
ABSTRACT

Good alignment and repetition of objects across presentation

slides can facilitate visual processing and contribute to

audience understanding. However, creating and maintaining

such consistency during slide design is difficult. In order to

solve this problem, we present two complementary tools: (1)

StyleSnap, which increases the alignment and repetition of

objects by adaptively clustering object edge positions and

allowing parallel editing of all objects snapped to the same

spatial extent; and (2) FlashFormat, which infers the least-

general generalization of editing examples and applies it

throughout the selected range. In user studies of repetitive

styling task performance, StyleSnap and FlashFormat were

4-5 times and 2-3 times faster than conventional editing,

respectively. Both use a mixed-initiative approach to

improve the consistency of slide decks and generalize to any

situations involving editing across disjoint visual spaces.

Author Keywords

Presentations; visual consistency; layout editing; snapping;

programming by example; least-general generalization.

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User Interfaces.

INTRODUCTION

Designing, delivering, and watching slide presentations are

common aspects of professional life. As a modular authoring

medium, slides constrain the problem of visual

communication and afford flexibility in restructuring and

reuse. However, this same modularity can result in weak

connections between slides that are also visually inconsistent.

The theory of processing fluency proposes that aesthetic

pleasure is based on perceptual processing, with high fluency

associated with positive evaluations such as agreement [33].

For slide design, audience negativity toward visual disorder

(e.g., clutter, inconsistency, misalignment) has been argued

to result directly from reduced processing fluency [1].

Nancy Duarte, author of “Slide:ology” [10], recommends the

reuse of slide layouts to help the audience anticipate where

content will appear next (i.e., to increase processing fluency

through repetition). Garr Reynolds, author of “Presentation

Zen” [34], also recommends repetition, but of “certain design

elements” rather than whole slide layouts. The use of slide

templates, copied slide elements, and temporary grids can all

help to avoid inconsistency problems, whether within slides

(nonaligned elements appearing randomly placed), between

slides (misaligned elements “jumping” on transition), or

across the deck (related elements lacking consistent styling).

However, creating and maintaining visual consistency across

slides is difficult when the desired layouts and styles are not

known in advance. During the design of slide visuals,

making systematic changes one element at a time is both

repetitive and tedious. Ad-hoc changes also make it difficult

to refactor content using slide templates. Lack of support for

the consistent redesign of elements repeated across slides is

thus a major contributing factor to low processing fluency.

To address both the consumption problem of processing

fluency and the authoring problem of repetitive styling, we

present two complementary tools: (1) StyleSnap, for the

automatic alignment of object edges within and across slides;

and (2) FlashFormat, for the systematic restyling of related

objects. Both are mixed-initiative systems [19] in which users

collaborate with intelligent services to achieve their goals.

The intelligence of StyleSnap is through progressive

hierarchical clustering of each of the four object edge

positions (offsets from the left and top slide edges), in ways

that increase alignment both within and across slides without

introducing object overlaps or image distortions. Following

an automated snapping process, the user can independently

unsnap, merge, and style the resulting groups of objects that

have been snapped to the same slide extent (i.e., all four

corresponding edges share the same position values).

Conversely, the intelligence of FlashFormat comes after the

user has directly supplied some examples of the repetitive

edit they wish to apply more generally. It infers the least-

general generalization [32] of the example edits through the

attribute values shared among all edited objects and the

transformation performed on the edited objects. The next

application of FlashFormat always extends the current edit to

the smallest set of objects that can be generalized to by

allowing the unshared attributes to vary freely.

Mixed-Initiative Approaches to Global Editing in Slideware
Darren Edge1, Sumit Gulwani2, Natasa Milic-Frayling3, Mohammad Raza3,

Reza Adhitya Saputra1,4, Chao Wang1, Koji Yatani1,5

1 Microsoft

Research

Beijing, China

2 Microsoft

Research

Redmond, USA

3 Microsoft

Research

Cambridge, UK

4 University of

Waterloo

Waterloo, Canada

5 University of

Tokyo

Tokyo, Japan

{daedge, sumitg, natasamf, a-moraza, chaowa}@microsoft.com, radhitya@uwaterloo.ca, koji@iis-lab.org

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea. Copyright is held

by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3145-6/15/04…$15.00

http://dx.doi.org/10.1145/2702123.2702551

Since StyleSnap increases the number of shared attribute

values throughout a slide deck (via both snapped object

positions and propagated style changes), prior use of

StyleSnap means that fewer example edits are required to

cover all of the variance in the set of objects to be edited with

FlashFormat. The two tools are thus complementary,

although each has substantial value in standalone use.

In this paper, we first present a literature review on snapping

and formatting, as well as the tools available in commonly

used graphical systems. We then present an examination of

a PowerPoint slide-deck corpus, showing how the use of

such templates in practice restricts their ability to create and

maintain consistency. In the following sections, we describe

the design and implementation of two tools―StyleSnap and

FlashFormat―that address the limitations of conventional

templates. We also present a user study of each,

demonstrating their superiority over existing approaches in

task performance time and user preferences. We then report

the lessons learned from both systems and discuss

improvements for future mixed-initiative editing systems.

These are relevant to the category of slideware augmented in

this paper, as well as to any visual software that requires

consistent styling across multiple pages (e.g., word processor

documents), grids (e.g., spreadsheets), frames (e.g., editing

of video overlays), or repeated visual spaces of any kind.

Overall, this work offers the following contributions:

1. Two approaches to selecting objects for systematic

editing, based on: (a) similarity of objects’ spatial extents

as determined by clustering of their edge positions

(StyleSnap); and (b) similarity of objects’ attribute values

as determined by the least-general generalization of

example edits performed on other objects (FlashFormat).

2. Two approaches to editing objects simultaneously in

order to reach a state of consistency, based on (a):

snapping misaligned object edges into a reduced number

of aligned positions, without introducing artifacts

(StyleSnap); and (b) applying the least-general

generalization of example edits to all objects selected for

editing (FlashFormat).

RELATED WORK

Microsoft PowerPoint remains the most popular application

in the category of “slideware”. It has a wealth of existing

presentations available online, rich tools for the analysis of

its XML-based documents, and an add-in framework for

augmentation of its feature set. Therefore, in the

development and evaluation of our tools, we take

PowerPoint as representative of slideware as a whole.

Alignment of Document Objects

Snapping is a commonly used technique to guide objects into

a state of alignment [5]. For example, PowerPoint 2013

provides visual line-guides and snapping behavior to support

object alignment within a slide, as well as the traditional

snapping of object edges to an underlying grid whose

resolution can be customized. Object snapping can be

extended in several ways, such as adaptively changing the

snapping behavior based on user input [26] or adaptively

inserting motor space to support differentiation of snap

targets [4]. Other approaches have addressed mouse-free

snapping on surfaces and tabletops by using control-display

gain [13], multi-touch [14], pen input [15], and the non-

dominant hand [40]. None of them focus on alignment across

disjoint visual spaces of any kind.

Layout of Document Objects

One approach to achieving consistent, well-designed layouts

is to allow the user to select from a range of predesigned

“templates” and enter content accordingly. Instead of making

layout changes on individual slides (which can create

inconsistencies), the user makes changes on the template

itself, automatically updating slides that adopt the template.

In PowerPoint 2013, templates are provided in a special view

called the Slide Master. This view defines slide layouts and

styles through placeholders which are also exposed when the

user selects a layout for a new slide from a menu or when the

user updates a slide to an alternative Slide Master layout.

However, there are several usability problems with this

approach. First, templates need to be selected in advance of

slide creation rather than formed through exploration on

slides. Second, directly editing a slide object that is linked to

a placeholder removes the ability to restyle that object

through the Slide Master, unless the slide template is

manually re-applied. When inspecting either an object or a

slide, it is not possible to determine whether the links to the

placeholder are intact. That makes it difficult to anticipate

the scope of changes that are possible through the slide

templates. All of these specific problems belong to a more

general category of risks that are known to reduce users’

willingness to invest attention in abstraction use [6].

In the research domain, document analysis has been used to

suggest layouts that satisfy criteria given by the user [24],

such as logical structures of information to be visualized in

presentation slides [38], or to support version management

of multiple slide decks [9]. An alternative approach is to

specify the structure of the desired document directly and

allow the system to provide “styling as a service”, as in the

HyperSlides system for presentation prototyping [11].

One approach to automating layout is to consider it as a

visual constraint satisfaction problem. Constraints express

high-level relationships between objects (e.g., text

referencing a picture) or geometric structures (e.g., the sizes

of all textboxes are the same). These constraints can be

described as rules [7, 16, 39]. A major challenge of such rule-

based systems is to anticipate all required rules. Another

approach is to consider layout automation as a problem of

optimizing energy functions. This has been explored in the

context of adaptive grids [20], focusing on the goodness of

template fit and micro-typography aesthetics. The concept of

“conditional shapes and groups” can help to generate more

flexible constraint systems dynamically [36], as can

combinations of constraint- and force-based approaches [2].

While such automated layout systems are good for content

that would not otherwise be “designed” or is yet to be

designed, our tools specialize in the restyling of existing

presentation content with a high degree of user control.

Formatting of Document Objects

The Slide Master is a form of indirect editing in PowerPoint

and similar slideware. Another is the Format Painter, which

allows all non-spatial attributes of a source object to be

copied and “painted” onto destination objects, thus

supporting reuse of object formatting in the slide view.

Macros, batch processing, history brushes, and graphical

search and replace [22] are further ways in which users can

capture and reuse action sequences. EAGER [8] is an early

work using programming-by-example principles [29] to

support efficient text data entry but not visual style changes.

Abstract object selection and restyling are also possible with

interactive machine learning [12], by inferring the user’s

desired scope based on patterns of selection and deselection

(e.g., for file selection [35] and friend selection [3]).

For document editing, the LAPIS text editor [27] supports

intelligent group selection and simultaneous reformatting of

strings. An extension supports intelligent find-and-replace

operations in text documents, grouping different string

selection candidates by literal and semantic similarities [28].

CORPUS ANALYSIS OF TEMPLATE USAGE

We wanted to understand the extent to which the apparent

usability problems of Slide Master templates were evident in

examples of presentations downloaded from the Web. We

built a corpus of over 8000 presentations using Bing web

searches specifying the “ext:pptx” filter. The resulting slide

decks were drawn from many fields including business,

government, science, technology, and education. We used

the Open XML SDK 2.5 [30] to parse these presentations and

extract statistics on slides and objects. Table 1 shows the

results from the 7663 successfully processed files.

We found that 88% of slides (24.7 out of 28.2) on average

contained placeholder objects created by the Slide Master.

We also found that the proportion of objects per slide that

could actually be restyled through the Slide Master (without

first resetting the slide to restore broken links, which loses

any custom layout and styling of placeholders) was only 21%

(1.1 out of 5.3) on average. Thus, while the vast majority of

slides (88%) have the potential to be updated via the Slide

Master, due to user editing behavior the vast majority of

objects (79%) still require manual editing.

We conducted a second analysis to understand the degree to

which objects shared the same or similar spatial extent on

slides, reflected as the same or similar edge offsets (distances

from the left and top slide edges). For each deck, we first

created a mapping from extents to objects, progressively

varying the matching tolerance from 0 to 100 points in 10

points increments (28pt=1cm). In each iteration, we grouped

objects across slides whose edges were all located within a

matching region of an existing extent (e.g., for the tolerance

of 0, we only grouped objects with identical extents).

This analysis revealed a strong skew resulting from many

small, often single-element groups. With exact matching (a

tolerance of zero points), the average number of position

groups was 35 and objects in the largest position group

occurred on 82% of slides. All groups in the upper quartile

(top 9 groups of 35) had objects occurring on at least 5% of

slides. Since these cannot all be placeholder objects (which

only contribute 1.4 objects per slide), they are likely to come

from copy-and-paste actions applied to ensure size, position,

and style consistency for individual objects (and slides).

When the tolerance was 60 points (about 2cm – a “near

match” on all four object edges), the number of overall

position groups halved (from 35 to 18). Objects in the largest

position group occurred on 93% of slides and those in the

upper quartile (top 5 groups of 18) had objects occurring on

at least 11% of slides.

In conclusion, there is ample opportunity to increase the

positional consistency of objects by mapping “near match”

objects into the exact same extent. If such a system could be

developed, it could also increase the style consistency of

position groups by propagating style changes to all members

of the associated group. Such a system would have a greater

restyling power than the Slide Master while also offering

implicit object templates, abstracted directly from slides,

rather than explicit slide templates designed indirectly in a

separate view. Many of the problems of template-based

layouts could thus be avoided.

STYLESNAP

Following on from the previous corpus analysis, we designed

a mixed-initiative tool called StyleSnap that can be applied

whenever a slide deck has evolved into a state of

misalignment or inconsistency. Our first goal was to develop

a method to align objects across slides without introducing

new problems, such as object overlap and image distortion.

Our second goal was to develop a user interface that would

allow a user to invoke StyleSnap, view the resulting groups

of objects snapped to the same extent, then undo, merge, or

modify these groups accordingly. Our implementation of

these concepts was through an add-in for PowerPoint 2013.

We now describe the high-level design of the StyleSnap user

interface and details of the underlying snapping algorithm.

Slide Statistics Mean (SD)

of slides 28.2 (20.7)
of slides with placeholders unmodified 19.0 (17.5)
of slides with placeholders modified
of slides without placeholders

5.7 (9.0)
3.5 (7.8)

Shape Statistics Mean (SD)

of objects per slide 5.3 (6.1)
of objects created by user 3.9 (6.2)
of objects from unmodified placeholders
of objects from modified placeholders

1.1 (0.9)
0.3 (0.4)

Table 1. Statistics on the number of slides and objects in 7,663

PowerPoint files we collected from the Internet.

StyleSnap Interface

Figure 1 shows the result of pressing the “StyleSnap” button

in the PowerPoint ribbon menu. A side pane appears showing

the resulting position groups―groups of objects across

slides that have been mapped to the same position and size

as a result of clustering and snapping edge values for the four

edge types. Each group is listed showing its color (matching

the color of the highlight boxes added to the corresponding

objects), the number of objects in the group, a “Style Painter”

icon for manually adding objects to the group and merging

groups with one another, and a checkbox indicating whether

the group is currently in its “Snap” state. Only non-singleton

object groups are snapped by default but the user can toggle

snapping for both individual groups and for all objects.

Snapped objects are designated with a solid border in their

new extent; unsnapped objects with a dashed border in their

original extent. If all objects were already in the same extent

and unaffected by snapping, the Snap checkbox is disabled.

Clicking on any slide object or position group highlights the

object, its position group in the side pane, and all other

objects in the group. For efficient visual browsing of this

position group, the system also gathers all slides containing

highlighted objects and places them in a temporary “Selected”

section at the start of the slide list, with other slides organized

in an “Unselected” section (existing sections are recreated

after StyleSnap tool use). The color of the highlight box of

the selected group fully saturates for clear differentiation

from the colors of other object groups. This visual feedback

allows the user to confirm quickly whether the automatic

snapping of the position group is desirable. When using the

StyleSnap tool, any location, size, font, or other format

changes to an object are propagated across all other objects

in its group and made visible in real-time on all slides in the

“Selected” section of the slide list.

The Style Painter is similar to the Format Painter but extends

to position and size attributes. Activating the Style Painter

for a particular group by clicking the corresponding icon

means that the next selected object or position group will

automatically be merged with the active group.

Clicking the “Apply” button saves the changes to the deck

and reverts to standard editing. Clicking “Discard” undoes

the changes and reverts the deck to its pre-StyleSnap state.

Snapping through Hierarchical Clustering

We wanted to enable “snapping” of objects into (a) fewer

extents with (b) better alignment across slides. Each of these

goals suggests a different approach. In order to reduce object

extents, we could apply hierarchical clustering [18, 37]

directly to object extents (since it does not require a prior

choice for the number of clusters, unlike, e.g., K-means).

However, this will not result in good cross-slide alignment if

the extents of objects within slides are misaligned. There is

also a sparsity problem―objects may all be sufficiently

different and no two objects should be mapped to the same

extent, even though any individual object edge may be close

to the corresponding edges of many other objects.

This led us to a solution based on hierarchical clustering of

individual object edges rather than object extents. We

independently perform hierarchical clustering of all the left,

top, right, and bottom edge positions of the objects within a

presentation and then apply the results back to the objects.

The result of such clustering for each of the four edge types

is a hierarchy of depth N where N is the number of distinct

edge positions. At level 1 there are N clusters of 1 edge

position. At level N there is 1 cluster of N edges, all snapped

to the modal edge position. From level 1 to level N, the

algorithm merges the closest pair of clusters and snaps all

edges in the new cluster to the new modal edge position.

We can determine the optimal clustering level for each edge

type (left, top, right, and bottom) by an energy function that

aims to balance similarity within and between clusters (i.e.,

to make close edge values the same while keeping distant

edges separate). However, the naïve updating of object edge

positions based on the optimum clustering of each edge type

could easily cause problems in visual appearance:

1. Object inversion, since independent edge clustering does

not respect relative positions of opposing object edges;

2. Object overlap, since initially separated objects can be

moved into a state where their content regions overlap;

3. Image distortion, since images are especially sensitive to

aspect ratio changes.

Given that we can identify and correct these problems only

after position updates, our divide-and-conquer approach of

clustering different edges independently is most suited to the

agglomerative, bottom-up method of hierarchical clustering

supported by the SLINK algorithm [37]. Overall, our

snapping approach is summarized in Algorithm 1.

Systematic Performance Evaluation of Snapping

Snapping completes in several seconds, even for 500 objects

(the 97th percentile in our PowerPoint corpus). In order to

evaluate the degree to which automated snapping matches

human judgments, we recruited two professional software

engineers to test its accuracy and reliability across a range of

Figure 1. StyleSnap interface. The right pane shows all the

groups whose objects are moved to the same position as a result

of snapping. The user can manually undo and merge position

groups, as well as simultaneously style all objects in the same

group with real-time feedback in the slide list on the left.

typical slide decks: 80 presentations from our PowerPoint

corpus, with varying numbers of slides (15–36; the lower and

upper quartiles) as well as varying numbers of objects per

slide (2.5–6.0 with mean 4.7).

Table 2 shows how the number of singleton position groups

(a mean of 53.6) forms a long-tail, as expected from the

earlier corpus analysis. Problems resulting from snapping

are well controlled in both group types, limited to overly

shrinking objects, creating inconsistencies among sets of

slide objects that were previously consistent (e.g., in size,

spacing, or alignment), and breaking spatial relationships

between objects (e.g., by moving arrows within diagrams).

Shrinkage can be dealt with by adding simple rules, but to

address problems that arise from object relationships would

require more complex rules or manual object grouping.

Overall, on average only 4.5 position group modifications

were required to reach a satisfactory state of alignment.

EVALUATION OF STYLESNAP

We conducted two user studies to evaluate the performance

of StyleSnap against two alternative approaches to cross-

slide alignment and styling: Repeat Editing and Slide Master.

For the study tasks we selected a slide deck from our internet

corpus with an average of 2 objects on each of 31 slides―one

from a Slide Master template, one added manually―with a

balance of title-and-bullets and image-and-caption slides.

Task: Cross-Slide Alignment of Misaligned Objects

There were 14 slides containing one picture and one textbox

used as a caption, with no perfect alignment of any pair of

objects. The task was to align all four object edges of groups

of images with similar aspect ratios and make the caption

format the same across all 14 slides. For consistency, we

defined target object groups for the 14 images based on three

aspect ratios: 9 portrait images, 4 landscape, and 1 panoramic.

We also set the target text format to be 20pt Red Italic Arial.

Expert Performance Prediction

In order to predict the expert performance of each technique,

we adopted an approach akin to Keystroke Level Modelling

(KLM) by constructing a task model for each system and

quantifying its time parameters through a user study. Since

these models do not account for switching costs, they

represent predicted lower bounds on task completion time.

Repeat Editing: [Start time Tre] Make a duplicate of Slide 13

and use it as a layout guide to align content from Slide 14.

Delete unwanted objects and slides. [End time Tre]

Reference task time = Tre × 13 slides

Slide Master: [Start time Tsm1] Open the Slide Master view

and create a layout with content placeholders in the desired

positions and aspect ratios. Close the Slide Master. [End time

Tsm1] [Start time Tsm2] Go to Slide 13 and update it to the new

custom layout. Delete unwanted objects [End time Tsm2]

Reference task time = Tsm1 × 3 slide layouts (one per aspect

ratio) + Tsm2 × 14 slides (apply new layout to each)

StyleSnap: [Start time Tss1] Use the Style Painter to add the

portrait image on Slide 28 to the position group of the portrait

image on Slide 13. [End time Tss1] [Start time Tss2] Set the

caption text to the target format. [End time Tss2]

StyleSnap groups the captions into a single group and images

into groups with 4, 4, 2, 1, 1, 1, and 1 objects. Reaching three

position groups for these images requires a maximum of

eight changes using the Style Painter (one object at a time).

Reference task time = Tss1 × 8 group changes (to make 3

groups) + Tss2 (applies to all captions at once)

Procedure

We first explained and demonstrated each task before asking

participants to repeat the procedure until they had mastered

it. We used two such slides for our demonstration, with the

task to make the layout and style of Slide 14 the same as Slide

13. We offered detailed instructions for each approach and

allowed several timed trials until we did not observe large

time variances. Participants’ best times were recorded and

used to calculate the reference task time (as is common when

seeking to understand expert performance, e.g., in [40]).

We recruited 12 participants (6 male and 6 female, the

average age of 25; PA1–PA12) from a local university. All

were familiar with PowerPoint and fluent in English. We

counterbalanced the condition order. Cash equivalent to $15

USD in local currency was offered as compensation.

Position Groups of 2+ Shapes Mean (SD)

of position groups 10.3 (10.0)
of position groups where snapping causes problems 0.7 (1.2)
of merges among 2+ position groups required 0.8 (1.1)

Position Groups of 1 Shape (Singletons) Mean (SD)

of position groups 53.6 (33.7)
of position groups where snapping causes problems 0.6 (2.5)
of additions to 2+ position groups required 2.4 (2.8)

Table 2. Performance of StyleSnap auto-alignment on 80 decks.

Algorithm 1. Global snapping of object edge positions

1. Cluster object edge positions in preparation for snapping
 For each edge type T (left, top, right, bottom):

a. Cluster edge positions using the SLINK algorithm
b. Calculate the optimal clustering level LT to minimize the

following distance-based energy function:

𝛼 ∑ (𝐶𝑔𝑐∈𝐺 − 𝐶𝑔𝑙𝑜𝑏𝑎𝑙) + (1 − 𝛼) ∑ ∑ (𝑙𝑠𝑠 ∈𝑔 − 𝐶𝑔)𝑔 ∈𝐺
(𝐶𝑔, 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 , and 𝑙𝑠 represent the centroid edge value of each
cluster, the one of all objects, and the edge value of one
object, respectively. 𝛼 is the coefficient to determine weights
for between-cluster and within-cluster similarities, set to 0.5)

2. Apply snapping progressively, resolving overlaps and inversions
 For 𝑖 = 1 𝑡𝑜 𝑁 (number of adaptive steps, e.g., 20):

a. For each edge type T:
i. Apply the snapping associated with clustering at level

[(𝑖 𝑁⁄) × 𝐿𝑇] (where level 1 is no clustering) to objects that
have not previously been inverted or overlapped.

b. For each object 𝑂𝑖:
i. If 𝑂𝑖 is newly inverted or overlapped, reset to 𝑂𝑖−1.

c. If no objects can be snapped further, move to (3).
3. Resolve image distortion
 For each snapped image object I:

a. If its aspect ratio of I has changed by more than a threshold
proportion (set to 0.1), shift the furthest-moved edge of I to
return to the original aspect ratio, otherwise allow the change.

Expert Performance Results

Table 3 summarizes the completion times of sub-tasks in

each of the three techniques. Entering these times into our

task models predicts the average expert performance to be

353, 322, and 107 seconds with Repeated Editing, Slide

Master and StyleSnap, respectively. This prediction is highly

promising and indicates that StyleSnap could substantially

reduce the user effort of cross-slide alignment and styling.

The results also show that updating any number of target

slides with StyleSnap is comparable to refactoring a single

slide with Slide Master, once the StyleSnap groups are

correct and the Slide Master templates are created. Since 4.5

StyleSnap group merges are required to correct the snapping

of a whole deck, on average, it also means that StyleSnap is

about as fast at correcting alignment throughout this

particular deck and refactoring 14 slides of a particular

design (69s) as Slide Master is at creating a single template

and refactoring just two slides (71s).

Novice User Performance Measurement

We also conducted a supplementary study with the same task

set to measure the performance of novice users. The

procedure was the same except that participants were asked

to modify all 14 slides in each task. This study therefore

offers realistic performance observations of the three

techniques that account for the effects of learning and fatigue.

From the expert performance prediction results, we had two

hypotheses for this study: [HA-1] StyleSnap would be faster

for global alignment than existing tools; and [HA-2] the

perceived workload of global alignment tasks would be

smaller with StyleSnap. StyleSnap training included 5-10

minutes of free exploration on a range of decks. Following

the study tasks, participants completed a NASA-TLX

questionnaire [17] for each approach. We recruited another

eight participants for this study (5 male and 3 female, the

average age of 25; PB1–PB8) from our research institute.

Novice User Performance Results

One-way repeated-measure ANOVA revealed a significant

difference among techniques (F(2,14) = 90.8, p < .0001, ηp
2

= .93), with StyleSnap faster than the other two (p < .0001

for both), shown in Figure 2, supporting HA-1. Analysis of

NASA-TLX responses found seven significant pairwise

results as shown in Table 4, partially supporting HA-2.

While the cost of both Repeat Editing and the Slide Master

scale linearly with the number of target objects, the cost of

StyleSnap scales only with the number of corrections to

groups that contain target objects. The fewer groups that

need to be corrected, the closer the performance of StyleSnap

to a constant time cost, regardless of the number of objects.

Qualitative Discussion

Participants in both studies unanimously preferred StyleSnap

over Repeat Editing and Slide Master and many commented

on how it would support their everyday authoring. The Slide

Master was also widely criticized, e.g.: “If we edit using Slide

Master, we really don’t know what the final result will look like.

After we edit it we should go back to see the result… if is not

satisfying we should go back again to the slide master view... If we

use StyleSnap we can see the result directly” (PA12).

The cost of automated snapping and manual modification

was perceived to be relatively low. Participants described the

“clustering” as “very efficient… it really helps in saving time”

(PA4); “really useful” (PA8); “a great idea… a simpler way to edit

a lot of shapes” (PA9). Participants also appreciated being able

to edit all objects in a position group simultaneously: “I can

do quick edits for the whole content in the slides” (PA5); “You can

do one ‘style’ and apply it everywhere fast” (PA2).

The study also highlighted areas for improvement. Several

participants expressed initial confusion about the meaning of

colors and suggested the use of semantic descriptors, icons,

or thumbnails to make the mapping clearer. One participant

found the “shuffling” of the slide list distracting while

another suggested a drag-and-drop mechanism for Style

Painting. During free explorations of multiple decks, several

participants expressed a desire for an algorithm that

automatically identifies diagram-like collections of objects

and groups them for StyleSnap alignment purposes.

StyleSnap Task for Novice Users: NASA-TLX Subjective Workload Results (in the format median [lower quartile, upper quartile])

 Mental Physical Temporal Performance Effort Frustration Weighted overall

Repeat Editing (RE) 25.0 [15.0,47.5] 82.5 [70.0, 96.3] 82.5 [73.8, 92.3] 67.5 [62.5, 75.0] 90.0 [73.8, 100.0] 85.0 [78.8, 91.3] 78.0 [73.3, 81.3]

Slide Master (SM) 47.5 [40.0, 57.5] 47.5 [33.8, 58.8] 45.0 [27.5, 57.5] 22.5 [8.8, 36.3] 52.5 [25.0, 55.0] 52.5 [36.3, 66.3] 43.8 [35.8, 55.0]

StyleSnap (SS) 30.0 [18.8, 66.3] 22.5 [18.8, 31.3] 17.5 [13.8, 21.3] 15.0 [5.0, 16.3] 27.5 [25.0, 33.8] 20.0 [8.8, 30.0] 25.0 [22.7, 29.3]

Friedman test: χ2(2) 0.077 (p = .96) 11.6 (p < .01) 13.6 (p < .01) 10.2 (p < .01) 13.1 (p < .01) 14.0 (p < .001) 15.5 (p < .001)

Pairs with p<.05 (none) (none) RE-SS (none) RE-SS, RE-SM RE-SS, RE-SM RE-SS, RE-SM

Table 4. NASA-TLX subjective workload results for novice users completing the StyleSnap task. Lower values are better.

Figure 2. Predicted lower bounds on expert performance (bars

without borders) and novice user mean performance time (bars

with borders). Error bars represent 95% Confidence Intervals.

StyleSnap Task for Expert Users: Completion Times Mean (SD)

Tre: Refactor a target slide using Repeat Editing 25.2 (6.4)

Tsm1: Make a slide template using Slide Master 43.2 (9.6)

Tsm2: Refactor a target slide to a slide template using
Slide Master

13.8 (2.1)

Tss1: Find and add an object to a group using StyleSnap 11.5 (2.7)

Tss2: Update all target slides using StyleSnap 15.2 (5.6)

Table 3. Sub-task completion time results in the expert

performance user study.

The study also surfaced tensions in the design of StyleSnap,

which is predicated on the value of object alignment and

style consistency throughout a slide deck. As one participant

explained, “With StyleSnap I can easily design the layouts,

especially if I want to change the same layouts, not manually edit

the slides. But I think it will be difficult to change if on each slide

the designs are different” (PA8). A different approach is

required to make repetitive changes to objects that do not

share the same position―this is the purpose of the

complementary FlashFormat tool that we present next.

FLASHFORMAT

StyleSnap supports aligning objects across slides in ways

that increase processing fluency, but it is not applicable to

repeated-object restyling when target objects are placed at

different locations. FlashFormat offers the ability to apply

global style changes with more flexible object selection.

FlashFormat is a programming-by-example system [29] that

allows the user to perform repetitive formatting tasks in

PowerPoint. The interface of FlashFormat is shown in Figure

3. It consists of only two buttons: “Start New Examples” and

“FlashFormat”. The user starts by clicking “Start New

Examples” and then gives some examples of the formatting

changes they would like to perform. When they click on

“FlashFormat”, the system infers the least-general

generalization (LGG) from the given examples and applies

the changes to the rest of the document (“FlashFormat-all”).

In Figure 3b the user gives two examples of changing the

color of diamond shapes to yellow, for which the system

infers the LGG that changes all diamond shapes to yellow

(Figure 3c). The inferred generalization depends on the given

examples; for instance, to color yellow any object with

underlined text, the user may give examples for different

shapes and colors (e.g., white diamond, white rectangle, gray

rectangle) containing underlined text.

The inference performed by FlashFormat is based on the

XML specifications of objects (using the OOXML file

format), and hence covers all properties expressed in this

specification. The system is based on a domain specific

language for expressing transformations of XML structures,

and a synthesis algorithm for inferring LGG programs within

this language. In this work, we focus on the interaction model

and usability studies of the tool. The underlying inference

algorithm builds on prior work in program synthesis [32].

An interactive and incremental generalization process

The user can guide the system to the desired generalization

in an interactive and incremental fashion. Since the system is

conservative in the inference of the generalization, the user

can give additional (dissimilar) examples to express their

intended selection criteria. For example, if the user wants to

color all objects with underlined text and only gives

examples of diamond shapes, then the system may infer a

less general hypothesis: to color only diamond shapes

containing underlined text. However, the system is designed

to incrementally accept examples. At that point the user can

give more examples through manual editing, and then

FlashFormat again; from added examples, the system will

infer a more general transformation.

The user can also backtrack if the system does not infer the

intended transformation. If the inferred generalization is not

applicable to any other objects, then the system applies the

transformation to the closest matching objects, according to

a similarity measure on the XML specification of objects. If

this inference is inaccurate, then the user can undo the

changes using the standard “undo” feature, and provide more

examples to guide the system in the right direction.

The system also supports a restricted application of the

inferred transformations, allowing the user to verify the

transformation before applying it globally. After giving

examples, the user can select a set of objects or slides and

then click “FlashFormat” to apply the transformation only to

the selected objects or slides (“FlashFormat-selected”).

EVALUATION OF FLASH FORMAT

We conducted a user study to examine the use of

FlashFormat. We formulated three hypotheses: [HB-1]

Users would be able to achieve their desired global restyling

through FlashFormat; [HB-2] with the experience of using

FlashFormat, users will develop a sense of which examples

to give, and [HB-3] across a range of tasks, using

FlashFormat would be faster than standard editing tools.

Tasks: Cross-slide Shape Restyling

We prepared a slide deck downloaded from the Internet. It

contained flowcharts spanning five slides, using different

shapes (rectangles and diamonds). Such diagrams are

commonly encountered in slide presentations and cannot be

restyled through the slide master because objects invariably

occupy unique slide extents. Participants were asked to

 (a) (b) (c)

Figure 3. FlashFormat interface, illustrating the coloring of all

diamonds to yellow: (a) the user clicks “Start New Examples”;

(b) gives two examples of diamond shapes, changing the color;

(c) clicks “Flash Format” to apply the least-general

generalization from the example changes.

perform two changes specified by the experimenter, either

with FlashFormat or manually (use of Format Painter was

allowed in this condition). In order to create a balanced

workload per task, we varied the number of objects to be

restyled and the difficulty of giving examples. The

participants were asked to make two systematic style

changes in each trial but were not allowed to change any

other visual attribute or text content of the objects. After this

controlled task, participants were given another slide deck

and asked to perform global restyling as they liked. They

were encouraged to use FlashFormat to make changes and

were given five minutes for this part of the study.

The interface used in the study did not include visual

feedback before clicking the FlashFormat button. Our

intention was to study how well participants could

understand the behavior of LGG without being influenced by

the feedback design and to test its effectiveness in a most

basic form (any additional improvements on feedback would

generally favor the performance of FlashFormat).

Procedure and Participants

We first explained FlashFormat with two examples of slide

decks and asked participants to perform global restyling

tasks. The slide decks included easy and difficult cases for

FlashFormat. This pre-task session was intended to make

participants knowledgeable about the system and able to

perform restyling without help from the experimenters. We

provided explanations that choosing more, and more diverse

examples would lead to better results (referred to as “the

golden rule”), but we did not force participants to do so.

During each trial, we measured the performance time

between the start of the task and the point when they

confirmed all necessary changes on all specified objects. At

the end of the study, participants were asked to describe their

experience of FlashFormat, give suggestions for

improvements, and fill out a questionnaire.

We recruited 12 participants (8 male and 4 female, with

average age 25; PB1–PB12) from our research institute. All

were familiar with PowerPoint and fluent in English, and

none of them participated in the first study. The same

compensation was offered to all participants in this study.

Results

Figure 4 shows the mean performance time for each number

of objects with the two techniques. Times in the manual

editing condition varied in the range of 90–100 seconds,

whereas FlashFormat times were constant at about 40

seconds. Two-way repeated measure ANOVA revealed a

significant main effect for technique (F(1,11) = 45.5, p < .0001,

ηp
2 = .81). The interaction between technique and task was

also significant (F(2,22) = 4.40, p < .05, ηp
2 = .29). The post-

hoc analysis confirmed that the FlashFormat technique was

significantly faster than the manual editing technique (p

< .0001). This quantitative result demonstrates substantial

improvements over existing editing tools and methods for

global restyling, supporting our hypothesis HB-3.

Table 5 presents the results of the questionnaire. Participants

responded positively to their experience with FlashFormat,

unanimously agreeing that FlashFormat was preferable to

manual editing. As with StyleSnap, many participants

commented on how it would support their regular authoring

practices, especially with regard to diagram formatting. We

further examined the qualitative study data to understand the

reasons for these positive results.

Qualitative Analysis

In the pre-task session, participants exhibited a tendency to

give one example, repeatedly FlashFormat-all until they

reached the point of over-generalization, undo, and repeat.

Thus, the participants did not follow the ‘golden rule’ of

giving more, and more diverse examples, despite being

reminded of it after each undo action. However, as the

system repeatedly failed to produce their intended

generalization from a single example, participants began

giving more examples. At first, these were typically two

examples given on the first two slides where they were

applicable. However, we observed a gradual shift to a more

systematic selection of diverse examples. Not only did

participants learn to follow the golden rule through

experience, they also learned what it means for examples to

be diverse and how to give enough of them:

“Doing things automatically is good but sometimes I need to find

out the differences of the shape, for example this is red and this is

orange so I know I have to give two examples, one on the red and

another on the orange, to let the system know that I want to change

all the shapes no matter what the color is.” (PB2)

“If you want to change the styles for all slides, you have to review

all the slides first. For me it should be: first review all the slides,

and then pick up all the different parts… different stuff in the same

parts you want to change, and then change the different properties,

and go ahead and FlashFormat and it should work.” (PB8)

Questions Mean response (SD)

I could always give appropriate examples to reach
my desired end state.

5.1 (1.6)

I could anticipate the effects of FlashFormat before
actually doing it.

4.6 (1.4)

It is necessary to anticipate the effects of
FlashFormat to successfully use the tool.

5.8 (1.2)

It is annoying to repeatedly undo unwanted effects
from FlashFormat.

4.3 (2.1)

I would prefer to use FlashFormat rather than make
repetitive changes one-by-one.

6.5 (0.8)

Table 5. Responses of the post-experimental questionnaire. (1:

strongly disagree – 7: strongly agree)

Figure 4. Mean performance time in the second study. The

error bars represent 95% Confidence Intervals.

Overall, this suggests that repeated feedback from applying

the LGG of self-selected formatting examples is sufficient to

promote self-discovery of the optimum example-giving and

generalization strategy. Our questionnaire results also

support this, showing that participants agreed that they could

provide examples and anticipate the effect. Thus, we

concluded that HB-1 and HB-2 are also supported.

Nevertheless, the learning process could still benefit from

additional guidance. One participant mentioned how before

starting new examples, they “always forget to press the button”

(PB12). Another participant described how, while giving

examples, they “sometimes feel lost about what to do next –

should I choose more examples, or should I apply FlashFormat

first?” (PB1). Finally, several participants reported the need

for better feedback, before and after applying FlashFormat-

all, about which objects would be changed or had been

changed already. Suggestions for improvements included

highlighting the scope of objects that would be changed next,

highlighting the differences of objects that share some

attributes with the selected object to guide example selection,

learning from multi-object examples where the relative

changes are significant, and removing the need to press a

start button. The latter could be done either showing a history

of recently edited attributes that will be applied or suggesting

multiple transformations from a single example.

Even without the suggested changes, the approach was

assessed favorably against alternatives. Compared with the

PowerPoint Format Painter, it was found to “work more

efficiently” (PB3), to be “much faster” (PB12) and to be “much

more powerful” (PB4) because it can “work globally” (PB4) and

“between slides” (PB5) without overwriting all attributes (PB4).

FlashFormat also “has some features Slide Master does not

provide” (PB7), such as the ability to work on groups of

objects that do not share the same location. In this respect,

FlashFormat also surpasses the restyling power of StyleSnap,

in which object groups are formed only by shared extents.

OVERALL DISCUSSION

We presented two complementary tools for automating

global changes that can improve the visual consistency of

slide decks. From the design and evaluation of these two

tools we now synthesize limitations, lessons, and future work.

One limitation of the current work is our focus on the design

of slide visuals only, and not of the underlying presentation

material [23] or narrative structure [31]. While the balance

of presentation preparation time should arguably be in favor

of content and story, any time saved on styling slide visuals

could conceivably be transferred to these other activities.

Another limitation is our sole use of PowerPoint for corpus

analysis and prototyping. Since all slides and slideware are

structurally similar, we expect our proposed solutions to

generalize to other slideware and their associated slides. As

for applications to other domains (e.g., vector-based

graphical editing), this has not yet been demonstrated.

As we have already noted, StyleSnap does not preserve size

and spacing constraints within a slide. Constraint-based

reasoning, as used for single layout beautification [41], could

provide a solution. Similarly, a limitation of FlashFormat is

that imperceptible differences in attribute values are still

viewed as differences by the system, leading to potential

mismatches between user expectations and action outcomes.

Finally, we have evaluated our two tools independently

rather than as a single system, such that we may evaluate

their individual value. We hope to combine the functionality

of the two tools into a single system in future work, taking

into account the lessons discussed next.

Lesson 1: Suggest generalizations from single edits

One of the advantages of StyleSnap over FlashFormat is that

users can confidently edit all of the objects in a position

group at once rather than having to provide several examples

first. One of the advantages of FlashFormat over StyleSnap

is that object groups can be formed from any set of shared

attributes, not just edge positions. Future work should

investigate how to achieve both high predictability and

flexibility from single examples. This could be achieved by

suggesting multiple possible transformations after each edit,

or suggesting snapping results for attribute values beyond

edge positions (e.g., to create small, consistent sets of colors

and font sizes) after each object selection. Users could thus

make progress by incrementally applying such suggestions.

Lesson 2: Support state preservation as well as propagation

In both StyleSnap and FlashFormat, there were times when

the user already had an example of their desired end state but

were forced to recreate it for the benefit of the tool. In

StyleSnap, this was because the snapped object groups

represented the modal values of the clustered edges rather

than the extent of a specified object. In FlashFormat, this was

because only the edited attributes of an object contribute to

the inferred example, and none of the other existing attributes.

Future work should explore how to give examples of both

the “change to” and “keep as” variety on a per-attribute basis,

without requiring an enumeration of all object attributes.

Lesson 3: Show the scope of prospective changes

In StyleSnap, the real-time feedback from the combination

of object highlights and the Selected slide section gave

confidence to the user about the scope of their changes before

and as they were making them. However, this feedback also

created visual noise for dense slides and caused scrolling of

the slide list for large numbers of selected objects. As

literature suggests the importance of feedback in this type of

systems [29], future work should explore alternative

feedback strategies for tools like StyleSnap and FlashFormat.

Lesson 4: Incorporate design patterns and principles

StyleSnap makes the layout of objects consistent across

slides, but it does not give any guidance about the desirability

of those layouts. Similarly, FlashFormat can make large-

scale changes easily, but provides no feedback about the

desirability of those changes (e.g., considerations of the

contrast between text and its background image following a

global change to caption color). Future work should explore

how to resolve aesthetic issues through assisted layout and

styling that considers factors such as visual balance [25] and

mood [21]. Supporting consistency, not just within sets of

user-created visuals but also with external design patterns

and principles, remains a significant research challenge.

REFERENCES

1. Abela, A.V. (2008). Advanced presentations by design.
Pfeiffer.

2. Ali, K., Hartmann, K., Fuchs, G. & Schumann, H. (2008).
Adaptive layout for interactive documents.
SmartGraphics’08, 247-254.

3. Amershi, S., Fogarty, J. & Weld., D. (2012). Regroup:
interactive machine learning for on-demand group creation
in social networks. CHI’12, 21-30.

4. Baudisch, P., Cutrell, E., Hinckley, K. & Eversole, A.
(2005). Snap-and-go: helping users align objects without
the modality of traditional snapping. CHI’05, 301-310.

5. Bier, E.A. & Stone, M.C. (1986). Snap-dragging.
SIGGRAPH’86, 233-240.

6. Blackwell, A.F. (2002). First steps in programming: A
rationale for attention investment models. Human Centric
Computing Languages and Environments, 2002.

7. Borning, A., Lin, R.K.H & Marriott, K. (2000). Constraint-
based document layout for the Web. Multimedia Syst. 8(3),
177-189.

8. Cypher, A. (1991). EAGER: programming repetitive tasks
by example. CHI’91, 33-39.

9. Drucker, S.M., Petschnigg, G. & Agrawala, M. (2006).
Comparing and managing multiple versions of slide
presentations. UIST’06, 47-56.

10. Duarte, N. (2008). Slide:ology: The art and science of
creating great presentations. O’Reilly Media.

11. Edge, D. Savage, J. & Yatani, K. (2013). HyperSlides:
dynamic presentation prototyping. CHI’13, 671-680.

12. Fails, J.A. & Olsen Jr., D.R. (2003). Interactive machine
learning. IUI’03, 39-45.

13. Fernquist, J., Shoemaker, G. & Booth, K. S. (2011). “Oh
snap”–helping users align digital objects on touch
interfaces. INTERACT’11, 338-355.

14. Frisch, M., Kleinau, S., Langner, R. & Dachselt, R. (2011).
Grids and guides: multi-touch layout and alignment tools.
CHI’11, 1615-1618.

15. Frisch, M., Langner, R. & Dachselt, R. (2011). Neat: a set
of flexible tools and gestures for layout tasks on interactive
displays. ITS’11, 1-10.

16. Graf, W.H. (1998). Constraint-based graphical layout of
multimodal presentations. Readings in intelligent user
interfaces, Morgan Kaufmann, 263-285.

17. Hart, S. G., & Staveland, L. E. (1988). Development of
NASA-TLX: results of empirical and theoretical research.
Human mental workload, 1(3), 139-183.

18. Hastie, T., Tibshirani, R. & Friedman, J.J.H. (2001). The
elements of statistical learning. Springer.

19. Horvitz, E. (1999). Principles of mixed-initiative user
interfaces. CHI’99, 159–166.

20. Jacobs, C., Li, W., Schrier, W., Bargeron, D. & Salesin, D.
(2003). Adaptive grid-based document layout.
SIGGRAPH’03, 838-847.

21. Jahanian, A., Liu, J., Lin, Q., Tretter, D., O'Brien-Strain, E.,
Lee, S.C., Lyons, N. & Allebach, J. (2013).
Recommendation system for automatic design of magazine
covers. IUI’13, 95-106.

22. Kurlander, D. & Bier, E. (1988). Graphical search and
replace. SIGGRAPH’88, 113-120.

23. Liu, Y., Edge, D. & Yatani, K. (2013). SidePoint: a
peripheral knowledge panel for presentation slide
authoring. CHI’13, 681-684.

24. Lok, S. & Feiner, S.K. (2001). A survey of automated
layout techniques for information presentations.
SmartGraphics’01, 61-68.

25. Lok, S., Feiner, S.K. & Ngai, G. (2004). Evaluation of
visual balance for automated layout. IUI’04, 101-108.

26. Masui, T. (2001). HyperSnapping. HCC’01, 188-194.
27. Miller, R.C. & Myers, B.A. (2002). Multiple selections in

smart text editing. IUI’ 02, 103-110.
28. Miller, R.C. & Marshall, A.M. (2004). Cluster-based find

and replace. CHI’04, 57-64.
29. Myers, B. A. (1992). Demonstrational interfaces: a step

beyond direct manipulation. Computer 25(8), 61-73.
30. Open XML SDK 2.5. http://msdn.microsoft.com/en-

us/library/office/bb448854.aspx
31. Pschetz, L., Yatani, K. & Edge, D. (2014).

TurningPoint: narrative-driven presentation planning.
CHI’14.

32. Raza, M., Gulwani, S. & Milic-Frayling, N. (2014).
Programming by example using least general
generalizations. AAAI.

33. Reber, R., Schwarz, N., & Winkielman, P. (2004).
Processing fluency and aesthetic pleasure: is beauty in the
perceiver's processing experience?. Personality and social
psychology review, 8(4), 364-382.

34. Reynolds, G. (2012). Presentation Zen: simple ideas on
presentation design and delivery. New Riders.

35. Ritter, A. and Basu, S. (2009). Learning to generalize for
complex selection tasks. IUI’09, 167-176.

36. Schrier, E., Dontcheva, M., Jacobs, C., Wade, G. &
Salesin, D. (2008). Adaptive layout for dynamically
aggregated documents. IUI’08, 99-108.

37. Sibson. R. (1973). SLINK: an optimally efficient algorithm
for the single-link cluster method. The Computer Journal
16 (1), 30-34.

38. Watanabe, T. & Hanaue, K. (2013). Composition support
of presentation slides based on transformation of semantic
relationships into layout structure. Multimedia Services in
Intelligent Environments, 25, 155-181.

39. Weitzman, L. & Wittenburg, K. (1996). Grammar-based
articulation for multimedia document design. Multimedia
Systems, 4(3), 99-111.

40. Wigdor, D., Benko, H., Pella, J., Lombardo, J. & Williams,
S. (2011). Rock & rails: extending multi-touch interactions
with shape gestures to enable precise spatial manipulations.
CHI’11, 1581-1590

41. Xu, P., Fu, H., Igarashi, T. & Tai, C-L. (2014). Global
beautification of layouts with interactive ambiguity
resolution. UIST’14, 243-252.

