
ABSTRACT 

Good alignment and repetition of objects across presentation 

slides can facilitate visual processing and contribute to 

audience understanding. However, creating and maintaining 

such consistency during slide design is difficult. In order to 

solve this problem, we present two complementary tools: (1) 

StyleSnap, which increases the alignment and repetition of 

objects by adaptively clustering object edge positions and 

allowing parallel editing of all objects snapped to the same 

spatial extent; and (2) FlashFormat, which infers the least-

general generalization of editing examples and applies it 

throughout the selected range. In user studies of repetitive 

styling task performance, StyleSnap and FlashFormat were 

4-5 times and 2-3 times faster than conventional editing, 

respectively. Both use a mixed-initiative approach to 

improve the consistency of slide decks and generalize to any 

situations involving editing across disjoint visual spaces. 
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INTRODUCTION 

Designing, delivering, and watching slide presentations are 

common aspects of professional life. As a modular authoring 

medium, slides constrain the problem of visual 

communication and afford flexibility in restructuring and 

reuse. However, this same modularity can result in weak 

connections between slides that are also visually inconsistent. 

The theory of processing fluency proposes that aesthetic 

pleasure is based on perceptual processing, with high fluency 

associated with positive evaluations such as agreement [33]. 

For slide design, audience negativity toward visual disorder 

(e.g., clutter, inconsistency, misalignment) has been argued 

to result directly from reduced processing fluency [1]. 

Nancy Duarte, author of “Slide:ology” [10], recommends the 

reuse of slide layouts to help the audience anticipate where 

content will appear next (i.e., to increase processing fluency 

through repetition). Garr Reynolds, author of “Presentation 

Zen” [34], also recommends repetition, but of “certain design 

elements” rather than whole slide layouts. The use of slide 

templates, copied slide elements, and temporary grids can all 

help to avoid inconsistency problems, whether within slides 

(nonaligned elements appearing randomly placed), between 

slides (misaligned elements “jumping” on transition), or 

across the deck (related elements lacking consistent styling).  

However, creating and maintaining visual consistency across 

slides is difficult when the desired layouts and styles are not 

known in advance. During the design of slide visuals, 

making systematic changes one element at a time is both 

repetitive and tedious. Ad-hoc changes also make it difficult 

to refactor content using slide templates. Lack of support for 

the consistent redesign of elements repeated across slides is 

thus a major contributing factor to low processing fluency. 

To address both the consumption problem of processing 

fluency and the authoring problem of repetitive styling, we 

present two complementary tools: (1) StyleSnap, for the 

automatic alignment of object edges within and across slides; 

and (2) FlashFormat, for the systematic restyling of related 

objects. Both are mixed-initiative systems [19] in which users 

collaborate with intelligent services to achieve their goals.  

The intelligence of StyleSnap is through progressive 

hierarchical clustering of each of the four object edge 

positions (offsets from the left and top slide edges), in ways 

that increase alignment both within and across slides without 

introducing object overlaps or image distortions. Following 

an automated snapping process, the user can independently 

unsnap, merge, and style the resulting groups of objects that 

have been snapped to the same slide extent (i.e., all four 

corresponding edges share the same position values). 

Conversely, the intelligence of FlashFormat comes after the 

user has directly supplied some examples of the repetitive 

edit they wish to apply more generally. It infers the least-

general generalization [32] of the example edits through the 

attribute values shared among all edited objects and the 

transformation performed on the edited objects. The next 

application of FlashFormat always extends the current edit to 

the smallest set of objects that can be generalized to by 

allowing the unshared attributes to vary freely. 
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Since StyleSnap increases the number of shared attribute 

values throughout a slide deck (via both snapped object 

positions and propagated style changes), prior use of 

StyleSnap means that fewer example edits are required to 

cover all of the variance in the set of objects to be edited with 

FlashFormat. The two tools are thus complementary, 

although each has substantial value in standalone use. 

In this paper, we first present a literature review on snapping 

and formatting, as well as the tools available in commonly 

used graphical systems. We then present an examination of 

a PowerPoint slide-deck corpus, showing how the use of 

such templates in practice restricts their ability to create and 

maintain consistency. In the following sections, we describe 

the design and implementation of two tools―StyleSnap and 

FlashFormat―that address the limitations of conventional 

templates. We also present a user study of each, 

demonstrating their superiority over existing approaches in 

task performance time and user preferences. We then report 

the lessons learned from both systems and discuss 

improvements for future mixed-initiative editing systems. 

These are relevant to the category of slideware augmented in 

this paper, as well as to any visual software that requires 

consistent styling across multiple pages (e.g., word processor 

documents), grids (e.g., spreadsheets), frames (e.g., editing 

of video overlays), or repeated visual spaces of any kind. 

Overall, this work offers the following contributions: 

1. Two approaches to selecting objects for systematic 

editing, based on: (a) similarity of objects’ spatial extents 

as determined by clustering of their edge positions 

(StyleSnap); and (b) similarity of objects’ attribute values 

as determined by the least-general generalization of 

example edits performed on other objects (FlashFormat). 

2. Two approaches to editing objects simultaneously in 

order to reach a state of consistency, based on (a): 

snapping misaligned object edges into a reduced number 

of aligned positions, without introducing artifacts 

(StyleSnap); and (b) applying the least-general 

generalization of example edits to all objects selected for 

editing (FlashFormat). 

RELATED WORK 

Microsoft PowerPoint remains the most popular application 

in the category of “slideware”. It has a wealth of existing 

presentations available online, rich tools for the analysis of 

its XML-based documents, and an add-in framework for 

augmentation of its feature set. Therefore, in the 

development and evaluation of our tools, we take 

PowerPoint as representative of slideware as a whole. 

Alignment of Document Objects 

Snapping is a commonly used technique to guide objects into 

a state of alignment [5]. For example, PowerPoint 2013 

provides visual line-guides and snapping behavior to support 

object alignment within a slide, as well as the traditional 

snapping of object edges to an underlying grid whose 

resolution can be customized. Object snapping can be 

extended in several ways, such as adaptively changing the 

snapping behavior based on user input [26] or adaptively 

inserting motor space to support differentiation of snap 

targets [4]. Other approaches have addressed mouse-free 

snapping on surfaces and tabletops by using control-display 

gain [13], multi-touch [14], pen input [15], and the non-

dominant hand [40]. None of them focus on alignment across 

disjoint visual spaces of any kind. 

Layout of Document Objects 

One approach to achieving consistent, well-designed layouts 

is to allow the user to select from a range of predesigned 

“templates” and enter content accordingly. Instead of making 

layout changes on individual slides (which can create 

inconsistencies), the user makes changes on the template 

itself, automatically updating slides that adopt the template.  

In PowerPoint 2013, templates are provided in a special view 

called the Slide Master. This view defines slide layouts and 

styles through placeholders which are also exposed when the 

user selects a layout for a new slide from a menu or when the 

user updates a slide to an alternative Slide Master layout. 

However, there are several usability problems with this 

approach. First, templates need to be selected in advance of 

slide creation rather than formed through exploration on 

slides. Second, directly editing a slide object that is linked to 

a placeholder removes the ability to restyle that object 

through the Slide Master, unless the slide template is 

manually re-applied. When inspecting either an object or a 

slide, it is not possible to determine whether the links to the 

placeholder are intact. That makes it difficult to anticipate 

the scope of changes that are possible through the slide 

templates. All of these specific problems belong to a more 

general category of risks that are known to reduce users’ 

willingness to invest attention in abstraction use [6].  

In the research domain, document analysis has been used to 

suggest layouts that satisfy criteria given by the user [24], 

such as logical structures of information to be visualized in 

presentation slides [38], or to support version management 

of multiple slide decks [9]. An alternative approach is to 

specify the structure of the desired document directly and 

allow the system to provide “styling as a service”, as in the 

HyperSlides system for presentation prototyping [11]. 

One approach to automating layout is to consider it as a 

visual constraint satisfaction problem. Constraints express 

high-level relationships between objects (e.g., text 

referencing a picture) or geometric structures (e.g., the sizes 

of all textboxes are the same). These constraints can be 

described as rules [7, 16, 39]. A major challenge of such rule-

based systems is to anticipate all required rules. Another 

approach is to consider layout automation as a problem of 

optimizing energy functions. This has been explored in the 

context of adaptive grids [20], focusing on the goodness of 

template fit and micro-typography aesthetics. The concept of 

“conditional shapes and groups” can help to generate more 

flexible constraint systems dynamically [36], as can 

combinations of constraint- and force-based approaches [2].  



While such automated layout systems are good for content 

that would not otherwise be “designed” or is yet to be 

designed, our tools specialize in the restyling of existing 

presentation content with a high degree of user control. 

Formatting of Document Objects 

The Slide Master is a form of indirect editing in PowerPoint 

and similar slideware. Another is the Format Painter, which 

allows all non-spatial attributes of a source object to be 

copied and “painted” onto destination objects, thus 

supporting reuse of object formatting in the slide view. 

Macros, batch processing, history brushes, and graphical 

search and replace [22] are further ways in which users can 

capture and reuse action sequences. EAGER [8] is an early 

work using programming-by-example principles [29] to 

support efficient text data entry but not visual style changes. 

Abstract object selection and restyling are also possible with 

interactive machine learning [12], by inferring the user’s 

desired scope based on patterns of selection and deselection 

(e.g., for file selection [35] and friend selection [3]). 

For document editing, the LAPIS text editor [27] supports 

intelligent group selection and simultaneous reformatting of 

strings. An extension supports intelligent find-and-replace 

operations in text documents, grouping different string 

selection candidates by literal and semantic similarities [28].  

CORPUS ANALYSIS OF TEMPLATE USAGE 

We wanted to understand the extent to which the apparent 

usability problems of Slide Master templates were evident in 

examples of presentations downloaded from the Web. We 

built a corpus of over 8000 presentations using Bing web 

searches specifying the “ext:pptx” filter. The resulting slide 

decks were drawn from many fields including business, 

government, science, technology, and education. We used 

the Open XML SDK 2.5 [30] to parse these presentations and 

extract statistics on slides and objects. Table 1 shows the 

results from the 7663 successfully processed files. 

We found that 88% of slides (24.7 out of 28.2) on average 

contained placeholder objects created by the Slide Master. 

We also found that the proportion of objects per slide that 

could actually be restyled through the Slide Master (without 

first resetting the slide to restore broken links, which loses 

any custom layout and styling of placeholders) was only 21% 

(1.1 out of 5.3) on average. Thus, while the vast majority of 

slides (88%) have the potential to be updated via the Slide 

Master, due to user editing behavior the vast majority of 

objects (79%) still require manual editing. 

We conducted a second analysis to understand the degree to 

which objects shared the same or similar spatial extent on 

slides, reflected as the same or similar edge offsets (distances 

from the left and top slide edges). For each deck, we first 

created a mapping from extents to objects, progressively 

varying the matching tolerance from 0 to 100 points in 10 

points increments (28pt=1cm). In each iteration, we grouped 

objects across slides whose edges were all located within a 

matching region of an existing extent (e.g., for the tolerance 

of 0, we only grouped objects with identical extents). 

This analysis revealed a strong skew resulting from many 

small, often single-element groups. With exact matching (a 

tolerance of zero points), the average number of position 

groups was 35 and objects in the largest position group 

occurred on 82% of slides. All groups in the upper quartile 

(top 9 groups of 35) had objects occurring on at least 5% of 

slides. Since these cannot all be placeholder objects (which 

only contribute 1.4 objects per slide), they are likely to come 

from copy-and-paste actions applied to ensure size, position, 

and style consistency for individual objects (and slides). 

When the tolerance was 60 points (about 2cm – a “near 

match” on all four object edges), the number of overall 

position groups halved (from 35 to 18). Objects in the largest 

position group occurred on 93% of slides and those in the 

upper quartile (top 5 groups of 18) had objects occurring on 

at least 11% of slides.  

In conclusion, there is ample opportunity to increase the 

positional consistency of objects by mapping “near match” 

objects into the exact same extent. If such a system could be 

developed, it could also increase the style consistency of 

position groups by propagating style changes to all members 

of the associated group. Such a system would have a greater 

restyling power than the Slide Master while also offering 

implicit object templates, abstracted directly from slides, 

rather than explicit slide templates designed indirectly in a 

separate view. Many of the problems of template-based 

layouts could thus be avoided. 

STYLESNAP 

Following on from the previous corpus analysis, we designed 

a mixed-initiative tool called StyleSnap that can be applied 

whenever a slide deck has evolved into a state of 

misalignment or inconsistency. Our first goal was to develop 

a method to align objects across slides without introducing 

new problems, such as object overlap and image distortion. 

Our second goal was to develop a user interface that would 

allow a user to invoke StyleSnap, view the resulting groups 

of objects snapped to the same extent, then undo, merge, or 

modify these groups accordingly. Our implementation of 

these concepts was through an add-in for PowerPoint 2013. 

We now describe the high-level design of the StyleSnap user 

interface and details of the underlying snapping algorithm. 

Slide Statistics Mean (SD) 

# of slides 28.2 (20.7) 
# of slides with placeholders unmodified 19.0 (17.5) 
# of slides with placeholders modified 
# of slides without placeholders 

5.7 (9.0) 
3.5 (7.8) 

Shape Statistics Mean (SD) 

# of objects per slide 5.3 (6.1) 
# of objects created by user 3.9 (6.2) 
# of objects from unmodified placeholders 
# of objects from modified placeholders 

1.1 (0.9) 
0.3 (0.4) 

Table 1. Statistics on the number of slides and objects in 7,663 

PowerPoint files we collected from the Internet. 

 



StyleSnap Interface 

Figure 1 shows the result of pressing the “StyleSnap” button 

in the PowerPoint ribbon menu. A side pane appears showing 

the resulting position groups―groups of objects across 

slides that have been mapped to the same position and size 

as a result of clustering and snapping edge values for the four 

edge types. Each group is listed showing its color (matching 

the color of the highlight boxes added to the corresponding 

objects), the number of objects in the group, a “Style Painter” 

icon for manually adding objects to the group and merging 

groups with one another, and a checkbox indicating whether 

the group is currently in its “Snap” state. Only non-singleton 

object groups are snapped by default but the user can toggle 

snapping for both individual groups and for all objects. 

Snapped objects are designated with a solid border in their 

new extent; unsnapped objects with a dashed border in their 

original extent. If all objects were already in the same extent 

and unaffected by snapping, the Snap checkbox is disabled.  

Clicking on any slide object or position group highlights the 

object, its position group in the side pane, and all other 

objects in the group. For efficient visual browsing of this 

position group, the system also gathers all slides containing 

highlighted objects and places them in a temporary “Selected” 

section at the start of the slide list, with other slides organized 

in an “Unselected” section (existing sections are recreated 

after StyleSnap tool use). The color of the highlight box of 

the selected group fully saturates for clear differentiation 

from the colors of other object groups. This visual feedback 

allows the user to confirm quickly whether the automatic 

snapping of the position group is desirable. When using the 

StyleSnap tool, any location, size, font, or other format 

changes to an object are propagated across all other objects 

in its group and made visible in real-time on all slides in the 

“Selected” section of the slide list. 

The Style Painter is similar to the Format Painter but extends 

to position and size attributes. Activating the Style Painter 

for a particular group by clicking the corresponding icon 

means that the next selected object or position group will 

automatically be merged with the active group. 

Clicking the “Apply” button saves the changes to the deck 

and reverts to standard editing. Clicking “Discard” undoes 

the changes and reverts the deck to its pre-StyleSnap state. 

Snapping through Hierarchical Clustering 

We wanted to enable “snapping” of objects into (a) fewer 

extents with (b) better alignment across slides. Each of these 

goals suggests a different approach. In order to reduce object 

extents, we could apply hierarchical clustering [18, 37] 

directly to object extents (since it does not require a prior 

choice for the number of clusters, unlike, e.g., K-means). 

However, this will not result in good cross-slide alignment if 

the extents of objects within slides are misaligned. There is 

also a sparsity problem―objects may all be sufficiently 

different and no two objects should be mapped to the same 

extent, even though any individual object edge may be close 

to the corresponding edges of many other objects. 

This led us to a solution based on hierarchical clustering of 

individual object edges rather than object extents. We 

independently perform hierarchical clustering of all the left, 

top, right, and bottom edge positions of the objects within a 

presentation and then apply the results back to the objects. 

The result of such clustering for each of the four edge types 

is a hierarchy of depth N where N is the number of distinct 

edge positions. At level 1 there are N clusters of 1 edge 

position. At level N there is 1 cluster of N edges, all snapped 

to the modal edge position. From level 1 to level N, the 

algorithm merges the closest pair of clusters and snaps all 

edges in the new cluster to the new modal edge position. 

We can determine the optimal clustering level for each edge 

type (left, top, right, and bottom) by an energy function that 

aims to balance similarity within and between clusters (i.e., 

to make close edge values the same while keeping distant 

edges separate). However, the naïve updating of object edge 

positions based on the optimum clustering of each edge type 

could easily cause problems in visual appearance:  

1. Object inversion, since independent edge clustering does 

not respect relative positions of opposing object edges;  

2. Object overlap, since initially separated objects can be 

moved into a state where their content regions overlap; 

3. Image distortion, since images are especially sensitive to 

aspect ratio changes. 

Given that we can identify and correct these problems only 

after position updates, our divide-and-conquer approach of 

clustering different edges independently is most suited to the 

agglomerative, bottom-up method of hierarchical clustering 

supported by the SLINK algorithm [37]. Overall, our 

snapping approach is summarized in Algorithm 1. 

Systematic Performance Evaluation of Snapping 

Snapping completes in several seconds, even for 500 objects 

(the 97th percentile in our PowerPoint corpus). In order to 

evaluate the degree to which automated snapping matches 

human judgments, we recruited two professional software 

engineers to test its accuracy and reliability across a range of 

 
Figure 1. StyleSnap interface. The right pane shows all the 

groups whose objects are moved to the same position as a result 

of snapping. The user can manually undo and merge position 

groups, as well as simultaneously style all objects in the same 

group with real-time feedback in the slide list on the left. 



typical slide decks: 80 presentations from our PowerPoint 

corpus, with varying numbers of slides (15–36; the lower and 

upper quartiles) as well as varying numbers of objects per 

slide (2.5–6.0 with mean 4.7).  

Table 2 shows how the number of singleton position groups 

(a mean of 53.6) forms a long-tail, as expected from the 

earlier corpus analysis.  Problems resulting from snapping 

are well controlled in both group types, limited to overly 

shrinking objects, creating inconsistencies among sets of 

slide objects that were previously consistent (e.g., in size, 

spacing, or alignment), and breaking spatial relationships 

between objects (e.g., by moving arrows within diagrams). 

Shrinkage can be dealt with by adding simple rules, but to 

address problems that arise from object relationships would 

require more complex rules or manual object grouping. 

Overall, on average only 4.5 position group modifications 

were required to reach a satisfactory state of alignment.  

EVALUATION OF STYLESNAP 

We conducted two user studies to evaluate the performance 

of StyleSnap against two alternative approaches to cross-

slide alignment and styling: Repeat Editing and Slide Master. 

For the study tasks we selected a slide deck from our internet 

corpus with an average of 2 objects on each of 31 slides―one 

from a Slide Master template, one added manually―with a 

balance of title-and-bullets and image-and-caption slides.  

Task: Cross-Slide Alignment of Misaligned Objects 

There were 14 slides containing one picture and one textbox 

used as a caption, with no perfect alignment of any pair of 

objects. The task was to align all four object edges of groups 

of images with similar aspect ratios and make the caption 

format the same across all 14 slides. For consistency, we 

defined target object groups for the 14 images based on three 

aspect ratios: 9 portrait images, 4 landscape, and 1 panoramic. 

We also set the target text format to be 20pt Red Italic Arial. 

Expert Performance Prediction 

In order to predict the expert performance of each technique, 

we adopted an approach akin to Keystroke Level Modelling 

(KLM) by constructing a task model for each system and 

quantifying its time parameters through a user study. Since 

these models do not account for switching costs, they 

represent predicted lower bounds on task completion time. 

Repeat Editing: [Start time Tre] Make a duplicate of Slide 13 

and use it as a layout guide to align content from Slide 14. 

Delete unwanted objects and slides. [End time Tre] 

Reference task time = Tre × 13 slides 

Slide Master: [Start time Tsm1] Open the Slide Master view 

and create a layout with content placeholders in the desired 

positions and aspect ratios. Close the Slide Master. [End time 

Tsm1] [Start time Tsm2] Go to Slide 13 and update it to the new 

custom layout. Delete unwanted objects [End time Tsm2] 

Reference task time = Tsm1 × 3 slide layouts (one per aspect 

ratio) + Tsm2 × 14 slides (apply new layout to each) 

StyleSnap: [Start time Tss1] Use the Style Painter to add the 

portrait image on Slide 28 to the position group of the portrait 

image on Slide 13. [End time Tss1] [Start time Tss2] Set the 

caption text to the target format. [End time Tss2] 

StyleSnap groups the captions into a single group and images 

into groups with 4, 4, 2, 1, 1, 1, and 1 objects. Reaching three 

position groups for these images requires a maximum of 

eight changes using the Style Painter (one object at a time). 

Reference task time = Tss1 × 8 group changes (to make 3 

groups) + Tss2 (applies to all captions at once) 

Procedure 

We first explained and demonstrated each task before asking 

participants to repeat the procedure until they had mastered 

it. We used two such slides for our demonstration, with the 

task to make the layout and style of Slide 14 the same as Slide 

13. We offered detailed instructions for each approach and 

allowed several timed trials until we did not observe large 

time variances. Participants’ best times were recorded and 

used to calculate the reference task time (as is common when 

seeking to understand expert performance, e.g., in [40]).  

We recruited 12 participants (6 male and 6 female, the 

average age of 25; PA1–PA12) from a local university. All 

were familiar with PowerPoint and fluent in English. We 

counterbalanced the condition order. Cash equivalent to $15 

USD in local currency was offered as compensation. 

Position Groups of 2+ Shapes Mean (SD) 

# of position groups 10.3 (10.0) 
# of position groups where snapping causes problems 0.7 (1.2) 
# of merges among 2+ position groups required 0.8 (1.1) 

Position Groups of 1 Shape (Singletons) Mean (SD) 

# of position groups 53.6 (33.7) 
# of position groups where snapping causes problems 0.6 (2.5) 
# of additions to 2+ position groups required 2.4 (2.8) 

Table 2. Performance of StyleSnap auto-alignment on 80 decks. 

Algorithm 1. Global snapping of object edge positions 

1. Cluster object edge positions in preparation for snapping 
 For each edge type T (left, top, right, bottom): 

a. Cluster edge positions using the SLINK algorithm 
b. Calculate the optimal clustering level LT to minimize the 

following distance-based energy function: 

𝛼 ∑ (𝐶𝑔𝑐∈𝐺 −  𝐶𝑔𝑙𝑜𝑏𝑎𝑙) + (1 − 𝛼) ∑ ∑ (𝑙𝑠𝑠 ∈𝑔 −  𝐶𝑔)𝑔 ∈𝐺   
(𝐶𝑔, 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 , and 𝑙𝑠 represent the centroid edge value of each 
cluster, the one of all objects, and  the edge value of one 
object, respectively. 𝛼 is the coefficient to determine weights 
for between-cluster and within-cluster similarities, set to 0.5) 

2. Apply snapping progressively, resolving overlaps and inversions 
 For 𝑖 = 1 𝑡𝑜 𝑁 (number of adaptive steps, e.g., 20): 

a. For each edge type T: 
i. Apply the snapping associated with clustering at level 

[(𝑖 𝑁⁄ ) × 𝐿𝑇] (where level 1 is no clustering) to objects that 
have not previously been inverted or overlapped. 

b. For each object 𝑂𝑖: 
i. If 𝑂𝑖  is newly inverted or overlapped, reset to 𝑂𝑖−1. 

c. If no objects can be snapped further, move to (3). 
3. Resolve image distortion 
 For each snapped image object I: 

a. If its aspect ratio of I has changed by more than a threshold 
proportion (set to 0.1), shift the furthest-moved edge of I to 
return to the original aspect ratio, otherwise allow the change. 

 



Expert Performance Results 

Table 3 summarizes the completion times of sub-tasks in 

each of the three techniques. Entering these times into our 

task models predicts the average expert performance to be 

353, 322, and 107 seconds with Repeated Editing, Slide 

Master and StyleSnap, respectively. This prediction is highly 

promising and indicates that StyleSnap could substantially 

reduce the user effort of cross-slide alignment and styling. 

The results also show that updating any number of target 

slides with StyleSnap is comparable to refactoring a single 

slide with Slide Master, once the StyleSnap groups are 

correct and the Slide Master templates are created. Since 4.5 

StyleSnap group merges are required to correct the snapping 

of a whole deck, on average, it also means that StyleSnap is 

about as fast at correcting alignment throughout this 

particular deck and refactoring 14 slides of a particular 

design (69s) as Slide Master is at creating a single template 

and refactoring just two slides (71s). 

Novice User Performance Measurement 

We also conducted a supplementary study with the same task 

set to measure the performance of novice users. The 

procedure was the same except that participants were asked 

to modify all 14 slides in each task. This study therefore 

offers realistic performance observations of the three 

techniques that account for the effects of learning and fatigue. 

From the expert performance prediction results, we had two 

hypotheses for this study: [HA-1] StyleSnap would be faster 

for global alignment than existing tools; and [HA-2] the 

perceived workload of global alignment tasks would be 

smaller with StyleSnap. StyleSnap training included 5-10 

minutes of free exploration on a range of decks. Following 

the study tasks, participants completed a NASA-TLX 

questionnaire [17] for each approach. We recruited another 

eight participants for this study (5 male and 3 female, the 

average age of 25; PB1–PB8) from our research institute.  

Novice User Performance Results 

One-way repeated-measure ANOVA revealed a significant 

difference among techniques (F(2,14) = 90.8, p < .0001, ηp
2 

= .93), with StyleSnap faster than the other two (p < .0001 

for both), shown in Figure 2, supporting HA-1. Analysis of 

NASA-TLX responses found seven significant pairwise 

results as shown in Table 4, partially supporting HA-2. 

While the cost of both Repeat Editing and the Slide Master 

scale linearly with the number of target objects, the cost of 

StyleSnap scales only with the number of corrections to 

groups that contain target objects. The fewer groups that 

need to be corrected, the closer the performance of StyleSnap 

to a constant time cost, regardless of the number of objects. 

Qualitative Discussion 

Participants in both studies unanimously preferred StyleSnap 

over Repeat Editing and Slide Master and many commented 

on how it would support their everyday authoring. The Slide 

Master was also widely criticized, e.g.: “If we edit using Slide 

Master, we really don’t know what the final result will look like. 

After we edit it we should go back to see the result… if is not 

satisfying we should go back again to the slide master view... If we 

use StyleSnap we can see the result directly” (PA12). 

The cost of automated snapping and manual modification 

was perceived to be relatively low. Participants described the 

“clustering” as “very efficient… it really helps in saving time” 

(PA4); “really useful” (PA8); “a great idea… a simpler way to edit 

a lot of shapes” (PA9). Participants also appreciated being able 

to edit all objects in a position group simultaneously: “I can 

do quick edits for the whole content in the slides” (PA5); “You can 

do one ‘style’ and apply it everywhere fast” (PA2). 

The study also highlighted areas for improvement. Several 

participants expressed initial confusion about the meaning of 

colors and suggested the use of semantic descriptors, icons, 

or thumbnails to make the mapping clearer. One participant 

found the “shuffling” of the slide list distracting while 

another suggested a drag-and-drop mechanism for Style 

Painting. During free explorations of multiple decks, several 

participants expressed a desire for an algorithm that 

automatically identifies diagram-like collections of objects 

and groups them for StyleSnap alignment purposes. 

StyleSnap Task for Novice Users: NASA-TLX Subjective Workload Results (in the format median [lower quartile, upper quartile]) 

 Mental Physical Temporal Performance Effort Frustration Weighted overall 

Repeat Editing (RE) 25.0 [15.0,47.5] 82.5 [70.0, 96.3] 82.5 [73.8, 92.3] 67.5 [62.5, 75.0] 90.0 [73.8, 100.0] 85.0 [78.8, 91.3] 78.0 [73.3, 81.3] 

Slide Master (SM) 47.5 [40.0, 57.5] 47.5 [33.8, 58.8] 45.0 [27.5, 57.5] 22.5 [8.8, 36.3] 52.5 [25.0, 55.0] 52.5 [36.3, 66.3] 43.8 [35.8, 55.0] 

StyleSnap (SS) 30.0 [18.8, 66.3] 22.5 [18.8, 31.3] 17.5 [13.8, 21.3] 15.0 [5.0, 16.3] 27.5 [25.0, 33.8] 20.0 [8.8, 30.0] 25.0 [22.7, 29.3] 

Friedman test: χ2(2) 0.077 (p = .96) 11.6 (p < .01) 13.6 (p < .01) 10.2 (p < .01) 13.1 (p < .01) 14.0 (p < .001) 15.5 (p < .001) 

Pairs with p<.05 (none) (none) RE-SS (none) RE-SS, RE-SM RE-SS, RE-SM RE-SS, RE-SM 

Table 4. NASA-TLX subjective workload results for novice users completing the StyleSnap task. Lower values are better. 

   
Figure 2. Predicted lower bounds on expert performance (bars 

without borders) and novice user mean performance time (bars 

with borders). Error bars represent 95% Confidence Intervals. 

StyleSnap Task for Expert Users: Completion Times Mean (SD) 

Tre: Refactor a target slide using Repeat Editing 25.2 (6.4) 

Tsm1: Make a slide template using Slide Master  43.2 (9.6) 

Tsm2: Refactor a target slide to a slide template using 
Slide Master  

13.8 (2.1) 

Tss1: Find and add an object to a group using StyleSnap  11.5 (2.7) 

Tss2: Update all target slides using StyleSnap  15.2 (5.6) 

Table 3. Sub-task completion time results in the expert 

performance user study. 



The study also surfaced tensions in the design of StyleSnap, 

which is predicated on the value of object alignment and 

style consistency throughout a slide deck. As one participant 

explained, “With StyleSnap I can easily design the layouts, 

especially if I want to change the same layouts, not manually edit 

the slides. But I think it will be difficult to change if on each slide 

the designs are different” (PA8). A different approach is 

required to make repetitive changes to objects that do not 

share the same position―this is the purpose of the 

complementary FlashFormat tool that we present next. 

FLASHFORMAT 

StyleSnap supports aligning objects across slides in ways 

that increase processing fluency, but it is not applicable to 

repeated-object restyling when target objects are placed at 

different locations. FlashFormat offers the ability to apply 

global style changes with more flexible object selection. 

FlashFormat is a programming-by-example system [29] that 

allows the user to perform repetitive formatting tasks in 

PowerPoint. The interface of FlashFormat is shown in Figure 

3. It consists of only two buttons: “Start New Examples” and 

“FlashFormat”. The user starts by clicking “Start New 

Examples” and then gives some examples of the formatting 

changes they would like to perform.  When they click on 

“FlashFormat”, the system infers the least-general 

generalization (LGG) from the given examples and applies 

the changes to the rest of the document (“FlashFormat-all”). 

In Figure 3b the user gives two examples of changing the 

color of diamond shapes to yellow, for which the system 

infers the LGG that changes all diamond shapes to yellow 

(Figure 3c). The inferred generalization depends on the given 

examples; for instance, to color yellow any object with 

underlined text, the user may give examples for different 

shapes and colors (e.g., white diamond, white rectangle, gray 

rectangle) containing underlined text.  

The inference performed by FlashFormat is based on the 

XML specifications of objects (using the OOXML file 

format), and hence covers all properties expressed in this 

specification. The system is based on a domain specific 

language for expressing transformations of XML structures, 

and a synthesis algorithm for inferring LGG programs within 

this language. In this work, we focus on the interaction model 

and usability studies of the tool. The underlying inference 

algorithm builds on prior work in program synthesis [32].  

An interactive and incremental generalization process  

The user can guide the system to the desired generalization 

in an interactive and incremental fashion. Since the system is 

conservative in the inference of the generalization, the user 

can give additional (dissimilar) examples to express their 

intended selection criteria. For example, if the user wants to 

color all objects with underlined text and only gives 

examples of diamond shapes, then the system may infer a 

less general hypothesis: to color only diamond shapes 

containing underlined text. However, the system is designed 

to incrementally accept examples. At that point the user can 

give more examples through manual editing, and then 

FlashFormat again; from added examples, the system will 

infer a more general transformation.  

The user can also backtrack if the system does not infer the 

intended transformation. If the inferred generalization is not 

applicable to any other objects, then the system applies the 

transformation to the closest matching objects, according to 

a similarity measure on the XML specification of objects. If 

this inference is inaccurate, then the user can undo the 

changes using the standard “undo” feature, and provide more 

examples to guide the system in the right direction.  

The system also supports a restricted application of the 

inferred transformations, allowing the user to verify the 

transformation before applying it globally. After giving 

examples, the user can select a set of objects or slides and 

then click “FlashFormat” to apply the transformation only to 

the selected objects or slides (“FlashFormat-selected”).  

EVALUATION OF FLASH FORMAT 

We conducted a user study to examine the use of 

FlashFormat. We formulated three hypotheses: [HB-1] 

Users would be able to achieve their desired global restyling 

through FlashFormat; [HB-2] with the experience of using 

FlashFormat, users will develop a sense of which examples 

to give, and [HB-3] across a range of tasks, using 

FlashFormat would be faster than standard editing tools.  

Tasks: Cross-slide Shape Restyling 

We prepared a slide deck downloaded from the Internet. It 

contained flowcharts spanning five slides, using different 

shapes (rectangles and diamonds). Such diagrams are 

commonly encountered in slide presentations and cannot be 

restyled through the slide master because objects invariably 

occupy unique slide extents. Participants were asked to 

     

  (a)                              (b)                              (c) 
 

Figure 3. FlashFormat interface, illustrating the coloring of all 

diamonds to yellow: (a) the user clicks “Start New Examples”; 

(b) gives two examples of diamond shapes, changing the color; 

(c) clicks “Flash Format” to apply the least-general 

generalization from the example changes. 



perform two changes specified by the experimenter, either 

with FlashFormat or manually (use of Format Painter was 

allowed in this condition). In order to create a balanced 

workload per task, we varied the number of objects to be 

restyled and the difficulty of giving examples. The 

participants were asked to make two systematic style 

changes in each trial but were not allowed to change any 

other visual attribute or text content of the objects. After this 

controlled task, participants were given another slide deck 

and asked to perform global restyling as they liked. They 

were encouraged to use FlashFormat to make changes and 

were given five minutes for this part of the study. 

The interface used in the study did not include visual 

feedback before clicking the FlashFormat button. Our 

intention was to study how well participants could 

understand the behavior of LGG without being influenced by 

the feedback design and to test its effectiveness in a most 

basic form (any additional improvements on feedback would 

generally favor the performance of FlashFormat). 

Procedure and Participants 

We first explained FlashFormat with two examples of slide 

decks and asked participants to perform global restyling 

tasks. The slide decks included easy and difficult cases for 

FlashFormat. This pre-task session was intended to make 

participants knowledgeable about the system and able to 

perform restyling without help from the experimenters. We 

provided explanations that choosing more, and more diverse 

examples would lead to better results (referred to as “the 

golden rule”), but we did not force participants to do so. 

During each trial, we measured the performance time 

between the start of the task and the point when they 

confirmed all necessary changes on all specified objects. At 

the end of the study, participants were asked to describe their 

experience of FlashFormat, give suggestions for 

improvements, and fill out a questionnaire. 

We recruited 12 participants (8 male and 4 female, with 

average age 25; PB1–PB12) from our research institute. All 

were familiar with PowerPoint and fluent in English, and 

none of them participated in the first study. The same 

compensation was offered to all participants in this study. 

Results 

Figure 4 shows the mean performance time for each number 

of objects with the two techniques. Times in the manual 

editing condition varied in the range of 90–100 seconds, 

whereas FlashFormat times were constant at about 40 

seconds. Two-way repeated measure ANOVA revealed a 

significant main effect for technique (F(1,11) = 45.5, p < .0001, 

ηp
2 = .81). The interaction between technique and task was 

also significant (F(2,22) = 4.40, p < .05, ηp
2 = .29). The post-

hoc analysis confirmed that the FlashFormat technique was 

significantly faster than the manual editing technique (p 

< .0001). This quantitative result demonstrates substantial 

improvements over existing editing tools and methods for 

global restyling, supporting our hypothesis HB-3. 

Table 5 presents the results of the questionnaire. Participants 

responded positively to their experience with FlashFormat, 

unanimously agreeing that FlashFormat was preferable to 

manual editing. As with StyleSnap, many participants 

commented on how it would support their regular authoring 

practices, especially with regard to diagram formatting. We 

further examined the qualitative study data to understand the 

reasons for these positive results. 

Qualitative Analysis 

In the pre-task session, participants exhibited a tendency to 

give one example, repeatedly FlashFormat-all until they 

reached the point of over-generalization, undo, and repeat. 

Thus, the participants did not follow the ‘golden rule’ of 

giving more, and more diverse examples, despite being 

reminded of it after each undo action. However, as the 

system repeatedly failed to produce their intended 

generalization from a single example, participants began 

giving more examples. At first, these were typically two 

examples given on the first two slides where they were 

applicable. However, we observed a gradual shift to a more 

systematic selection of diverse examples. Not only did 

participants learn to follow the golden rule through 

experience, they also learned what it means for examples to 

be diverse and how to give enough of them:  

“Doing things automatically is good but sometimes I need to find 

out the differences of the shape, for example this is red and this is 

orange so I know I have to give two examples, one on the red and 

another on the orange, to let the system know that I want to change 

all the shapes no matter what the color is.” (PB2) 

“If you want to change the styles for all slides, you have to review 

all the slides first. For me it should be: first review all the slides, 

and then pick up all the different parts… different stuff in the same 

parts you want to change, and then change the different properties, 

and go ahead and FlashFormat and it should work.” (PB8)  

Questions Mean response (SD) 

I could always give appropriate examples to reach 
my desired end state. 

5.1 (1.6) 

I could anticipate the effects of FlashFormat before 
actually doing it. 

4.6 (1.4) 

It is necessary to anticipate the effects of 
FlashFormat to successfully use the tool. 

5.8 (1.2) 

It is annoying to repeatedly undo unwanted effects 
from FlashFormat. 

4.3 (2.1) 

I would prefer to use FlashFormat rather than make 
repetitive changes one-by-one. 

6.5 (0.8) 

Table 5. Responses of the post-experimental questionnaire. (1: 

strongly disagree – 7: strongly agree) 

 
Figure 4. Mean performance time in the second study. The 

error bars represent 95% Confidence Intervals. 



Overall, this suggests that repeated feedback from applying 

the LGG of self-selected formatting examples is sufficient to 

promote self-discovery of the optimum example-giving and 

generalization strategy. Our questionnaire results also 

support this, showing that participants agreed that they could 

provide examples and anticipate the effect. Thus, we 

concluded that HB-1 and HB-2 are also supported. 

Nevertheless, the learning process could still benefit from 

additional guidance. One participant mentioned how before 

starting new examples, they “always forget to press the button” 

(PB12). Another participant described how, while giving 

examples, they “sometimes feel lost about what to do next – 

should I choose more examples, or should I apply FlashFormat 

first?” (PB1). Finally, several participants reported the need 

for better feedback, before and after applying FlashFormat-

all, about which objects would be changed or had been 

changed already. Suggestions for improvements included 

highlighting the scope of objects that would be changed next, 

highlighting the differences of objects that share some 

attributes with the selected object to guide example selection, 

learning from multi-object examples where the relative 

changes are significant, and removing the need to press a 

start button. The latter could be done either showing a history 

of recently edited attributes that will be applied or suggesting 

multiple transformations from a single example.  

Even without the suggested changes, the approach was 

assessed favorably against alternatives. Compared with the 

PowerPoint Format Painter, it was found to “work more 

efficiently” (PB3), to be “much faster” (PB12) and to be “much 

more powerful” (PB4) because it can “work globally” (PB4) and 

“between slides” (PB5) without overwriting all attributes (PB4). 

FlashFormat also “has some features Slide Master does not 

provide” (PB7), such as the ability to work on groups of 

objects that do not share the same location. In this respect, 

FlashFormat also surpasses the restyling power of StyleSnap, 

in which object groups are formed only by shared extents. 

OVERALL DISCUSSION 

We presented two complementary tools for automating 

global changes that can improve the visual consistency of 

slide decks. From the design and evaluation of these two 

tools we now synthesize limitations, lessons, and future work. 

One limitation of the current work is our focus on the design 

of slide visuals only, and not of the underlying presentation 

material [23] or narrative structure [31]. While the balance 

of presentation preparation time should arguably be in favor 

of content and story, any time saved on styling slide visuals 

could conceivably be transferred to these other activities. 

Another limitation is our sole use of PowerPoint for corpus 

analysis and prototyping. Since all slides and slideware are 

structurally similar, we expect our proposed solutions to 

generalize to other slideware and their associated slides. As 

for applications to other domains (e.g., vector-based 

graphical editing), this has not yet been demonstrated. 

As we have already noted, StyleSnap does not preserve size 

and spacing constraints within a slide. Constraint-based 

reasoning, as used for single layout beautification [41], could 

provide a solution. Similarly, a limitation of FlashFormat is 

that imperceptible differences in attribute values are still 

viewed as differences by the system, leading to potential 

mismatches between user expectations and action outcomes. 

Finally, we have evaluated our two tools independently 

rather than as a single system, such that we may evaluate 

their individual value. We hope to combine the functionality 

of the two tools into a single system in future work, taking 

into account the lessons discussed next. 

Lesson 1: Suggest generalizations from single edits 

One of the advantages of StyleSnap over FlashFormat is that 

users can confidently edit all of the objects in a position 

group at once rather than having to provide several examples 

first. One of the advantages of FlashFormat over StyleSnap 

is that object groups can be formed from any set of shared 

attributes, not just edge positions. Future work should 

investigate how to achieve both high predictability and 

flexibility from single examples. This could be achieved by 

suggesting multiple possible transformations after each edit, 

or suggesting snapping results for attribute values beyond 

edge positions (e.g., to create small, consistent sets of colors 

and font sizes) after each object selection. Users could thus 

make progress by incrementally applying such suggestions. 

Lesson 2: Support state preservation as well as propagation 

In both StyleSnap and FlashFormat, there were times when 

the user already had an example of their desired end state but 

were forced to recreate it for the benefit of the tool. In 

StyleSnap, this was because the snapped object groups 

represented the modal values of the clustered edges rather 

than the extent of a specified object. In FlashFormat, this was 

because only the edited attributes of an object contribute to 

the inferred example, and none of the other existing attributes. 

Future work should explore how to give examples of both 

the “change to” and “keep as” variety on a per-attribute basis, 

without requiring an enumeration of all object attributes. 

Lesson 3: Show the scope of prospective changes 

In StyleSnap, the real-time feedback from the combination 

of object highlights and the Selected slide section gave 

confidence to the user about the scope of their changes before 

and as they were making them. However, this feedback also 

created visual noise for dense slides and caused scrolling of 

the slide list for large numbers of selected objects. As 

literature suggests the importance of feedback in this type of 

systems [29], future work should explore alternative 

feedback strategies for tools like StyleSnap and FlashFormat. 

Lesson 4: Incorporate design patterns and principles 

StyleSnap makes the layout of objects consistent across 

slides, but it does not give any guidance about the desirability 

of those layouts. Similarly, FlashFormat can make large-

scale changes easily, but provides no feedback about the 

desirability of those changes (e.g., considerations of the 

contrast between text and its background image following a 



global change to caption color). Future work should explore 

how to resolve aesthetic issues through assisted layout and 

styling that considers factors such as visual balance [25] and 

mood [21]. Supporting consistency, not just within sets of 

user-created visuals but also with external design patterns 

and principles, remains a significant research challenge. 
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