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Abstract—
A goal-directed search attempts to reveal only relevant infor-

mation needed to establish reachability (or unreachability) of the
goal from the initial state of the program. The further apart the
goal is from the initial state, the harder it can get to establish
what is relevant. This paper addresses this concern in the context
of programs with assertions that may be nested deeply inside its
call graph—thus, far away interprocedurally from main. We
present a source-to-source transformation on programs that lifts
all assertions in the input program to the entry procedure of
the output program, thus, revealing more information about the
assertions close to the entry of the program. The transformation
is easy to implement and applies to sequential as well as
concurrent programs. We empirically validate using multiple
goal-directed verifiers that applying this transformation before
invoking the verifier results in significant speedups, sometimes
up to an order of magnitude.

I. INTRODUCTION

Automated program verification attempts to establish reach-
ability (or unreachability) of a goal from the initial state of the
program. The goal is usually expressed as the violation of an
assert statement in the program. Modern automated program
verifiers are typically goal-directed, i.e., they attempt to use
program information parsimoniously in order to establish
(un)reachability of the goal as efficiently as possible. The
challenge of distinguishing relevant from irrelevant and the
difficulty of the verification problem increases as the distance
of the goal from the initial state becomes larger. This paper
addresses this challenge for programs with assertions that
may be nested deeply inside its call graph—thus, far away
interprocedurally from the program entry point.

Deep assertions are natural in large programs. For instance,
in our benchmarks (Section VI), the static nesting depth of
assertions (i.e., length of an acyclic path in the call-graph
from main to a procedure containing an assertion) ranges
from 4 to 38 (Fig. 6) and the depth observed on real error
traces ranges from 5 to 15 (Fig. 7). At such depths, a naı̈ve
strategy of inlining procedures to expose control locations
of the assertions is infeasible for analysis because of the
exponential cost of inlining.

This paper presents an approach for lifting all assertions
to the entry procedure of the program, thus revealing more
information about the assertions close to the initial state of
the program. Our method is a source-to-source transformation
that produces output whose size is a small constant times the
size of the input, and applies to both sequential and concurrent
programs. We empirically validate using multiple verifiers that

applying this transformation before feeding a program to a
verifier results in upto order-of-magnitude speedups.

Our transformation is based on the observation that any
execution that descends into a call to a procedure P either
fails inside the call (and doesn’t return) or returns from it
without failing. We can convert assert statements inside P to
assume statements if (1) we make a copy of the body of P,
(2) instrument call sites of P to guess whether the call will
fail, and (3) either make the call in the success case or jump
to the copy in the failure case. This eliminates the need for
making a call in order to reach the control location of the
assertion. Further, we only need to make a single copy of the
body of P regardless of the calling context, because in the
failure case, control does not need to return to the caller. We
also lift assertions outside loops based on the observation that
in any execution only the last iteration of the loop (in that
execution) can fail. In the presence of concurrency, we exploit
the observation that at most one thread can fail.

Contributions. The contributions of this paper are: (1) a
novel program transformation that optimizes running time of
goal-directed verifiers for programs with deep assertions; and
(2) an extensive evaluation over real software that totals over
a month of verification time, and shows up to an order of
magnitude speedup for two very different verifiers.

Organization. Section II covers background and related
work on goal-directed verification techniques. Section III
presents an overview of our transformation. Sections IV and V
formally present the transformation for a simplified program-
ming language. Section VI presents the evaluation.

II. BACKGROUND

In order to describe the intuition behind our program
transformation, we first discuss some goal-directed verifiers
that are based on procedure inlining strategies. We choose
these kinds of verifiers for two reason: first, they form a part of
our evaluation (Section VI) and second, some inlining strate-
gies have been proposed to specifically address deeply-nested
assertions, thus, we compare the effect of our transformation
against them.

Bounded model-checking tools (e.g., CBMC [6], [5]) are
based on an eager inlining strategy that inlines all procedure
calls up to a certain depth to produce a single procedure with
all assertions inside it. Eager inlining fails for moderate to
large programs because the inlining can result in an exponen-
tial explosion, even for small bounds. For instance, in many



Algorithm 1 Forward and Alternating Inlining Strategies
1: procedure FWD(P )
2: if P has an error trace then
3: Return BUG
4: end if
5: Pover := Replace all calls c in P with

summary(c)
6: if Pover has an error trace then
7: Let c be a call on that trace
8: P := Inline c in P
9: Return FWD(P )

10: end if
11: Return CORRECT
12: end procedure

1: procedure ALT(P )
2: if FWD(P ) = CORRECT then
3: Return CORRECT
4: end if
5: if P .head = main then
6: Return BUG
7: end if
8: for all callers c of P .head do
9: P ′ := Inline P in c

10: P ′.head := c
11: if ALT(P ′) = BUG then
12: Return BUG
13: end if
14: end for
15: Return CORRECT
16: end procedure

of the benchmarks used in this paper, eager inlining ran out
of memory even before the analysis was started.

To avoid the cost of eager inlining, there are several pro-
posed lazy inlining strategies that inline procedure on-demand
and in a goal-directed manner. Techniques such as structural
abstraction [2], inertial refinement [21], and stratified inlining
[14] are all forward-inlining strategies, described abstractly by
the method FWD of Alg. 1.

Forward Inlining. FWD takes a partially-inlined program P
as input. (One can think of P as a single procedure containing
some procedure calls.) Initially, P is just the body of main.
FWD checks if P contains a bug without going through a
procedure call (line 2). If not, then it picks a relevant procedure
call made by P (line 7), inlines the body of the callee (line
8) and repeats. The choice of picking relevant calls is guided
using procedure summaries (that are either pre-computed or
inferred on the fly): if no error trace in Pover goes through
a call c then this proves that no error trace of the original
program goes though c. A default summary based on mod-set
information, i.e., a procedure can arbitrarily modify variables
that it can touch, can always be used. FWD, even with default
summaries, has been shown to be much better than eager
inlining in some contexts [2], [14]. Further, one can treat loops
as tail-recursive procedures to extend FWD to perform loop
unrolling as well.

FWD raises two technical concerns: first, what do procedure
summaries mean in the presence of assertions, and second,
what does it mean to query Pover for error when it may not
even contain an assertion? Both these question are answered
using an error-bit instrumentation. As pre-processing, we add
a Boolean global variable err to the program; it is set to true
if and only if an assertion fails; and all procedures immediately
return when err is true. Then procedure summaries can use
err to distinguish failing executions from non-failing ones.
Moreover, we simply query Pover for a trace that ends with
err set. We note that the error-bit instrumentation results
in a program with the only assertion in main. However, it
does not reveal any information about the original assertions
themselves.

We illustrate FWD using the example in Fig. 1. This program
has two global variables s and g. The entry procedure main
initializes s and g and calls P1. The procedure P1 is the first

var s, g: int;
procedure main()
{ s := 0; g := 1;

P1();
}
procedure P1()
{ P2(); P2(); }
...

procedure Pn()
{ while (*) {

if (g == 1)
Open();

Close();
}

}

procedure Open()
{ s := 1; }

procedure Close()
{ assert s > 0;
s := 0;

}

Fig. 1: An example program

in a chain of procedures P1, . . . ,Pn each of which (except the
last) calls its successor twice. Pn contains a nondeterministic
loop that calls Open and Close in alternation. The assert
statement inside Close cannot fail.

Suppose we wish to explore all behaviors of this pro-
gram up to R loop iterations. In this case FWD will inline
O(2n)∗O(R) procedures to conclude unreachability (under R)
when using default summaries because no call will be deemed
irrelevant. This number comes down to O(1) when FWD has
the following (inductive) procedure summaries available for
each Pi: (old(g) == 1 && old(s) == 0) ==> (s
== 0 && !err), where old(v) refers to the value of v
at the beginning of the procedure. This says that if g and s
are 1 and 0, respectively, at the beginning of Pi then when
Pi returns, the value of s is still 0 and err has not been set.
Clearly, given this summary for P1, FWD can conclude the
absence of assertion failure just looking at main.

Alternating Inlining. Other inlining strategies include both
backward and forward search [1, Section 4.2] [22], captured
abstractly using ALT in Alg. 1. It starts with P as a procedure
with an assertion. It conducts a forward search (line 2) to find
an error trace from the initial state of P . If such a trace is
found, it picks a caller of P , inlines P inside it and repeats
until the search reaches main. An interesting remark is that
ALT does not require the error bit instrumentation. This is
because it starts with the assertion that it wishes to violate, and
all procedures inlined during the call to FWD are constrained to
not fail. Thus, all summary computation can be done assuming
fail-free executions.

On Fig. 1, ALT will inline O(2n) ∗O(R) procedures when
using default summaries. However, using just the (inductive)
fact that g == 1 is a valid precondition of each Pi, this
number comes down to O(1). This is because when the search
is at procedure Pn, then under this precondition, ALT can
already prove the absence of assertion violations (line 3)
without enumerating the calling contexts of Pn.

Thus, different inlining strategies can involve different
amount of inlining, and put different amount of stress on
invariant and summary generation.

III. OVERVIEW OF OUR PROGRAM TRANSFORMATION

In this section, we informally describe our novel contribu-
tion, a semantics-preserving source-to-source transformation
that lifts all assert statements in a program into its entry
procedure. As explained in Section I, our transformation
is based on the simple observation that any execution that
descends into a call to a procedure P either fails inside the
call or returns from it. We will convert all assert statements



(body of Pn-1)(body of P2)

s := 0;
g := 1;

P1();

skip;

P2();

P2();

skip;

Pn();

Pn();

skip;

if (g == 1)
Open();

Close();

if (g == 1)
Open();

Close();

assert s > 0;
s := 0;

skip;

P3();

P3();

(body of P1) (body of Pn)

(body of Pn’s
loop)

(body of 
main)

(body of Close)

Fig. 2: Control-flow graph of transformed procedure main

inside P to assume statements and simulate failures in the body
of P by nondeterministically jumping to a copy of the body
of P at a call site.

Fig. 2 shows, as a control-flow graph, the result of our
transformation on the main procedure of our running example
from Fig. 1. The bodies of all other procedures remain
the same except for Close in which assert s > 0 is
converted to assume s > 0. The execution of transformed
main begins in the top-left block with the initialization of the
global variables. Next, it can non-deterministically choose to
call P1 or jump to a copy of the body of P1. The two calls to
P2 in the body of P1 are similarly instrumented, and so on.

The instrumentation of the body of Pn is interesting because
it contains a loop. In addition to lifting assertions out of
procedure calls, we would also like to lift them out of loops.
Our insight is that it suffices to allow only the final iteration
of the loop to fail. Therefore, we can make a copy of the
loop body, convert assert statements inside the loop to assume
statements, and then nondeterministically execute the copy of
the body after the loop at most once.

It is worth noting that in Fig. 2, we did not make a copy of
the body of procedure Open. We could do this optimization
because it was possible to statically determine that a call to
Open cannot fail.

When FWD is applied to the transformed program, it only
inlines O(1) number of procedures to conclude CORRECT.
(In particular, it only needs to inline the call to Open from
the new main.) The reason is that the value flow between
the initialization of g and the conditional expression guarding
the call to Open is apparent at the top-level without any
intervening loops and calls, even under default summaries. In
this case, inlining the call to Open is sufficient to discharge
the assertion. Thus, no summary or invariant generation was
required for this example after our transformation. This ex-
ample provides intuition for the speedup on programs with
an unreachable goal, however, pruning infeasible paths also
translates to finding the goal faster when reachable. This is
confirmed by our experiments.

While we have chosen to evaluate our program transforma-
tion against lazy inlining strategies (as each address the issue
of deep assertions), our approach is more general. It is not tied
to a particular analysis. It simply produces a new program
that can be fed to any verifier, with the hope of speeding
up the verifier. For instance, our evaluation uses the YOGI
verifier for C programs that is based on predicate-abstraction
and doesn’t directly implement an inlining strategy. This point

P ∈ Prog ::= (gs, ps)
p ∈ Proc ::= (x, is, os, vs, st)

vs ∈ Vars ::= · | x : t, vs gs, is, os ∈ Vars
ps ∈ Procs ::= · | p, ps
st ∈ Stmt ::= l :assume e | l :assert e | l :xs := es |

l :havoc xs | l :goto ls | l : loop st |
l :call xs := x(es) | l :async x(es) | l :yield |
st; st

xs ∈ Names ::= · | x, xs x ∈ Name
es ∈ Exprs ::= · | e, es e ∈ Expr
ls ∈ Labels ::= · | l, ls l ∈ Label
t ∈ Type

Fig. 3: Program syntax

is further emphasized when dealing with concurrent programs,
as we are not aware of inlining strategies that directly apply
to concurrent programs.

Remark: Here we note that our approach is inspired by
“Phase 2” of the RHS algorithm [19], [20]. RHS is the standard
tabulation-based algorithm for interprocedural dataflow analy-
sis. It works in two phases: the first phase computes procedure
summaries bottom-up in the call graph. The second phase
replaces procedure calls with the summaries and deletes return
edges. This transformation is similar to ours, however, we do
not use summaries and our target is goal-directed program ver-
ification, not dataflow analysis. Moreover, our transformation
has special handling for loops and concurrency.

IV. A SIMPLE PROGRAMMING LANGUAGE

We present a core programming language, similar to Boo-
gie [3], for formalizing our program transformation. The
syntax of the language is presented in Fig. 3. A program
P is a tuple comprising a set of global variable declarations
gs and a set of procedure declarations ps that is assumed
to contained a distinguished procedure called main. Each
procedure is a tuple comprising its name x, input parameters
is , output parameters os , local variables vs , and a statement
st . As notation, for a procedure f = (x, is, os, vs, st), let
name(f) = x, input(f) = is , output(f) = os , locals(f) = vs ,
and code(f) = st . We assume, without loss of generality, that
main is never called and it does not have output variables.

A statement st is a “;”-separated list of a label l and one
of the following—assert, assume, assignment, havoc, goto,
loop, call, async, or yield. In our presentation, we ignore the
syntax of expressions and types and assume the existence
of a type checker for validating that the program is well-
formed. Further, we may sometimes omit writing the label of
a statement, in which case it is assumed to have a fresh label
that is not used elsewhere in the program. Statement labels
must be unique and cannot be re-used.

The control flow in our language is straightforward. The
statement goto ls causes control to non-deterministically jump
to some label in ls; the type checker ensures that the labels
exist in the same procedure or enclosing loop. For all other
statements, control implicitly moves to the next statement by
following the sequential composition (“;”) operator. If there is
no next statement, then execution of the statement terminates.

assert e fails if e evaluates to false in the current state
and otherwise leaves state unchanged. assume e blocks if e



[[l :assume e]]stmt = l :assume e

[[l :assert e]]stmt = l :assert e

[[l :xs := es]]stmt = l :xs := es

[[l :havoc x]]stmt = l :havoc x

[[l :goto ls]]stmt = l :goto ls

[[st1; st2]]stmt = [[st1]]stmt; [[st2]]stmt

[[l :call xs := x(es)]]stmt =
l : if (?)then{call xs := x(es)}

else{input(x) := es; havoc locals(x); goto xentry}
[[l : loop st]]stmt = l : loop st; if (?)then{[[st]]stmt}else{skip}
[[(x, is, os, vs, st)]]proc = (x, is, os, vs, st)

[[(p, ps)]]proc = ([[p]]proc, [[ps]]proc)

[[(gs, (main, is, ·, vs, st), ps)]]prog = (gs,

(main, is, ·, vs ∪
⋃

p∈ps input(p) ∪ output(p) ∪ locals(p),
[[st; die; xentry

1 :skip; code(x1); die; · · · ; xentry
n :skip; code(xn); die]]stmt),

[[ps]]proc) where ps = (p1, · · · , pn) and name(pi) = xi

Fig. 4: Transforming sequential programs

evaluates to false in the current state and otherwise leaves state
unchanged. xs := es is a parallel assignment that evaluates
es in the current state and updates variables xs to the result.
havoc xs puts nondeterministically chosen values into each
variable in xs . loop st is a nondeterministic structured loop
and executes st zero or more times. call xs := x(es) is call
to procedure x with inputs es; the output of the procedure call
is received in variables xs . async x(es) is an asynchronous
call to procedure x with inputs es; the call is executed in a
new thread that executes concurrently with all existing threads.
The multithreading model in our language is cooperative and
nondeterministic; yield yields control to a nondeterministically
chosen thread.

For convenience, we also use a statement
if (?)then{st1}else{st2} that denotes non-deterministic
branching between two statements. We use it as syntactic
sugar over using goto statements.

V. PROGRAM TRANSFORMATION

We begin by presenting our transformation for sequential
programs in Fig. 4 and generalize it to concurrent programs in
Fig. 5. We use skip and die to compactly denote assume true
and assume false , respectively. Our transformation depends
on an initial renaming of variables and labels in the program to
make them globally distinct. This initial renaming is standard
and we do not present it here. Further, for a statement st , let
st be the same statement where all occurrences of assert e in
st are converted to assume e.

A. Transforming sequential programs

Fig. 4 describes three transformations: [[.]]stmt for statements,
[[.]]proc for procedures and [[.]]prog for programs. First, note that
the transformation of a procedure simply disables all assertions
in the procedure. The transformation on a program leaves the
set of global variables unchanged and disables assertions in all
procedures except main. The main procedure is transformed
by absorbing the bodies of all other procedures (along with
their input, output and local variables) and applying the
statement transformer on them. It is easy to show that [[P ]]prog
can only have assertions in main.

[[l :yield]]stmt = l :yield

[[l :async x(es)]]stmt = l : if (?)then{async x(es)}
else{assume flag = nil; ainput(x) := es;flag := cx}

[[(gs, ps)]]prog = (gs ∪ {flag}
⋃

p∈ps ainput(p),

(newmain, is, ·, vs
⋃

p∈ps input(p) ∪ output(p) ∪ locals(p), [[st]]stmt), [[ps]]proc)

where ps = (main, p1, · · · , pn), name(pi) = xi and

st
def
= flag := nil;

if (?)then{flag := cmain; goto mainentry; die}else{skip};
async main(is); yield; goto lx1

, · · · , lxn ; die;

lx1
:assume flag = cx1

; input(x1) := ainput(x1); goto xentry
1 ; die;

· · ·
lxn :assume flag = cxn ; input(xn) := ainput(xn); goto xentry

n ; die;

[[mainentry :skip; code(main); die]]stmt;
[[xentry

1 :skip; code(x1); die; · · · ; xentry
n :skip; code(xn); die]]stmt

Fig. 5: Transforming concurrent programs

Let us now look at the statement transformer [[.]]stmt. It is
non-trivial only for procedure calls and loops. It transforms
a procedure call of x to a non-deterministic branch. The
then branch simulates an execution where the procedure call
succeeds. In this case, the call is left untouched. However, note
that x does not have assertions in the transformed program,
thus a call to it cannot fail. The else branch simulates an
execution where the procedure call fails. In this case, we
simply jump to xentry where a copy of the body of x resides.
Note the use of die in the [[.]]prog transformation. This prevents
the execution of, say, x2’s body to fall through onto the body
of x3. Thus, a jump to the body of a procedure cannot ever
return (but it may fail).

The statement transformation for loops works by first peel-
ing off the last iteration of the loop. (loop st is equivalent to
loop st ; if (?)then{st}else{skip}.) Next, the new loop’s body
is not allowed to fail (st), because only the last iteration of a
loop can fail. The statement transformer is applied recursively
to the last iteration.

B. Transforming concurrent programs

The transformation described in the previous section, al-
though adequate for lifting all assertions to the entry proce-
dures of all threads, is inadequate for lifting all assertions to
just the main block of the initial thread. This section extends
the transformation described earlier to achieve this goal.

Fig. 5 defines the statement transformer for yield and async
procedure calls. It also redefines the program transformation.
The rest is borrowed over from Fig. 4. The main insight
behind these transformations is that any erroneous execution
has exactly one assertion failure which stops the execution.
Therefore, it suffices to allow at most one thread, either
initial or dynamically-created, to fail. The start procedure of
a dynamically-created thread is one of a finite number of
procedures that are targets of asynchronous procedure calls.
We introduce fresh constants including the special constant nil
and a constant cx for each procedure in the input program with
name x; these constants are assumed to be distinct from each
other. We also introduce a fresh global variable flag whose
value is one of these freshly introduced constants; this variable
is initialized to nil . During the execution of the transformed



program its value changes at most once from nil to some
constant cx. The final value of flag , if different from nil ,
represents the entry procedure of the potentially failing thread.

The transformation of an asynchronous call async x(es)
is a non-deterministic choice. One choice is to keep the
asynchronous call, but to a procedure that cannot fail (recall
the procedure transformation from Fig. 4). The other choice
is to atomically update flag from nil to cx, which simulates
the creation of a failing instance of x. (The failing instance
executes in the entry procedure of the transformed program,
discussed later in program transformation rule.) Blocking on
the condition flag = nil ensures that at most one failing
instance is created. We use additional global variables av
(where v is an input argument to some procedure) for storing
the arguments of the failing thread instance.

The [[.]]prog transformation is more sophisticated. It works by
creating a new procedure, called newmain that is understood
to be the entry procedure of transformed program. It consists
of the bodies of all other procedures, including main. It starts
by initializing flag to nil . Next, it decides if the main thread
is the one that fails; if so, it jumps to main. Otherwise, it
spawns main as a separate thread (which cannot fail) and non-
deterministically jumps to a location lx for some procedure x.
The location lx waits for flag to be set to cx, grabs input
arguments from av variables, and jumps to the body of x.

C. Correctness
Let P be a program where all variables and labels are

globally distinct. The most important property of our trans-
formation is that it is failure-preserving. Therefore, verifying
the original program is equivalent to verifying the transformed
program.

Theorem 5.1: P fails an assertion if and only if [[P ]]prog fails
an assertion.
The following theorem states that we succeeded in our objec-
tive of lifting all assert statements out of loops and procedures.

Theorem 5.2: In [[P ]]prog, no procedure other than the entry
procedure can have assertions. Further, even loop statements
in the entry procedure cannot have assertions.
Next, we state a property about the compactness of our
transformation. Let |P | denote the size of the program P .
The loop nesting depth of a program is defined recursively as
follows.

LND(ps) = max ({LND(p) | p ∈ ps)})
LND((x, is, os, vs, st)) = LND(st)

LND(st1; st2) = max (LND(st1),LND(st2))
LND(l : loop st) = LND(st) + 1

LND( ) = 1

Theorem 5.3: |[[P ]]prog| = |P | × (LND(P ) + c) for a small
constant c.
Finally, our transformation enjoys the desirable property that
if the input program is recursion-free and has only structured
loops, then so is the output program.

Theorem 5.4: If P is recursion-free and each procedure has
an acyclic control-flow graph then [[P ]]prog is recursion-free
and each procedure has an acyclic control-flow graph.

VI. EVALUATION

We refer to the transformation of Section V as the deep-
assert (DA) instrumentation. We conducted extensive experi-
ments to evaluate its effect on the running time of two different
verifiers:

1) CORRAL [14] is an SMT-based verifier that accepts
BOOGIE programs [16] as input. It consists of an outer
loop of abstraction refinement. Inside the loop, it verifies
a program using either FWD or ALT of Alg. 1, based
on stratified inlining [14] and alternating inlining [22],
respectively.

2) YOGI [4], [10] is a verifier for C programs. It alter-
nates between test generation (for proving “reachability”
information) and automated predicate abstraction (for
proving “unreachability” information).

We chose YOGI because: first, it currently uses the error-bit
instrumentation (Section II). Second, YOGI has been highly
optimized over several years of research and development
[18], [11], [4], [10], thus, any performance improvement is
considered significant. Third, it is a “third-party” tool; we were
never a part of the design or implementation of YOGI.

Let SI and AT refer to CORRAL with stratified inlining
and alternating inlining, respectively, and let SI+DA refer to
applying our deep-assert transformation followed by running
CORRAL with stratified inlining. Note that once the deep-
assert transformation is executed then using SI or AT is
identical as all assertions would be in main.

CORRAL uses HOUDINI [9] for generating program in-
variants and procedure (and loop) summaries. Let SI+H,
AT+H and SI+DA+H refer to configurations when HOUDINI is
enabled. HOUDINI requires invariant templates to be supplied
by the user. Invariant generation in YOGI is fully automated.

CORRAL and YOGI use different IR representation for pro-
grams. The implementation of the deep-assert instrumentation
for CORRAL was 969 lines of C# code1 and for YOGI was
166 lines of OCaml code.

All experiments were conducted on a server class machine
with two Intel(R) Xeon(R) processors (16 logical cores) ex-
ecuting at 2.4 GHz with 32 GB RAM. Different verification
instances were executed in parallel, with at most 16 instances
(one per core) executing in parallel at any given time.

Static Driver Verifier. Our first set of experiments is using
the Static Driver Verifier (SDV) [17]. SDV is a commercial-
grade tool offered by Microsoft to third-party driver devel-
opers. We collected a set of real device drivers that have
been historically challenging for SDV, shown in Fig. 6. The
drivers total 115KLOC, and additionally link against libraries
of size 75KLOC. Fig. 6 also gives the number of procedures
(#Procs) and “Assert Depth”, which is a pair consisting of the
smallest and largest acyclic path in the call graph from the
entry point to a procedure containing an assert. This is a static
measure for how deep the assertions were in the program.
The last column lists the number of verification instances for

1available open source at corral.codeplex.com.



Name KLOC #Procs Assert Depth #Verif.
(min,max) Instances

fdc fail 9.2 216 4-18 226
kbdclass 7.1 230 4-31 252
daytona 21.5 345 4-27 316
parport 33.9 531 4-21 169
sys 2.2 108 4-27 596
isapnp 14.1 286 4-18 94
mouser 7.4 190 4-38 600
modem 14.4 289 4-26 157
kerneldriver 5.0 183 4-34 106
Total 115+75 2378 4-38 2516

Fig. 6: Details of SDV benchmarks
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Fig. 7: Stack depth of SDV error traces

a driver: SDV verifies multiple properties of a driver and in
doing so, generates multiple different verification instances.
For our purpose, a verification instance is simply a program
with assertions. SDV generated verification instances have no
recursion (usually drivers don’t have recursion, and even when
they do, SDV statically unrolls the recursion up to a small
bound). Moreover, all loops are structured (i.e., the control-
flow graph of procedures are reducible), in which case we
can compile loops to use our loop statement. Fig. 7 shows
the stack depth at which the failing assert was reached among
all the error traces found in the benchmark suite. It shows a
reasonable range and variation.

SDV generates a set of predicates R1, · · · , Rn, S1, · · · , Sm

for each verification instance, based on the property that it
is checking [14]. The Ris are predicates over the input state
of a procedure; they serve as templates for preconditions.
The Sis are templates for postconditions (summaries). SI
uses the error-bit instrumentation; let err be the error bit
summarizing if an assertion has failed or not (see Section II).
SI+H uses HOUDINI to look for procedure summaries of the
following form: !err ==> Si (i.e., Si is a summary when
the procedure doesn’t fail) and Rj ==> !err (i.e., under
Ri, the procedure doesn’t fail). AT+H doesn’t use the error-
bit instrumentation; it looks for summaries of the form Si

and preconditions of the form Rj . While summaries can be
inferred bottom-up in the call graph, inferring preconditions
requires a top-down pass as well. SI+DA+H also doesn’t use
the error-bit instrumentation (there is no need because all
assertions are lifted to main by DA). Further, it only looks for
summaries of the form Si; the templates Rj are dropped as our
deep-assert transformation reduces the need for preconditions.

Aggregate results across all verification instances are shown
in Fig. 11. The table lists the total number of instances that

Algorithm #TO #Bnd #Bugs #Proof Houd. Time (1000 s)
(1000 s) Bug No-bug

SI 510 477 348 1181 0 23 154
AT 314 638 345 1219 0 31 126
SI+DA 213 383 363 1557 0 21 93
SI+H 73 129 360 1954 76 35 156
AT+H 126 226 350 1814 115 47 205
SI+DA+H 43 127 363 1983 53 32 123

Fig. 11: Results, in aggregate, for the SDV benchmarks

timed out after 2000 seconds (#TO), hit the search bound
(i.e., inconclusive) (#Bnd), produced an error trace (#Bugs),
or proved the instance correct (#Proof). The other columns list
the total time taken by HOUDINI (Houd), and the time spent
by CORRAL (inclusive of time spent by HOUDINI) on buggy
and non-buggy instances. Non-buggy instances include both
bound-hit and proofs, but not timeouts. Times are reported
in units of 1000 seconds. The entire table took 41 days of
verification time.

The table shows advantages of the deep-assert instrumen-
tation along several dimensions. SI+DA and SI+DA+H have
much fewer timeouts, find more bugs, prove more instances
correct, and take the least amount of time. Using HOUDINI
significantly reduces the number of timeouts and increases the
number of instances proved correct (for each of SI, AT, and
SI+DA). These numbers suggest that the templates used by
HOUDINI were complete to a good extent. However, the time
taken by HOUDINI is a significant fraction of the total running
time. Thus, optimizing HOUDINI usage is important. The table
shows that the simplification of templates provided by DA
improves the running time of HOUDINI. Because ALT requires
preconditions for pruning, AT+H spends the maximum amount
of time in HOUDINI—more than twice as much as SI+DA+H.
Consequently, AT+H is the slowest among other configurations
with HOUDINI. This indicates that ALT imposes a stricter
demand for invariants for pruning search. SI+DA, on the other
hand, does well even without invariant generation; in fact, it
finds all the 363 bugs without the help of HOUDINI.

Fig. 8 presents a more detailed comparison of the running
times of SI and SI+DA. The scatter plot (on the left) is the
distribution of running times: each dot is a single verification
instance. The chart on the right summarizes the number
of instances in which DA resulted in a particular speedup
(computed as a fraction of the running time). “Infinity” means
that a timeout was eliminated, and “-Infinity” means that a
timeout was introduced. For example, there are 54 instances in
which SI+DA is at least 10 times faster than SI. The numbers
on top of the bars indicate the average running time of SI
(in seconds) on an instance that falls in that bar. For example,
whenever SI+DA was 5 to 10 times faster than SI, the average
time taken by SI was 434.2 seconds. These numbers show that
the speedup was obtained on non-trivial instances. Further,
only 6 timeouts were introduced, and 303 were eliminated by
DA. Only 5 instances experienced a slowdown worse than a
factor of 2 (see the bar “< 0.5”). There are 1726 instances
with speedup in the range 0.5 to 1.75. These are not shown in
the figure, moreover, their average running time was just 69
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Fig. 8: Comparisons of running time between SI and SI+DA
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Fig. 9: Comparisons of running time between SI+H and SI+DA+H

seconds. One can also visually observe high density of dots
near the origin of the scatter plot.

Fig. 9 shows similar graphs for SI+DA+H against SI+H. In
this case, 33 timeouts were eliminated and only 3 introduced
by DA. Only 4 instances observed a slowdown worse than
a factor of 2. There are 2323 instances with speedup in the
range 0.5 to 1.75 with an average running time of 76 seconds.

Fig. 10 shows the effect of DA on the running time of YOGI.
The overall speedup is a modest 9% but this increases to as
much as 50% (i.e, a factor of 2 faster) on harder instances that
take at least 600 seconds. The benchmarks used for YOGI were
the same set of drivers as mentioned in Fig. 6, but for a subset
of the verification instances (total 802). Because YOGI does
not support features like bitvector reasoning and arrays, we
disabled some of the SDV properties when using YOGI. DA
eliminated 8 timeouts and only 1 was introduced. As before,
the slowdowns are mostly on trivial instances. The average
running time on such instances was less than 2 minutes. The
harder instances, with longer running time, usually show a
speedup.

The scatter plot of Fig. 10 shows a greater spread than for
CORRAL (Figs. 8 and 9). We believe this is because CORRAL
uses a more powerful (SMT-based) intraprocedural analysis

Program LOC Assert #Inst- CORRAL CORRAL+DA
Depth ances (sec) (sec)

daytona 488 3-5 5 460.6 407.4
kbdclass 694 3-4 2 713.9 641.7
mouclass 581 3-4 7 3877.8 2964.0
ndisprot 592 3-5 3 314.9 345.9
pcidrv 449 3-5 6 796.4 988.5
total 2804 3-5 23 6163.9 5347.7

Fig. 12: Results on concurrency benchmarks

and this matches well with the programs produced by DA as
they have a large main procedure.

Memory Consumption: For SDV benchmarks, we observed
that the ratio of |[[P ]]prog| to |P | ranged from 1.1 to 1.6,
which is much smaller than the worst-case mentioned in
Thm. 5.3. This is because bodies of nested loops tend to
be very small compared to the rest of the program. (DA
copies the body of a loop as many times as its nesting depth.)
Moreover, many procedures cannot statically reach an assert,
thus they need not be copied into main by the instrumentation.
Despite the increase in program size, DA still reduces memory
consumption because of the decreased analysis complexity. On
average, the peak memory usage of SI+H was 461MB, for
AT+H it was 663MB, and for SI+DA+H it was 443MB.
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Fig. 10: Yogi with and without deep-assert instrumentation

Concurrency: One scalable approach for the analysis of
large (multiple-procedure) concurrent programs is the process
of sequentialization [13], [7], [8], [15] where a concurrent
program is transformed to a sequential program and then
verified using a sequential analysis tool. CORRAL supports
such a sequentialization; it feeds the resulting sequential
program to stratified inlining.

Remark. Sequentializations only preserve end-state reach-
ability and require a variant of the error-bit instrumentation
for assertions.2 This implies that the generated sequential
programs have an assertion only at the end of main. Con-
sequently, any transformation for revealing information about
deep assertions needs to be done on the concurrent program
before the sequentialization, as our transformation does.

Fig. 12 reports results on concurrent programs (obtained
from [13]) using CORRAL. The improvement is a modest
13% overall, and the assert depth of the benchmarks is also
quite shallow. We leave further investigation on concurrent
benchmarks for future work.

Summary: We note that there are several other choices of
verifiers and it is possible that our program transformation may
interact differently with the search heuristics of the verifier.
However, our experimental evaluation shows a large potential
for speedups, especially given that we do not algorithmically
modify the verifier. Further, the program transformation can be
applied with any verifier, and takes relatively minimal effort
to implement (a few hundred lines of code).
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