
Static Deadlock Prevention in Dynamically
Configured Communication Networks

Manuel Fähndrich1, Sriram K. Rajamani2 and Jakob Rehof3

1Microsoft Research Redmond
maf@microsoft.com

2Microsoft Research India
sriram@microsoft.com

3Technische Universität Dortmund and Fraunhofer-ISST
rehof@do.isst.fhg.de

Abstract

We propose a technique to avoid deadlocks in a system of communi-
cating processes. Our network model is very general. It supports dy-
namic process and channel creation and the ability to send channel
endpoints over channels, thereby allowing arbitrary dynamically
configured networks.
Deadlocks happen in such networks if there is a cycle created by a
set of channels, and processes along the cycle circularly wait for mes-
sages from each other. Our approach allows cycles of channels to be
created, but avoids circular waiting by ensuring that for every cycle
C , some process P breaks circular waits by selecting to communi-
cate on both endpoints involved in the cycle C at P . We formalize
this strategy as a calculus with a type system. Our type system keeps
track of markers called obstructions where wait cycles are intended
to be broken. Programmers annotate message types with design de-
cisions on how obstructions are managed. Using these annotations,
our type checker works modularly and independently on each pro-
cess, without suffering any state space explosion.
We prove the soundness of the analysis (namely deadlock freedom)
on a simple but realistic language that captures the essence of such
communication networks. We also describe how the technique can
be applied to a substantial example.

Keywords: Deadlock prevention, communicating systems, reconfig-
urable systems

Static Deadlock Prevention 129

1 Introduction

In this paper we study a problem in modular specification and analysis
of concurrent, communicating processes with mobile channels, i.e.,
communication channels that can be passed in messages as formalized
in, e.g., the pi-calculus [11]. Such systems are difficult to specify and
analyze, because channel mobility allows programs to communicate
in a dynamically evolving network topology.

Communicating systems based on message passing have been gain-
ing practical importance over the past few years due to the emergence
of web services, peer-to-peer algorithms, and in general by the desire
to construct more loosely coupled and isolated systems. Our moti-
vation for looking at message passing systems comes from working
on the Singularity project [8, 7]. The Singularity project investigates
ways to build reliable systems based on modern programming lan-
guages and sophisticated program analyses. The operating system is
built almost entirely in an extension of C#. Processes in this system
are strongly isolated (no shared memory) and communicate solely via
message passing.

We wish to avoid deadlocks in such systems. One approach is to
use model checking [3] to systematically explore the state space of the
entire system and ensure absence of deadlocks, but the state spaces of
such programs are infinite due to dynamic channel and process cre-
ation capabilities, preventing direct use of model checking. Even if we
restrict attention to finite number of channels and processes, the state
space is exponential, limiting scalability. Thus, we need a modular
design and analysis technique to avoid deadlocks for such programs.

If we restrict our attention to systems with static communication
topologies, and assume that we do not have cycles created by channels,
then we can specify communication contracts at module boundaries,
and check modularly if processes conform to their contracts (see for
example, [5]).

However both the above assumptions (static topologies, and ab-
sence of cycles) are too restrictive. As we illustrate below, it is im-
possible to write operating system components such as name servers
without allowing dynamic topologies, and without allowing cycles of
channels. We present an approach that allows cycles of channels to be
created in dynamic topologies, but avoids circular waiting by ensuring
that for every cycle C , some process P breaks circular waits by select-
ing to communicate on on both endpoints involved in the cycle C at
P . We formalize this strategy as a calculus with a type system. Our
type system keeps track of markers called obstructions where wait cy-
cles are intended to be broken. Programmers annotate message types
with design decisions on how obstructions are managed. Using these

130 Perspectives in Concurrency Theory

Figure 1: Graphical illustration of channel creation and fork operations

Figure 2: Graphical illustration of endpoint send

annotations, our type checker works modularly and independently
on each process, without suffering any state space explosion.

We first provide an informal explanation of our communication
model and how to prevent deadlocks using obstructions. In sections 2
and 3 we formalize a small programming language and its instru-
mented operational semantics. Section 4 presents our type system for
static deadlock prevention, followed by a soundness theorem in Sec-
tion 5. Section 6 describes an example to illustrate how obstructions
and our type system can guide the design of a name service. Section 7
contains further discussion of the technical motivation behind our
system and of future work. Sections 8 and 9 contain a discussion of
related work and conclusions. Proofs of the main result are in the
appendix.

1.1 Communication model

The communication model we are investigating in this paper is based
on channels, where each channel consists of exactly two endpoints,
and each endpoint is owned and operated on by at most one process
at any time. This is in contrast to traditional π-calculus [11] style
systems, where a shared name is all that is needed to communicate.
Our endpoint-based approach is motivated by the fact that it is sim-
pler for modular static verification and also corresponds more closely
to actual implementations of message passing systems.

Static Deadlock Prevention 131

The communication model can be easiest understood using a
graphical notation. A configuration consists of processes denoted by
large circles and endpoints denoted by small circles. Channels are
simply edges between endpoints. Endpoints appear nested within the
boundary of the unique process that owns it.

There are three primary operations acting on a configuration: 1)
channel creation, 2) process forking, and 3) sending of an endpoint
over an existing channel. Other operations do not affect network
topology and thus cycles and deadlocks, so we ignore them here. In
Figure 1 on the left, we see a configuration consisting of a single pro-
cess named Kernel. The Kernel process then creates a new channel,
resulting in the second configuration, where the process owns both
endpoints of the newly created channel. Observe that channel cre-
ation is a purely local operation.

On the right of Figure 1 we see how a process can fork (along the
dotted line) resulting in a configuration with two distinct processes
(here named Kernel and NS for name service). Note that a fork op-
eration partitions the endpoints of the forking process so that each
endpoint ends up in exactly one of the two resulting processes. Fi-
nally, Figure 2 shows how in the previous configuration, an endpoint
a moves over the channel formed by endpoints (b , c). We consider
moves to be atomic, corresponding to a synchronous communication
model, where a send and corresponding receive operation synchro-
nize. In Section 7, we briefly discuss how our approach extends to
asynchronous communication models.

Through repeated applications of channel creation, forking, and
sending of endpoints over channels, we can achieve arbitrary config-
urations of processes and endpoints. Figures 3 and 4 continue the
progression of configurations from Figure 2, showing how the kernel
can create processes with channels to the name server and how pro-
cess P1 can obtain a direct channel to P2 by forwarding an endpoint
of a locally created channel through the name service via two send
operations.

1.2 Deadlock

The example configurations of the previous section make it clear
that cycles in the process-channel graph arise both temporarily and
sometimes as permanent parts of the configuration (e.g., the cycle
P1, NS, P2). Thus, our strategy for avoiding deadlock is not to re-
strict networks to trees, or to restrict communication to a subset of
tree edges of the graph. Instead, we allow arbitrary graphs, but track

132 Perspectives in Concurrency Theory

Figure 3: Process creation with name service channel

Figure 4: Forwarding a channel through name server

Figure 5: A deadlock

potential cycles and force processes to communicate in a way that pre-
vents deadlock.

Definition 1 [Path] A path is a sequence of segments s1..sn , where each
segment si is of the form (ai , pi , bi), and ai , bi are endpoints owned by
process pi , and each (bi ,ai+1) forms a channel (for i = 1..n− 1).

We restrict our attention to primitive paths where no process (or
endpoint) appears more than once.

Definition 2 [Cycle]A cycle γ is a path (a1, p1, b1)...(an , pn , bn)where
additionally, (bn ,a1) forms a channel.

A channel is enabled for communication if both its endpoints are
selected for communication by their respective owning processes. A
set of processes is deadlocked if each process pi wants to communicate

Static Deadlock Prevention 133

on a nonempty set Si of endpoints it owns, but no channel is enabled
for communication. In other words, a deadlock arises if there exists
no channel (a, b), such that both a and b are selected by their respec-
tive owning processes, even though each process selects a nonempty
set of endpoints to communicate.

Figure 5 shows a configuration with processes P1, P2, and the name
service, where filled circles denote selected endpoints, and unfilled
circles denote non-selected endpoints. No channel is enabled, since
there is no channel with both endpoints being filled, even though
each process has selected one endpoint. Therefore this configuration
is deadlocked.

1.3 Obstructions

The main idea and contribution of the paper is to statically track po-
tential cycles in the configuration and to prevent deadlock by forcing
some process on each cycle to select enough endpoints for communi-
cation so as to guarantee the existence of an enabled channel.

We track potential cycles via obstructions. An obstruction is a
marker in the form of a pair of endpoints (a, b) owned by the same
process p. An obstruction summarizes the potential existence of a
cycle containing segment (a, p, b). We say that an endpoint is ob-
structed if it participates in an obstruction.

Figure 6: P2 with obstruction and valid selection

Figure 6 shows the same configuration as Figure 5, but where the
cycle is covered by an obstruction maintained by process P2 between
its two endpoints (depicted via a dashed edge). We can now prevent
deadlocks by the following strategy for selecting endpoints:

Definition 3 [Valid selection] A process p wanting to communicate
has to select at least one unobstructed endpoint or at least one obstructed
endpoint a and all obstruction peers {b | (a, b) is an obstruction in p}.

134 Perspectives in Concurrency Theory

Process P2 in Figure 6 is thus forced by the obstruction on its end-
points to select both endpoints for communication, even if it wants
to communicate only with NS. As a result, the channel between P1
and P2 is now enabled and the configuration can evolve a step.

We prove two main parts in this paper: 1) the operational rules for
maintaining local obstructions (and the corresponding type rules) are
sound, meaning that in every reachable configuration, all cycles are
covered by an obstruction. 2) given that all potential cycles are cov-
ered by some obstruction, the obstruction observing selection strat-
egy is sufficient to guarantee that processes don’t deadlock.

1.4 Limitations

Though our type system is modular, it makes heavy use of program-
mer supplied annotations. We require programmers to annotate mes-
sage protocols, we also require programmers to provide obstruction
annotations (see Section 3) whenever endpoints are sent and received
over other endpoints. We are aware that supplying these annotations
requires a deep understanding of our strategy for propagating obstruc-
tions in the operational semantics. We leave it to future work to come
up with automatically inferring these annotations, and decrease the
annotation burden on the programmer.

1.5 Outline

The remainder of the paper makes these ideas more precise and pro-
vides the following contributions: 1) an operational semantics instru-
mented with obstructions, 2) a static type system for tracking ob-
structions and restricting processes to obstruction observing commu-
nications, and 3) proofs of soundness of the obstruction tracking and
selection strategy.

2 Language

Figure 7 defines a small language. A program consists of a set of pro-
tocol state declarations, message sequence declarations, process decla-
rations, and a starting process term P .

A protocol state specifies a set of possible message sequences. A
state with an empty set is a terminating state signaling the end of the
protocol. A message declaration m : τ t → σ specifies that message m
carries an argument of type τ with obstruction tag t . Furthermore,

Static Deadlock Prevention 135

Program ::= StateDecl∗ SeqenceDecl∗ ProcDecl∗ P program

StateDecl ::= State = {m1,m2, . . . ,mn} protocol state

SeqenceDecl ::= m : τ t → σ sequence declaration

τ ::= int | σ parameter type

σ ::= !State | ?State protocol

t ::= r | s obstruction tag

State ::= Name state name

m ::= Name message name

ProcDecl ::= PN(x1 : τ1, . . . , xn : τn) : O = P process declaration

P ::= (new x : σ , y); P | forkP1, P2 process
|PN(E1, E2, . . . , En)
| select

∑

i∈I Gi | (freeE); P
| halt

O ::= {(x1, x2), (x3, x4), . . .} obstructions

G ::= E?m[x].P input guard
| E1!m[E2].P output guard

E ::= x | i | v expressions

PN ::= Name process name

x ::= Name variable

v ::= Name value

i ::= integer integer

Figure 7: Process terms and types

it specifies the continuation σ of the protocol for the sender of m.
Thus, a message and a message sequence are isomorphic in our for-
malization. We use the notation next(m) to refer to the continuation
protocol of m.

The parameter type τ specifies the message argument to be either
a value of type int or a channel endpoint with the given protocol σ .
The protocol σ of an endpoint describes the remaining interactions
on the endpoint. A protocol σ is either !State, specifying a send of
any message in set State, or ?State, specifying a receive of any message
in set State.

By convention, the protocol continuation for any message is writ-
ten from the perspective of the sender. The message sequences for the

136 Perspectives in Concurrency Theory

matching receiver is obtained by dualizing a protocol ∼σ (turning
sends into receives and vice-versa):

∼!M =?M
∼?M =!M

Processes P can create new channels via new or fork into two
separate processes. Processes recurse by invoking process defini-
tions. Select offers a set of communication alternatives, each with
its own continuation. Endpoints are explicitly freed via free, and
halt allows a process to terminate. We sometimes write m![b] as a
shorthand for selectm![b], and similarly m?[x] as a shorthand for
selectm?[x].

Obstructions O are unordered pairs of endpoints. The obstruc-
tion set O on process definitions is used solely by the static type sys-
tem and specifies under what obstruction assumptions to type P and
applications of P .

The obstruction tag t on message parameter types specifies
whether some obstructions known to the sender on the endpoint ar-
gument are maintained by the sender t = s , or passed to the receiver
t = r after the exchange. The need for these tags is explained in the
operational semantics.

Our language has two binders: (1) new and (2) message receive. We
say that names x and y are bound in the process (new x : σ , y); P .
We say that name x is bound in the process E?m[x].P . A name that
occurs in a process P , but is not bound in P is said to be free in P . For
a process P , we use fn(P) to denote the set of all free names in P .

Given a process P , we use the notation P[a/x] to denote the pro-
cess obtained by substituting all free occurrences of x in P with a.

3 Operational Semantics

This section describes an operational semantics for processes that is
instrumented to track the cycle obstructions our static type system
reasons about. For each possible reduction, we show how the obstruc-
tions in the pre-state are related to the obstructions in the post-state.
The semantics is presented as small step rewrite rules.

We use x, y, z ∈ X to range over bound variables, u, v, w ∈ V to
range over values (or endpoints of channels), and a, b , c ∈ X ∪V to
range over either variables or values. The domain of values is needed
to generate fresh names during application of the new operator while
describing the operational semantics.

Static Deadlock Prevention 137

〈peer,O, (new a : σ , b); P |Π〉 peer′ = peer∪{(a, c), (c ,a), (b , d), (d , b)}
−→ 〈peer′,O ′, P | P∼σ (c , d) |Π〉 a, b , c , d 6∈ dom(peer)

O ′ =O ∪{(a, b)}
〈peer,O,forkP1, P2 |Π〉 O ′ = (O \Ocut)∪Ocl

−→ 〈peer,O ′, P1 | P2 |Π〉 Ocut = {(a, b) | a ∈ fn(P1)∧ b ∈ fn(P2)
requires fn(P1)∩ fn(P2) = {} ∧ (a, b) ∈O}

Ocl = {(b , d) | (a, b) ∈Ocut ∧ (c , d) ∈Ocut

∧ b 6= d}
〈peer,O,select b !m[a].P1+ S1 peer(b) = c m : τ t → σ

| select c?m[x].P2+ S2 |Π〉 O ′ =O \ a ∪Osender ∪Orecvr ∪Om

−→ 〈peer,O ′, P1 | P2[a/x] |Π〉 Osender = {(y, z) | (a, y) ∈O ∧ (b , z) ∈O}
requires (a, b) 6∈O Orecvr = {(a, z) | (c , z) ∈O}

Om =
�

{(c ,a)} t = r
{(b , y) | (a, y) ∈O} t = s

〈peer,O, p(a1 . . .an) |Π〉 p(x1 . . . xn)
∆= P

−→ 〈peer,O, P[a1/x1 . . .an/xn] |Π〉
requires ai disjoint and ai 6∈ fn(P)

〈peer,O, (freea); P |Π〉 peer′ = peer \ a O ′ =O \ a
−→ 〈peer′,O ′, P |Π〉

requires a ∈ dom(peer)
〈peer,O,halt |Π〉 −→ 〈peer,O,Π〉

Figure 8: Small-step operational semantics

3.1 Configurations

Machine configurations are tuples of the form 〈peer,O,Π〉. The
function peer: V → V is a bijection that associates endpoints with
their channel peer, i.e., if peer(a) = b , then (a, b) is a channel and
peer(b) = a. The set O ⊆ V × V is the set of obstructions of
the configuration. Finally, Π is a parallel composition of processes,
Π= P1 | . . . | Pn , considered modulo reordering of its components.

We only consider configurations that satisfy the invariant that any
free name occurring in Π = P1 | . . . | Pn occurs in exactly one process
Pi . We write proc(a) to denote the process in which the free name a
occurs. Furthermore, we are only interested in configurations where
obstructions O are local to a process, i.e., an obstruction is between
endpoints a, and b belonging to the same process.

∀a, b .(a, b) ∈O =⇒ proc(a) = proc(b) (1)

The motivation for this restriction is due to the fact that the type
system performs a per process modular analysis and thus cannot keep
track of obstructions if they are not local to a process. Naturally, the
type system in the next section enforces these invariants.

138 Perspectives in Concurrency Theory

3.2 Reduction rules

Figure 8 contains small-step reduction rules for our language. We
write dom(R) to denote the domain of a binary relation R. If O ⊆
V ×V is a set of pairs and a ∈ V , then we write O \a for O \{(a, b) |
(a, b) ∈O}.

If we ignore the treatment of obstructions, the reduction rules are
essentially standard process reduction rules. The only complication
arises in the creation of new channels. Instead of creating a direct
channel between the two endpoints a and b of the new term, the
operational semantics introduces a size one buffer process P∼σ (c , d)
(definition below) connected via channels (a, c) and (b , d). The buffer
process executes message forwarding on c according to protocol ∼σ
and on d according to protocol σ . We chose to introduce a buffer
process to prevent a process from trying to synchronize with itself.
With buffer processes, we have the invariant that each process of the
original program only communicates with buffer processes and vice
versa. Thus, processes can never try to synchronize with themselves.
In Figures, we continue to omit the buffer processes.

P?{}(c , d) ∆= free c ;freed ;halt

P!{}(c , d) ∆= free c ;freed ;halt

P?M (c , d) ∆= select
∑

m∈M c?m[x].d !m[x].P∼next(m)(c , d)

P!M (c , d) ∆= select
∑

m∈M d ?m[x].c !m[x].Pnext(m)(c , d)

The next section provides insight into how the treatment of obstruc-
tions by the reduction rules provides strong enough invariants to pre-
vent deadlock.

3.3 Properties

We first relate configurations C to the graphs shown in the introduc-
tion.

Definition 4 [Induced graph] The induced graph G(C) of a configu-
ration

C = 〈peer;O; P1 | . . . | Pn〉

is the graph (N , E), where the set of vertices N consists of a vertex per pro-
cess and a vertex per endpoint, and the set of edges consists of an edge per
channel (a, peer(a)), and an edge linking each endpoint a to its owning
process proc(a).

Static Deadlock Prevention 139

Recall that the purpose of obstructions is to characterize all cycles
in a configuration. The next definition makes this precise.

Definition 5 [Cycle coverage] Given an induced graph G of config-
uration 〈peer;O; P1 | . . . | Pn〉, we say that the configuration is cycle
covered, if for each cycle γ in G, there exists a segment (a, i , b) ∈ γ , such
that (a, b) ∈O.

We now inspect some of the reduction rules of Figure 8 in more
detail to see how they transform a configuration that is cycle covered
into a new configuration that is also cycle covered, while maintaining
only local obstructions.

Note that every initial configuration is of the form 〈;;;; P 〉, where
P contains no free names. Initial configurations are thus cycle free
and consequently cycle covered.

Rule new is the base case for creating a cycle. The new chan-
nels and the buffer process form a cycle containing two segments
(a, P, b)(d , P∼σ , c). In order to cover this cycle in the resulting config-
uration, obstruction (a, b) is added. Every other cycle in the resulting
configuration exists in the prior configuration and is thus covered.

Figure 9: Obstructions prior and after fork

Rule fork has to consider what happens to the obstructions that
are no longer local to a process after the split, namely those obstruc-
tions (a, b), where P1 retains a and P2 retains b . Figure 9 shows the
situation for two such pairs of endpoints, (a, b) and (c , d). The dashed
lines inside processes represent obstructions, the dot-dashed lines out-
side processes represent the potential path completing the cycle the
obstruction covers. We see that after the fork, the two potential cy-
cles have been turned into a larger single cycle. To cover it, one of the
two processes needs to have an obstruction between its endpoints.
The reduction rule for fork chooses (b , d) in P2 as shown in the pic-
ture. In general, cutting n obstructions via fork, results in n·(n−1)

2
new cycles and thus obstructions, one between every pair of paths
connecting the two processes.

The most complicated case is the reduction for select. As can be
seen from the rule in Figure 8, the obstructions O ′ after the move of

140 Perspectives in Concurrency Theory

endpoint a can be characterized by four groups. First, O \ a are the
obstructions not changed by the move. All obstructions in which a is
involved are removed because they are no longer local to the sending
process when a changes owner. The groups Osender and Orecvr are clo-
sure rules that add obstructions in the sender and receiver necessary
in the worst case to cover new potential cycles. To gain insight into
these, we invite the reader to inspect the proof in the appendix. Here,
we will focus on the last component, Om .

Figure 10: Obstructions Om for send

Consider the top configuration in Figure 10. We are about to send
a over b . It so happens that (a, d) is an obstruction, and that there
might thus be a path from a to d in the graph. Consider that same
path after the move (bottom of figure). We observe that we have
added the channel edge (b , c) to the cycle. Since (a, d) is no longer
a valid obstruction, we must find a new obstruction that covers this
cycle. We now have two options to cover this cycle: either by ob-
struction (d , b) maintained by the sender, or (c ,a) by the receiver.
Both are highlighted in the figure, but only one is needed. The choice
between these to possibilities is under programmer control. Message
signatures contain an obstruction tag t ∈ r, s on the message argu-
ment type. This tag provides the contract between the sender and
receiver as to who witnesses the new cycle via an obstruction. If the
tag is s , only obstruction (b , d) is added; if the tag is r , only obstruc-
tion (c ,a) is added. In both cases, the cycle in question is covered.

3.4 Stuck configurations

A configuration C is stuck, if there does not exist C ′, such
that C −→ C ′ by one of the reduction rules. We group stuck

Static Deadlock Prevention 141

configurations into two groups: locally stuck processes and globally
stuck configurations. Locally stuck processes are stuck independently
of other processes, whereas globally stuck configurations are stuck
due to the interaction of processes. By inspection of the rules, we
find that processes can get locally stuck due to the side-conditions in
the reduction rules that check non-sharing of endpoints between pro-
cesses and rule out sending an endpoint over a channel with which it
is obstructed.

A configuration is globally stuck, if no process is locally stuck, and
the configuration isn’t terminal (no more processes). In that case, all
processes are of the form select. Configurations are globally stuck
on select for the following reasons:

1. Deadlock: no two processes want to communicate on the same
channel

2. Wrong message: there exists a channel with both sides ready to
communicate, but the sides do not agree on a common message.

The deadlock case naturally includes the situation where a channel is
orphaned, namely one side deletes its endpoint or terminates, but the
other still tries to communicate. Note that due to our channel buffer
processes, it is not possible for a process to get stuck with itself.

While the type system presented in the next section guarantees
stuck-freedom from all of the above, the formal treatment in this pa-
per shows that our novel use of obstructions avoids deadlock. The
remaining cases are treated using established techniques, such as lin-
ear typing of endpoints.

4 Obstruction Type System

The type system validates judgments of the form

E ;O ` P

meaning that, in endpoint environment E , and obstructions O, the
process term P is well typed.

We use M ,N to denote state names and use them interchangeably
with the message sets they denote. We use δ as a meta-variable for
either ! or ?. Environments

E ::= x:τ | E , E | ·

map names to types τ, which can be either base type (here just int),
or an endpoint in a particular protocol state σ . In the latter case, σ

142 Perspectives in Concurrency Theory

describes the remaining conversation on the endpoint. In order to
track endpoint ownership by processes in the type system, we treat
environments using a linear typing discipline. Every endpoint in the
environment is owned. In principle, non-endpoint names do not need
to be treated linearly. To avoid making the formalisms more complex
however, we focus mostly on endpoints and thus all values are treated
linearly. In practice, the environment would be split into a linear part
for endpoints, and a non-linear part for other values. Obstructions

O ::= (x, y) |O,O | ·

correspond to the obstructions in the operational semantics, with a
subtle difference that in the case of judgments, obstructions are kept
in terms of variables in the process instead of endpoint values as in
the operational semantics.

Figure 11 shows the type rule for each process term. It is inter-
esting to note that the type system models the operational semantics
precisely, except that it abstracts away the channel edges and actual
values generated at runtime. In other words, the type system does
not contain any information about which endpoints are peers, and
the type system does not keep track of fresh values generated by the
new operator.

The notation ep(G) represents the endpoint and message on which
G communicates, i.e., ep(a?m[x].P) = (a, m) and ep(a!m[b].P) =
(a, m). We use dom(R) for the domain of a binary relation R and
R(a) the range of R w.r.t. a. This notation is used in the T-SELECT
rule.

We briefly explain each rule. The halt process is well-typed only
in the empty environment. This guarantees that processes do not halt
while holding some endpoint on which the peer expects more com-
munication. Freeing an endpoint requires that the endpoint is owned
and has no conversation left (type δ{}). Note that by rules T-HALT
and T-FREE the type system thus enforces that all endpoints are freed
explicitly.

The modularity of the analysis is most explicit in the rule T-FORK.
After the fork, the analysis of the two sub-processes is completely in-
dependent and governed only by the concise endpoint types and mes-
sage declarations that programmers can write. Rule T-FORK splits the
environment into E1 and E2, thereby guaranteeing a partitioning of
the endpoints owned by the two resulting processes. Similarly, we
partition the obstructions into O1, O2, and Ocut, where Oi are all ob-
structions on endpoints in Ei (i = 1,2). After the fork, obstructions
Ocut would no longer correspond to local obstructions, since they re-
late endpoints of distinct processes. They are thus removed from the

Static Deadlock Prevention 143

·; · ` halt [T-HALT]

E , x:σ , y:∼σ ;O, (x, y) ` P

E ;O ` (new x:σ , y).P
[T-NEW]

m ∈M m : τ t → σ
Orecvr = {(b , x) | (b ,a) ∈O}

Om =
�

; if t = s
{(a, x)} if t = r

E , x:τ,a:∼σ ;O ∪Orecvr ∪Om ` P

E ,a:?M ;O ` a?m[x].P
[T-INP]

m ∈M m : τ t → σ (a, b) 6∈O
Osender = {(y, z) | (a, y) ∈O ∧ (b , z) ∈O}

Om =
�

{(b , y) | (a, y) ∈O} if t = s
; if t = r

E , b :σ ;O \ a ∪Osender ∪Om ` P

E ,a:τ, b :!M ;O ` b !m[a].P
[T-OUT]

δ ∈ {!, ?}
E ;O \ a ` P

E ,a:δ{};O ` freea.P
[T-FREE]

Ocut ⊆ fn(E1)× fn(E2)
Ocl = {(b , d) | (a, b) ∈Ocut ∧ (c , d) ∈Ocut ∧ b 6= d}

E1;O1 ` P1 fn(O1)⊆ fn(E1)
E2;O2,Ocl ` P2 fn(O2)⊆ fn(E2)

E1, E2;O1,O2,Ocut ` forkP1, P2
[T-FORK]

R=
⋃

i ep(Gi) S ⊆ dom(R)
ValidSelection(S,O)

∀a ∈ S. Exhaustive(R(a), E(a))
E ;O `Gi (i = 1 . . . n)

E ;O ` select
∑

i Gi
[T-SELECT]

ValidSelection(S,O) = ∃a ∈ S. a 6∈O ∨∀b .(a, b) ∈O =⇒ b ∈ S
Exhaustive(N , !M) = true if N ⊆M
Exhaustive(N , ?M) = true if N =M

p(x1:τ1..xn :τn) : O ∆= P
x1:τ1, .., xn :τn ;O ` P

O ′ ⊆O[ai/xi]

a1:τ1, ..,an :τn ;O ′ ` p(a1..an)
[T-INVOKE]

Figure 11: Obstruction type rules

obstruction set. Instead, we compute a new set of obstructions Ocl
for process P2 covering all resulting cycles (see also Figure 9). The
choice of obstructions Ocl in the type rule is just one of many possi-
ble designs. Alternative type rules could equally well compute a set of
obstructions for P1, or distribute obstructions among P1 and P2. We
have not yet investigated the need for such alternatives.

144 Perspectives in Concurrency Theory

Rule T-SELECT checks that the process communicates on a
valid selection of endpoints S that is obstruction observing. The
ValidSelection predicate formalizes Definition 3. For each endpoint
a in S, the rule then enforces that receives are exhaustive, namely that
the process is ready to receive all possible messages that the type of
the endpoint (that is, the corresponding message state) specifies. For
sends, it suffices to choose any subset of possible messages that the
type of the endpoint specifies. Sends in message sequence types corre-
spond thus to internal choice, receives to external choice.

Rule T-INP checks that m is a valid message to receive given the
type ?M of the receiving endpoint a. This is checked by ensuring
that there is a message m : τ t → σ in the message state M . Since the
message sequence for state M is written (by convention) from the per-
spective of the sender, and endpoint a is a receiver with type ?M , we
have to complement the polarity of σ to obtain ∼σ and type the re-
maining process P where endpoint a has type∼σ . We also check that
the actual argument x has type τ as specified by the message signa-
ture. Obstructions consist of prior obstructions O plus obstructions
Orecvr required on the receiver side between the received endpoint x
and obstruction peers of the receiving endpoint a. In addition, if the
message obstruction tag t = r , then the receiver keeps track of the
obstruction (a, x) between the received and receiving endpoints.

Rule T-OUT checks that m is part of M , the messages that can be
sent on b . The remaining process P is typed in the environment
where b has type σ corresponding to the remaining conversation af-
ter sending m. Endpoint a is no longer in the environment, since
ownership of a has passed to the owner of the peer of b . Obstruc-
tions consist of prior obstructions O, albeit without any obstructions
mentioning a, followed by necessary obstructions Osender between ob-
struction peers of a and b . If the obstruction tag t = s , then the
sender additionally turns obstructions on a into obstructions on b
(see also Figure 10).

The condition (a, b) 6∈ O on T-OUT enforces that we can never
send a over b , if a is obstructed with b . Were we to permit such an
operation, it would have the effect of shortening a potential cycle in
the graph by the one segment that contains the obstruction, but with-
out being able to add the obstruction to any remaining segments. The
receiving process would have to assume that the received endpoint is
obstructed with all other endpoints owned by the process. We chose
to simply disallow such sends rather than adding this conservative as-
sumption.

Static Deadlock Prevention 145

5 Soundness
We present a soundness theorem establishing that if a configuration is
typable by the obstruction typing rules then it cannot deadlock.

Recall that all cycles considered in this paper are primitive. We
do not need to consider non-primitive cycles, since every dead-lock
configuration exhibits a primitive wait cycle.

Definition 6 [Valid configuration]A configuration 〈peer;O1..On ; P1 |
. . . | Pn〉 is valid if

1. there exist environments E1..En , such that Ei ;Oi ` Pi
2. for any channel (a, b), such that peer(a) = b , a ∈ Ei and b ∈ E j ,

the endpoint states agree, i.e., if Ei (a) =!M , then E j (b) =?M , and
if Ei (a) =?M , then E j (b) =!M .

3. the configuration is cycle covered (Definition 5)

Lemma 7 [Preservation]Given a valid configuration C1 and a reduc-
tion step C1→C2, configuration C2 is valid.
Proof By case analysis over the possible redexes of a configuration.
Preservation of points 1, and 2 of definition 6 is straight-forward. Ap-
pendix A.1 contains the graph theoretic argument for preservation of
cycle coverage.

The following lemma states that given a valid configuration where
all processes want to communicate, there exist two processes con-
nected by a channel and both processes are ready to exchange a mes-
sage over that channel.

Lemma 8 [Progress] Given a valid configuration C1, then either C1
is final and of the form 〈;;;;;〉, or there exists a configuration C2, such
that C1→C2.
Proof By case analysis over stuck configurations. Appendix A.2
contains the proof.

Theorem 9 [Soundness] Every closed program P that is well typed
·; · ` P either reduces to the final configuration, or it reduces ad-infinitum.
Proof By induction over the reduction steps and Lemmas 7 and 8.

6 Name Server Example
A driving motivator for the present work is the design of a realistic
name service for our research operating system. The name service
process is a natural convergence point of many channels. It is also
common to have cycles involving the name server as shown in the
final configuration of Figure 4.

146 Perspectives in Concurrency Theory

CLIENT = {NewClient, Bind }
ACKCLIENT = {AckClient}
NewClient : (? CLIENT)r →?ACKCLIENT
Bind : (? SERVICE)r →?ACKCLIENT
AckClient : void → ?CLIENT

REGISTRAR = {NewReg, Register}
NewReg : (? REGISTRAR)s →?{AckReg}
Register : (? SERVICEPROVIDER)s →?{AckReg}
AckReg : void → ?REGISTRAR

SERVICEPROVIDER = {Connect}
Connect : (? SERVICE)r → ?{ AckConnect}
AckConnect: void → ?SERVICEPROVIDER

Figure 12: Contracts for the name server endpoints

In designing the name service, one could attempt to have the name
service handle all obstructions to cover such cycles and be responsive
enough so that other clients need not deal with obstructions. It turns
out, though, that such a strategy is only partially feasible. Keeping
all obstructions on the name server leads to a situation where all its
client endpoints are obstructed with all service provider endpoints.
This is not a desirable situation, since it prevents the name server
from forwarding connection endpoints it receives over a client chan-
nel to a service, due to the fact that the connection endpoint will be
obstructed with all services upon receipt.

Instead, we use the design shown graphically in Figure 14. Fig-
ure 12 shows the contract definitions for the end points of the name
server and Figure 13 contains the server code itself.

The name server maintains four sets of end points, called clients,
ackclients, registrants, and serviceproviders. Sets are not part of our
core language but are straight-forward to implement. The sets collect
end points that share the same type (message state). Endpoints can be
added to sets and selections can involve sets of endpoints. For exam-
ple, the guard case e .NewClient?(newclient) in clients is triggered by a
NewClient message from any member of the set clients. The particu-
lar endpoint e on which the message is received is bound in the case
block and removed from the set. We use the type void for message
arguments when the message does not carry any value although this
is not part of the formalism.

The main function of the name server is to bind service endpoints
to service providers. The name server supports this on endpoints
in the client set. These endpoints have type ?CLIENT, specifying the

Static Deadlock Prevention 147

1 set <?CLIENT> clients ;
2 set <!ACKCLIENT> ackclients;
3 set <?REGISTRAR> registrants ;
4 set <?SERVICEPROVIDER> serviceproviders;
5 ...
6 /* initialize clients , ackclients , registrants and service providers */
7 ...
8 while (true) {
9 select {

10 case e .NewClient?(newclient) in clients :
11 // e , newclient , clients , and ackclients are mutually obstructed
12 clients .Add(newclient);
13 ackclients .Add(e);
14 break;
15

16 case e . AckClient !() in ackclients :
17 // e , clients , and ackclients are mutually obstructed
18 clients .Add(e);
19 break;
20

21 case e . Bind ?(service) in clients :
22 // e , service , clients , and ackclients are mutually obstructed
23 ackclients .Add(e);
24 // service , clients , and ackclients are mutually obstructed
25 serviceprovider = GetServiceProvider (serviceproviders , ...);
26 // serviceprovider is not obstructed with any endpoints
27 serviceprovider .Connect!(service);
28 // clients , and ackclients are mutually obstructed
29 serviceprovider .AckConnect ?();
30 serviceproviders .Add(serviceprovider);
31 break;
32

33 case e .NewReg?(newreg) in registrants :
34 // neither e nor newreg is obstructed with any other endpoints
35 e .AckReg !(); // can send AckReg on e alone
36 registrants .Add(newreg);
37 registrants .Add(e);
38 break;
39

40 case e . Register ?(serviceprovider) in registrants :
41 // neither e nor serviceprovider is obstructed
42 e .AckReg !(); // can send AckReg on e alone
43 serviceproviders .Add(serviceprovider);
44 registrants .Add(e);
45 break;
46 }
47 }

Figure 13: Name server code

148 Perspectives in Concurrency Theory

Figure 14: Stable configuration of nameserver

Figure 15: Nameserver after receiving client request

Figure 16: Nameserver after receiving registrar request

arrival of either message NewClient to add a new client, or message Bind
to bind a service endpoint to a service provider. Both messages spec-
ify that obstructions on the message argument are handled by the re-
ceiver (the r superscript). Thus, processes can obtain duplicate name
service channels or bind to service providers without being encum-
bered by obstructions on their side.

Registrations of service providers happen on a different set of
endpoints stored in the registrars set. These endpoints have type

Static Deadlock Prevention 149

?REGISTRAR and the name server receives either message NewReg to
add a new registrar client, or message Register to register a new service
provider. In contrast to the messages on the clients set, the messages
received from registrants are tagged with superscript s , making it part
of the channel contract that obstructions on these message arguments
are kept on the sender.

Service providers are kept in set serviceproviders and have type
?SERVICEPROVIDER. They expect a single message Connect which passes
a service endpoint to the service provider. The final set ackclients will
be explained below.

Figure 14 shows the four sets as shaded areas labeled C, R, S, and
A. The figure shows that our design allows endpoints in clients and
ackclients to be mutually obstructed, but registrar or service provider

endpoints are not obstructed with any other endpoint.
Consider the first case of the select statement on line 10 in the

name server implementation. It handles NewClient messages carrying
a new endpoint newClient arriving on some endpoint e in set clients .
Because the message declaration is tagged with r , endpoints e and
newClient are obstructed after the receive. Additionally, due to the
receiver closure rule, newClient is also obstructed with all obstruction
peers of e, namely all endpoints in sets clients and ackclients . This
is graphically shown in Figure 15 where newClient is abbreviated with
n. Next, the newClient endpoint is added to the clients set (it has the
same type and obstructions as all other endpoints in that set). Now
the nameserver needs to send an acknowledgment message on e as pre-
scribed by the message declaration. However, offering to send only
on e at this point is not allowed by the obstruction rules (not a valid
selection), since e is obstructed with all other endpoints in sets clients
and ackclients . In order to offer the acknowledgment on e, we also
have to simultaneously accept messages on all client endpoints. We
achieve this by storing e in set ackclients and re-executing the select
statement. The set ackclients thus contains all client endpoints whose
peers may be expecting the AckClient message. This is handled by the
case on line 16.

After receipt of Bind on line 21, the obstruction situation is analo-
gous to the previous case shown in Figure 15 but where n represents
the service endpoint. The service endpoint is forwarded to some ser-
vice provider from the service provider set. Since the service provider
is not obstructed, we can send the Connect message and receive the
subsequent AckConnect without having to consider offering to han-
dle messages on other endpoints. No obstructions from the service
endpoint are retained by the name server, since the Connect message
specifies that the receiver (the service provider) handles obstructions.

150 Perspectives in Concurrency Theory

Thus, after adding e to the ackclient set and the serviceprovider back
into the serviceproviders set, we have again reached the stable situation
in Figure 14 and can re-execute the loop.

Figure 16 shows the obstruction state that holds after receiving
a Register message on endpoint e with service endpoint argument s
(line 39). In this case, no obstructions are present among these end-
points. Thus, we can send the acknowledgment on e directly without
the need for a set like ackclients . The stable state is reached again
by adding endpoint e back to the set registrars , and adding s to set
serviceproviders .

6.1 Implementation

We have implemented a name service according to the design de-
scribed in Section 6, as part of the Singularity operating system [8, 7].
The name service provides a uniform name space for all services on a
system, including device drivers, network connections and file sys-
tem. Singularity is written in an extension to C# which includes
message-passing primitives and contract specifications as discussed in
this paper. Our notion of obstructions was motivated by our expe-
riences in programming Singularity and will be implemented as an
extension to the current type system.

7 Discussion and Future Work

The type system proposed in this paper has two aspects, message sig-
natures and obstructions. Message signatures can be used to encode
simple contracts (stateful communication protocols, somewhat in the
style of session types [6]) specifying temporal ordering of types of
messages sent and received along a pair of endpoints. In this paper, we
wish to focus on the use of obstructions and have deliberately chosen
a very simple contract format, in which a specification τ has a natu-
ral inverse, ∼τ. In principle, contracts over message types could be
much more expressive. For example, channel contracts used in [9, 2]
are CCS processes.

Local and modular reasoning about deadlock in the presence of
channel passing is a fundamental challenge. The present work arose
partly out of an attempt to apply the theory of conformance devel-
oped in [5] to programs with dynamic communication topology.
Conformance theory [5] allows us to reason compositionally about
deadlock and unhandled message types arising from misuse of con-
tracts, but the theory is restricted to CCS (static topology). Type

Static Deadlock Prevention 151

systems in the style of [9, 2] can be used to extract CCS models from
π-calculus expressions, which could in turn be processed by a model
checker. Hence, by composing the theory of conformance with such
type systems we could hope to achieve a modular system for typ-
ing deadlock-free components with very rich contracts and dynamic
topology. It remains an important challenge for future work to de-
vise a system in which a theory of contract conformance such as [5]
is integrated with the obstruction discipline.

In this paper we have chosen to factor the deadlock problem into
two orthogonal subproblems, namely, deadlock problems arising due
to cyclic structures created dynamically by channel passing, and dead-
lock problems arising from misuse of contracts. Our basic rationale
has been that we want contracts to be local to a channel (pair of end-
points). In contrast, the systems [9, 2] admit cross-channel contracts
that can express constraints on messaging actions that take place on
multiple channels. The drawback with such contracts from a prag-
matic perspective is that (i) they may need to span arbitrarily large
parts of a system in practice, conflicting with the desire for modular-
ity, and (i i) it is difficult, in general, to find a natural place to state
them in programs. It is possible that cross-channel contracts will be
needed in practice to accommodate more flexible programming and a
wider span of communication topologies, in which actions on multi-
ple channels are correlated in ways that are not allowed by our type
system. However, even so, we feel that it is valuable to have a basic,
simpler system that works well for channel-local contract specifica-
tions, and it has been the goal of this paper to provide such a system.

7.1 Asynchronous communication

If we extend the buffer processes we introduce on our channels to
buffer arbitrary numbers of messages instead of just one, we obtain
an encoding for an asynchronous communication model of the pro-
grammer specified processes. Since the asynchrony is simulated by
a synchronous system, the deadlock prevention result of this paper
extends to asynchronous systems as well.

8 Related Work

The most novel aspect of our system is the use of obstructions to
prevent global deadlock caused by dynamically created communica-
tion cycles by enforcing only local conditions (observation of the

152 Perspectives in Concurrency Theory

obstruction rule), while still allowing cycles in the communication
topology to occur during computation.

In the context of the π-calculus [11], type systems have been pro-
posed for analyzing and controlling the communication structure of
mobile processes. Some of these systems capture partial orderings be-
tween communication actions and can be used to reason about dead-
lock. However, we have found no system that reduces the problem
of global deadlock detection to locally checkable conditions on pro-
cesses, and we have not been able to find a concept similar to that of
obstructions in the literature. Moreover, our system controls the use
of individual channel endpoints rather than π-calculus channels.

Our notion of contracts bears resemblance to session types [6].
Yoshida’s graph types [12] are abstractions of the communication
structure of a process in which nodes represent communication ac-
tions and edges represent synchronization orderings between actions.
Kobayashi et.al. [9, 10] further develop process types to reason about
deadlock via partial ordering constraints extracted from communica-
tion actions. Further comparisons between our system and the π-
calculus type systems [9, 2] have been given in Section 7.

Flanagan and Abadi’s type system [4] prevents deadlock due to
locking in programs written in Java-like languages. The system is
based on the specification of lock orderings that rule out cyclic wait
conditions on locks.

Interaction categories [1] have been used to define type systems
that enforce sufficient local control of communication to ensure
deadlock-freedom. However, the type discipline does not in general
handle global communication cycles.

9 Conclusion

We have developed a novel way to modularly characterize poten-
tial cycles in communication networks through endpoint obstruc-
tion pairs along with a strategy for communicating that is informed
by such obstructions. Together, these techniques provably guarantee
that a system of processes will not deadlock. We have used the notion
of obstructions as a design guide for implementing a name service
in the Singularity operating system, and we will extend our contract
type checker to include obstructions.

Static Deadlock Prevention 153

Acknowledgments

We are indebted to Bill McCloskey for his initial ideas on tainted end-
points.

References
[1] S. Abramsky, S. Gay, and R. Nagarajan. A type-theoretic approach to deadlock-

freedom of asynchronous systems. In Theoretical Aspects of Computer Software,
LNCS Vol. 1281, pages 295–320, 1997.

[2] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In POPL 02: ACM Principles of Programming Languages. ACM,
2002.

[3] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[4] C. Flanagan and M. Abadi. Types for safe locking. In ESOP 99: European Sympo-

sium on Programming, LNCS 1576, pages 91–108. Springer-Verlag, 1999.
[5] C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free conformance.

In CAV 04: Computer-Aided Verification, LNCS. Springer-Verlag, July 2004.
[6] S. Gay and V. T. Vasconcelos. Session types for inter-process communication. Tech-

nical Report 2003–133, Department of Computing, University of Glasgow, 2003.
[7] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndrich, C. Hawblitzel,

O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill.
An overview of the Singularity project. Technical Report MSR-TR-2005-135, Mi-
crosoft Research, 2005.

[8] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber. Broad new OS research:
challenges and opportunities. In Proceedings of Tenth Workshop on Hot Topics in
Operating Systems. USENIX, June 2005.

[9] A. Igarashi and N. Kobayashi. A generic type system for the Pi-calculus. In POPL
01: Principles of Programming Languages, pages 128–141. ACM, 2001.

[10] N. Kobayashi. A type system for lock-free processes. Information and Computa-
tion, 177:122–159, 2002.

[11] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Univer-
sity Press, 1999.

[12] N. Yoshida. Graph types for monadic mobile processes. In FSTTCS: Software
Technology and Theoretical Computer Science, LNCS 1180, pages 371–387. Springer-
Verlag, 1996.

Appendix

A Proofs

A.1 Lemma 7 (Preservation)

We prove that new, fork, and select reductions preserve cycle cov-
erage. The other reductions are trivial. Assume C1 = 〈peer1;O1;Π1〉

154 Perspectives in Concurrency Theory

and C2 = 〈peer2;O2;Π2〉

Case
Π1 = (newa:σ , b); P |Π

Recall that channel creation creates a buffer process P∼σ (c , d) as de-
fined in Section 3 in order to avoid having any process communicate
with itself. Thus Π2 = P | P∼σ (c , d) | Π. Let γ be a cycle in C2. If γ
does not contain any of a, b , c , d , then γ exists also in C1 and is there-
fore covered. Otherwise, γ = (a, p, b)(d , q , c), where q is the buffer
process created for the channel. Since (a, b) ∈O2, the cycle is covered.

Case
Π1 = forkP1, P2 |Π

Let r be the process doing the fork, and let p = P1 and q = P2 be the
resulting processes. Let A= fn(P1) and B = fn(P2). Let γ be a cycle in
C2. We proceed with three cases: 1) ¬∃a ∈ A and a ∈ γ , 2) ¬∃b ∈ B
and b ∈ γ , and 3) γ contains an endpoint of A and one of B .
Case 1: We have cycle γ ′ = γ[r/q] in C1 and an obstruction (c , d) ∈
O1, where c , d 6∈ A. Thus (c , d) ∈ O2, since the only obstructions
removed by the step contain an endpoint from A.
Case 2: as case 1.
Case 3: a, b ∈ γ where a ∈ A and b ∈ B . Assume γ is not
covered in C2, otherwise we are done. Without loss of generality,
γ = (a, p, x)γ1(b , q , y)γ2. We have cycle γ1(b , r, x) in C1 and by as-
sumption it must be covered by (b , x) ∈ Ocut ⊆ O1. Similarly, we
have cycle γ2(a, r, y) in C1 covered by (a, y) ∈ Ocut ⊆ O1. Thus,
(b , y) ∈Ocl ⊆O2 covering γ and contradicting our assumption.

Case
Π1 = select b !m[a].P1+ S1 | select c?m[x].P2+ S2 |Π

Note that peer1 = peer2. The move involves moving an endpoint a
from a process p to a process q over a channel consisting of endpoints
b and c such that b = peer(c), proc(b) = p, and proc(c) = q . Con-
sider any cycle γ in C2. We have three cases (1) endpoint a is not in γ ,
(2) a is in γ and c is in γ , and (3) a is in γ and c is not in γ . We prove
the theorem for these 3 cases.
Case 1: a is not in γ . The only edge change between C1 and C2 is
that we remove (a, p) and add (a, q). Since a is not on γ , γ exists in
C1 and is therefore covered by some obstruction in O1 not involving
a. The same obstruction is still present in O2
Case 2: a is in γ and c is in γ Let γ be of the form γ1(a, q , c)(b , p, e),
where γ1 starts with (peer1(e), ..). We have two sub cases. If γ1 is

Static Deadlock Prevention 155

covered by an obstruction in C2 we are done. Otherwise, γ1 does
not have an obstruction in C2. We know that p cannot occur in γ1,
due to the fact that the cycle is primitive (recall that each process is
traversed at most once in each cycle). Thus γ1 is not covered by any
obstructions in C1. Thus, (e ,a) ∈O1, since γ1, (a, p, e) is a cycle in C1.
Assume m : τ t → σ . By the rewrite step we know that if t = s then
(e , b) ∈Om ⊆O2 covering γ . Otherwise t = r and (c ,a) ∈Om ⊆O2
covering γ .
Case 3: a is in γ and c is not in γ . Let γ be of the form γ1(f , q ,a) in
C2, where γ1 starts with (peer1(a), ..). If sub-path γ1 has an obstruc-
tion in C2 we are done. Suppose γ1 does not have any obstructions in
C2. Again we have two further sub cases. If p is not in the path γ1,
then we know that the sub-path γ1 in C1 does not have any obstruc-
tions either. However, since γ1(f , q , c)(b , p,a) is a cycle in C1, we
have that it should be covered by some obstruction. This obstruction
cannot be (a, b) since that would preclude endpoint a from being sent
over b . Thus, (c , f) ∈O1, and consequently, (a, f) ∈Orecvr ⊆O2 and
we are done. For the second sub case, we have that p is in the path
γ1. Then γ1 = γ2(e , p, g)γ3, where proc(e) = proc(g) = p. Note that
we therefore have cycles γ2 and (b , p, q)γ3(f , q , c) in C1 and therefore
(a, e) ∈ O1, since γ2 is obstruction free. Then, we do another (final)
case split. Either (c , f) ∈ O1, which implies that (a, f) ∈ Orecvr ⊆ O2
and we are done. Or, (c , f) 6∈O1, which implies that (b , g) ∈O1 (due
to cycle (b , p, g)γ3(f , q , c) in C1 and the fact that (b , g) is the only
possible obstruction to cover it in C1, since γ3 has no obstructions
due to the assumptions). Since (b , g) ∈ O1 and (a, e) ∈ O1 we have
that (g , e) ∈Osender ⊆O2 in C2, which contradicts our earlier assump-
tion that γ1 does not have any obstructions in C2, and we are done.
a

A.2 Lemma 8 (Progress)

By inspection of the reduction rules and our classification from Sec-
tion 3, we see that all processes must be of the form select ... in order
for the machine configuration to be globally stuck in a deadlock. Let
C = 〈peer;O;Π〉 be such a configuration.

From the typing of select, we know that each process pi exhibits
a set Si of selected endpoints that satisfy

∃a ∈ Si .a 6∈O ∨∀(a, b) ∈O.b ∈ Si

Let wi be the existential witness a showing that Si is a valid selection.

156 Perspectives in Concurrency Theory

We prove the lemma in 2 steps. First we prove that there exist
distinct processes pi and p j and an enabled channel (a, b), such that
proc(a) = pi and proc(b) = p j , and peer(a) = b . Second, we prove
that pi and p j agree on a message to be exchanged.

We prove the first part by contradiction. Assume there is no en-
abled channel. Pick an arbitrary process p0 and the witness w0 of
its valid selection S0. Let b0 = peer(w0) and p1 = proc(b0). By
channel construction (buffer processes), we know that p1 6= p0 and
by our assumption, we know that b0 6∈ S1, otherwise we are done.
Pick w1, the witness of S1 and continue this strategy. Since there are
finitely many processes, we must at some point exhibit a cycle γ of
processes and endpoints, where each segment has the form (bi , pi , wi)
and wi ∈ Si but bi 6∈ Si . Since the configuration is cycle covered, we
know that there exists a process p j on γ and an obstruction (b j , w j),
where b j , w j in γ . Since, w j is the witness of the valid selection S j , it
must be the case that b j ∈ Si which contradicts our assumption and
exhibits an enabled channel (b j , peer(b j), since peer(b j) was a witness
and thus selected.

Let (a, b) be the enabled channel and p = proc(a). The second part
is trivial, since we know that a has type σ and b has type ∼σ and
both are part of their processes selection, it must be the case that one
of them has type ?M . Without loss of generality, assume σ =?M . In
that case, process p could only pass type checking if it is exhaustive
w.r.t. M . Since the peer process also type checked, it must offer at
least one message of m (rule T-OUT). Thus the reduction can take
place. a

