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Abstract—Knowledge bases, which consist of concepts, entities,
attributes and relations, are increasingly important in a wide
range of applications. We argue that knowledge about attributes
(of concepts or entities) plays a critical role in inferencing. In this
paper, we propose methods to derive attributes for millions of
concepts and we quantify the typicality of the attributes with
regard to their corresponding concepts. We employ multiple
data sources such as web documents, search logs, and existing
knowledge bases, and we derive typicality scores for attributes by
aggregating different distributions derived from different sources
using different methods. To the best of our knowledge, ours is the
first approach to integrate concept- and instance-based patterns
into probabilistic typicality scores that scale to broad concept
space. We have conducted extensive experiments to show the
effectiveness of our approach.

I. INTRODUCTION

A fundamental goal in the creation of knowledge bases
of concepts, entities, and attributes, is to enable machines to
perform certain types of inferences as humans do. The input
data is often sparse, noisy, and ambiguous. A human mind is
able to make inferences beyond the information in the input
data because humans have abstract background knowledge. A
knowledge base is used to provide this background knowledge
to machines, and thus the ability to acquire, represent, and
reason over such knowledge has become the most critical step
toward realizing artificial intelligence.

TABLE I
CONCEPTS, ATTRIBUTES, AND TYPICALITY SCORES.

Concept Attribute P (c|a) P (a|c)
company name 0.0401 0.0846

operating profit 0.9658 0.0218
...

country people 0.5760 0.0694
population 0.2870 0.0436

...
...

...

A knowledge base consists of a web of relationships among
concepts, instances, and attributes. Among these relationships,
the following three form the backbone of the knowledge base:

• isA: a relationship between a sub-concept and a concept
(e.g., an IT company is a company);
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• isInstanceOf1: a relationship between an entity and a
concept (e.g., Microsoft is a company);

• isPropertyOf: a relationship between an attribute and a
concept (e.g., color is a property/attribute of wine).

In this paper, we argue that attributes (i.e., the isProper-
tyOf relationship) play a critical role in knowledge inference.
However, in order to perform inference, knowing that a
concept can be described by a certain set of attributes is
not enough. Instead, we must know how important, or how
typical each attribute is for the concept. In this paper, we focus
on automatically acquiring and scoring attributes. The output
of our work is a big table. As shown in Table I, the table
consists of (millions of) concepts, their attributes, and scores.
The scores are important for inference, and we denote them
as the typicality scores. Specifically:

• P (c|a) denotes how typical concept c is, given attribute a.

• P (a|c) denotes how typical attribute a is, given concept c.

In Table I, for example, company is not a typical concept
for the attribute name because virtually every concept has
name. On the other hand, company is a much more typical
concept for the attribute operating profit. This is quantified by
the scores in the table, as we can see

P (company|operating profit) > P (company|name) (1)

On the other hand, when we are talking about a company,
people are more likely to mention its name than its operating
profit, so we have:

P (operating profit|company) < P (name|company) (2)

But as the data in the table shows, the difference of the
typicality scores in Eq 2, 0.06, is not as dramatic as in Eq 1,
where the difference is larger than 0.9. This is consistent with
how people feel about these attributes and concepts.

Inference

Now we explain why concepts, attributes, and the typicality
scores are important in knowledge inference. Intuitively, given

1In the rest of this paper, we ignore the difference between isA and
isInstanceOf and denote both of them as isA. For any concept, say company,
we denote its sub-concepts and entities as its instances. Thus, both IT company
and IBM are instances of company.



the short text, “capital city, population”, people may infer that
it relates to country. Given “color, body, smell,” people may
think of wine. However, in many cases, the association may
not be straightforward, and may require some guesswork even
for humans. Consider the following example. Assume that we
encounter the table on the web as shown in Fig. 1(a). Can we
guess what the table is about?

(a) A web table with a header

(b) # of possible concepts decreases
as more attributes are known

Fig. 1. How we guess what the table is about?

From a single attribute, say website, it is impossible to guess
the exact content of the table, as website belongs to many
concepts. However, as illustrated in Fig. 1, as the system we
developed sees more and more attributes, it has fewer and
fewer candidate concepts, and after 6 or 7 attributes, it finds
the right concept with high confidence (the table is about
university, institutes, etc.) As we can imagine, typicality scores
P (c|a) and P (a|c) can play an important role in the process
of deriving the right concept.

As another example, consider the following tweet message:
The Coolpix P7100 is announced. The powerful lens
with 7.1x zoom offers high resolution (10MP) images.

Suppose we have no idea that Coolpix P7100 is a camera.
Given the tweet, can we derive from its context that it is
talking about a camera? As a human being, we probably
can. How about machines with a knowledge base? Sup-
pose that through natural language processing, we identify
lens, zoom, resolution as attributes, and in the knowledge
base, only camera and smart phone have attributes lens,
zoom, resolution. Then, all we need to figure out is whether
the probability P (camera|lens, zoom, resolution) is greater
than P (smart phone|lens, zoom, resolution), or vice versa.
In other words, we want to know whether camera is a more
typical topic than smart phone, given the set of attributes.

With typicality scores, it is not difficult for a machine to
perform the above inference. The goal is to find the most
likely concept given a set of attributes. More specifically, we
want to find concept ĉ such that

ĉ = argmax
c

P (c|A)

where A = (lens, zoom, resolution) is a sequence of attributes.
We can estimate the probability of concepts using a naive
Bayes model:

P (c|A) = P (A|c)P (c)

P (A)
∝ P (c) ·

∏
a∈A

P (a|c)

It is clear that this boils down to finding conditional prob-
ability P (a|c), which is one of the typicality scores we have
mentioned.

Our Contributions

To support the type of inference illustrated by the above
examples, we focus on two tasks: acquiring attributes and
scoring attributes. We leverage Probase [1], [2], a probabilistic
knowledge base that contains a large number of concepts,
entities, isA relationships, etc., in our work.
• To the best of our knowledge, this is the first work that
investigates typicality scores for attributes. We have shown
that many applications could benefit from knowledge about
concepts and attributes with typicality scores. In this work,
we consider two views on typicality studied in psychology
(frequency and family resemblance), and reflect them in
probabilistic typicality scoring procedure.

• While most existing attribute extraction methods are
instance-based, we also adopt a new concept-based ap-
proach, and we make in-depth comparisons between them.
With concept-based attribute extraction, we directly obtain
the attribute population for the concept country, from the
text “the population of a country”. Compared with instance-
based extraction, concept-based approaches incur much less
ambiguity and produce higher-quality attributes.

• We also deal with ambiguity, which is a big challenge,
especially for instance-based attribute extraction, but not
fully addressed in the previous approaches. For example,
while finding attributes for the concept wine, from the text
“the mayor of Bordeaux”, we may mistake mayor for an
attribute of wine. But in fact, ‘Bordeaux’ is ambiguous, as
it is also the name of a city in southwestern France. In
our work, we address the ambiguity issue in instance-based
attribute extraction, and we also leverage the concept-based
approach that is not vulnerable to instance-based ambiguity.

• We leverage attributes from different data sources, and
introduce a novel learning to rank approach to combine
them. Each data source and method has its own character-
istics. For example, we may find that the attribute name
is frequently observed in one method (i.e., concept-based
approach), and not in another (instance-based approach),
while the attribute biography is just the opposite. Putting
them together gives us a more comprehensive and unbiased
picture, which resolves issues such as ambiguity, noise,
bias, and insufficient coverage, due to the eccentricity of
a particular method/source. We will show the difference
of the attributes extracted from different data sources, and
present a simple yet effective method to aggregate the
extraction results from the sources using a learning to



rank method. This is a totally novel approach. An existing
work [3] uses a regression method to aggregate features
to recognize good attributes. However, it requires human
assessors to specify exact numeric values. In contrast, the
learning to rank method has no such requirement.

• To have comprehensive and accurate coverage of attributes,
we address the challenge of computational feasibility. We
process very large text corpus including a web corpus,
search logs, and existing knowledge bases such as DBpedia.

Paper Organization

The rest of the paper is organized as follows. Section II
introduces our approach for finding attributes for millions of
concepts from several sources. Section III shows how to give
weights to the extracted attributes for each method, and how
to aggregate the weights. We present experimental results in
Section IV. Finally, we discuss related work of attribute mining
in Section V, and conclude in Section VI.

II. ATTRIBUTE EXTRACTION

In this section, we introduce a knowledge empowered ap-
proach for attribute extraction. We extract (concept, attribute)
pairs from multiple data sources. In Section III, we show how
to assign a weight or a typicality score for each (concept,
attribute) pair for each source, and then describe how to ag-
gregate the weights from different sources into one consistent
typicality score.

Concept-based Attribute Extraction Instance-based Attribute ExtractionPCB(a|c) PIB(a|c) PKB(a|c)

Web Documents

Learning TypicalityTypicality P(a|c)

Query Logs
Instance-based Query Log ExtractionPQB(a|c)

Instance-based KnowledgebaseExtraction
External Knowledge Base

Training Data

Probase

Fig. 2. The framework.

A. A Framework for Attribute Extraction

As we show in Fig. 2, our attribute extraction framework
employs a probabilistic knowledge base (Probase) and per-
forms extraction from the three types of data sources. The
knowledge base, which we will describe in more detail in
Section II-B, enables and guides attribute extraction from
different data sources. The types of data we focus on include
web data, search log data, and various structured data. We

TABLE II
SUMMARY OF THREE TYPES OF DATA SOURCES.

Web documents Bing query log DBpedia
Size huge large relatively

small
(240 TB) (9 GB) (64.3 MB)

Structure unstructured, but
syntactic

unstructured,
not syntactic

structured

Method concept-based,
instance-based

instance-based instance-
based

Extraction Time 38.33 hours 115.33 minutes -

summarize the data in Table II. The web data contains 7.63
billion web documents with a total size of 240 TB. The search
log contains all the web search queries with frequency greater
than two collected over a six-month period. The structured
data we use is DBpedia [4], which we regard simply as a set
of (entity, attribute) pairs.

The algorithms we propose for attribute extraction in this
paper generally fall into two categories: the concept-based
approach and the instance-based approach. The concept-
based approach directly obtains attributes for a concept. The
instance-based approach first obtains attributes for instances
that belong to the same concept, then it aggregates them to
derive attributes for the concept. We apply both methods to
our web data. However, for the search log and structured data,
only instance-based attributes are available. In Section II-C,
we will describe these extraction methods in detail. We will
show that attributes derived from different methods or sources
have different properties and do not entirely overlap, thus the
methods and the sources complement each other.

Each (attribute, concept) pair extracted from a data source
is also associated with a weight that indicates how typical
the attribute is given the concept. In the final phase, we merge
the four probability distributions into one typicality score. The
details are presented in Section III-D

B. A Probabilistic isA Network

In our work, we leverage a probabilistic knowledge base
called Probase [1] to guide attribute extraction. The goal of
Probase is to create a network of isA relationships for all the
concepts (of worldly facts) in a human mind. IsA relationships
can be obtained by information extraction using the Hearst
linguistic patterns [5], which are also known as the SUCH AS
patterns. For example, a sentence that contains “... artists such
as Pablo Picasso ...” can be considered evidence for the claim
that artist is a hypernym of Pablo Picasso.

Probase has two unique features. First, Probase has large
coverage – it contains millions of concepts and entities (both
are multi-word expressions) acquired through automatic infor-
mation extraction from billions of web pages. For instance,
it contains not only head concepts such as country and city,
but also tail concepts such as basic watercolor technique
and famous wedding dress designer. This enables Probase
to better interpret human communications. Another important
feature of Probase is that it is probabilistic. Probase maintains
co-occurrence counts for every (concept, sub-concept), or
(concept, entity) pair. The co-occurrence enables us to compute



typicality scores for isA relations. For example, we have

P (instance|concept) = n(instance, concept)∑
instance n(instance, concept)

(3)
where an instance denotes either a sub-concept or an
entity that has an isA relationship to the concept, and
n(instance, concept) denotes the co-occurrence count of con-
cept and instance. The typicality information is essential for
understanding the intent behind a short text.

C. Concept- and Instance-based Extraction

In this section, we focus on attribute extraction using
two methods: a concept-based method and an instance-based
method. We perform extraction from the web corpus (Sec-
tion II-C1), an existing knowledge base (Section II-C2), and
query logs (Section II-C3). We also analyze the difference
of the attributes obtained by the two methods, which demon-
strates that both methods are important (Section II-C4). Fi-
nally, we introduce some filtering methods to improve the
quality of extraction (Section II-C5).

1) Attribute extraction from the web corpus: Many in-
formation extraction approaches focus on finding more and
more syntactic patterns in an iterative process for extracting a
relation. However, this approach has one significant weakness.
High quality syntactic patterns are very few. Most patterns
produce a lot of noises. In our approach, we focus on the
following high quality syntactic patterns for concept-based and
instance-based attribute extraction on web corpus to 1)accu-
rately process the documents (high precision), and 2)extract
large amount of attributes from huge web corpus (high recall
and feasibility).

• Syntactic pattern for concept-based (CB) extraction:

the ⟨a⟩ of (the/a/an) ⟨c⟩ [is] (4)

• Syntactic pattern for instance-based (IB) extraction:

the ⟨a⟩ of (the/a/an) ⟨i⟩ [is] (5)

Here, ⟨a⟩ is a target attribute that we want to obtain from texts
that match the syntactic patterns, ⟨c⟩ is the given concept for
which we obtain attributes, and ⟨i⟩ is an instance (sub-concept
or entity) in concept ⟨c⟩. Both ⟨c⟩ and ⟨i⟩ are from the Probase
semantic network. For example, let’s assume that we want to
find attributes for the concept ⟨c⟩ = wine. From the sentence,
“... the acidity of a wine is an essential component of the wine
...”, we know that ⟨a⟩ = acidity is a candidate attribute of
wine. Furthermore, from the sentence “the taste of Bordeaux
is ...” we know that ⟨a⟩ = taste is an attribute of ‘Bordeaux’.
From Probase, we know that ‘Bordeaux’ is an instance in the
wine concept. Thus, ⟨a⟩ = taste is also a candidate attribute
of wine.

The result of the extraction is a large set of (concept,
attribute) pairs. Besides obtaining the pairs, we also want to
know their weights; that is, how typical is an attribute for
a concept? The result tuples (c, a) by CB, or (i, a) in the
case of IB, of each extraction are grouped into (c, a, n(c, a))
tuples, or (i, a, n(i, a)) tuples, where n(c, a) is the number of

occurrences of ⟨c⟩ and ⟨a⟩, or n(i, a) for ⟨i⟩ and ⟨a⟩. We will
collect the list of (c, a, n(c, a)) tuples or (i, a, n(i, a)) tuples
from which we will later compute probabilistic attribute scores
in Section III.

There are also some implementation details that are worth
mentioning. As we need to extract patterns from the web-
scale corpus, existing pattern mining techniques requiring POS
tagging cannot be used. Instead, we use light-weight extraction
using the above patterns. The use of [is] is reported to lead
to higher quality extraction in [6], and also facilitates the
discovery of the noun phrase boundary of ⟨i⟩ and ⟨c⟩ without
POS tagging which takes a huge amount of time. Another
challenge is the use of articles [the/a/an] in the pattern. For
the CB pattern, articles are always required in order to filter out
attributes describing the concept term itself (e.g., the definition
of wine, the plural form of country). For the IB pattern, the
use of articles is selective and depends on whether instance
⟨i⟩ is a named entity (e.g., Microsoft) or not (e.g., a software
company). We distinguish these two cases by considering a
capitalized instance as an entity and requiring articles for the
rest of non-entity instances.

2) Attribute extraction from an external knowledgebase:
We also leverage an existing knowledge base containing enti-
ties and their attributes. In our work, we use DBpedia, which
is usually based on structured information from Wikipedia.
As DBpedia does not have possible concept-based attributes,
we use instance-based attributes from DBpedia entities
(KB). In DBpedia, from each entity page described with its
attributes, we obtain (i, a) tuples. Unfortunately, DBpedia does
not have any information to derive how typical an attribute is
for an instance, so we treat them equally; we use n(i, a) = 1
to produce (i, a, n(i, a)) tuples. Note that although we set 1
for all tuples, instances in the same concept have different
attributes. Thus we obtain proper typicality after scoring as
we do with IB tuple list (Section III-C) (i.e., atypical attributes
are not common among instances in the concept).

3) Attribute extraction from the query logs: To extract
instance-based attributes from query logs (QB), we utilize
the two-pass approach used in [7] to obtain as many tuples as
possible. Note that we cannot expect concept-based attributes
from query logs as people usually have interest in a more
specific instance rather than a general concept (e.g., the query
‘company operating profit’ is rare compared to ‘microsoft
operating profit’). In the first pass, we extract, from the query
logs, candidate instance-attribute pairs (i, a) from the pattern
“the ⟨a⟩ of (the/a/an) ⟨i⟩”, which we denote as AQB . We then
extend the candidate list AIU , to include the attributes obtained
from IB and KB (AIB and AKB respectively):

AIU = AIB ∪AKB ∪AQB (6)

Next, in the second pass, we count the co-occurrence n(i, a)
of i and a in the query log for each (i, a) ∈ AIU to produce
the (i, a, n(i, a)) list. We handle this list in the same way we
do for other instance-based list (in Section III-C).

4) Attribute Distribution: Let us now look at the differences
of attributes obtained from the CB and the IB lists. To
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Fig. 3. The attribute distribution of CB and IB on the web corpus.

illustrate, Fig. 3 contrasts the differences of two distributions
for state concept. For example, the attribute name is frequently
observed from the CB pattern, such as “the name of a state
is...”, but people will not mention it with the specific state,
as in “the name of Washington is...”. From such differences,
we observe the complementary strength of the two patterns as
below.

The strength of CB attributes is that attributes can be
mechanically bound to a concept. For example, from the CB
pattern “the population of a state”, a machine can naturally
bind the attribute population to the concept state. In contrast,
the IB pattern “the population of Washington” is hard to
process for a machine, as ‘Washington’ belongs to both state
and president concepts.

However, despite such difficulty, IB patterns may lead to the
harvesting of higher-quality attributes. For instance, although
the pattern “the population of a state” is rarely observed,
when replacing state with its state instances, we can collect
enough patterns, such as “the population of Washington”,
that is frequently observed. That is, IB patterns, by obtaining
noisier yet statistically significant observations, complement
CB patterns.

5) Pattern Extraction Filtering: Lastly, we discuss how
we improve the quality of attributes, by filtering out non-
attributes collected from our patterns. Toward this goal, we
first categorize the collected results into the following three
categories:

• C1: The CEO of Microsoft is ... – attributes
• C2: The rest of China has been ... – modifying expressions
• C3: The University of Chicago is ... – noun phrases
containing ‘of’

Out of these three categories, C2 and C3 would produce
noisy results. We thus discuss our filtering rules for these two
cases respectively.

C2 – Black List Filtering: To address C2, we generate a
black list of attributes which can bind to virtually any concept,
as follows:

• The lack of vitamin A is ...
• The rest of the country was in ...

TABLE III
TOP ENTRIES IN THE BLACK LIST.

Attribute # concepts Attribute # concepts
meaning 35 best 27
definition 33 nature 26

importance 32 plural 26
rest 27 work 26

• The best of The Simpsons is ...
As the words lack, rest, and best are not specifically describing
the concepts that follow, they should not be considered typical
attributes. This kind of noisy attributes will have, if not filtered,
high P (a|c) which is undesirable.

To filter out such attributes, we identify attributes that are
commonly observed in diverse and dissimilar concepts that
are expected to share only few attributes. For this purpose, we
select a set of 49 dissimilar concepts and rank each attribute
by the number of the dissimilar concepts it belongs to, as
shown in Table III. However, such a list may include false
negatives, such as name, which is specific to the given concept
yet appears in many concepts. To remove it from the black list,
we consider the attribute scoring we will discuss in Section III
and remove important attributes with high scores.

C3 – Named entities containing “of”: To address C3, we
filter out “of”-clause associated with named entities, such
as “the University of Chicago”, “the Bank of China”, “the
People’s Republic of China”. As filtering rules, we first
consider capitalization, which is a strong feature to classify
named entities. As the second rule, we refer to knowledge
bases to rule out “of”-clause, which is an instance itself. For
example, “the University of Chicago” is an instance in Probase
and we thus do not consider university to be an attribute of
the concept city. In this way, we can handle the caseless text
such as tweets.

III. ATTRIBUTE SCORING

In this section, we first discuss the intuition of our scoring
in Section III-A. We then explain how we process CB and IB
(or QB, KB) lists obtained from various sources for computing
the typicality scores of attributes in Sections III-B and III-C
respectively. Lastly, we discuss how we aggregate the scores
from multiple sources in Section III-D.

A. Typicality Scoring

Our goal is to quantify P (a|c) for attribute-concept pairs.
This probabilistic score is not only useful for making infer-
ences but it also has psychological significance.

Such a score, known as typicality, has been actively studied
in cognitive science and psychology [8] to understand why
some instances are typically mentioned by human beings for a
concept. According to the literature, a dog is a typical instance
of pet as 1) it is frequently mentioned as a pet, and 2) it shares
some resemblance [9] to other pet instances. We can extend
this intuition for understanding the typicality of attributes, as
follows:

An attribute a is typical for a concept c if



• a is frequently mentioned as an attribute of c or its
instances. (frequency)

• a is common among the instances of c. (family resem-
blance)

With this intuition, population is a typical attribute of a
country, as such pairs are frequently observed in CB and IB
lists. Further, population is a typical attribute of a country, as
most country instances, such as China or Germany, share the
same attribute population.

This intuition can again justify using both CB and IB
for quantifying P (a|c). We can observe frequency from both
streams and using IB enables us to consider the resemblance
across instances. In contrast, existing methods consider either
one or none: [7], [10], [11], [12] consider only frequency,
while [13] considers only resemblance. [14], [15] consider
neither, and instead use contextual similarity of the extracted
attributes with the seed attributes given a concept.

In the following sections, we see how we substantialize
frequency view from a CB list, and frequency and resemblance
view from IB lists.

B. Computing Typicality from a CB List

Recall that a CB list is in the format (c, a, n(c, a)). Grouping
this list by c, we can obtain a list of attributes observed about
c and their frequency distribution. Given this information,
typicality score P (a|c) can be straightforwardly obtained by
normalization:

P (a|c) = n(c, a)∑
a∗∈c n(c, a

∗)
(7)

C. Computing Typicality from an IB List

We now discuss how we can compute typicality from an
IB list in the format (i, a, n(c, a)). Note that we obtain three
IB lists from web documents, query log, and knowledge base,
respectively. As we will discuss in Section III-D, the quality of
the three lists varies, depending on concept c. We thus compute
typicality from the three IB lists separately, then aggregate
three scores with the score computed from the CB list.

To connect IB pattern with a concept, we first expand P (a|c)
as follows.

P (a|c) =
∑
i∈c

P (a, i|c) =
∑
i∈c

P (a|i, c)P (i|c) (8)

With this expansion, our goal boils down to computing
P (a|i, c) and P (i|c). To illustrate these goals, consider an
IB pattern “the age of George Washington”. This pattern can
contribute to the typicality scoring of age for the concept
president, knowing that ‘George Washington’ is an instance
of the concept president. In the formula, P (a|i, c) quantifies
the attribute typicality of age for ‘George Washington’ when
its underlying concept is president, while P (i|c) represents
how representative ‘George Washington’ is for the concept
president.

Computing Naive P (a|i, c) and P (i|c) using Probase: For
computing P (a|i, c) and P (i|c), we can leverage the isA rela-
tions of Probase, which stores, for example, how representative
‘George Washington’ is for the concept president. For the sake
of presentation, we first compute Naive P (a|i, c) and P (i|c),
under a simplifying assumption that one instance belongs to
one concept, just to show biases that this computation incurs.
We will later discuss how to unbias to relax this assumption.

First, for computing P (a|i, c), under this simplifying as-
sumption, P (a|i, c) = P (a|i), such that

P (a|i, c) = P (a|i) = n(i, a)∑
a∗∈i n(i, a

∗)
(9)

Second, for computing P (i|c), we first reformulate the goal,

P (i|c) = P (c|i)P (i)∑
i∗∈c P (c|i∗)P (i∗)

(10)

such that we can reformulate our goal as obtaining P (c|i)
from Probase. Under our simplifying assumption, P (c|i),
representing how likely the concept is for the given instance
i, would be P (c|i) = 1 if this concept-instance is observed in
Probase and 0 otherwise.

However, in reality, the same instance name appears with
many concepts due to the following cases:
• [C1] ambiguous instance related to dissimilar concepts:
‘Washington’ can refer to a president and a state, and the
typical attributes for the two concepts are significantly dis-
similar. Using naive computation leads to the identification
of population as a typical attribute for the president concept.

• [C2] unambiguous instance related to similar concepts:
Even an unambiguous instance can appear in different
contexts. For example, ‘George Washington’ is a president,
patriot, and historical figure. P (i|c) for an ambiguous entity
associated with the dissimilar concepts state and president,
should be lower than an unambiguous one related to the
multiple related concepts president and patriot, while naive
computation does not consider the similarity of concepts.
Our goal is thus to approximate the unbiased value for

P (a|i, c) and P (c|i), to consider both of the above cases.
Unbiasing P (a|i, c) and P (c|i): We now discuss how we

unbias P (a|i, c) and P (c|i) to address cases C1 and C2
discussed above.

First, for computing P (a|i, c), if instance i is ambiguous,
a high n(i, a) score observed from another concept should
not be counted. For instance, even though population occurs
frequently with ‘Washington’, in the context of state names,
it should not be counted when considering attributes for the
concept president. For this goal, we introduce join ratio (JR),
representing how likely a is associated with c:

JR(a, c) =
JC(a, c)

maxa∗∈c JC(a∗, c)
(11)

where JC(a, c) (join count) is defined as the number of
instances in c that has attribute a, which quantifies the family
resemblance of a. Observe that the JR score will be close to 0
for population and president, as most other president instances,



TABLE IV
P (i|c) FROM EQ. 13 AND EQ. 14.

Instance Name Eq. 13 Eq. 14
George Wash-
ington

0.0178 0.0060

Washington 0.2452 0.0059
Bush 0.0313 0.0230

TABLE V
ATTRIBUTE RANK IN PRESIDENT USING

NAIVE AND UNBIASED P (c|i).

Attribute Naive Unbiased
Mayor 53 137
Citizens 20 43
Population 9 15
County 17 39
Streets 24 105

such as ‘George Bush’ is not likely to appear in the pattern
of “population of George Bush”.

Using this notion, we unbias Eq. 9 into:

P (a|i, c) = n(i, a, c)∑
a∗ n(i, a∗, c)

(12)

where n(i, a, c) = n(i, a)JR(a, c).
Second, computing P (c|i) can be relaxed to consider an

entity belonging to multiple concepts, or C2, using Probase
frequency counts np(c, i):

P (c|i) = np(c, i)∑
c∗ np(c∗, i)

(13)

However, using this equation would not distinguish C2 from
C1. We thus consider the similarity between the two concepts
c and c∗, to discount frequency from dissimilar concepts. For
computing this similarity, we use Probase, by comparing the
instance sets of the two concepts using Jaccard Similarity.
With this sim(c, c′) score in the range of [0:1], P (c|i) can
be computed as:

P (c|i) = nu(c, i)∑
c∗ nu(c∗, i)

(14)

where nu(c, i) =
∑

c′ np(c
′, i)sim(c, c′). In this way, we not

only deal with ambiguity problem, but also reflect the two
views of typicality: frequency and family resemblance.

Table IV contrasts P (i|c) from Eq. 13 and 14. Before
unbiasing, P (i|c) is overestimated for an ambiguous instance
‘Washington’, but its value drops significantly after unbias-
ing. In contrast, the instance ‘Bush’, even though it is also
ambiguous by referring to two presidents, is associated with
similar concepts to president, and thus should get significantly
higher P (i|c) for the president concept. Observe that our
unbiasing follows this intuition, such that, after unbiasing,
P (i|c) of ‘George Washington’ and ‘Bush’ outscore that of
‘Washington’.

Table V shows how such unbiasing can improve the typi-
cality ranking of attributes for the president concept. Before
unbiasing, P (i|c) is overestimated for ‘Washington’, which
is also highly likely to belong to the totally different concept
state. As a side effect, attributes related to states, rank high for
president concept as well. Unbiasing can significantly lower
their ranks, as demonstrated in the table.

D. Typicality Score Aggregation

In the previous sections, we discussed how we compute
P (a|c) from one CB list from web documents and three IB

lists from web documents, query log, and knowledge base. We
notate these four scores as PCB(a|c), PIB(a|c), PQB(a|c),
and PKB(a|c) respectively.

Aggregating these scores is non-trivial, as sources have
complementary strength over different concepts. In one case,
for concept where many instances are ambiguous, scores from
IB lists are less reliable. For example, many instances in the
wine concept, such as ‘Bordeaux’ and ‘Champagne’, double
as city names and associate with city-specific attributes such
as mayor. In this example, the reliability of scores from the
IB lists is lower. However, in other cases, when a concept
can be expanded to a large set of unambiguous instances, the
scores from the IB lists are highly reliable. Recall that some
attributes such as population are frequently discussed in the
context of a specific state yet rarely discussed in the pattern
of “population of a state”.

This observation suggests that no single source can be most
reliable for all concepts and thus motivates us to combine
scores with complementary strength. Our goal is to automat-
ically adapt the weights, according to concept characteristic,
to behave like the most reliable source for all concepts. This
unified approach will generalize for a large class of concepts,
unlike existing approaches showing strength only for some
specific concepts.

More formally, we formulate P (a|c) as:

P (a|c) = wCBPCB(a|c) + wIBPIB(a|c)
+ wQBPQB(a|c) + wKBPKB(a|c)

(15)

Our goal is to learn weights for the given concept.
For this task, we take the Ranking SVM approach, with a

linear kernel, which is a well-known pairwise learning to rank
method. The advantage of using the pairwise ranking approach
over a regression approach is that training data does not have
to quantify absolute typicality score. While it is hard to give
an absolute typicality score for the attribute population, one
can easily state that population is more typical than picture.
We collect such pairwise comparisons to learn the above
weights with respect to the following features representing the
characteristics of a concept.

More formally, the weight wM of source M is a linear
combination of f i

M , where features represent the ambiguity of
instances or the statistical significance of patterns.
• f1

M : avgModBridgingScore: Bridging Score [16] mea-
sures the ambiguity of an instance i by quantifying whether
it belongs to highly dissimilar concept pairs as follows:

BridgingScore(i) =
∑
c1

∑
c2

P (c1|i)P (c2|i)sim(c1, c2)

(16)
Intuitively, this score is low for an ambiguous instance such
as ‘Washington’ associated with dissimilar concepts. We use
its variation ModBridgingScore, which we found to be more
effective2.
2While the original definition of Bridging Score uses the average of

similarities between the concepts containing the instance, we compute mod
by dividing the [0, 1] interval into 0.1 scale like [0, 0.1), [0.1, 0.2), ..., [0.9,
1], then find the mod interval, and within the mod interval, we calculate the
weighted average.



• f2
M : avgP (c|i): P (c|i) is low when an instance belongs to

many dissimilar concepts and also indicates the ambiguity
of an instance.

• f3
M :

∑
(frequencyM (a))/#AttributeM : When the fre-

quency of attributes, per each attribute, is low, the statistical
significance of our observation is low.

• f4
M :

∑
(frequencyM (a))/#InstanceP : When frequency

of attributes, per each instance, is low, the statistical signif-
icance of our observation is low.

• f5
M : Attribute#M/#InstanceP : When the average num-

ber of attributes for each instance in the concept is low, the
effectiveness of the extraction strategy for the given concept
is low.
Formally, wM is represented as a linear combination of the

five features: wM = w0
M +

∑
k w

k
Mfk

M . We can expand the
original equation as follows.

P (a|c) =w0
CBPCB(a|c) + ...+ w5

CBf
5
CBPCB(a|c)

+w0
IBPIB(a|c) + ...+ w5

IBf
5
IBPIB(a|c)

+w0
QBPQB(a|c) + ...+ w5

QBf
5
QBPQB(a|c)

+w0
KBPKB(a|c) + ...+ w5

KBf
5
KBPKB(a|c)

(17)

It can be seen that this is a linear combination of the terms
PCB , ..., f5

CBPCB , PIB , ..., f5
IBPIB , PQB , ..., f5

QBPQB ,
PKB , ..., f5

KBPKB and hence we can learn the coefficients
using Ranking SVM with a linear kernel.

Here we must stress that, unlike some existing approaches
that require training data for every concept, our aggregation
function can be trained by labels for only a few concepts.

E. Attribute Synonym Set
After quantifying the relation between concepts and at-

tributes, we can get a list of attributes for a given concept.
However, since we harvest attributes from the Web, people
may use different terms to represent the same meaning, such
as using mission or goal to represent objective.

Grouping these semantically identical attributes into a syn-
onym set is an important task, without which the three
terms would be considered as independent concepts and the
typicality for this group of attributes would be diluted over
these three terms.

To find potentially synonymous attributes, we can leverage
the evidence from Wikipedia [17]. In our work, we consider
the following ways to get attribute synonyms:
• Wikipedia Redirects: Some Wikipedia URLs do not have
their own page. Accesses to such URLs are redirected to
other articles describing the same subject. We use xi  yi
to denote the redirection.

• Wikipedia Internal Links: Links to internal pages are ex-
pressed in shorthand by [[Title | Surface Name]]
in Wikipedia, where Surface Name is the anchor text,
and the page it links to is titled Title. Again, we denote it
as xi  yi, where xi is the anchor text, and yi is the title.
Using these evidence pairs, we connect synonymous at-

tributes. Then, we take each connected component as a syn-
onymous attribute cluster. Within each cluster, we set the

most frequent attribute as a representative attribute of the
synonymous attributes.

IV. EXPERIMENTS

A. Experimental Settings

In this section, we evaluate the quality of attribute scores
obtained from PCB(a|c), PIB(a|c), PQB(a|c) and PKB(a|c).
The summary of the sources is presented in Table II. For the
Web documents, we use a 240TB web snapshot (December
29th, 2011). For the query log data, we use 6 months of Bing
query logs from December 28th, 2009 to June 28th, 2010.
For the external knowledge base, we use DBpedia 3.4 which
is generated from Wikipedia dumps of September 2009. For
extraction, we use a distributed system with a cluster of 10,000
servers to extract attribute tuples from the Web documents. In
this setting, extraction took approximately two hours for query
log and 1.5 days for Web documents, as shown in the table.
After extraction, raw data are reduced to the CB and the IB
lists with their sizes shown in the table. These lists are then
used to compute scores, which took us from 3 minutes to 6.5
hours, using a Windows Server 2003 (Enterprise x64 Edition)
with a 2.53Ghz Intel Xeon CPU and 32 GB memory. Summing
up, the entire process was done within a couple of days.

The last row in Table VI shows how many (concept,
attribute) pairs were found. KB, relying on manually created
Wikipedia data, extracts the least amount of attributes, fol-
lowed by CB. IB and QB extract the most, building on large-
scale instances.3

B. Evaluation Measures and Baseline

We now discuss how we measure the precision of attribute
scoring. As it is non-trivial to obtain ground-truth scoring for
attributes, we use human annotators to group attributes into
four clusters– very typical, typical, related, and unrelated, in
decreasing order of scores. Examples of the human annotations
are shown in Table VII. The number of labeled attributes for
evaluation is 4846 attributes from 12 concepts.

As evaluation measures, we use the precision of Top-N
attributes for the selected concepts:

Precision@N =

∑N
i=1 reli
N

(18)

where reli is the relevance score of the i-th attribute. For
evaluation purposes, we assign relevance score to the four
groups as 1, 2/3, 1/3, and 0, respectively.

For recall, although measuring absolute value requires
ground truth scoring the universe of all possible attributes for
the concept, we can approximate this value for relative com-
parison purposes. Specifically, we consider a set of attributes
labeled as the universe and computed the recall with respect
to this set. That is:

3QB harvests more records than IB from smaller raw data, as IB extracts
only the attributes matching our textual patterns, unlike QB extracting all
co-occurring pairs using AIU . As query forms rarely follow textual patterns
observed in full sentences or capitalized named entities, we apply lenient and
case-insensitive extraction rules, which leads to a higher harvesting ratio.



TABLE VI
SUMMARY OF DATA SOURCES.

PCB(a|c) PIB(a|c) PQB(a|c) PKB(a|c)
Source Web documents 6 month Bing query log DBpedia

Raw data size 240TB 9GB 64.3MB
Extraction time 38.33 hours 115.33 minutes -

Extracted list size 4.75GB 1.35GB 64.3MB
Scoring time 3 min 2 hour 6.5 hour 27 min

Distribution size 157MB 5.75GB 7.16GB 36.9MB
# of records 3.7 million 74 million 141 million 0.4 million

TABLE VII
THE EXAMPLES OF ANNOTATOR LABELS.

Label Examples

very typical country: population company: products
president: election wine: taste

typical country: history company: vision
president: speech wine: acidity

related
country: northern part

company: sic code number
president: 100th birthday wine: temperature

unrelated country: jews company: whole
president: hotel wine: mayor

Recall@N =
# retrieved very typical attributes in top N

# very typical attributes
(19)

We then discuss a baseline approach to compare with.
Among existing algorithms, we consider those applicable to
our problem setting of supporting attribute scoring for broad
concept space. For this purpose, existing methods requiring
the identification of seed attributes for each concept cannot
scale and thus cannot be used as a baseline. In addition, the
baseline should be light-weighted in order to be applied to
web-scale extraction.

The most suitable baseline satisfying all these constraints
is Marius Pasca’s two methods [13] using Web documents
(MWD) and the query logs (MQL) respectively. We thus
adopt these two as our baselines. They use a light-weighted
pattern extraction strategy on the Web document corpus and
the query logs and propose instance-based scoring, quantifying
the family resemblance of instances.

We compare our proposed framework with these baselines:
We train our framework to aggregate attribute scores, using
labels from five concepts. After grouping attributes into four
groups, we generate pairwise orderings for a pair of attributes
in two different groups. For example, population > northern
part for country. We used 2059 labeled attributes for training.

C. Precision

Fig. 4 compares the precision of our proposed method,
unified typicality model (UTM), with two baselines– MWD
using documents and MQL using query logs. To see how the
component score from each source contributes, we also show
the quality of the attributes obtained from CB, IB, QB, and
KB sources. In each chart, the x-axis represents the number
of top attributes we consider, and the y-axis is the precision
measure introduced in Section IV-B.

We can see that the result of UTM shows consistently good
result over all concepts. For example, in the company or wine
concept, UTM gives the highest precision for almost all N.
In other concepts, UTM closely emulates the winning compo-
nent score, while each component shows highly inconsistent
performances, performing well in one concept and poorly in
another.

For example, in the wine concept, CB outperforms instance-
based approaches, as many instances in wine are ambiguous,
such as ‘Bordeaux’ belonging to both wine and city concepts.

However, instance-based approaches excel in country, where
well-defined unambiguous instances are frequently discussed
in the corpus. Meanwhile, KB gives the best results for
small N , containing manually provided common statistical
information about a lake, such as depth and length, which does
not scale for large N . This complementary nature justifies our
unified approach.

Marius Pasca’s methods show more or less similar trends to
our instance-based methods. That is, they work well for popu-
lar concepts with unambiguous instances, such as country, but
poorly for ambiguous ones, including wine. For the concept
lake, both Marius Pasca’s and QB performed poorly. As lake is
not queried frequently, the query log does not contain enough
evidence for such concept. For such a concept, leveraging
large web corpus to collect more evidences is effective, which
explains why our framework works better.

TABLE VIII
THE AVERAGE PRECISIONS AT N OVER THE 12 CONCEPTS

N 1 5 10 20 30 40 50
CB 0.78 0.75 0.74 0.67 0.67 0.65 0.64
IB 0.75 0.64 0.59 0.54 0.50 0.47 0.45
QB 0.50 0.43 0.37 0.32 0.31 0.30 0.31
KB 0.69 0.53 0.49 0.43 0.36 0.31 0.27

MWD 0.67 0.63 0.57 0.52 0.46 0.44 0.41
MQL 0.61 0.53 0.46 0.42 0.40 0.36 0.35
UTM 0.89 0.86 0.82 0.73 0.70 0.68 0.66

In summary, while component scores or existing approaches
building on limited data sources give inconsistent performance
across diverse concepts with different characteristics, the pre-
cision of our unified approach UTM closely approximates the
best performing component for the given concept. In other
words, we can see the average precision of UTM is the highest
at all N in Table VIII. Such consistency over a broad concept
space is an important property for our problem context.

D. Recall

Table IX and Table X show the recall of the compared
methods for selected concepts with different N . We stress
again that these values are relative recall for comparison
purposes.

The relative strength of the approaches in terms of recall
is similar to that observed for precision: UTM again shows
consistently high recall over diverse concepts, while other
techniques give inconsistent performances. For example, at
N=10, CB performs well for the wine concept, but poorly
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Fig. 4. Precision with respect to N for selected concepts.

for the lake concept, as similarly observed in our precision
experiments. Other instance-based methods like IB, QB, KB
and Marius Pasca’s methods do not work relatively well for
the wine and company concepts.

Another thing to observe is the recall over increasing N .
For IB, recall increases dramatically for most concepts, from
0.0357 to 0.2857 for lake. Such an increase cannot be observed
in many concepts for KB, QB, and MQL. This suggests
that the use of large-scale web corpus for IB is effective in
harvesting good attributes with high recall.

E. Typical Attributes and Concepts

We now qualitatively examine the quality of our results by
presenting the most typical attributes identified for those se-
lected in Table XI. In the table, we see that our method extracts
high-quality attributes for diverse concepts. For example, for
the battery concept, our method identifies capacity as its most
typical attribute. We can observe the effect of unifying multiple
sources from attributes of the building concept: location is
rarely discussed for a general building, but frequently dis-
cussed for a specific building, while exterior is more frequently
for a generic building. Our unified approach identifies both as



highly typical attributes for the building concept. In contrast,
IB only identifies the former and CB only the latter.

We then reverse the direction of inference to infer related
concepts from the given attributes. As our scoring function has
a probabilistic meaning, we can easily calculate P (c|a) from
the result with the aid of Probase. Table XII shows the top
typical concepts for the given attribute. For example, for the
attribute duration, the typical concepts having that attribute
are activity and symptom as well as course and task. Other
interesting results include the concepts identified for price,
such as item, service, resource, and concepts identified for
temperature, such as material and beverage.

Lastly, we observe how our inference results evolve as more
attributes are revealed, as illustrated in Fig. 1(b).

For example, when given the single attribute resolution,
people will associate it with diverse concepts, such as issues
and problems, as shown in Table XIV. However, when the next
attribute revealed is lens, the associated concepts will converge
to optical devices. As more attributes such as zoom are given,
the top concept converges to cameras.

From the table, we can see the benefit of adopting Probase
that contains a wide spectrum of concepts. For example,
concepts that are related to deadline, important dates includes
not only a popular head concept such as conference, but also
tail concepts such as stressful situation.

F. Synonymous Attributes

We now present the quality of the synonymous attribute set
we identified using Wikipedia. Table XIII shows the results
of the synonymous attributes we identified. In the country
concept, for example, we have a set of synonymous attributes
{inhabitants, population, demonym} whose representative at-
tribute is population. We can see that results identified include
not only synonym pairs {gender, sex}, but also the same term
in singular/plural forms such as (flavor, flavors) or spelled
differently, such as (flavor, flavour). These results show the
initial promise of identifying synonym sets using a simple

TABLE IX
RECALL AT N=10

Recall@10 Wine President Company Country Lake
CB 0.1081 0.0513 0.0597 0.0333 0.0357
IB 0.0135 0.0769 0.0299 0.0556 0.0357
QB 0.0135 0.0256 0.0299 0.0333 0.0000
KB 0.0405 0.0256 0.0746 0.0444 0.1786

MWD 0.0000 0.0769 0.0299 0.0778 0.0357
MQL 0.0135 0.0513 0.0448 0.0667 0.0357
UTM 0.1081 0.0769 0.0896 0.0556 0.1071

TABLE X
RECALL AT N=50

Recall@50 Wine President Company Country Lake
CB 0.2703 0.2564 0.2687 0.1778 0.5000
IB 0.1081 0.2564 0.1493 0.2000 0.2857
QB 0.0405 0.0513 0.0746 0.0667 0.0714
KB 0.0541 0.0769 0.1642 0.1000 0.2143

MWD 0.1081 0.1538 0.1493 0.2444 0.1429
MQL 0.0541 0.3077 0.1045 0.2000 0.0357
UTM 0.2703 0.2051 0.3134 0.1778 0.5000

TABLE XI
EXAMPLES OF TOP TYPICAL ATTRIBUTES FOR A GIVEN CONCEPT.

Concept Typical Attributes by UTM
battery capacity, voltage, weight, life, support, lifetime, temperature

painting size, subject, actual appearance, title, name, quality
country people, population, capital, history, government, economy

company name, operating profit, foundation, success, homepage, owner
camera lens, performance, quality, angle, video, size, resolution, shutter

medicine benefits, name, side effects, effects, prescription, price, efficacy
illness cause, course, symptoms, nature, name, source, progression

building exterior, location, outside, construction, architect, roof, inside
magazine theme, cover, name, parent company, purpose, title, aim, editor
beverage ethanol content, taste, temperature, quality, flavor
software key feature, latest version, installation, name, cost
memory contents, size, capacity, price, internal write time, output

wine quality, taste, color, sweetness, name, aroma, texture, flavor

TABLE XII
EXAMPLES OF TOP TYPICAL CONCEPTS FOR A GIVEN ATTRIBUTE.

Attribute Typical Concepts by UTM
duration activity, service, symptom, support service, course, task

temperature material, part, product, person, surface, element, beverage
flavor vegetable, dish, herb, beverage, ingredient, product
price item, factor, service, issue, stock, amenity, material, resource
size person, factor, item, issue, detail, area

developer application, tool, technology, program, service
location company, industry, organization, person, facility, resource

population area, country, city, place, region, community, district

technique and Wikipedia, and we leave more sophisticated
techniques for future work.

V. RELATED WORK

Although attribute extraction for concepts has been widely
studied, existing work do not focus on computing probabilistic
scores or scaling over large concept space. Our work is the first
to extract the attributes for large concept space with rigorous
analysis of the typicality of attributes by leveraging several
sources together.

Many works require seed attributes [14], [15], [18] to
identify extraction patterns to obtain more attributes, by ex-
ploring attributes of the member instances on plain Web doc-
uments [18], query logs [14], or structured data [15] including
Web tables, lists, and HTML tag hierarchy. However, in our
problem scenario, it is infeasible to expect seed attributes to
be manually identified for the millions of concepts available
on the Web.

TABLE XIII
EXAMPLES OF SYNONYMOUS ATTRIBUTES.

Concept Representative Attributes
country population inhabitants, population, demonym
person sex gender, sex
wine flavor flavour, flavor, flavors
wine color colour, color
wine provenance authenticity, provenance

company objective objective, goal, mission, vision, object
company president ceo, president, chairman, head
company operating profit operating income, operating profit
camera size size, dimensions
camera power supply power source, power supply

medicine expiration date shelf life, expiration date, expiry date



TABLE XIV
EXAMPLES OF TOP TYPICAL CONCEPTS FOR GIVEN A SET OF ATTRIBUTES.

Attributes Typical Concepts by UTM
resolution issue, problem, instrument, technical problem
resolution, lens projector, camera, instrument, device
resolution, lens,
zoom

camera, expensive model, consumer applica-
tion, telescope

president company, country, organization, institution
president, population country, company, area, asian country
title topic, person, country, issue
title, issue topic, country, magazine, periodical
title, issue, cover magazine, periodical, topic, document
time person, event, incident, activity
time, witness person, crime, event, incident
time, witness, victim crime, murder, incident, offense
story person, company, country, outdoor activity
story, cast TV serial, outdoor activity, cult movie, person
location company, industry, organization, person
location, production manufacturer, facility, company, resource
location, production,
consumption

resource, service, product, drug

deadline task, thing, event, credit card
deadline, important
dates

conference, educational program, stressful sit-
uation, international event

deadline, important
dates, tracks

conference, educational program, international
event, industry event

Those not requiring seed attributes perform extraction us-
ing simple IB patterns, collected from query logs or Web
document [13]. However, as we empirically compared in
Section IV, work relying on a single data source, performs
poorly in some concepts such as wine and credit card.

More recently, approaches that combine multiple sources
have been proposed [10], [11]. Pasca et al [11] use both query
logs and query sessions, and [10] combines several structured
data sources, including Web tables, search hit counts, DBpedia
and Wikipedia. However, they do not discuss how to compute
probabilistic scores or systematically aggregate scores from
multiple sources.

Attribute extraction work without scoring includes [19],
which uses POS tagging, [20], which uses random walk-based
attribute label propagation to address sparsity, and [21], which
leverages instance-based extraction on web tables. In clear
contrast, our proposed framework replaces POS tagging with
lighter weight pattern extraction to achieve scalability and
addresses sparsity using the knowledge base Probase. Another
key distinction of our work is robust quantification of attribute
typicality scores using multiple data sources.

Web table-based method [3] quantifies the joint probability
of attributes and return, for a given set of attributes, other
related attributes. Our work distinguishes itself by address-
ing the ambiguity and quantifying robust attribute typicality
scores. Another distinction is that, unlike their approach using
a regression method to quantify a score from attribute features
that requires human assessors to give exact score for training,
ours do not requires them by using a learning-to-rank method.

Methods heavily based on web tables [3], [10] can extract
attributes having simple values – numerical or short text
values. However, another category of attributes, such as history
of a country, may not be described briefly, hence excluded
often. Therefore, these approaches are not suitable for our goal

of finding wide range of typical attributes in human mind.

VI. CONCLUSION

In this paper, we proposed a framework for extracting at-
tributes from multiple data sources and computing probabilis-
tic scores. Unlike previous instance-based work, we address
instance ambiguity and aggregate with concept-based patterns.
To the best of our knowledge, this is the first work that unifies
instance- and concept-based patterns from multiple sources
aggregated into a probabilistic score using a pairwise learning
to rank method. In summary, our framework can give both
practical and rigorous mathematical attribute typicality.
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