reported in Section 3. Such improvement comes with a significant increase in 
complexity, and requires adaptive tables and modeling the PDF with a smooth curve 
function of the magnitude (without this modeling, the table has too many entries to adapt 
quickly enough).  
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Image JPEG PWC [4] EZ-HLBT [8] JPEG2000 Tarp 

1 2.64 2.52 2.43 2.45 2.40 
2 1.27 1.04 1.08 1.06 0.98 
3 0.75 0.62 0.60 0.57 0.56 
4 1.30 1.05 1.04 1.06 0.98 
5 2.50 2.33 2.32 2.24 2.19 
6 1.92 1.74 1.68 1.69 1.62 
7 0.94 0.78 0.81 0.72 0.72 
8 2.80 2.58 2.55 2.45 2.45 

9 0.90 0.75 0.73 0.68 0.68 
10 1.06 0.87 0.86 0.81 0.80 
11 1.75 1.55 1.54 1.50 1.45 
12 1.03 0.85 0.83 0.79 0.78 
13 3.32 3.15 3.10 3.17 3.01 
14 2.26 2.01 2.00 2.00 1.89 
15 1.10 0.93 0.94 0.89 0.85 
16 1.35 1.14 1.10 1.11 1.06 

17 1.25 1.02 1.03 0.99 0.95 
18 2.26 2.02 1.98 2.02 1.91 
19 1.64 1.43 1.38 1.39 1.33 
20 0.93 0.78 0.85 0.72 0.72 
21 1.63 1.44 1.44 1.42 1.35 
22 1.69 1.49 1.45 1.50 1.40 
23 0.56 0.38 0.40 0.37 0.35 

24 2.02 1.87 1.87 1.80 1.76 
Average 1.62 1.43 1.42 1.39 1.34 

Table 2. Compression performance, in bits per pixel, of several 
grayscale image codecs, for a PSNR of 40 dB. 

3. Experimental Results 

We have adapted our bit-plane wavelet image coder [4] to use Tarp by replacing the con-
text-adaptive Run-Length-Rice encoder by a Tarp filter followed by a nonadaptive arith-
metic encoder [7]. 

Our first experiment was to encode the gray scale images from the same Kodak gray-
scale image set used in [4], and compare the results to those of JPEG, PWC [4] and 
JPEG2000.  For all codecs, intermediate bitstream files were generated and decoded, so 
the compressed file size included bookkeeping and format overheads. For each image, the 
usual 7-9 biorthogonal wavelet transform is computed, with 5 subband levels.  On each 
band (LH, HL, HH), the Tarp filter is run independently on each bit plane.   The probabil-
ity estimate generated by each bit-plane Tarp is then used by the arithmetic encoder to 
encode each bit-plane symbol.  For each non-zero symbol, the sign is coded independ-
ently in raw mode, i.e. without any compression. 

A typical set of results for the image set are show in Table 2, for a peak signal-to-noise 
ratio (PSNR) of 40.0 dB (which leads to high visual quality, with essentially impercepti-
ble quantization artifacts for most images). Similar results are obtained at other PSNR 
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settings. For comparison with embedded zerotree-based coders, we have also included 
results for the EZ-HLBT (embedded zerotree with hierarchical lapped biorthogonal trans-
form) codec [8]. 

We note that the Tarp-based codec had the best compression performance for that 
group of codecs, in the Kodak image set. That was indeed a surprising result, since we 
were not expecting to obtain better results than JPEG2000, for example, which uses more 
sophisticated context modelling. The improvement over JPEG2000 is only a bit above 
3%, but that is quite surprising, in view of the simplicity of the Tarp approach. Note that 
the Tarp codec is not using contextual information other than the distance of non-zero 
bits with respect to the currently coded bit. 

4. Tarp on Binary Images 

In this experiment, we used the Tarp filter on binary (fax) images.  This experiment 
shows the limitation of the Tarp filter.  Binary images differ substantially from wavelet 
images in the sense that unlike wavelets coefficients, they are not residual images.  The 
neighboring pixels are highly correlated.   We used images f00_200 to f10_200 from the 
200 dpi standard CCITT test images [9] as a test set.  When encoded with Tarp 
( 0.14a = ), the results are 66% worse than JBIG2 (with clustering turned off), and 49% 
worse than BLC [9].  In other words, the Tarp filter yields poor performance compared to 
context-based methods for images in which neighboring pixel values are highly corre-
lated.  It also suggests that the Tarp’s “blindness” to direction may be more useful for 
predicting the variance rather than the actual value of a pixel.  

4.1. A Hybrid Tarp and Context Predictor 

Since the obvious limitation of Tarp is its inability to take advantage of contextual pat-
terns, we attempted to remedy to this deficiency by building a hybrid predictor using both 
a Tarp filter predictor and a contextual predictor.  The two competing predictors each out-
put a PDF to be used by the arithmetic encoder.  The first PDF is computed using the 
Tarp filter.  Since this predictor adapts quickly but has little information about how the 
bits are arranged around the bit to be predicted, the second predictor is built to comple-
ment the first.  It uses a large context to capture local patterns and is trained off-line 
(since on-line adaptation is already captured by the Tarp filter).  The context has 18 bits 
and has the shape shown if Figure 3. 

 
 

 

?
 

 

Figure 3. Context pattern used for the experiments in Section 4. 
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The context predictor is trained off-line on about 20 fax-like images (different from 
those in the test set) and the PDF of the next bit (whose location is marked by a question 
mark in Figure 3) is the frequency computed on the training set as a function of the con-
text.   The PDFs from the two predictors compete and the winner is determined by a gate 
function, as depicted in the Figure 4. 

Several gating functions were tried, such as picking the predictor with minimum en-
tropy, picking Tarp if the Tarp entropy was less than a threshold, etc.  We have also tried 
to learn the gating function from the training set.  Let P_Tarp and P_context be respec-
tively the probability outputted by the Tarp predictor and the context predictor.  We built 
a large bucketized table (P_Tarp by P_context) and found the optimal gating function on 
the training set for each combination (P_Tarp, P_context).   We then use this gating func-
tion on the test set. In any case, the data needed for the decisions are obtained from previ-
ously sent pixels, so there is no need for the encoder to send the gating value. All our at-
tempts yielded similar results. When predicting wavelet coefficients, using Tarp is always 
better than our hybrid attempts, while when predicting binary fax images, using the con-
text predictor alone is always the better solution. 

For predicting wavelet coefficients, we used 12 images from the Kodak set for train-
ing, and the remaining 12 for testing. Combining off-line training with on-line training is 
not a new concept, and has been used successfully in [10]. We ran experiments on the 
LH0 band. The Tarp alone was better than any of our other hybrid attempts. The only ex-
ception was when we used an oracle which always chose a posteriori the best predictor: 
the oracle was 38% better than Tarp alone.  Context alone was 83% worse than Tarp 
alone. 
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For the binary case, we used binary images from our own scans for training. In this 
case, we found that always using the Context Predictor is the optimal gating strategy. It is 
about 11% worse than JBIG2 and 2% worse than BLC.  With an oracle, the hybrid solu-
tion beats everything else by 43%. 

Both hybrid results were surprising to us.  We thought that surely contextual informa-
tion would help the Tarp filter in predicting wavelet coefficients.  The answer was nega-
tive, which indicates that with wavelet coefficients, accurate topological information does 
not provide useful information to the Tarp filter. We surmise that wavelet coefficients 
have little correlation to justify predicting coefficient values, but that the variance can be 
accurately estimated by an isotropic filter such as the Tarp. The second experiment with 
binary images is equally surprising, at the other extreme. On-line adaptation such as pro-
vided by the Tarp filter is of little benefit when compared to a pure context-method 
trained off-line.  This suggests that with a larger training set and larger tables, we could 
probably match state-of-the-art performance with a pure off-line method.  In that case, the 
table can be aggressively optimized (using decision trees, for instance), because most 
contexts in high-dimensional space are too rare to impact compression and can therefore 
be pruned out. 

5. Conclusion 

In this paper we introduce a very simple codec based on 2-D “Tarp” filtering. Because the 
filter is isotropic, it cannot incorporate accurate contextual information. Surprisingly, this 
simple filter yields state-of-the-art compression performance and even beats JPEG2000 
on image compression. This shows that accurate contextual information is not necessary 
for good performance in image compression. This conclusion is reinforced by an experi-
ment in which we tried to combine the Tarp filter with a predictor which uses extensive 
contextual information and is trained off-line.  We could not improve on our results using 
the second predictor, which further suggests that context contains little information not 
already captured by the Tarp. 

In another set of experiments, we use the Tarp filter to encode binary images.  In this 
setting, the Tarp filter yielded poor performance, suggesting that for binary images, con-
textual information is essential for good performance.  This conclusion was reinforced by 
trying to combine the Tarp filter with a predictor that uses extensive contextual informa-
tion. In that case, the optimal combination was to completely ignore the Tarp filter and 
base every prediction using context, further suggesting that Tarp was making poor use of 
context information. 

The Tarp filter seems to be better for predicting images where the coefficients have lit-
tle correlation, such as wavelet coefficients.  We surmise that the strength of the Tarp fil-
ter comes from its ability to smoothly track variance, as opposed to the ability to predict 
the coefficient values. 
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