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ABSTRACT
A major hurdle to frequently performing mobile computer vision
tasks is the high power consumption of image sensing. In this work,
we report the first publicly known experimental and analytical char-
acterization of CMOS image sensors. We find that modern image
sensors are not energy-proportional: energy per pixel is in fact in-
versely proportional to frame rate and resolution of image capture,
and thus image sensor systems fail to provide an important prin-
ciple of energy-aware system design: trading quality for energy
efficiency.

We reveal two energy-proportional mechanisms, supported by
current image sensors but unused by mobile systems: (i) using an
optimal clock frequency reduces the power up to 50% or 30% for
low-quality single frame (photo) and sequential frame (video) cap-
turing, respectively; (ii) by entering low-power standby mode be-
tween frames, an image sensor achieves almost constant energy per
pixel for video capture at low frame rates, resulting in an additional
40% power reduction. We also propose architectural modifications
to the image sensor that would further improve operational effi-
ciency. Finally, we use computer vision benchmarks to show the
performance and efficiency tradeoffs that can be achieved with ex-
isting image sensors. For image registration, a key primitive for
image mosaicking and depth estimation, we can achieve a 96% suc-
cess rate at 3 FPS and 0.1 MP resolution. At these quality metrics,
an optimal clock frequency reduces image sensor power consump-
tion by 36% and aggressive standby mode reduces power consump-
tion by 95%.

Categories and Subject Descriptors
I.4.m [Image Processing and Computer Vision]: Miscellaneous;
I.5.4 [Performance of Systems]: Modeling techniques, Perfor-
mance attributes

General Terms
Design, Experimentation, Measurement, Performance
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1 Introduction
Cameras are ubiquitous on mobile systems, from laptops, tablets,
smartphones, to wearable devices, such as Google Project Glass or
GoPro Helmet Cameras. Originally intended for capturing photo
or video, cameras have inspired many to provide new mobile com-
puter vision services, including marker-identification, gesture-based
interaction, and object recognition. Many researchers, including
ourselves [2], also envisage that by showing computers what we
see on the go, we will see a new generation of personal computing
coming, or continuous mobile vision. Unfortunately, image sens-
ing, the very first stage of any vision-based application, is power-
hungry, consuming hundreds of milliWatts. As a result, users and
developers refrain from using the camera extensively. For example,
most computer vision applications for smartphones are intended
for occasional, instead of continuous, use; wearable cameras are
designed for on-demand capture rather than continuous on-the-go
capture.

Modern mobile systems employ CMOS image sensors [5] due
to their low power and low cost. CMOS image sensors are an
active area of circuit research where power consumption, image
quality and cost of fabrication have been the main focuses of im-
provement. However, mobile systems integrate these image sensors
with such a narrowly defined hardware and software interface that
typically only the frame resolution and sometimes the frame rate
can be changed in software. Furthermore, as we show later, reduc-
ing the image quality does not currently provide significant power
reduction. The image sensor remains a black box to system and ap-
plication developers with its system behavior, in particular power
consumption, not well understood.

In this work, we provide a comprehensive treatment of the en-
ergy characteristics of image sensors in the context of computer
vision applications. In particular, we consider (i) how the energy
consumption of an image sensor is related to its image quality re-
quirements, i.e., frame rate and resolution, (ii) how the energy con-
sumption can be reduced from a systems perspective, and (iii) how
the energy consumption can be reduced through image sensor hard-
ware improvements. Our study includes fine-grained power mea-
surement, modeling, prototyping, and model-driven simulation.

First, in Section 3, we report a detailed power characterization
of five CMOS image sensors from two major vendors in the mobile
market, breaking down the power consumption by major compo-
nents and by operational modes. Based on the measurements and
our understanding of image sensor internals, we construct power



models that relate energy consumption to image quality require-
ments such as frame rate, resolution, and exposure time. By vary-
ing frame rate and resolution, we study the energy proportionality
of image sensors; in particular, we consider how the energy cost for
collecting a constant number of pixels changes when the frame rate
and resolution changes. We observe that while power consump-
tion decreases when frame rate or resolution drops, the energy per
pixel increases significantly, up to 100 times more when reducing
frame rate from 30 frames per second (FPS) to 1 FPS, which sug-
gests poor energy proportionality. This observation suggests a key
barrier in applying a well-known principle in energy-aware system
design [6]: sacrifice quality (in this case, via frame rate and res-
olution reduction) for energy efficiency. Our characterization also
reveals that the analog part of image sensors not only consumes a
large portion of the power consumption (33-85% of sensor power)
but also constitutes the bottleneck of energy proportionality.

Second, in Section 4, our investigation reveals two unexplored
hardware mechanisms for improving energy proportionality: clock
scaling and standby mode. Modern image sensors allow a wide
range of external clock frequencies, but mobile systems often sup-
ply a clock of fixed frequency. We show that given the image re-
quirement, there exists a frequency at which an image sensor con-
sumes the lowest energy per pixel. Modern image sensors also pro-
vide a standby mode in which the entire image sensor is put into a
non-functional, low-power mode. We show that standby mode can
be applied between frames when the frame rate and resolution are
sufficiently low. We call this optimization aggressive standby. We
show that by combining clock scaling and aggressive standby, the
energy proportionality of image sensing can be significantly im-
proved, leading to almost constant energy per pixel across a wide
range of image quality requirements and over 40% efficiency im-
provement when image quality requirement is low, e.g., one mega-
pixel per frame and 5 FPS. In Section 5, we suggest several hard-
ware modifications to further improve energy efficiency, in partic-
ular that of the analog parts.

Finally, in Section 6, using computer vision benchmarks and the
data collected from the characterization, we demonstrate the quality
vs. energy tradeoffs of image sensors with and without applying the
optimizations described above. For continuous image registration
on video, useful for image mosaicking and depth estimation, we
can achieve a 36% power reduction by choosing an optimal clock
frequency, and a 95% power reduction by using aggressive standby.
Our suggested architectural modifications of image sensors can fur-
ther reduce power. For example, by putting components in standby
during exposure the power can be further reduced by 30%.

2 Background
We first provide an overview of the CMOS image sensor, the core
of the camera on mobile systems. While cameras use optical and
mechanical elements to focus light to the plane of the image sensor,
we specifically discuss various electronic components and controls
related to the image quality and power consumption after the light
reaches the sensor.

2.1 Major Components of Image Sensor
A typical image sensor is a single chip that includes the follow-
ing components as illustrated by Figure 1. The pixel array consists
of an array of pixels; each pixel employs a photodetector and sev-
eral transistors to convert light into charge stored in a capacitor.
The analog signal chain employs active amplifiers and Analog-to-
Digital-Converters (ADC) to convert the voltage of the capacitor
into a digital output. Serial readout sensors employ a single analog

Figure 1: General image sensor architecture

signal chain for the sensor, while column-parallel readout sensors
use one analog signal chain for each pixel column. The image pro-
cessor performs basic digital image processing, such as demosaick-
ing, denoising and white-balancing. The I/O controller interfaces
the image sensor with the external world, usually the application
processor in a mobile system. Along with streaming frame data,
the I/O controller also receives instructions used to set the internal
registers of the image sensor that determine the sensor’s operational
mode and parameters including frame rate and resolution. The dig-
ital controller manages the timed execution of the operations of the
image sensor.

2.2 Electronic Shutter (Exposure Control)
CMOS image sensors employ an electronic shutter to control the
exposure time, Texp, the length of time during which light can en-
ter the sensor before a pixel capacitor is read out. Long exposures
are used for low-light indoors scenes, while short exposures are
used for bright outdoors scenes. There are two types of electronic
shutters. (i) A rolling shutter, as shown in Figure 2, clears a row
of pixels Texp before it is to be read out. The rolling shutter then
waits to clear the next row to prepare another row for exposure.
The rolling nature allows the readout of some rows to overlap with
exposure of other rows. However, with moving scenes, this causes
temporal problems; although each row is exposed for a duration of
Texp, the top row of the frame is exposed much earlier than the
bottom row of the sensor. (ii) A global shutter clears all rows of
the pixel array simultaneously. After Texp of exposure, the charge
is transferred to a shielded area, a memory that maintains the state
of the captured frame and frees the pixel array to subsequent expo-
sure. As rows are read out from the shielded area, they do not face
the moving effects suffered from rolling shutter operation. How-
ever, global shutters require memory for all pixels, and thus require
expensive and complicated designs.

A programmable shutter width dictates the exposure time allot-
ted by the electronic shutter. This allows systems developers to
program the camera to operate in different ambient light environ-
ments. The shutter width is held as a register value and is imple-
mented by the digital controller, which resets the charge of the pixel
array capacitors appropriately.

2.3 Power, Clock, & Operational Modes
On mobile devices, the sensor is powered by multiple voltage rails,
supplying the pixel array, the analog signal chain, the image pro-
cessor, and the digital controller independently. We exploit these
separate power rails to measure the power consumption of the vari-
ous image sensor components and provide a characterization of the
chip in Section 3.

An image sensor also uses an external clock. The clock controls
the speed of the digital logic. Typically, an image sensor outputs
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Figure 2: Streaming mode with rolling shutter Figure 3: Image windowing and subsampling techniques

one pixel per clock period. Higher clock speeds allow sensors to
process frames at different speeds, but consume significantly more
power.

An image sensor typically provides two operational modes: stream-
ing and standby. In streaming mode, the sensor alternates between
two states: an idle state and an active state. During the idle state,
the sensor is on and may be undergoing exposure, but the analog
signal chain is not yet active to read out the pixel array. In the
active state, the analog signal chain reads out the pixel array, the
digital elements process the image and the I/O controller streams
the frame out from the sensor. In Figure 2, the image sensor is in
the streaming mode, alternating between Tactive and Tidle. Be-
cause of the rolling shutter operation, Texp can expose rows while
rows are being read out during the Tactive state.

In standby mode, much of the image sensor chip is put in a low-
power mode with clock and/or power gated, but all register states
are maintained, which allows for rapid wakeup. Standby mode con-
sumes minimal power (0.5 - 1.5 mW). This mode is intended for
taking snapshots where preview is not required; the sensor can re-
main in standby mode, wakeup to take a picture, and then return to
standby.

2.4 Quality Controls
Typical image sensors provide controls to vary the quality of the
frame, allowing for tradeoffs between frame resolution, field-of-
view, frame rate, and power consumption. These are maintained
by register values set through the I/O controller and controlled with
the digital controller. We detail these operations below.

Frame rate R: The frame rate is the number of frames per second
in the output stream. It is usually dictated by the system developer.
The frame time, Tframe = 1/R, is the inverse of the frame rate.
The minimum frame time is limited by the number of pixels in the
image and the clock frequency. However, the frame time can be
elongated by programming Vertical Blanking, which adds a num-
ber of “blank rows” to the image for timing purposes. Each blank
row takes the same amount of time as reading a row out from the
frame, but many components may be idle during the blanking time.
The vertical blanking is manifested as rows of zeros in the image
stream, and can be discarded by the processor receiving the output
stream. Increased vertical blanking thus effectively raises the frame
time, lowering the frame rate.

Frame resolution N : The frame resolution N indicates the num-
ber of pixels in the image, and directly influences the data transfer,
processing, and storage requirements of the image sensor system.
N can be reduced with two mechanisms: windowing and subsam-
pling.Windowing directs the image sensor to output a smaller rect-
angular window of the frame, as shown in Figure 3. By specify-
ing the size and location of the window, the system can request
outputs with reduced fields-of-view. In contrast, subsampling pre-
serves the field-of-view, but produces a “resized" lower resolution

image. Image sensors use one of two techniques to achieve subsam-
pling: (i) Row/Column Skipping skips sampling every other row or
column of pixels. As a result, many pixels are not sent to the im-
age processor, leading to rapid subsampled readout of an image.
On the other hand, (ii) Row/Column Binning combines the values
of adjacent pixels in the image processor after the analog signal
chain. Groups of adjacent pixels create a single pixel value, re-
ducing high-frequency aliasing effects and noise in the subsampled
image. These techniques are shown in Figure 3.

2.5 Integration inside Mobile Systems
The image sensor is usually directly connected with the main appli-
cation processor in a mobile device. Because large image sensors
used in modern mobile devices require high data transfer speeds
that cause synchronization issues on parallel buses, current devices
use a serial interface between the image sensor and the application
processor. For example, the Qualcomm Snapdragon S4 and Nvidia
Tegra 3 use serial MIPI interfaces that consist of a clock to transfer
data, one or more serial data paths, and a serial control bus [19].

Due to lack of hardware access, user applications on mobile de-
vices resort to using the camera APIs provided by the operating
system. The typical actions include control (e.g., focus the camera),
image and video capture, and configuration (e.g., set resolution) of
the camera. For example, the Windows Phone 8 native API pro-
vides StartRecordingToSinkAsync() for capturing an image and
StartRecordingToStreamAsync() for recording a video, while the
AudioVideoCaptureDevice maintains properties such as autofocus
regions and exposure time. Control over frame rate and subsam-
pling (but not windowing) parameters are also provided. Android
and iOS SDKs provide similar APIs.

3 Energy Characterization
In this section, we report a characterization study of the energy
consumption of several state-of-the-art CMOS image sensors. In
particular, we evaluate the energy per pixel under various image
quality requirements in terms of frame rate and resolution, which
are relevant to computer vision applications. We have three ob-
jectives. First, we want a thorough understanding of how image
sensors consume power in their major components. Second, we
want to identify effective mechanisms to achieve the same quality
with the lowest energy per pixel. And finally, we want to identify
problems in the energy proportionality of existing and emerging
image sensors: why does the energy-per-pixel increase as quality
requirements decrease?

3.1 Apparatus and Image Sensors
We use a National Instruments USB-6212 16-Bit, 400 kilosam-
ple/second DAQ device for power measurements. We character-
ize five image sensors from two major vendors of CMOS image



Table 1: Important notations

Symbol Description Model (Source)

R Framerate
N Number of pixels in a frame
f Clock frequency

Tframe Frame time Tframe = 1/R

Tactive Time in active state Tactive ≈ N/f

Tidle Time in idle state Tidle = Tframe − Tactive

Pidle Power consumption in idle state Pidle = a1 · f + a2 (Equation 10)

Pactive Power consumption in active state Pactive = (b1 ·N + b2) · f + b3 (Equation 12)

Eframe Energy per frame Eframe = PidleTidle + PactiveTactive (Equation 1)

Pseq Power consumption for sequential frame capturing Pseq =
Pidle·(Tframe−Tactive)+Pactive·Tactive

Tframe
(Equation 4)

sensors for the mobile market, as summarized by Table 2. By con-
currently measuring the current into various voltage rails we are
able to infer the power characteristics of the internal components
of modern image sensors.

Table 2: Image sensors characterized in our study and power
consumption at 24 MHz

Max. Res. Pactive Pidle Market

A1 2592x1944 163.5 mW 161.9 mW Snapshot
A2 768x506 189.5 mW 141.8 mW Automotive
B1 3264x2448 338.6 mW 225.4 mW Mobile
B2 2592x1944 225.1 mW 218.6 mW Mobile
B3 752x480 137.1 mW 105.9 mW Security

3.2 Breakdown by Components
We next provide our measurement results regarding the power con-
sumption of the image sensors in idle and active modes, i.e., Pidle

and Pactive, and their breakdown into major components.
Pactive Breakdown: We find that in the active state, the analog

read-out circuitry consumes 70-85% of the total power, except for
in B3, where it consumes only 33%, due to the column-parallel
readout of its analog signal chain. The digital controller and image
processing consumes 5%. The I/O controller that manages external
communication consumes 10-15%. The breakdowns are shown for
each sensor in Figure 4. As the bulk of the power is consumed by
the analog signal chain, due to numerous power-hungry ADCs, this
provides the greatest opportunity for new power-saving techniques,
which we explore in Section 5.

Pidle Breakdown: Between frame captures, the sensors enter the
idle state, where they still consume considerable power. The analog
signal chain and image processor are powered during the idle state,
but do not actively process pixels. In addition, I/O chains typically
remain active during the idle state in order to communicate with
the sensor to output blank rows or wait for register changes. As a
result, the power of many components is typically reduced during
the idle state. However, the amount of disparity depends on the
image sensor architecture. For A2, B1 and B3, the analog power
drops 15-45%. For A1 and B2, the analog components reduce their
power minimally, less than 1%. The digital components for all of

the sensors drop 10-55% and 3% for A1 and B2. For B2, the I/O
power drops 40% and for A1 the I/O power drops 8%.

3.3 Energy Consumption Per Frame
We next examine the energy consumption per frame. Modern im-
age sensors are programmed to capture a single frame (single shot)
or to capture sequentially (video). For sequential frame capture, en-
ergy consumption per frame can be equivalently evaluated by the
average power consumption in tandem with the frame rate.

In both cases, the energy consumption per frame depends on the
power consumption of the operational modes and how much time
the sensor spends in each mode. That is,

Eframe = PidleTidle + PactiveTactive (1)

From measurements and data sheets, we find that Tactive is de-
termined by the clock frequency, as one pixel is read out for every
clock period. As the readout is pipelined with the digital processing
and output of the image sensor, we can estimate:

Tactive ≈ N/f (2)

The idle time Tidle is determined by the exposure time for single
frame captures and the frame rate for sequential frame captures.
Figure 6 shows the power traces measured from the power rails
of all of the sensors under sequential capture. The typical power
consumption waveform clearly shows that the sensor alternately
undergoes the active and idle states.

Single Frame Capture: For capturing a single photo, we care
about the energy consumption for capturing a frame, Esingle

frame. Fig-
ure 5(a) shows the power behavior of capturing a single image. The
sensor must undergo exposure for Texp, which ranges from 0.1 ms
to 70 ms, depending on the lighting environment of the scene and
the aperture size of the camera system (f/2.8 for typical smartphone
cameras). The frame is then read out during Tactive, after which
the sensor may turn off. Thus, the energy consumption of a single
frame capture can be simply modeled by inserting Tidle = Texp

into Equation (1):

Esingle
frame = PidleTexp + PactiveTactive (3)

Sequential Frame Capture: For sequentially capturing images,
such as for video, we care about the average power consumption,
Pseq . Figure 5(b) shows the power behavior of capturing sequential
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Figure 4: Average power of various rails in active state (a) and
idle state (b), at 24 MHz

Time Time 

(a)

1/R 1/R 

(b)

STANDBY S Y 

1/R 1/R 

(c)

Figure 5: Power behavior for single capture (a), standard se-
quential capture (b) and sequential capture with aggressive
standby mode (c)

0 0.05 0.1 0.15
0

50

100

Time

P
o
w

e
r 

(m
W

)

(a) A1 (1 MP, 15 FPS)

0 0.02 0.04 0.06 0.08
0

50

100

150

Time

P
o
w

e
r 

(m
W

)

(b) A2 (1 MP, 20 FPS)

0 0.2 0.4
0

50

100

150

200

250

Time

P
o
w

e
r 

(m
W

)

(c) B1 (1 MP, 5 FPS)

0 0.2 0.4
0

50

100

150

200

250

Time

P
o
w

e
r 

(m
W

)

(d) B2 (1 MP, 5 FPS)

0 0.2 0.4
0

20

40

60

80

Time

P
o

w
e

r 
(m

W
)

(e) B3 (0.3 MP, 5 FPS)

Figure 6: Power waveform of image sensors. Analog (blue), digital (green), and I/O (red) voltage rails. For (c), the magenta line is
the PLL voltage rail.

frames at a frame rate of R. Exposure can occur in either the active
and idle states but because the exposure itself does not consume
much power, this does not affect the overall power consumption. A
cycle of capturing a frame can be clearly broken into two parts: the
active state and the idle state, i.e., Tframe = Tidle +Tactive. When
the frame rate R is low, Tidle can be significant. The average power
of sequential frame capture can be modeled as follows:

Pseq =
Pidle · (Tframe − Tactive) + Pactive · Tactive

Tframe
(4)

3.4 Energy Proportionality
In this section, we explore the energy implications of varying the
quality parameters of frame capture. In particular, we vary the
frame rate and resolution of the frame capture, model the power
implications, and perform measurements for verification. Our mea-
surements indicate that current image sensors are not energy pro-
portional, as the energy consumption per pixel increases as the
quality requirement decreases.

3.4.1 Frame rate
With a fixed clock frequency, the maximum frame rate of the sensor
is the inverse of Tactive. However, as explained in Section 2.4, the
frame rate can be reduced by inserting blanking time. Then, for a
given frame rate R, the energy per frame is:

Eseq
frame(R) = Pidle(1/R− Tactive) + PactiveTactive

= Pidle/R+ (Pactive − Pidle)Tactive (5)

Thus, we expect the energy per frame to increase as the frame
rate decreases, as the power consumption becomes dominated by
the idle power consumption. This is shown in Figure 7 by insert-
ing measured Pactive and Pidle values into the above equation. For
each of the sensors, as the framerate drops from 20 FPS to 1 FPS,
the energy per frame increases by an order of magnitude. Thus,
image sensors are not energy proportional to frame rate. Instead,

their energy per pixel increases as the performance requirement in
terms of frame rate drops. In Section 4, we will show how the en-
ergy proportionality can be significantly improved by aggressively
applying a power-saving standby mode during the idle state.

3.4.2 Resolution
When changing the resolution of the frame through subsampling or
windowing techniques, fewer pixels are read out. Equation 2 indi-
cates that Tactive is proportional to the number of pixels and so a
lower resolution will result in a shorter active time. Conversely, our
measurements indicate that Pactive and Pidle are only minimally
influenced by the number of pixels, and thus remain unchanged for
the purposes of our model. Then, we can model the energy for a
single frame capture by plugging the numbers into Equation 1:

Esingle
frame(N) = PactiveN/f + PidleTexp (6)

Esingle
frame(N)/N = Pactive/f +

PidleTexp

N
(7)

For small Texp, the second term is negligible. In this case, the
energy per frame is reduced proportionally to N , as shown in Fig-
ure 8, and the energy per megapixel is nearly constant, as shown
in Figure 9. Among sensors A1, A2, B1, and B2, the energy per
megapixel is around 6 - 8 mJ/MP. B3 consumes lower energy per
megapixel (3 mJ/MP), due to the low-analog-power nature of its
column-parallel readout.

For sequential frame capture at constant frame rate, a shorter
Tactive requires a longer Tidle to keep Tframe constant. Then,
building on Equation 5, with R fixed, we can model the energy
of a frame and energy per megapixel as:

Eseq
frame(N) = (Pactive − Pidle)N/f +

Pidle

R
(8)

Eseq
frame(N)/N = (Pactive − Pidle)/f +

Pidle

RN
(9)
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Figure 7: Modeled energy per frame in sequential frame capture without and with aggressive standby (1 MP frame)
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Figure 8: Modeled energy per frame for subsampled single frame capture (with short Texp, i.e., Esingle
frame(N) ≈ PactiveN/f)
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Figure 9: Measured energy per megapixel for subsampled single frame capture (with short Texp, i.e., Esingle
frame(N)/N ≈ Pactive/f)

Given a constant frame rate R and a small resolution N , the en-
ergy per megapixel is dominated by the second term and is thus in-
versely related to the resolution of the subsampled frame, as shown
in Figures 10 and 11, generated by simulating various framerate
and resolution combinations with measured Pactive and Pidle val-
ues. For example, for A1 at 1 FPS, the energy per megapixel rises
by an order of magnitude as the resolution is dropped from 3 MP to
0.3 MP. Thus, as resolution is decreased, the energy per megapixel
increases.

Our models and measurements indicate that current image sen-
sors are not energy proportional to image quality reductions in fram-
erate and resolution. In almost all cases, reducing the quality results
in drastically higher energy per megapixel. The exception is the
energy per megapixel of a subsampled single image capture, which
remains relatively constant as resolution is decreased. In the next

two sections, we explore existing mechanisms and propose future
mechanisms to push towards energy proportionality.

4 Exploiting Existing Mechanisms
In this section, we exploit hardware mechanisms supported by mod-
ern CMOS image sensors to improve their energy efficiency. The
key question we try to answer is: given the frame rate (R) and reso-
lution (N ), what is the optimal configuration of an image sensor to
achieve the lowest energy per frame? The answer to this question
can be implemented by the mobile system’s image sensor driver to
configure the sensor for energy efficiency when receiving requests
from computer vision applications.

We identify two important existing power-saving mechanisms,
clock scaling and standby mode, and answer the question by ex-
ploiting them. Modern mobile systems do not change the clock
frequency of their image sensors nor do they apply standby mode to



0 2 4

10
2

10
3

10
4

Res. (MP)

E
/M

P
(m

J/
M

P
)

(a) A1

0 0.5 1

10
2

10
3

10
4

Res. (MP)

E
/M

P
(m

J/
M

P
)

(b) A2

0 2 4

10
2

10
3

10
4

Res. (MP)

E
/M

P
(m

J/
M

P
)

(c) B1

0 2 4

10
2

10
3

10
4

Res. (MP)

E
/M

P
(m

J/
M

P
)

(d) B2

0 0.2 0.4

10
2

10
3

10
4

Res. (MP)

E
/M

P
(m

W
*s

/M
P

)

(e) B3

Figure 10: Modeled energy per megapixel for subsampled sequential capture based on Pactive and Pidle measurements at 5 FPS.
Aggressive standby (from Section 4) is represented by the dashed line.
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Figure 11: Modeled energy per megapixel for subsampled sequential capture based on Pactive and Pidle measurements at 1 FPS.
Aggressive standby (from Section 4) is represented by dashed line.

image capture because they intend the image sensors to be used for
capturing high-resolution photo and fixed frame rate video, where
clock scaling and standby mode bring little benefit. These mecha-
nisms offer significant power efficiency when frame rate or resolu-
tion is low, which is sufficient for many computer vision tasks and
for video streaming over networks. For 1 MP readouts, up to 50%
of the power consumption of single frame capture and 30% of the
power consumption of sequential frame capture can be eliminated
by choosing the correct clock frequency. Further, by aggressively
applying standby between frame captures, one can largely remove
the idle energy consumption, leading to significant average power
reduction, e.g., 40% for B1 at 5 FPS at 24 MHz.

4.1 Clock Scaling
Modern mobile systems do not change the clock frequency (f ) of
their image sensors. However, since the clock is supplied exter-
nally, its change only requires simple additional hardware, such as
a programmable oscillator. For our experiments, we used a DS1077
oscillator, programmable over I2C, and connected it to the external
clock input on the B1, B2, and B3 image sensors.

Changing the clock frequency has significant implications on the
image sensor’s efficiency. We employ measurements with our un-
derstanding of the image sensor internals to quantify the relation-
ship between f and the power consumption of an image sensor.

Our measurements, as summarized by Figure 12, show that both
Pidle and Pactive increase with f almost linearly. This is not sur-
prising, since increasing the clock frequency linearly increases the
switching power consumption of the digital and I/O parts of the cir-
cuit. (The clock frequency does not affect the analog signal chain
power consumption, as these largely consume static power.)

We have:
Pidle = a1 · f + a2 (10)

Pactive = c1 · f + c2 (11)

Table 3 summarizes the power model parameters for B1 to B3
according to our power vs. clock frequency measurements. Based
on our understanding of how the clock works internally, we can
further relate Pactive to N as:

Pactive = (b1 ·N + b2) · f + b3 (12)

b1 · N · f denotes the power consumption by the analog signal
chain, which reads out N pixels in each cycle of the clock. b2 · f
denotes the switching power consumption by the rest of the sensor,
driven by the clock.

We make a few important notes about the above power models.
First, b3 is equivalent to c2 and denotes the static power consump-
tion of the sensor, independent of the clock. Second, a1, a2, and
c2 are intrinsic to the sensor and are independent of the frame rate
or resolution. In contrast, c1 increases as the number of pixels in-
creases. Third, we have c1 " a1 and c2 ≥ a2 because the digital
circuitry stops switching in the idle state and the analog circuitry,
while not driven by the clock, does not do additional work in the
idle state.

Using measurements and the models derived above, we next seek
to answer the opening question by setting clock frequencies opti-
mally.

4.1.1 Single Frame Capture
If we plug the models described above into the energy for a single
frame capture, Equation 3, we can derive the energy consumption
by single frame capture as:

Esingle
frame = a1 · Texp · f +

c2 ·N
f

+ C (13)

Esingle
frame achieves the minimum when fsingle

best = ( c2·N
a1·Texp

)
1
2 .
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Figure 12: Clock frequency f vs. Pactive (blue dot) and Pidle

(red stars)

Table 3: Parameters relating clock frequency f to power con-
sumption. We assume 0.05ms and 50ms for Texp outdoors and
indoors, respectively. N = 106 and R = 5. All frequencies in
MHz.

B1 B2 B3

a1 4.0E-06 8.2E-07 3.35E-06
a2 76.2 90.1 4.4
c1 5.6E-06 1.0E-06 5.1E-06
c2 159.0 93.0 13.1

fsingle
best (indoor) 28.2 47.6 19.0

fsingle
best (outdoor) 564.4 951.9 379.2
fseq
best(5 FPS) 10.2 4.2 3.6

Table 3 gives the fsingle
best for B1-B3 under both indoor and out-

door exposure times and N = 106. Figure 13 also displays the en-
ergy for single frame captures for our measurements and the power
model at different frequencies. As is evident from the table and
the figure, the optimal frequency choice depends heavily on the
exposure time. For outdoor usage, fsingle

best , the optimal frequency
choice, is typically higher than the sensor typically allows.

REMARK 1. For single frame capture, the sensor’s optimal clock
frequency depends on the resolution (N ) and exposure time (Texp).
For bright outdoors scenes, with short exposure times, the clock
frequency should be set as fast as the sensor can handle.

4.1.2 Sequential Capture
If we plug the frequency models above into our equation for se-
quential capture, Equation 4, we can derive the power consumption
by sequential frame capture as:

Pseq = a1 · f +
R ·N · (c2 − a2)

f
+B (14)

Pseq reaches its minimum when fseq
best = (R·N·(c2−a2)

a1
)
1
2 . Ta-

ble 3 gives fseq
best when N = 106 and R = 5 for B1 and B2. The

optimal frequencies are within the range of clock frequencies al-
lowed by the sensors. Therefore we have the following remark.

REMARK 2. Without considering standby mode, the lowest power
consumption for sequential frame capture can be achieved by care-
fully selecting the clock frequency depending on the frame rate (R)
and the frame resolution (N ).

4.2 Aggressive Standby
We can also apply standby mode to idle time between two frames
in sequential frame capturing as illustrated by Figure 5(c). Dur-
ing standby mode, the sensor consumes minimal power (e.g., 10
µW in standby mode vs. >100 mW in idle state). For simplic-
ity, we ignore the wakeup time from standby mode, which oc-
cupies only tens of µs. The sensor performs no operation dur-
ing standby mode, so a full Texp cannot pipeline with the read-
out of the image pixels. As such, the duration of standby mode is
Tstandby = Tframe − Texp − Tactive. Therefore, we can calculate
the average power consumption as

Paggr
seq ≈

Pstandby(Tframe − Tactive − Texp) + PidleTexp + PactiveTactive

Tframe
(15)

For clarity and simplicity, we ignore the standby power, i.e.,
Pstandby ≈ 0, since it is very small compared to Pidle and Pactive.
We have

Paggr
seq ≈

PidleTexp + PactiveTactive

Tframe
(16)

Paggr
seq ≈ a1 ·R · Texp · f +

R · c2 ·N
f

+D (17)

We note Pseq achieves its minimum when f = fsingle
best = ( c2·N

a1·Texp
)
1
2 .

As we see above, the best frequency depends on the exposure time,
given the quality requirement.

REMARK 3. With aggressive standby, the sensor’s optimal clock
frequency for sequential frame capture depends on the resolution
(N ) and exposure time (Texp). For bright outdoors scenes, with
short exposure times, the clock frequency should be set as fast as
the sensor can handle.

We also note that in aggressive standby mode with a fixed clock
rate and resolution size, the energy per frame remains constant as
frame rate changes, as shown in Figure 7. This is due to the fact
that frame rate is changed by extending the standby time, where the
sensor consumes minimal power.

Hence, significant power reductions can result from application
of clock scaling and aggressive standby. In our measurements,
choosing an optimal clock frequency can reduce the power con-
sumption of single frame capture by up to 50%. An optimal clock
frequency can also reduce the power consumption of sequential
frame capture by up to 30%. Additionally, by applying standby
aggressively between frames, one can further reduce power con-
sumption, e.g., 40% for B1 at 5 FPS at 24MHz.

5 New Power-Saving Mechanisms
Based on our findings, we next discuss a number of hardware mod-
ifications that further improve the energy efficiency of image sen-
sors. Since the analog signal chain is the dominant power consumer
in both idle and standby states and analog circuits are known to im-
prove much slower than their digital counterparts, we focus on im-
proving the efficiency of the analog signal chain without requiring
a new design of analog circuitry.

5.1 Heterogenous Analog Signal Chains
Existing image sensors employ analog signal chains provisioned
for the peak performance in terms of pixel per second supported by
the image sensor. Because of this, while the pixel per second can be
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Figure 13: Energy measurements of single frame capture at 1
MP with Texp=50 ms (blue dot) and Texp=0.125 ms (red dia-
mond) at different f with theoretical models (dashed lines)
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Figure 14: Power for sequential capture of 1 MP frames at 1
FPS (blue dot) and 5 FPS (red diamond) at different f with the-
oretical models (dashed lines)

orders of magnitude lower in practice for continuous applications,
the energy per pixel remains almost constant as shown in Figure 9.
By using a much simpler analog signal chain for low performance
capture, a much lower energy per pixel can be achieved in these
situations.

We suggest that an image sensor should include a heterogeneous
collection of analog signal chains each optimized for certain bi-
trates. For example, one sophisticated chain could be active for full
resolution, e.g., high-quality video taking, while another could be
used when a much lower resolution is needed for computer vision
applications. In both cases, the idle analog signal chain should be
powered off.

To implement heterogeneous analog chains, extra but not dupli-
cated circuitry is needed because the heterogeneous chains are not
operational at the same time. For example, many complex mod-
ules of the analog signal chain, such as analog to digital converters
(ADCs), will require only a small increase in hardware resources,
since submodules of these modules can be shared between different
implementations. For example, at lower resolutions, successive ap-
proximation (SAR) ADCs can be implemented by simple modifica-
tions to control logic to ignore least significant bits; similarly, lower
resolution pipelined ADCs can be implemented by disabling the
last pipeline stages that generate the least significant bits. Hence,
image sensor designs with multiple analog chains require a careful
balance between the increased cost due to extra hardware resources
and the power savings achieved.

5.2 Fine-grained Power Management of Sen-
sor Components

Existing image sensors provide a standby mode for the entire sen-
sor. In Section 4.2, we showed how this mode can be aggressively
applied to reduce the power consumption during the idle state. Now
we explore the opportunity to apply power management (gating the
power supply or clock) in a more fine-grained manner to reduce the
power consumption during the active state.

Per Column Power Management of Analog Signal Chain: Dur-
ing readout, all column parallel analog signal subchains operate in
parallel to read out a row of pixels simultaneously. However, dur-
ing column skipping and windowing operations, not all pixels of
a row need to be read out. The analog signal subchains for the
skipped columns are left on in modern image sensors. As fewer
pixels are addressed, these components should be shut off to save
power. If only 1/2 of the columns are addressed, this would lead to
substantial power savings, dropping the analog power by 50% and
the total power by 30-40%.

Power Management during Exposure: For single frame capture
and sequential frame capture with aggressive standby applied, the
power consumption during exposure time can contribute signifi-
cantly to the total energy per frame or average power consump-
tion, respectively. During the exposure time (Texp), which can be
long (e.g., 50 ms) under low illumination, most parts, including
the digital components, the analog signal chain’s amplifiers and
ADC’s, and the I/O, are in idle state, which still consumes substan-
tial power. By putting these parts into the standby mode with either
power or clock gated, the sensor would reduce the energy consump-
tion of taking a single frame, i.e., Equation 3, and the power con-
sumption of sequential capture, i.e., Equation 4. This has the effect
of nullifying Pidle. It is easy to show that when the power man-
agement is applied to the exposure time, the best clock frequency
is always the highest possible regardless of the exposure time. At
this point, for long exposures, the sensor can consume fractions of
the original energy cost of single frame capture; at Texp=50 ms,
B1, B2, and B3 would consume 19%, 83% and 50% less energy,
respectively.

6 Energy Optimization for Continuous Vision
Scenarios

Toward understanding the quality vs. efficiency tradeoffs possible
for computer vision applications, we next specifically consider the
power consumption of the image sensor during the execution of
two fundamental computer vision problems: image registration and
object detection.

Using the power models derived in Sections 3 and 4, we can
model the image sensor power consumption when reducing the
frame rate, reducing the window (field-of-view), and capturing the
image at a lower resolution. In this section, we also apply the
two power-saving mechanisms and gauge the impact on the per-
formance of image registration and object detection. In doing so,
we demonstrate that these mechanisms can reduce the energy con-
sumption by 95% without sacrificing application performance. We
also estimate the impact of suggested modifications from Section
5, reducing the energy consumption by 98% of the original.

Dataset
Our dataset consists of 90 seconds of 270x480, 30 FPS video from
a smartphone mounted at chest level. The video was captured by
a user walking around an outside path. We compute our machine
vision tasks on adjacent pairs of frames of the video.



Figure 15: Image registration at 3 FPS. Corners (red dots) and
homography inlier matches (green lines), along with image-
mosaicked result.

To simulate low-resolution frame capture, we created image pyra-
mids of the dataset by subsampling the resolution of the original
frames. Each subsampled layer of the pyramid is constructed by
taking the previous layer, convolving it with a Gaussian blur ker-
nel, and removing multiples of rows. Subsampling by n is then
defined by keeping every nth row. We also created windowed ver-
sions of our datasets: for a parameter W , we discard W% of the
rows and W% of the columns from the borders of the image, effec-
tively reducing the field of view. To simulate a reduction of frame
rate to R FPS, we performed our vision tasks on pairs separated by
30/R frames.

6.1 Image Registration
Image registration – determining the correspondence points between
two images – is a common problem in computer vision. Registra-
tion can be used to stitch images of a scene together, i.e., image
mosaicking, to estimate the depth of objects, i.e., structure from
motion, and to reduce shaking in video, i.e., image stabilization [8].

6.1.1 Algorithm
The registration algorithm involves finding corners in each image,
matching corners in pairs of images, discarding outliers, and com-

puting plane-to-plane transforms of the pair of images [7]. In this
section, we describe the image operations necessary to compute the
algorithm.

The Harris & Stephens corner detector [7] locates corners and
edges in images by autocorrelating local patches around each pixel
in an image. Where the autocorrelation value returns above a thresh-
old, the algorithm detects a corner in the image. The patches around
the corners in each image must then be matched with each other to
generate correspondence pairs. This is done by correlating all pos-
sible pairs of corner patches. Where a corner in Image B is the
maximum match of a corner in Image A and vice-versa, the pair of
corners are determined to be a match.

With 4 or more corner matches, a plane-to-plane homography
transform can be determined by fitting a 3x3 transform matrix to
the set of corner pairs, e.g., using least squares. Because matches
may be inaccurate, common homography algorithms use a Random
Sample Consensus (RANSAC) to remove outliers from the list of
matches. With a sufficient number of inliers, the homography is
considered a success. In our implementation, we consider the exis-
tence of 25 inliers as the criterion for success.

6.1.2 Results
On our original dataset, the image registration process succeeded
on 2783 frame pairs and failed on 7 pairs, for a success rate of
99.9%. Image registration also performs well with downscaled
datasets. Frame rate reduction to 3 FPS still returned 95.7% suc-
cess, 30% Windowing returned 96.5% success, and a downsam-
pling to a resolution of 135x240 returned 91.8% success. Table 4
shows these quality parameters alongside their power consumption
implications.

As shown in Figure 16, standard sequential capture does not
significantly reduce the power consumption with lower quality re-
quirements. However, by implementing clock scaling and aggres-
sive standby modes, we can dramatically reduce the power by low-
ering the frame rate, window size, and subsampled resolution. For
example, at 3 FPS, where image registration can still perform with
95.6% accuracy, the average power consumptions of B1, B2, and
B3 are 185, 112, and 114 mW, respectively, using default config-
urations. By appropriately selecting the clock frequency, we can
reduce the power consumptions to 106, 95, and 55 mW, giving
a power savings of 36%. Aggressive standby further reduces the
power consumptions to 9.9, 5.1, and 5.2 mW, or 5% of the original
power consumption. Our proposed hardware modifications from
Section 5 have significant power-impact when performing subsam-
pling and windowing tasks, as columns of analog-signal chain are
switched off. For W=30%, the modifications carry an estimated
75% reduction in power over aggressive standby mode, while for
subsampling by 2, the modifications can reduce the power by an
estimated 81%.

6.2 Object Detection
Detecting objects in frames is another fundamental and useful ma-
chine vision technique for understanding captured scenes. We ap-
ply the Viola-Jones Object Detection Framework [28], a widely-
used platform for object detection, to detect the presence of human
figures in our datasets.

6.2.1 Viola-Jones Object Detection Framework
The Viola-Jones framework detects objects in images based on their
"Haar-like" rectangular features. A cascaded set of Adaboost-trained
classifiers based on such features allows the framework to rapidly
and robustly search image frames for objects from the library. While
the original paper’s example uses human faces as the subject, the



Table 4: Power consumption (in mW) for image registration (IR) success and person detection (PD) recall, for sequential capture
Pseq , with optimal clock frequency Pseq(f), with aggressive standby Paggr , and with estimated architectural modifications Parch for
sensor B1

IR Success % PD Recall % N pix. Pseq Pseq(f) Paggr Parch

Full Resolution 99.9% 94.4% 129600 202.2 154.2 99.1 32.7
Frame rate = 3 FPS 95.7% 83.3% 129600 185.8 106.1 9.91 3.27
Window, W = 30% 96.5% 77.8% 63504 192.9 129.5 71.6 17.8

Subsample by 2 91.8% 72.2% 32400 188.6 115.1 55.5 10.2

framework is robust to using other types of objects. We use it to
detect human figures, using the PeopleDetector classifier from
the Computer Vision Toolbox of MATLAB 2012b.

6.2.2 Results
Object Detection has fundamental challenges when objects in a
scene are in unexpected poses or are occluded from view. However,
in a continuous mobile vision scenario, the detection only needs to
find an object once over all the frames in which the object is in
view. Additionally, in such a continuous scenario, a preliminary
detection at low quality could be followed by a high quality frame
capture, which would check the validity of an object detection. Be-
cause we are primarily concerned with energy proportionality, we
are most concerned with the low quality recall frame, ensuring that
we detect an object when it is present in a scene.

To accommodate these relaxed expectations, we use a metric in
which we count the number of false negatives on an instance basis
rather than on a frame-by-frame basis. Then, our recall rate is (# of
detected people)/(# of people).

Table 4 and Figure 16 shows the performance of Person Detec-
tion at various quality parameters on our 90-second dataset with 18
people in the scene. At full 270x480 resolution, Viola-Jones detects
17 of the people. As with image registration, scaling the frame rate
offers the largest opportunity for energy proportionality, while still
maintaining high performance. At 3 FPS, People Detection can de-
tect 15 people, performing with 83.3% accuracy. The Viola-Jones
performance weakens at lower resolutions, and low framerates re-
duce the chance that a person is detected. However, the balance
between success rate and power offers computer vision developers
the ability to carefully trade power for algorithmic performance,
enabling low-power computer vision.

7 Related Work
To the best of our knowledge, our work is the first publicly known
study of the energy efficiency of image sensing from a system per-
spective. We next discuss related work in improving the energy
consumption of cameras and image sensors.

CMOS Image Sensor Design: In this work, we study CMOS im-
age sensors from a system perspective. We examine the power im-
plications of sacrificing quality, which vision applications are likely
to make, reveal inefficiency in the quality-power tradeoffs made by
existing mobile image sensors, and suggest architectural modifica-
tions to improve the tradeoff. Our approach is complementary to
that taken by the vibrant image sensor community, whose focus
has been on improving image sensors through better circuit design.
We refer the readers to textbooks on image sensor design for this
approach, e.g., [22, 23]. It is well-known to image sensor designers
that ADCs are often the power and performance bottleneck of high-
speed, high-resolution image sensors, e.g., [3]. As the ADC is the

interface between the physical and digital worlds in multiple do-
mains, e.g., in sensors and wireless receivers, its performance and
power efficiency has been extensively studied. We refer the readers
to textbooks, e.g., [25] and survey papers, e.g., [13, 21] for recent
development in ADC design.

Often, proposed techniques to address the ADC bottleneck in-
volve many forms of compression, from temporal compression [17,
16, 11, 14, 4] to DCT [10] to predictive coding [15] to compressive
sensing [26, 24]. These new architectures require significant modi-
fications to the system and to camera applications. As a result, they
are often intended for application-specific systems, e.g., surveil-
lance camera networks [11]. In contrast, our presented techniques
and modifications are evolutionary changes that can be easily in-
corporated into image sensors without any change to the system
hardware designs or applications. Additionally, the goal of these
sensor designs is orthogonal to ours: they target at reducing the
power consumption of high-resolution capture, while we target at
making the energy consumption proportional to image quality for
efficient low-resolution capture.

Other Work Toward Efficient Vision Systems: Because image
sensing is power-hungry, many have investigated the energy effi-
ciency of a camera system at a high level for various platforms, but
do not examine the internals of current image sensors for sources
of inefficiency and mechanisms for software-based optimization as
we do in this paper. Wireless visual sensor networks have tried
both commercial-off-the-shelf image sensors and research proto-
types like the ones discussed above [27] but are limited to much
simpler applications like surveillance, due to an extremely tight
power constraint. Many have made cameras wearable and a few
have adventured to optimize the battery lifetime of the wearable
cameras beyond simply duty cycling, e.g., [18, 9], and mobile phone
designers are extraordinary careful not to quickly drain the battery,
e.g., [1, 12]. The general approach has been to employ low-power
sensors to manage the operations of the power-hungry image sen-
sor. Without examining the internals of image sensors and their
interface with the system and software, such work brings comple-
mentary benefits to our solutions.

We also note that power-saving mode and clock scaling have
been extensively studied for microprocessors and digital circuits
in general. Usually, clock scaling is combined with voltage scal-
ing for maximal energy saving. For example, the authors of [20]
show that given a processor, a workload and its deadline, there is
an optimal way to apply clock/voltage scaling and power-saving
mode jointly. For some processors, it is efficient to run as fast as
possible and then enter a low-power mode, while for others, it can
be most efficient to run as slow as possible. Our results in Sec-
tion 4 show that image sensors have similar power-saving modes
and allow clock scaling to reduce power consumption of the digital
circuitry. Moreover, single and sequential frame captures can be
considered as real-time workloads for image sensors. Image sen-



0 10 20 30
0

50

100

150

200

250
P

o
w

e
r 

(m
W

)

Framerate R (FPS)

0

20

40

60

80

100

S
u

cc
e

ss
 %

(a) Frame rate

0 10 20 30
0

50

100

150

200

250

P
o

w
e

r 
(m

W
)

Windowing W%

0

20

40

60

80

100

S
u

cc
e

ss
 %

(b) Windowing

1 2 3 4 5
0

50

100

150

200

250

P
o

w
e

r 
(m

W
)

Subsampling Factor

0

20

40

60

80

100

S
u

cc
e

ss
 %

(c) Subsampling

Figure 16: B1 Power consumption, image registration success (X) and person detection recall (O) at various quality parameters for
sequential capture (blue solid), with optimal clock frequency (magenta dashed-dotted), with aggressive standby (red dotted), and
with architectural modifications (green dashed)

sors, however, are distinct from microprocessors because the ana-
log circuitry, which dominates power consumption, is not affected
by clock or voltage scaling; a supply voltage change can ruin the ac-
curacy of an analog-to-digital converter. Thus, power management
and clock scaling solutions for microprocessors are not directly ap-
plicable to image sensors.

8 Discussion
System and API Support for Power-Saving Mechanisms: As we
have demonstrated, clock scaling and aggressive standby power
models described in Section 4 provide an opportunity to reduce
the power consumption of the camera for tasks that do not require
high frame rates and/or high resolutions. However, current mobile
systems do not provide any system or API support for applications
to adjust the clock frequency or apply standby mode. We hope our
work will motivate platform and system vendors to consider such
support.

Energy-Aware Computer Vision: Energy-proportional image cap-
ture opens the possibility of a new class of algorithms which care-
fully balance the tradeoff between accuracy metrics and power per-
formance. With our power models, scaling the frame rate and res-
olution of an image has direct impact on the power consumption
of a system. We plan to devise hierarchical/cascaded algorithms,
using low-power image sensor modes to sense when to turn on pro-
gressively higher-power modes to detect information from a scene
with low energy consumption. Other such algorithms from the vi-
sion community could leverage the quality-energy tradeoff to un-
derstand captured images and video on a continuous basis at low
power.

9 Conclusion
Current image sensor operation is power-hungry and not energy-
proportional. To explore this problem, we perform an experimen-
tal and analytical characterization of image and video capture on
CMOS image sensors. We show two mechanisms for improving
energy efficiency: (i) optimal clock scaling, which reduces power
by up to 50% or 30% for one mega-pixel photos and videos, respec-
tively; (ii) aggressive standby mode, which results in 40% power
reduction for 1 MP, 5 FPS capture. We also suggest architectural
modifications that further improve the energy efficiency of low-
quality capture.

We use computer vision benchmarks to show application qual-
ity and energy efficiency tradeoffs that can be achieved with exist-
ing image sensors. For continuous image registration, a key primi-
tive for image mosaicking and depth estimation, we achieve a 36%
power reduction with an optimal clock frequency, and a 95% power
reduction by using aggressive standby. Image sensor architectural
modifications can further scale down the power consumption by an
additional 30%. The quality-energy tradeoffs our work offers cre-
ate new opportunities for continuous mobile vision under a power
budget.
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