
Can Abstract State Machines Be Useful in

Language Theory?

Yuri Gurevich a Margus Veanes a Charles Wallace b

aMicrosoft Research, Redmond, Washington, USA
bMichigan Tech, Houghton, Michigan, USA

Abstract

The abstract state machine (ASM) is a modern computation model. ASMs and
ASM based tools are used in academia and industry, albeit on a modest scale. They
allow you to give high-level operational semantics to computer artifacts and to write
executable specifications of software and hardware at the desired abstraction level.
In connection with the 2006 conference on Developments in Language Theory, we
point out several ways that we believe abstract state machines can be useful to the
DLT community.

1 Introduction

Abstract state machines (originally called evolving algebras) constitute a mod-
ern computation model [14,16]. ASMs describe algorithms without compromis-
ing the abstraction level. There is numerous ASM based tools, in particular
the specification language AsmL, the ASM Language, designed and imple-
mented at Microsoft Research [2]. ASMs and ASM based tools are used in
academia and industry albeit still on a modest scale. They are used to give
precise semantics to computer programs, to programming languages and to
other computing artifacts, and they are used to specify software and hard-
ware [1,2,9,17].

This paper started as a write-up of the invited talk that the first author gave
at the 10th International Conference on Developments in Language Theory,
DLT 2006. Language theory is understood broadly by the DLT community
[12], and we use the term in the same broad sense. We argue that ASMs can

Email addresses: gurevich@microsoft.com (Yuri Gurevich),
margus@microsoft.com (Margus Veanes), wallace@mtu.edu (Charles Wallace).

Preprint submitted to Elsevier 22 December 2006

be useful to the DLT community and we point out a few specific ways that
ASMs can be useful.

In Section 2 we describe some properties of ASMs that appear to us most rele-
vant to language theory: their strong universality, their facility for abstraction
and interaction, and their ability to capture concurrency.

In Section 3 we illustrate how ASMs can be used to program traditional
language-theory algorithms on their natural abstraction level, devoid of un-
necessary details. Typically these algorithms are described in words or are
programmed in a conventional programming language, which does involve un-
necessary implementation details. We consider two well known algorithms and
program them in AsmL. The level of abstraction is that of traditional verbal
description, but of course we have to be precise.

The DLT community has been keenly interested in evolutionary computing. In
Section 4, we illustrate how ASMs can be used to write evolutionary algorithms
and what benefits one may expect from using ASMs. We do not presume that
the reader is familiar with evolutionary algorithms.

In Section 5 we illustrate how ASMs compute with inputs in the form of fi-
nite abstract structures. The ASM model was designed to work with abstract
structures. In fact, the current models for computations with abstract struc-
tures and the related complexity theory build upon ASMs [7,8]. Computing
with abstract structures is not prominent yet on the DLT horizon but it is
not completely foreign to the DLT community either. The list of topics at the
DLT 2006 website [12] starts with “grammars, acceptors and transducers for
strings, trees, graphs, arrays”. But the conventional computation models can-
not deal directly with abstract structures; you cannot put an abstract graph
on the tape of a Turing machine. Instead, the conventional models deal with
presentations of abstract structures. In the case of trees, a linear order is im-
posed on the children of the same node. In the case of graphs, a linear order is
imposed on the vertices. We are convinced that the significance of computing
with abstract structures is bound to grow. As interest in grammars, acceptors
and transducers for abstract structures grows, ASMs will become more and
more relevant to the DLT community.

Finally, let us say a few words about the AsmL programs of this paper. To
enhance readability, we allow ourselves to use mathematical symbols instead
of some AsmL symbols: ‘∈’ for ‘in’, ‘�∈’ for ‘notin’, ‘�=’ for ‘ne’, ‘�→’ for ‘->’,
‘∀’ for ‘forall’, ‘∃’ for ‘exists’, ‘↔’ for ‘iff’, ‘∅’ for ‘{}’, ‘∩’ for ‘intersect’.
When a method or function M takes no parameters we abbreviate M() to M .

The public distribution of the model-based testing and model exploration tool
Spec Explorer, developed at Microsoft Research, includes a number of AsmL
samples [21]. We have put there the AsmL programs of sections 3 and 5,

2

complete with example data and using the standard AsmL symbols, so that
you can execute the programs and play with them. We have not done the same
with the programs of section 4 because those are not complete in themselves;
they require a number of external application-dependent functions.

Acknowledgment

We thank Andreas Blass for helpful discussions.

2 The ASM computation model: How is it different?

We do not define ASMs here; instead, we discuss some of the distinctive qual-
ities of ASMs that may be of interest to the DLT community. Examples in the
subsequent sections should be largely self-explanatory.

For those interested to learn more about ASMs, the standard reference [14]
to the definition of ASMs is still a good place to start. But there has been a
substantial advance in the meantime. Two developments are worth mentioning
here. One is the development of the specification language AsmL [2], a richer
and executable alternative to the frugal mathematical model of [14]. The other
is the enhancement of the interactive aspect of ASMs [16].

2.1 A richer notion of universality

Turing’s original model of computation was intended to capture the notion
of computable function from strings to strings. Turing convincingly argued
that every string-to-string computable function is computable by some Turing
machine [22]. His thesis is now widely accepted.

The string-to-string restriction does not seem severe because usually inputs
and outputs can be satisfactorily coded by strings. But the restriction is not
innocuous. Some algorithms work with inputs that do not admit string en-
coding. Think for example of the Gaussian elimination algorithm that deals
with genuine reals. One can argue that (a) in any actual computation one
deals with finite objects, e.g. with finite approximations of genuine real num-
bers, and (b) finite objects can be represented by strings. Clause (a) is true
of course, but it may be useful to write down an algorithm on its natural
level of abstraction. Clause (b) is true as well but only to a point. A graph
for example can be represented by an adjacency matrix (and a matrix can
be written as a string: row by row) but this requires that the vertices are

3

linearly ordered. Different orders give different adjacency matrices in general.
If a graph input is given by an adjacency matrix then the computation may
depend on the choice of the adjacency matrix. This is related to a well-known
problem of database theory: how to deal with databases in an implementation
independent way? Besides, the problem whether two given adjacency matrices
represent the same graph is not known to have a polynomial time solution.

There is another restriction of Turing’s model. A Turing machine simulation
of a given algorithm is guaranteed to preserve only the input/output behavior.
But there may be more to an algorithm than the function it computes.

The abstract state machine (ASM) computation model is universal in a
stronger sense. The ASM thesis asserts that, for every algorithm A, there
is an ASM B that is behaviorally equivalent to A [14]. In particular, B step-
for-step simulates A. This applies also to the Gaussian elimination algorithm
and other algorithms that deal with infinite objects. Substantial parts of the
thesis have been proved from first principles [15,6,16]; these developments are
put into broad perspective in [5].

2.2 Abstraction

While the Turing machine is perfect for its intended purpose, its abstraction
level is essentially that of single bits. The low abstraction level of the Turing
machine inhibits its ability to faithfully simulate algorithms. On the other
hand, an ASM simulator operates at the abstraction level of the original al-
gorithm. Each ASM is endowed with a vocabulary of function names. A state
of the ASM is a (first-order) structure of that vocabulary: a collection of ele-
ments, along with interpretations of the function names as functions over the
elements. The author of an ASM program has flexibility in choosing the level
of abstraction. For example, atoms, sets of atoms, sets of sets of atoms, etc. can
be treated as elements of a structure of the vocabulary with the containment
relation ∈. Similarly, other complex data — maps, sequences, trees, graphs,
sets of maps, etc. — can be dealt with directly. This makes ASMs appropri-
ate for various applications — e.g., specifications of software — dealing with
high-level abstractions.

2.3 Non-determinism and interaction

An ASM can be non-deterministic. For example, you may have an assignment
of the form

4

current := any x | x ∈ s

where s is a set-valued term. (If s = ∅ then an error occurs.)

From the point of view of ASM theory, algorithms are inherently deterministic.
Nondeterministic choices are made by the algorithm’s environment, e.g. the
operating system. The any construct is really a query asking the environment
to make a choice. Similarly, the creation of a new object (in the sense of object
oriented programming) is a query. See more about that in [16].

2.4 Concurrency

In the ASM world, parallelism is the default. For example consider a statement
(a.k.a. rule)

if cond then

R1

R2

where cond is a Boolean-valued expression and R1, R2 are statements. If cond
evaluates to true then the statements R1 and R2 are executed in parallel. You
pay a syntactic price for requiring that the rule R1 is executed first, and the
rule R2 is executed second:

if cond then

step

R1

step

R2

Parallelism can be massive. For example, you may have a comprehension ex-
pression

current := {f(x) | x ∈ s where cond(x)}

or a statement

forall x ∈ s
R(x)

where s is a set-valued term, cond(x) is Boolean-valued term and R(x) is

5

a statement. (If s = ∅ then the forall command does nothing and thus is
equivalent to the skip command.)

A distributed ASM is a dynamic set of agents operating asynchronously over
a global state [14]. The global state could reflect a physical common memory
or be a pure mathematical abstraction with no physical counterpart. Agents
can be created or removed.

There are various new computational paradigms that exploit the possibility
of massive parallelism: quantum computing, DNA computing, etc. They all
seem well suited for description in terms of ASMs. In fact, Grädel and Nowack
proved that every model of quantum computing in the literature can be viewed
as a specialized ASM model [13].

2.5 Executability

The last but certainly not the least important aspect of the ASM computation
model that we address here is the executability of ASMs. There are several
ASM-based high-level programming languages. The most powerful is AsmL
[2]. No, AsmL cannot execute the Gaussian elimination algorithm over genuine
reals; reals would have to be approximated.

3 Traditional language theory algorithms: Examples

3.1 Finite automata minimization

We construct an ASM that executes the well known algorithm for minimiz-
ing a deterministic finite automaton [18]. Given a finite automaton A =
〈Q, Σ, q0, δ, F 〉, the algorithm computes an equivalence relation E on Q and
then uses the equivalence classes of E as the states of a minimal finite au-
tomaton A′ = 〈Q′, Σ, q′0, δ

′, F ′〉 equivalent to A.

The desired ASM is a sequential composition of three submachines:

6

MinimizeFA

step

InitializeEquivalence

step

ComputeEquivalence

step

ComputeNewAutomaton

Now we describe the three submachines. The first one is the simplest.

InitializeEquivalence

E := {(p, q) | p ∈ Q, q ∈ Q where p ∈ F ↔ q ∈ F}

The second submachine iterates an assignment to E until a fixed point is
reached. Reaching a fixed point means in this case that the value of E stabilizes
and does not change anymore.

ComputeEquivalence

step until fixpoint

E := {(p, q) | (p, q) ∈ E where ∀σ ∈ Σ holds (δ(p, σ), δ(q, σ)) ∈ E}

The final submachine uses a function Eclass that maps an original finite
automaton state q into the E-equivalence class that contains q. The type
FAstate is abstract. We do not presume that the states of the given finite
automaton are numbers or strings.

type FAstate

Eclass(q as FAstate) as Set of FAstate

return {p | p ∈ Q where (p, q) ∈ E}

ComputeNewAutomaton

Q′ := {Eclass(q) | q ∈ Q}
q′0 := Eclass(q0)
δ′ := {(Eclass(q), σ) �→ Eclass(δ(q, σ)) | q ∈ Q, σ ∈ Σ}
F ′ := {Eclass(q) | q ∈ F}

The four assignments are executed in parallel because parallel execution is the
default in AsmL.

7

3.2 Finite automata determinization

We construct an ASM that executes the Rabin-Scott algorithm that, given a
non-deterministic finite automaton A = 〈Q, Σ, q0, δ, F 〉, where δ : Q×Σ→ 2Q,
computes an equivalent deterministic finite automaton A′ = 〈Q′, Σ, q′0, δ

′, F ′〉.
Again, new states are sets of original states. The desired ASM is the sequential
composition of two submachines

DeterminizeFA

step

InitializeNewAutomaton

step until Frontier = ∅
ExploreFrontier

where the second submachine is an iteration of a simpler submachine. We de-
scribe the submachines InitializeNewAutomaton and ExploreFrontier. To
this end, we need an auxiliary variable Frontier. As before the type FAstate

is abstract.

type FAstate

var Frontier as Set of Set of FAstate

InitializeNewAutomaton

Q′ := {{q0}}
Frontier := {{q0}}
q′0 := {q0}
F ′ := if q0 ∈ F then {{q0}} else ∅
δ′ := {�→}

Here {�→} is the empty map. In the typed world of AsmL, we have to distin-
guish between the empty set and the empty map.

8

ExploreFrontier

forall S ∈ Frontier

forall σ ∈ Σ
let T = {q | q ∈ Q where ∃p ∈ S where q ∈ δ(p, σ)}
δ′(S, σ) := T
if T �∈ Q′ then

add T to Q′

add T to Frontier

if T ∩ F �= ∅ then

add T to F ′

remove S from Frontier

4 Evolutionary algorithms

We illustrate AsmL specification (a.k.a. high level description, high level pro-
gramming) of evolutionary algorithms with a couple of examples. The idea
is to promote AsmL as a better alternative to pseudocode specification of al-
gorithms. It is common to specify algorithms in the pseudocode form, and
the case of evolutionary algorithms is no exception. Typical drawbacks of
pseudocode include unintended ambiguities, inconsistent abstraction levels,
unnecessary details, missing essential information, insufficient clarity, and in-
sufficient precision. Of course the pseudocode specifications carefully written
by best field experts may be of high quality, and the use of AsmL does not
guarantee perfect specifications. But AsmL helps one to keep a consistent ab-
straction level, and it imposes certain precision without forcing unnecessary
details or determinism. And there is a crucial advantage of AsmL specifica-
tions: they are executable. You can play with them and in the process debug
your specification. Note, however, that in examples like those below, when
the environment of the algorithm evaluates so-called external functions, the
executability of specification requires programming those evaluations in one
way or another.

4.1 The canonical evolutionary algorithm

There are various computing methods for solving optimization problems, in-
spired by the metaphor of evolution in the natural world [4]. What is the
essence of an evolutionary algorithm? Many authors attempt to answer this
question by giving a “general scheme” or “canonical algorithm”, in pseudocode
form. In an influential book [4] on evolutionary computing, Bäck [3] gives a
“general framework” for the “basic instances of evolutionary algorithms”. We

9

quote:

We define I to denote an arbitrary space of individuals a ∈ I, and F : I → R

to denote a real-valued fitness function of individuals. Using µ and λ to de-
note parent and offspring population sizes, P (t) = (a1(t), . . . , aµ(t)) ∈ Iµ

characterizes a population at generation t. Selection, mutation, and recombi-
nation are described as operators s : Iλ → Iµ, m : Iκ → Iλ, and r : Iµ → Iκ

that transform complete populations . . .
These operators typically depend on additional sets of parameters Θs, Θm,

and Θr which are characteristic for the operator and the representation of
individuals. Additionally, an initialization procedure generates a population
of individuals . . . , an evaluation routine determines the fitness values of
the individuals of a population, and a termination criterion is applied to
determine whether or not the algorithm should stop.

Putting this all together, a basic evolutionary algorithm reduces to the
simple recombination-mutation-selection loop as outlined below:

Input: µ, λ, Θι, Θr, Θm, Θs

Output: a∗, the best individual found during the run, or

P ∗, the best population found during the run.

1 t← 0;
2 P (t)← initialize(µ);
3 F (t)← evaluate(P (t), µ);
4 while (ι(P (t), Θι) �= true) do
5 P ′(t)← recombine(P (t), Θr);
6 P ′′(t)← mutate(P ′(t), Θm);
7 F (t)← evaluate(P ′′(t), λ);
8 P (t + 1)← select(P ′′(t), F (t), µ, Θs);
9 t← t + 1;

od

That completes the quotation. As with many pseudocode representations of
algorithms (and we see plenty of these in software engineering), certain ques-
tions arise. Writing an ASM forces us to be precise and confront the questions.

Consider line 3. The line is superfluous unless the termination condition uti-
lizes F (t), in which case we would expect F to appear as a parameter of ι. Of
course F may appear in Θι but the application specific Θι is inappropriate to
hide F . We will make F (t) an explicit parameter of ι.

Once our confidence in the pseudocode is slightly shaken, we may question
whether parts of it that are clear have the intended meaning. P (t) is defined
as a sequence, but no advantage is taken from ordering the individuals (or
from the fact that the same individual can appear several times in P (t)). Is
P (t) ordered here because it is ordered in the implementations? We will treat

10

P (t) as a set.

Consider lines 3 and 7. As far as we can see, the second parameter of evaluate
is superfluous as its value is just the cardinality of the first parameter value.
We will remove the second parameter of evaluate. Another question concerns
the order of Lines 5 and 6: is it necessary that mutation follows recombination?
At this point, we will follow the pseudocode.

Finally, something that appears to be missing from the pseudocode is the
computation of the output. We will incorporate a computation of the best
population into our ASM (and will not compute the best individual). But
first we have to make the notion of best population precise. One way to do
that is this. We presume that possible results of evaluate are linearly ordered.
The best population is the population P (t∗) such that

evaluate(P (t∗)) = max
t

evaluate(P (t))

and t∗ is the least possible. If the algorithm terminates, then the sequence
〈P (0), P (1), . . .〉 is finite and the best population is defined.

The functions evaluate, initialize, mutate, recombine, select, and
terminate that appear in pseudocode are external functions in ASM terms.
They are evaluated by the environment (e.g. the implementation) of our high-
level algorithm. We do not program these external functions here. However, for
clarity, it is useful to declare their types. Besides, AsmL is a typed language
and requires us to declare the types of functions. However, the types could
be abstract; when needed, the abstract types could be refined. We use that
flexibility of AsmL. The type Params of the application specific parameters is
abstract. In the pseudocode above, parameters Θι, Θr, Θm, Θs may have dif-
ferent types. Accordingly we may need different refinements of Params. The
type Real can be concretized to be a numeric type that approximates reals
(e.g. Float). Individuals are abstract entities represented by the abstract type
Individual.

type Params

type Real

type Individual

type Population = Set of Individual

evaluate(p as Population) as Real

initialize(m as Integer) as Population

mutate(p as Population, t as Params) as Population

recombine(p as Population, t as Params) as Population

select(p as Population, f as Real,

s as Integer, t as Params) as Population

terminate(p as Population, f as Real, t as Params) as Boolean

11

The main ASM program CanonicEvolution contains three submachines that
are defined below.

CanonicEvolution

step

InitializeComputation

step while not terminate(P, evaluate(P), Θι)
step

CreateNextGeneration

step

UpdateBestPopulation

Variables P and P ∗ are defined as follows.

var P as Population

var P ∗ as Population

Note that P does not have the argument t. The algorithm computes the best
population only, and for this purpose the explicit time parameter will not be
needed. The situation would be different if the goal was to compute the whole
generation history.

Now we give the three submachines. The initializing submachine returns a set
of individuals of size µ.

InitializeComputation

step

P := initialize(µ)
step

P ∗ := P

CreateNextGeneration

let P ′ = recombine(P, Θr)
let P ′′ = mutate(P ′, Θm)
let F = evaluate(P ′′)
P := select(P ′′, F, µ, Θs)

The four external functions have the intuitive meaning explained above by
Bäck.

12

UpdateBestPopulation

if evaluate(P) > evaluate(P ∗) then P ∗ := P

If and when the algorithm terminates, the variable P ∗ gives the best popula-
tion.

4.2 Parallel evolutionary algorithms

How much can the canonical algorithm be parallelized? Nowostawski and Poli
[19] give a taxonomy of parallel versions of the canonical evolutionary algo-
rithm. Here we focus on “static demes with migration” scenarios where the
population is partitioned into a set of disjoint demes (subpopulations), each
one maintained separately. Each individual is in one deme at any given time,
but individuals may migrate from deme to deme. We consider two particular
scenarios.

4.2.1 Synchronous scenario

In a synchronous scenario, generations of the total population are well defined,
and the optimal solution is chosen over all generations, as in the canonical
algorithm. Migration happens between generations. The desired ASM is a
modification of the CanonicEvolution ASM above. The top-level structure
of the new ASM is this.

SynchronousParallelEvolution

step

InitializeComputation

step while not terminate(P, evaluate(P), Θι)
step

CreateDemeCandidates

step

MoveIndividualsAround

step

UpdateBestPopulation

It is similar to that of the top-level structure of CanonicEvolution but there
are two differences: the CreateNewGeneration submachine is split into two
submachines, and P is now a derived function rather than a variable. P is
of course the union of the populations of all the demes. But what is a deme
exactly? Note that a deme may be empty during some points of the evolution.
Are two empty demes equal? Not necessarily. If follows that demes are not
uniquely defined by their contents.

13

class Deme

var p as Set of Individual

Demes as Set of Deme

Intuitively the members of Deme are deme identifiers of some kind. The field
p of a deme d gives the current population of d. More formally, p is a function
that maps every deme to a set of individuals.

P as Set of Individual

return {i | d ∈ Demes, i ∈ d.p}

Now we describe the submachines of SynchronousParallelEvolution.

InitializeComputation

step

forall d ∈ Demes

d.p := initialize(d, µ(d))
step

P ∗ := {i | d ∈ Demes, i ∈ d.p}

Note that µ is now not an integer, as it was above, but a function from demes
to integers.

Creating a new generation now involves parallelism and migration.

CreateDemeCandidates

forall d ∈ Demes

let p′ = recombine(d.p, Θr)
let p′′ = mutate(p′, Θm)
let f = evaluate(p′′)
d.p := select(p′′, f, µ(d), Θs)

The following migration rule presumes that the demes are disjoint; other-
wise inconsistency may arise. For an individual i, a dynamic external function
NewDeme(i) gives the new deme of i.

14

MoveIndividualsAround

forall d ∈ Demes

forall i ∈ d.p where NewDeme(i) �= d
remove i from d.p
add i to NewDeme(i).p

NewDeme(i) is dynamic in the sense that a subsequent call to NewDeme(i) may
produce a different result. One may want to make NewDeme(i) static by provid-
ing additional parameters. We are accustomed to dynamic external functions
and feel comfortable using them. The final submachine is almost identical to
the one used by CanonicEvolution but P is derived now.

UpdateBestPopulation

if evaluate(P) > evaluate(P ∗) then P ∗ := P

4.2.2 Asynchronous case

In an asynchronous scenario, demes evolve independently, and generations of
the total population may be ill defined. The algorithm runs until termination,
and the union of the final demes constitutes the final population.

Demes do not communicate directly with each other. To enable migration, a
special station is used.

var Station as Set of (Individual, Deme) = ∅

It is composed of pairs (i, d) where i is an individual and d is a deme to which
i is being transferred. The station is initially empty.

We program the behavior of a deme including the interaction between the
deme and the station. We omit the part on choosing the best individual among
the final population.

Demes are initialized upon creation. When a new deme d comes to existence,
its population p is initialized to initialize(d, µ(d)).

class Deme

Deme

p := initialize(this,µ(this))

A deme evolves by executing its program Evolve.

15

class Deme

Evolve

step while not terminate(p, evaluate(p), Θι)
step

CreateDemeCandidate

step

TransferIndividuals

CreateDemeCandidate

let p′ = recombine(p)
let p′′ = mutate(p′)
let f = evaluate(p′′)
p := select(p′′, f, µ, Θs)

TransferIndividuals

forall i ∈ p where NewDeme(i) �= this

remove i from p
add (i, NewDeme(i)) to Station

forall (i, d) ∈ Station where d = this

remove (i, d) from Station

add i to p

Notice that some individuals may be placed in the station and some other
individuals may be removed from the station simultaneously during one step
of Evolve. However, it is not possible that some individual is simultaneously
removed and added, because the populations of distinct demes are disjoint.

5 Computing with abstract structures

One reason to compute with abstract structures, rather than with their string
representations, is to compute on a higher abstraction level. We illustrate this
below by writing an AsmL code for a useful graph partition algorithm A. We
give an example execution of A and discuss some uses of A.

Another reason to compute with abstract structures is to guarantee that the
result does not depend on representation. This aspect is especially important
when the structures in question (e.g. databases) are inputs to large automated
systems. Due to time and page limitations, we do not illustrate it here.

16

5.1 Graph partition algorithm

Our graph partition algorithm A is a humble relative of graph labeling algo-
rithms used in practice to solve the graph isomorphism problem [10,11]. We
think that, taking into account the character of this article (as well as time
and page limitations), a simpler graph partitioning algorithm fits our purposes
better.

Define a partition P of (the vertex set of) a graph G = (V, E) as a map from
V to the power set 2V of V such that every v ∈ P (v) and every two distinct
sets P (u) and P (v) are disjoint. Each P (v) is a part of P . We presume that
E is symmetric and irreflexive. Here is the algorithm A.

type Vertex

type Edge = (Vertex, Vertex)
var V as Set of Vertex

var E as Set of Edge

var P as Map of Vertex to Set of Vertex

ComputePartition

step

P := {x �→ V | x ∈ V }
let Nbh = {x �→ {y | y ∈ V where (x, y) ∈ E} | x ∈ V }

step until fixpoint

P := {x �→ {y | y ∈ P (x) where
Bag{P (z) | z ∈ Nbh(x)} =
Bag{P (z) | z ∈ Nbh(y)}} | x ∈ V }

The type Vertex is abstract. We do not presume that vertices are numbers or
strings. Nbh alludes to “neighborhood”. Bag{P (z) | z ∈ Nbh(x)} is the multiset
of sets P (z) where z ranges over Nbh(x). Running A on a graph G = (V, E),
produces a partition P = A(G) that respects automorphisms of G: if α is an
automorphism of G then every P (α(v)) = P (v).

To execute A, we need to extend the AsmL program above and, in particular,
to concretize the type Vertex. For simplicity, the extended program is designed
to run on one particular graph, the graph in Figure 1.

17

2 5 3

4 8

7 9 1

Fig. 1. Sample graph.

Main

step

InitializeGraph

step

ComputePartition

type Vertex = Integer

InitializeGraph

V := {2, 3, 5, 7, 8, 9, 1, 4}
E := Symmetrize({(7, 4), (7, 2), (5, 4), (5, 8), (3, 8), (3, 1),

(4, 2), (4, 9), (4, 1), (8, 1), (8, 9), (8, 2)})

Symmetrize(es as Set of Edge) as Set of Edge

return es + {(y, x) | (x, y) ∈ es}

Let Pi denote the set of the parts of P before the ith iteration of the assignment
of the step-until-fixpoint loop. The following values of Pi can be observed
by inserting the AsmL statement WriteLine(P.Values) right before that
assignment:

P1 = {{2, 3, 5, 7, 8, 9, 1, 4}}
P2 = {{8, 4}, {1, 2}, {9, 7, 5, 3}}
P3 = {{8, 4}, {1, 2}, {9, 5}, {7, 3}}

5.2 Using the graph partition algorithm

Given a property π of graphs, let φn be the fraction of π graphs on Vn =
{1, 2, . . . , n}, that is the number of graphs on {1, 2, . . . , n} that possess prop-
erty π divided by the total number of graphs on Vn. Consider the uniform
probability distribution on the collection of graphs of Vn (according to which
every two graphs are equally probable), and let Gn be a random graph on Vn.
Then φn is the probability that Gn possesses property π. The property π is
called almost sure in finite model theory if φn approaches 1 when n grows to

18

infinity.

Call a partition P of a graph G = (V, E) ultimate if every P (v) = {v}.
Almost surely, the partition A(G) is ultimate. In other words, the probability
that A(Gn) is ultimate, where Gn is a random graph as above, converges to 1
when n grows to infinity. We omit the supporting computation.

Recall that a graph G is rigid if the only automorphism of G is the iden-
tity automorphism. The graph rigidity problem is the problem to determine
whether a given graph is rigid. The problem is not known to be polynomial
time. Algorithm A is polynomial time, and it does not always determine the
rigidity of a given graph. But it can be used to solve the rigidity problem
in practice. Almost surely the partition A(G) is ultimate, in which case G is
rigid. (It follows that graphs are almost surely rigid.) If, however, A(G) is not
ultimate, then the question whether G is rigid remains open.

There is a trivial algorithm B for the graph rigidity problem: give the positive
answer in all cases. Almost surely, B is correct. Does A have any advantage
over B? Yes. One advantage is that A does not have false positives. If partition
A(G) is ultimate then G is rigid. But there are rigid graphs G such that A(G)
is not ultimate. In that sense A has false negatives, while the trivial algorithm
does not have false negatives (because it does not have any negatives). An-
other advantage of A that it can be helpful in solving the graph isomorphism
problem.

The graph isomorphism problem is the problem to determine whether two
given graphs are isomorphic. It is not known to be in polynomial time. The
partition algorithm can be used for a practical solution of the problem in
most cases. Given two graphs G and H , run A on the disjoint sum G + H .
Almost surely the result is the ultimate partition of G + H , which establishes
that G and H are not isomorphic. Clearly this remains true for probabilities
conditional on the event that G and H are not isomorphic.

What about the event when G and H are isomorphic? This is a bit more subtle
case. So let us clarify what the event is. Given a positive integer n, choose
G randomly among the graphs on {1, . . . , n}, and then choose H randomly
among the graphs on {n + 1, . . . , 2n} isomorphic to G. In both cases, all
candidate graphs are presumed to be equally probable. In this event, almost
surely, there is a unique isomorphism from G to H , and A finds it. It finds
the isomorphism in the following sense: each part in A(G+H) has one vertex
from G and one vertex from H , and the resulting map from G to H is an
isomorphism. To verify this claim, note that, by the choice of G, almost surely,
distinct vertices of G will be in distinct parts. But, since G is isomorphic to
H , there is a non-trivial automorphism θ of G + H . It follows that, for every
vertex u of G, the part of u contains θ(u) but does not contain any other

19

vertices of G.

6 Concluding remarks

So can abstract state machines be helpful to language theorists? We believe so,
and we gave some reasons for our position. The answer to the question rests
ultimately with language theorists themselves. They have the knowledge of
the latest advances and the understanding of current problems. We hope that
abstract state machines will facilitate further advances in language theory.

References

[1] Abstract State Machines, http://www.eecs.umich.edu/groups/gasm/

[2] Abstract State Machine Language (AsmL),
http://research.microsoft.com/fse/asml/

[3] Thomas Bäck, “Introduction to evolutionary algorithms”, in [4], 59–63

[4] Thomas Bäck, David B. Fogel and Zbigniew Michaelewicz, Evolutionary
Computation 1: Basic Algorithms and Operators, Institute of Physics Publishing,
2000

[5] Andreas Blass and Yuri Gurevich, “Algorithms: A Quest for Absolute
Definitions”, Bulletin Euro. Assoc. for Theor. Computer Science 81 (2003), 195–
225. Reprinted Current Trends in Theoretical Computer Science, World Scientific
(2004) 283–311, and in Church’s Thesis After 70 Years, Ontos Verlag (2006) 24–57

[6] Andreas Blass and Yuri Gurevich, “Parallel Abstract State Machines Capture
Parallel Algorithms”, ACM Transactions on Computational Logic 4:4 (2003), 578–
651

[7] Andreas Blass, Yuri Gurevich and Saharon Shelah, “Choiceless Polynomial
Time”, Annals of Pure and Applied Logic 100 (1999), 141–187

[8] Andreas Blass, Yuri Gurevich and Saharon Shelah, “On Polynomial Time
Computation Over Unordered Structures”, Journal of Symbolic Logic 67:3 (2002),
1093–1125

[9] Egon Börger, “Abstract State Machines: A Unifying View of Models of
Computation and of System Design Frameworks”, Annals of Pure and Applied
Logic 133 (2005), 149–171

[10] Derek G. Corneil and Calvin C. Gotlieb, “An Efficient Algorithm for Graph
Isomorphism”, Journal of ACM 17:1 (1970), 51–64

20

[11] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento,
“A (Sub)Graph Isomorphism Algorithm of Matching Large Graphs”, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (2004), 1367–1372

[12] DLT 2006 website, http://dlt2006.cs.ucsb.edu/

[13] Erich Grädel and Antje Nowack, “Quantum Computing and Abstract State
Machines”, in E. Börger (editor), Abstract State Machines: Advances in Theory
and Applications, Lecture Notes in Computer Science 2589 (2003), Springer-
Verlag, 309–323

[14] Yuri Gurevich, “Evolving Algebras 1993: Lipari Guide”, in E. Börger (editor),
Specification and Validation Methods, Oxford University Press (1995), 9–36

[15] Yuri Gurevich, “Sequential Abstract State Machines Capture Sequential
Algorithms”, ACM Transactions on Computational Logic 1:1 (2000), 77–111

[16] Yuri Gurevich, “Interactive Algorithms 2005 with Added Appendix”, in D.
Goldin, S. A. Smolka, P. Wegner (editors), Interactive Computation: The New
Paradigm, Springer 2006, 165–182.

[17] Yuri Gurevich, Benjamin Rossman and Wolfram Schulte, “Semantic Essence of
AsmL”, Theoretical Computer Science 343:3 (2005), 370–412

[18] Dexter C. Kozen, Automata and Computability, Springer, 1997

[19] Mariusz Nowostawski and Riccardo Poli, “Parallel Genetic Algorithm
Taxonomy”, Proc. Third International Conference on Knowledge-based Intelligent
Information Engineering Systems (KES), 1999, 88–92

[20] Grzegorz Rozenberg (editor), Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1 - Foundations, World Scientific, 1997

[21] Spec Explorer, http://research.microsoft.com/specexplorer/

[22] Alan Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem”, Proceedings of London Mathematical Society (series 2)
42 (1936–1937), 230–265. Correction, ibidem 43, 544–546

21

