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Modeling Acoustic Transitions in Speech by State- 
Interpolation Hidden Markov Models 

Li Deng, Senior Member, IEEE, Patrick Kenny, Matthew Lennig, Senior Member, IEEE, 
and Paul Mermelstein, Senior Member, IEEE 

Abstract-We present a new type of HMM for vowel-to-con- 
sonant (VC) and consonant-to-vowel (CV) transitions based on 
the locus theory of speech perception. The parameters of the 
model can he trained automatically using the Baum-Welch al- 
gorithm and the training procedure does not require that in- 
stances of all possible CV and VC pairs be present. When in- 
corporated into an isolated word recognizer with a 75 000 word 
vocabulary we find that it leads to a modest improvement in 
recognition rates. 

I. INTRODUCTION 
HE problem of acoustic variability due to phonetic T context is a formidable obstacle to the construction of 

phoneme-based speech recognizers with very large vo- 
cabularies (on the order of 100 000 words or more). 

The technique of triphone modeling which has been 
widely used in recognizers having medium-sized vo- 
cabularies (on the order of 1000 words) [3] does not offer 
a satisfactory solution. In a lexicon containing 86 000 
words and 92 000 phonemic transcriptions we counted 
more than 17 000 triphones. (This figure does not include 
triphones spanning word boundaries.) In order to train this 
number of HMM’s in a speaker-dependent system, the 
amount of natural text that a speaker would have to dictate 
would probably be equivalent to a full-length novel. (Ad- 
equate coverage could be obtained in a speaker-indepen- 
dent system, but only at the cost of making the recogni- 
tion task much more difficult.) Attempts to keep the 
training set size within reasonable bounds and reduce the 
number of models by clustering triphones based on prior 
linguistic knowledge have been found to give only meagre 
improvements over context-independent models [6], [7]. 
Automatic clustering algorithms can only be used to clus- 
ter those triphones which are represented in the training 
data and so are not applicable. In any case, the method 
fails to address the problem of coarticulation between 
phonemes which are not in immediate juxtaposition. 
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Although the phoneme, by its definition, is a very ap- 
propriate unit for large-vocabulary speech recognition the 
problem of acoustic variability is so serious that some 
workers advocate abandoning it altogether in favor of a 
system of units consisting of a large number of small, 
acoustically stable subword segments [ 11, [lo]. This ap- 
proach has the drawback of requiring transcriptions in 
terms of the new units for each word in the lexicon, so 
that an open-ended lexicon is impossible in principle, and 
it is incapable of dealing with coarticulation between 
words in continuous speech. 

What is clearly needed is a way of modeling the behav- 
ior of phonemes in contexts which are not covered in the 
training data. In this paper we report the results of an ex- 
periment where we attempted to deal with this problem 
insofar as it applies to the transitional behavior exhibited 
by vowels in consonant environments. 

It is well known that the formant transitions in vowels 
contain important information for the recognition of con- 
sonants, especially stops. A striking example is the case 
of a word spoken in isolation which ends in a stop. If the 
stop is not released then, since the stop closure is indis- 
tinguishable from the silence which follows the word, all 
of the information for recognizing the stop is contained in 
the preceding vowel. If the vowel is modeled by a stan- 
dard context-independent Markov model then this infor- 
mation is lost. 

Our modeling assumption is essentially the locus theory 
[5]  as originally formulated in the 1950’s. We assume that 
for each consonant there is a single target spectrum or 
“locus” with the property that in VC and CV transitions 
the vowel spectra tend to converge towards the target for 
the consonant. The locus has nothing to do with the noise 
spectrum of the consonant-its existence is inferred from 
looking at vowel spectra-and it is an empirical fact that. 
in general, the target is not reached. 

In Section 11, we show how the locus theory can be 
used to construct a context-dependent stochastic model for 
vowels which we call a state-interpolation HMM. Its pa- 
rameters, including those which represent the consonant 
loci, can be trained automatically by an extension of the 
Baum-Welch algorithm. In Section I11 we give recogni- 
tion results for the state interpolation HMM and compare 
them to those obtained by standard context-independent 
HMM’s and generalized triphone models. 
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11. REPRESENTING ACOUSTIC TRANSITIONS I N  VOWELS 
BY STATE-INTERPOLATION HMM's 

A .  Formulation of the State-lnterpolatiorz HMM 
The standard HMM's referred to in this paper are con- 

text-independent left-to-right hidden Markov models hav- 
ing a unimodal Gaussian distribution associated with each 
state. 

We have found that it is not necessary to train individ- 
ual covariance matrices for the different states in a stan- 
dard vowel HMM; we obtain essentially the same recog- 
nition performance whether we have one covariance 
matrix per state, one covariance per vowel or a single 
covariance for all vowels. (However, in the case of indi- 
vidual covariance matrices for each state we have ob- 
served that the variance tends to be relatively small in  the 
middle of the vowel and that it increases monotonically 
as we move towards either end. This confirms that the 
standard vowel models are doing a poor job of modeling 
the data in the transitional regions.) Thus in constructing 
context-dependent vowel models we focus our attention 
on the mean vectors. 

To explain how we model the transitional regions in 
vowels, consider the case of a CV transition as illustrated 
in Fig. 1. (The situation in the case of VC transitions is 
a mirror image.) For each consonant c we construct a sin- 
gle feature vector v,. which we call the locus of the con- 
sonant. For each vowel U ,  we designate states 0, . . * , K 
- 1 as transitional states and make their mean vectors 
depend on both c and U .  We call state K the vowel steady 
state; its mean vector pi ,  is context independent. The mean 
vectors at the transitional states, m,.(k),  k = 0, . . . , K 
- 1 are obtained by linearly interpolating between the 
consonant's locus and the vowel's steady state: 

m,,(k) = hkv,. + & p i ,  ( 1 )  

where & = 1 - X k .  The locus vectors themselves do not 
serve as mean vectors for any of the Gaussian distribu- 
tions in our word models (which are constructed in the 
usual way by concatenating standard consonant HMM's 
with state-independent vowel HMM's). Nevertheless they 
can be estimated on the same footing as the vowel steady 
state vectors and the means of all the other output distri- 
butions by an extension of the Baum-Welch algorithm for 
multivariate Gaussian HMM's. 

The interpolation weights X k  cannot be so easily esti- 
mated as the standard procedure leads to a set of nonlinear 
equations, so they were fixed U priori. In the experiments 
reported in Section I11 we used two transitional states at 
either end of each vowel model with interpolation weights 
of 1 / 3  and 213.  

This implementation has the virtue of simplicity but 
there are obviously many other possibilities. It might be 
reasonable to use different numbers of transitional states 
and different interpolation weights for vowels following 
aspirated and unaspirated stops. Klatt's work on formant 
synthesis [9] suggests that it might be better to have sev- 
eral loci for each consonant-perhaps 3, one for plain 

vowel stead state 
mean d& 

"c 
Consonant 

locus vector 

In,( k ) = hkv, + (1-hk) p, , k= 0, 1, ..., K-1 

Fig. I. A vowel HMM having an acoustic transition structure. The left- 
most K atates (labeled 0 to K - 1)  represent the consonant-to-vowel tran- 
sition. The state labeled K (shown) and a few states to the right of it (omit- 
ted for  clarity) represent the vowel's stationary portion. The remaining 
states repreaent the vowel-to-consonant transition (omitted also). 

vowels, one for palatal vowels, and one for rounded vow- 
els. Also, since the linearity assumption implicit in (1) is 
questionable, it has been suggested [ 111 that we construct 
several vectors v ~ . , ~ ,  k = 0, * . . , K - 1 ,  for each con- 
sonant and assume that 

- 
m,.(k) = Xkv,. ,k + Xppi , .  

In presenting the reestimation formulas we consider 
only the case of CV transitions and, for the sake of sim- 
plicity, we assume that there is only one token for every 
CV pair in the training data. The reader may find it useful 
to work out the derivation in the case where the training 
data consists of a single CV pair. This results in a pair of 
simultaneous equations involving the consonant locus and 
the vowel steady state. In the general case (presented in 
Section 11-B), the reestimation procedure leads to a large 
system of simultaneous equations involving all of the con- 
sonant loci and all of the vowel steady states but, since 
it's a linear system, there is no difficulty in solving it.  

B. The Objective Function for Maximization 
For a Gaussian HMM [ 121, it can be easily shown that 

maximizing the following objective function will guar- 
antee an increase in the likelihood of the observations: 

V C T N  

Q = X C C C y;"(s) In D(Y;", s) 
, . = I  < = I  ,;I \ = I  

c v 7 '  

where I/ and C are the total number of vowels and con- 
sonants, respectively; P ( s ' (  s) is the state transition prob- 
abilities from state s to state s ';  D(Y;" ' ,  s) is a d-dimen- 
sional multivariate Gaussian distribution associated with 
state s for Y;''',  the observation vector at time t in a CV 
context; y;'"(s, s' ) and yy'(s) are the conditional probabil- 
ities that a state transition from s to s '  takes place at time 
t ,  and that state s is occupied at time t ,  respectively, given 
that an observation sequence in a cu context is generated 
by the model. These conditional probabilities can be com- 
puted efficiently from the forward and backward proba- 
bilities in a standard way [ 2 ] ,  (121. 

In maximizing the Q function in (2), the two terms can 
be treated separately. The second term involves only the 
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transition probabilities, and the reestimation formula for 
them is the same as that for the standard HMM and will 
be omitted here. 

to a symmetric linear system of equations, which can be 
expressed in the following matrix form: 

tribution By ignoring function In ( 2 ~ ) " '  and restricting in the multivariate to only the Gaussian ( K  + 1) left- dis- 1 AI A; * * * o  Bl, I B12 :...:I . . . BIV 

most states in the HMM's for vowels (as shown in Fig. 
l ) ,  we rewrite the objective function as . . . . . . . . . . . . 

Ac B a  Bc2 . . .  BCV C V T K  

= C C C C y;"(k) { - ; In I . ~ , , ( k ) l  
< = I  / . =  1 ,= 1 k = O  

- ; (y, - m,.(k))* C , ' ( k )  (Y/ - m l ' ( 4 ) }  (3) 

where C, , (k )  is the covariance matrix associated with state 
k in the state-interpolation HMM for vowel U .  Substitut- 
ing the interpolation relation in (1) into (3), we have 

. . .  
E" 

Q = C C y; l ' (~)  { - i In 1 E,,(K) I 
c , 1 ,  / 

1 ,  

- ; (Y, - PJ* C,'(K) (Y/  - P A }  

+ C C C y ~ ' ( k )  - In 1 . ~ , . ( k ) (  

- ; (Y ,  - X k V c  - X k P 1 # ) *  

* C ( k ) - I ( Y /  - X k V ,  - XkP,,)}. 

K -  I 

C , l '  / k = O  

- 

- 

(4) 

(7) 

C. Reestimation of Consonant Locus Vectors and Vowel 
Steady-State Mean Vectors 

At a critical point, the derivatives of the Q' function in 
(4) with respect to v, and pL2, must be all zero. 

From 

we have 

From 

where 
K -  1 

K -  1 

w,, = C C C &yF'(k)Y, + C z: y:'"(K)Y/ 
c / k = O  L /  

U = 1 , 2 ,  . * * ,  v 
K -  I 

K -  I 

E,. = C G 2 y 7 ' ( k )  + C C $ ' ( K )  
c / k = O  l . /  

v = 1 , 2 ,  * * .  , I/ 
K -  I 

B,.,, = C Xk&y;"(k) U = 1, 2, . * , V 
/ k = O  

c =  1 , 2 ,  . . .  , c .  - - = o  aQ'  

we have 

K -  I 

C C C yF1'(k) C L ' ( k ) ( Y /  - h k v c  - &Pl.)& = O 
c / k = O  

U =  1 , 2 ,  * * * ,  v. (6) 

To achieve a tractable solution to ( 5 )  and (6), assume 
that the covariance matrices E's are the same for all states 
and for all vowels. This assumption converts ( 5 )  and ( 6 )  

The solution to this linear system gives the Baum- 
Welch reestimates for the locus vectors v(., c = 1, 2 ,  
. . * , C and the vowel steady-state mean vectors p,,, v = 

1 , 2 ,  - * *  , v. 

D. Reestimation of the Covariance Mutrix 
Once the locus vector for each consonant and the 

steady-state mean vector for each vowel are reestimated 
according to (7), the reestimation formula for the co- 
variance matrix for vowels (pooled across all states and 
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across all vowels), E ,  can be easily obtained. First let T 
= E-'  and regard the objective function Q' in (2) as a 
function of T.  It is well known that the derivative of In 
I TI with respect to its ijth entry, t i j ,  is the 0th entry of E ,  
(T,~ [12]. To find a critical point, setting 

= o  aQ' 
a(T, 

and writing the result in a matrix form, we have 
I K -  1 

- c c c $"(k)(Y, - X k Y c  - Xk&)  
i' r 1=0 

+ c c $['(K)(Y,  - 
c I 

K 

c c c $'(k) .  
i' f L = O  

E. Extensions 
Equations (7) and (8) for reestimating the state-inter- 

polation HMM parameters are applicable only to the 
vowel tokens in a CV context. For VC contexts, similar 
reestimation equations can be obtained for the mean vec- 
tors of the K rightmost states in the vowel state-interpo- 
lation HMM, if we assume two independent consonant 
locus vectors, one preceding and one following the vowel. 
When a vowel token occurs in a neutral context, that is, 
in a word boundary, or is adjacent to another vowel or to 
/h/, '  then the assumption of interpolation with a locus 
vector is invalid. In this case, we assume that the mean 
vectors of the K leftmost or the K rightmost states in the 
vowel state-interpolation HMM are the same as the mean 
vectors corresponding to the HMM states representing the 
vowel steady state. This treatment of the neutral context 
has somewhat complicated the reestimation formulas, 
which are described in the Appendix. 

111. SPEECH RECOGNITION EXPERIMENTS 
We have implemented the state-interpolation HMM's, 

described in Section I1 and the Appendix, in an isolated- 
word speaker-trained 75 000-word recognizer. The rec- 
ognition algorithm consists of word endpoint detection 
(with manual adjustment where necessary), a fast search 
to generate a list of most likely word choices, and com- 
putation of exact likelihoods for these choices [8]. State- 
interpolation HMM's are used only at the exact likelihood 
scoring stage, since complete phonetic transcriptions are 
needed to fill in the mean vectors associated with vowel 
transitional states. In the experiments reported here, no 
language model was used (so homophone confusions are 
not considered as errors). 

'For our purposes it IS  inappropriate to treat /hi as a consonant. The locus 
theory is clearly not applicable to / h i  since it is typically realized as a 
voiceless version of the following vowel and so does not have a well de- 
fined place of articulation. 

As mentioned in Section 11, we use two transitional 
states at either end of each vowel model with interpolation 
weights o f f  and f .  (An exception is made for /a/ which 
is modeled using a 4-state standard HMM rather than a 
state-interpolation HMM .) Table I reports the results of 
recognition experiments on 5 speakers. 

The acoustic parameters used are mel-based cepstral 
coefficients and their differences, referred to below as C's 
and AC's, respectively, as well as the difference in the 
loudness ACO [4]. These are extracted every 10 ms using 
a Hamming window with a width of 25.6 ms. Training 
and test data consist of short extracts of novels, newspa- 
per articles, etc. 

Although the state-interpolation model performs at least 
as well as the standard model in every case, the improve- 
ment is not very big. This is only to be expected as the 
two models differ only in the way they handle VC and CV 
transitions (which is to say less than 10% of the frames). 

The linear interpolation assumption implicit in (1) is 
not strictly satisfied by cepstral coefficients (particularly 
those of high order), so we decided to experiment with 
other parameter sets. Table I1 shows recognition reuslts 
on one of the speakers using a variety of different acoustic 
parameters including log area ratios obtained from a stan- 
dard LPC analysis (denoted by LAR's), and centers of 
gravity for frequencies within critical bands (denoted by 
FREQ's). The interpolation model performs slightly bet- 
ter than the standard model in almost all cases but the 
ranking of the parameter sets with the state-interpolation 
HMM's follows that of the standard HMM's. 

As explained in Section 11-C, it is convenient to have a 
single covariance matrix for all states in all vowel models. 
We know that the standard model produces a high vari- 
ance for vowel transitional states when individual co- 
variance matrices are trained for each state, although this 
does not have a material effect on recognition results. To 
investigate the role of the covariance matrix in the state- 
intcrpolation model, we tried an experiment on one 
speaker where we trained two full covariance matrices for 
the vowels, one for the transitional states and one for the 
states whose means are context independent. Comparing 
the first and second lines of Table I11 shows that this leads 
to a degradation in performance for both the standard and 
state-interpolation HMM's. 

The second line of Table I1 shows that when the param- 
eter set is limited to static cepstral coefficients, the im- 
provement obtained by the state-interpolation model is 
relatively large. This is not surprising since our modeling 
assumptions are clearly much more appropriate for the 
static cepstral coefficients than for their differences. It 
suggests that it might be best to use the interpolation 
model for the static coefficients and an ordinary HMM for 
the dynamic coefficients. In order to implement this we 
found it necessary to decorrelate the static and dynamic 
coefficients, i .e.,  to assume that the covariance matrix is 
block diagonal. The result shown in the third line of Table 
I11 demonstrated that when implemented this way, the 
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TABLE 1 
COMPARISON OF RECOGNITION RATES FOR 5 SPEAKERS 

Training Data Test Data Standard Interpolation 
Speaker (No.  of Words) (No. of Words) HMM HMM 

ML (male) 
AM (male) 
AM 
AM 
CA (female) 
CA 
AMM (female) 
MG (female) 

1203 
1100 
2039 
2742 

7 I7 
1532 
1600 
1 I94 

TABLE I1 
COMPARISON OF ROCOCNITION RATES FOR THE TWO Turns OF HMM USlVG 

VARIOUS SETS OF A C O ~ S T I C  PARAMETERS S P ~ A K F R  ML 

Standard State-Interpolation 
Parameter Sets HMM’s HMM’s 

7 C’s + 7 AC’s + AC0 
7 C‘s 
7 C’s + A 0 3  
6 LAR’s 
12 LAR’s 
12 LAR’s + ACO + 5 ALAR’S 
7 C‘s + 8 AC’s + 3 LAR’s 
7 FREQ’s 
7 FREQ’s + 7 AFREQ’s + ACO 

84.5% 
70.0% 
79.0% 
52.X% 
67.1 % 
70.1 % 
81.1% 
50.0% 
65.9 % 

~~ 

86 4% 
74 0% 
81 0% 
5 5  1 %  
65 5 %  
70 OR 
84 0% 
55 0% 
69 0% 

TABLE 111 

MATRICES. SPEAKER ML 
COMPARISON OF RECOGNITION RATES U S I N G  VARIOUS COVARIAYCE 

Standard State-Interpolation 
Choice of Covariance Matrix HMM’s HMM’s 

One full covariance matrix 84 .5% 86.4% 
Two full covariance matrices 82 .5% 83.8% 
Two block diagonal covariance matrices 80.1 % 83.4% 

TABLE IV 
COMPARISON WITH RECOGNITION RESLLTS OBTAINED USING GENERALIZED 

DIPHONE A N D  TRIPHONE MODELS. SPEAKER AM 

Generalized Generalized 
Training Data Standard Interpolation Diphone Triphone 

(No. of Words) HMM HMM HMM’s HMM’s 

1100 54.4% 59.6% 54.0% 53.4% 
2039 68 .2% 68.2% 73.0% 72.0% 
2742 68 .7% 68.6% 74.2% 76.1% 

state-interpolation model again outperforms the standard 
model, but the result is not as good as the first implemen- 
tation. 

Our work on context-dependent modeling using (gen- 
eralized) diphones and triphones has been reported in de- 
tail elsewhere [ 6 ] .  Briefly, we define allophones of each 
phoneme using a broad classification of its right and left 
neighbors. (Triphones take both into account, diphones 
only one.) Table IV shows that, unlike the state-interpo- 
lation model, this method only gives improvements with 

7 82 

483 
483 

1090 
I090 
586 

483 

588 

84 5% 
54 4 %  
68 2 %  
68 7% 
67 9 %  
70 2 %  
79 0% 
75 1% 

86.4% 
59.6% 
68.2% 
68.6% 
71.5% 
71.2% 
79.8% 
76.7% 

relatively large training sets. (It is also necessary to bear 
in mind that the interpolation model only attempts to deal 
with context-dependent variability exhibited by vowels, 
whereas diphone and triphone models are used for both 
consonants and vowels.) 

IV. CONCLUSION 
In this paper, we have described our development of 

the state-interpolation HMM, guided by the locus theory 
of speech perception, for context-dependent phonetic 
modeling. We have found that, when compared to the 
standard HMM, it leads to modest but consistent im- 
provements in recognition performance, both across 
speakers and across parameter sets. We have also ob- 
served that the pooled variance for vowels in the inter- 
polation model is consistently smaller than in the standard 
model, indicating a better fit to the training data in the VC 
and CV transitional regions (the only part of the data 
which is handled differently by the two models). 

These improvements are not as big as might be ex- 
pected given the universally recognized importance of 
formant transitions as a cue for the place of articulation 
of consonants. Several possible explanations suggest 
themselves. It may be that our acoustic parameters are 
insufficiently sensitive to formant transitions. It may be 
that our implementation was too rigid: recall that as men- 
tioned in Section 11-A, we did not attempt to deal with the 
problem of optimizing the interpolation weights. None- 
theless, even a poor stochastic model, provided it is 
trained automatically, can give good recognition results- 
think of the standard HMM-since it incorporates a mech- 
anism for dealing with its own inadequacies (“random 
variation”). It may be that the locus theory will have to 
be given a more subtle formulation before it can serve as 
a basis for a good stochastic model. The evidence for the 
locus theory is primarily from speech perception and for- 
mant synthesis experiments; it gives one way of synthe- 
sizing acceptable VC and CV transitions, but it does not 
claim to be a model for speech production. 

Whatever the explanation, it is clear that if the problem 
of speaker-dependent very large vocabulary recognition is 
to be solved by statistical techniques then it will be nec- 
essary to construct robust models capable of generalizing 
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from small training sets in which we cannot possibly hope 
to have all types of context-dependent acoustic-phonetic 
behavior adequately represented. The state-interpolation 
model is a first step in this direction. 

APPENDIX 
REESTIMATION OF CONSONANT Locus VECTORS A N D  

NEUTRAL CONTEXTS 
In Section 11, we derive the Baum-Welch reestimation 

formulas for consonant locus vectors and vowel steady- 
state means assuming that each vowel token is always in 
a cz, context. In this Appendix, we extend the derivation 
to include the realistic situation where a vowel token can 
be in either a cv context, or in a neutral context. In the 
case of the cz, context, the Gaussian mean vectors asso- 
ciated with the HMM states intended to model acoustic 
transitions are determined by (1). For the neutral context, 
these mean vectors are assumed to be the same as the mean 
vector associated with an HMM state representing the 
vowel steady state. 

Due to the presence of neutral contexts, the objective 
function Q in (4) will have additional terms corresponding 
to the neutral contexts. The new Q function is 

VOWEL STEADY-STATE MEANS I N  BOTH CV A N D  

K -  I 

+ C C yr"(k) { - ; In 1 E,. (k)J 
c 1' 1 k = O  

K ,, 

where the summation over n denotes inclusion of all neu- 
tral contexts for vowel tokens, and yyl'(k) is the condi- 
tional probability that the kth state is occupied at time t .  
given that an observation sequence corresponding to a to- 
ken of vowel U in the neutral context n is generated by the 
model. Other notations are identical to those used in (4). 

Maximization of the above Q function leads to the fol- 
lowing symmetric linear system of equations, whose so- 
lution is the Baum-Welch reestimate of the locus vectors, 
vc, c = 1 ,  2, . * , C and the vowel steady-state mean 
vectors p I , ,  v = 1, 2, . * , V :  

where 
K -  I 

U,. = c c c h,y:'"(k)Y,, c = 1, 2, * * * , c 
I '  I k = O  

K -  I 

w,, = c c c X,yT"(k)Y, + c c yr"(K)Y, 
c 1 k = O  ( ' 1 

K 

+ c C c y y ( k ) Y r ,  v = 1, 2, * . , V 

c = 1, 2, . * . , c  

t1 I k = O  

K -  I 

A, = C C h;yF"(k), 
1' k = O  

K -  I 

E,, = c c G2y7 ' (k )  + y:'(K) 
C f  c 1 L = O  

K 

+ c c c y:"'(k)Y,, 1) = 1, 2, * * , 1/ 

2) = 1, 2, * * , v  

n f k = O  

K -  1 

B,,, = c c hk&y:'(k), 
I k = O  

c = 1 , 2 ,  . * -  , c 
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