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ABSTRACT

We show that rigid reachability, the non-symmetric form of rigid E-unification, is
already undecidable in the case of a single constraint. From this we infer the undecid-
ability of a new and rather restricted kind of second-order unification. We also show
that certain decidable subclasses of the problem which are P-complete in the equational
case become EXPTIME-complete when symmetry is absent. By applying automata-
theoretic methods, simultaneous monadic rigid reachability with ground rules is shown
to be PSPACE-complete. Moreover, we identify two decidable non-monadic fragments
that are complete for EXPTIME.

1. Introduction

Rigid reachability is the problem, given a rewrite system R and two terms s and
t, whether there exists a ground substitution ¢ such that so rewrites via Ro to to.
The term “rigid” refers to the fact that for no rule more than one instance can be
used in the rewriting process. Simultaneous rigid reachability (SRR) is the problem
in which a substitution is sought which simultaneously solves each member of a
system of reachability constraints (R;, s;, ¢;). A special case of [simultaneous] rigid

*This work was done while the author was staying at MPI Informatik.



reachability arises when the R; are symmetric, containing for each rule [ — r also
its converse r — [. The latter problem was introduced in [19] as “simultaneous rigid
E-unification” (SREU). (Symmetric systems R arise, for instance, from orienting a
given set of equations E in both directions.) It has been shown in [12] that simul-
taneous rigid F-unification is undecidable, whereas the non-simultaneous case with
just one rigid equation to solve is NP-complete [18]. The main result in this paper
is that for non-symmetric rigid reachability already the case of a single reachability
constraint is undecidable, even when the rule set R is ground. From this we infer
undecidability of a rather restricted form of second-order unification for problems
which contain just a single second-order variable which, in addition, occurs at most
twice in the unification problem. The latter result contrasts a statement in [27].

The absence of symmetry makes the problem much more difficult. This phe-
nomenon is also observed in decidable cases which we investigate in the second
part of the paper. For instance we prove that a certain class of rigid problems
for ground rewrite systems which is P-complete in the equational case becomes
EXPTIME-complete when symmetry is absent.

Another decidability result which we prove in section 6.2 is that SRR with
ground rules is EXPTIME-complete for “balanced” systems of reachability con-
straints. Balanced systems include, in particular, cases where all occurrences of
each variable are at the same depth. On the other hand, if variable depths are
slightly non-balanced — for instance, when all variables occur at the same depth
except for one occurrence of a variable, — the problem becomes undecidable. The
decidability result for balanced systems generalizes the related result by Degtyarev,
Gurevich, Narendran, Veanes and Voronkov [9] for the up to now largest decidable
fragment of SREU with ground rules and implies EXPTIME-completeness of that
fragment (which was left open in [9]). For obtaining the decidability results we
employ tree automata techniques for product languages in a way similar to their
use in chapter 3 of [3].

The, arguably, most difficult remaining open problem regarding SRR and SREU
is the decidability of the monadic case where all non-constant function symbols
are unary. This fragment is important because of its close relation to word equa-
tions [11], and to fragments of intuitionistic logic [13]. What is known about
monadic SREU in general is that it reduces to a nontrivial extension of word equa-
tions [24]. In the case of ground rules, the decidability of monadic SREU was
established in [24] by reducing it to “word equations with regular constraints”.
The decidability of the latter problem is an extension of Makanin’s [29] result by
Schulz [32]. Conversely, word equations reduce in polynomial time to monadic
SREU [11].

In Section 5 we show that monadic SRR with ground rules is in PSPACE,
improving over the EXPTIME result that we have obtained earlier [20]. (The
PSPACE-hardness of monadic SREU with ground rules was already shown by
Goubault [22].) We conjecture that there is no simple reduction, from monadic
SREU to monadic SREU with ground rules, as otherwise one would get a very
simple proof for decidability of word unification, compared to Makanin’s [29] orig-



inal proof. On the other hand, recent results show that word unification is in
PSPACE [30], and it might even be in NP, so that from a complexity-theoretic
point of view a reduction is not impossible.

For obtaining the PSPACE result we apply an extension of the intersection non-
emptiness problem of a sequence of finite automata that we prove to be in PSPACE.
Moreover, using the same proof technique, we can show that simultaneous rigid
reachability with ground rules remains in PSPACE, even when just the rules are
required to be monadic. Furthermore, in this case PSPACE-hardness holds already
for a single constraint with one variable, contrasting the fact that SREU with one
variable is solvable in polynomial time [10].

2. Preliminaries

A signature ¥ is a collection of function symbols with fixed arities > 0 and,
unless otherwise stated, X is assumed to contain at least one constant, that is, a
function symbol with arity 0. The set of all constants in ¥ is denoted by Con(X).

We use a, b, ¢,d,ay, ... for constants and f, g, fi1,... for function symbols in general.
A term language or simply language is a triple L = (X, X, F) where (i) X is a
signature, (ii) X (with elements denoted by z,y,z1,y1,...) is a collection of first-

order variables, and (iii) F (with elements denoted by F, G, Fy, F',...) is a collection
of symbols with fixed arities > 1, called second-order variables. The various sets of
symbols are assumed to be pairwise disjoint. L is first-order, if F is empty, and L is
called second-order, otherwise. L is monadic if all function symbols in ¥ have arity
< 1. The set of all terms in a language L, or L-terms, is denoted by 7. We use
s,t, 1,7, 81,... for terms. We usually omit mentioning L when it is clear from the
context. The set of first-order variables of a term ¢ is denoted by Var(t). A ground
term is one that contains no variables. The set of all ground terms in L is denoted
by Ts. A term is called shallow if all its variables occur at depth < 1. The size ||¢||
of a term ¢ is the number of nodes in its tree representation.

We assume that the reader is familiar with the basic concepts in term rewrit-
ing [14, 1]. We write u[s] when s occurs as a subterm of w. In that case u[t] denotes
the replacement of the indicated occurrence of s by ¢. In case the position p of
a subterm occurrence needs to be emphasized, we will use the notation u[s],. An
equation in L is an unordered pair of L-terms, denoted by s &~ t. A rule in L is an
ordered pair of L-terms, denoted by s — ¢t. An equation or a rule is ground if its
terms are ground. A (rewrite) system is a finite set of rewrite rules. Let R be a
system of ground rules, and s and ¢ two ground terms. Then s rewrites in R to t,
denoted by s 5>t, if ¢ is obtained from s by replacing an occurrence of a term [ in
s by a term r for some rule [ — r in R. The term s reduces in R to t, denoted by
s %> t, if either s = ¢ or s rewrites to a term that reduces to ¢. R is called symmetric
if, with any rule [ — r in R, R also contains its converse r — [. Below we shall not
distinguish between systems of equations and symmetric systems of rewrite rules.
The size of a system R is the sum of the sizes of the terms in its rules.



Rigid Reachability. Let L be a first-order language. A reachability constraint,
or simply a constraint in L is a triple (R, s,t) where R is a set of rules in L, and s
and ¢ are terms in L. We refer to R, s and t as the rule set, the source term and the
target term, respectively, of the constraint. A substitution 6 in L solves (R, s,t) (in
L) if § is grounding for R, s and ¢, and sf 5> tf. The problem of solving constraints
(in L) is called rigid reachability (for L). A system of constraints is solvable if
there exists a substitution that solves all constraints in that system. Simultaneous
rigid reachability or SRR is the problem of solving systems of constraints. Monadic
(simultaneous) rigid reachability is (simultaneous) rigid reachability for monadic
languages.

Rigid E-unification is rigid reachability for constraints (E, s, t) with sets of equa-
tions E. Simultaneous Rigid E-unification or SREU is defined accordingly.

Tree Automata. Tree automata are a generalization of classical automata [15,
34]. Under the rewriting-based view e.g. [5, 7] a (finite bottom-up) tree automaton
(TA) A is a quadruple (@, X%, R, F'), where (i) @ is a finite set of constants called
states, (ii) X is a finite signature that is disjoint from @, (iii) R is a system of rules of
the form f(qi,...,¢n) = ¢, where f € ¥ has arityn > 0 and ¢,q1,... ,¢n € @, and
(iv) F C Q is the set of final states. When @, ¥, R and F are not specified, we denote
them respectively Qa, ¥4, R4 and F4. The size of a TA Ais || A|| = |Q|+|Z|+||R]|-
We denote by L(A, q) the set {¢t € Ty | t %> q} of ground terms accepted by A in
state g. The set of terms recognized by the TA A is the set quF L(A,q).
A set of terms is called recognizable or regular if it is recognized by some TA. A
monadic TA is a TA over a monadic signature.

String Automata. For monadic signatures, we use the traditional, equivalent
concepts of alphabets, strings (or words), finite automata, and regular expressions.
We will identify an NFA A with alphabet ¥ with the set of all rules a(q) — p, also
written as ¢ %> p, where there is a transition with label a € ¥ from state g to state
pin A, and we denote this set of rules also by A. A monadic term a;(as(...a,(q)))
is written, using the reversed Polish notation, as the string qa,, ...a;.

Then A accepts a string aias - - - a, if and only if, for some final state ¢ and the
initial state go of A, a,(---a2(a1(go))---) 5> ¢- The set of all strings accepted by A
is denoted by L(A).

Product Automata. Let X be a signature, m a positive integer, and L a new
constant. We write X, for XU {L} and X' denotes the signature consisting of, for
all f1, fa,..., fm € X1, a unique function symbol (f; fo--- f,,) with arity equal to
the maximum of the arities of the f;’s.

Let t; € Ts U{L}, t; = fi(tir,.-. ,tix,), where k; > 0, for 1 < i < m. Let k be
the maximum of all the k; and let t;; = L for k; < j < k. The product 1 @ ---®t,,
of t1,...,ty is defined by recursion on the subterms:



h®  Qtm = (fifer fr)(t11Q - @tm1,. otk @ - Qtyy) if k>0
= (tite - -ty otherwise (1)

For example:

fle,9(c)) ® flg(d), fle,g(c))) =

We write 75™ for the set of all ¢ in TET such that ¢t = t; ® --- ® t,,, for some
tiy- oo ytm € T U{L}. If s € Ts™ and t € Ts", where s = 51 ® --- ® s, and
t=1t® - -Qty,, then s®t denotes the term s; ® -+ @ 8, Qt1 @ - -+ D tp, in Tx™ ™.
Given a sequence f = ty,... ,tn, of terms in 75, U{ L}, we write )  for the product
term t; @ -+ Rty

Given two automata A; and As over X' and X'}, respectively, the product of
A; and A, is an automaton A; ® A, over ET""” such that

L(Al ® A2) = L(Al) ® L(AQ) = {tl X t2 : tl € L(Al),tQ € L(AQ)}

The construction of A; ® A; is straightforward, with a state q(q, 4, for all states g1
in A; and ¢ in Ay, see e.g. [3]. In general, @, A; is defined accordingly.

We will use the following construction of Dauchet, Heuillard, Lescanne and
Tison [8] in our proofs.
Lemma 1 (Dauchet, Heuillard, Lescanne and Tison [8]) Let R be a ground
rewrite system over a signature ¥.. There is a TA A such that L(A) = {s®t: s,t €
Ts, s3>t} that can be constructed in polynomial time from R and X.

Second-Order Unification. Second-order unification is unification for second-
order terms. For representing unifiers, we need expressions representing functions
which, when applied, produce instances of a term in the given language L. Following
Goldfarb [21] and Farmer [16], we, therefore, introduce the concept of an ezpansion
L* of L. Let {2;};>1 be an infinite collection of new symbols not in L. The language
L* differs from L by having {z;};>1 as additional first-order variables, called bound
variables. The rank of a term ¢ in L*, is either 0 if ¢ contains no bound variables (i.e.,
t € 71.), or the largest n such that z, occurs in ¢. Given terms ¢ and ¢1,¢2,... ,t,
in L*, we write t[t1,t2,... ,t,] for the term that results from ¢ by simultaneously
replacing z; in ¢t by ¢; for 1 < ¢ < n. An L*-term is called closed if it contains
no variables other than bound variables. Note that closed L*-terms of rank 0 are
ground L-terms.

A substitution in L is a function 6 with finite domain dom(f) C X U Fr that
maps first-order variables to L-terms, and n-ary second-order variables to L*-terms
of rank < n. The result of applying a substitution € to an L-term s, denoted by s6,
is defined by induction on s:



(i) If s =z and z € dom(@) then s6 = 6(x).

(ii) If s =z and = ¢ dom(#) then s = z.
(iii) If s = F(t1,... ,tn) and F € dom(f) then s6 = §(F)[t16, ... ,tn0].
(iv) If s = F(t1,...,t,) and F ¢ dom(6) then s6 = F(t16,... ,t,0).
(v) If s= f(t1,...,t,) then s6 = f(t10,... ,t,0).

We also write F'0 for (F), where F is a second-order variable. A substitution is
called closed, if its range is a set of closed terms. Given a term ¢, a substitution @ is
said to be grounding for t if t0 is ground, similarly for other L-expressions. Given
a sequence t = tq,... ,t, of terms, we write i@ for 16, ... ,t,0.

Let E be a system of equations in L. A unifier of E is a substitution 6 (in L)
such that s = t0 for all equations s ~ ¢t in E. E is unifiable if there exists a unifier
of E. Note that if E is unifiable then it has a closed unifier that is grounding for
E, since Ty, is nonempty. The unification problem for L is the problem of deciding
whether a given equation system in L is unifiable. In general, the second-order
unification problem or SOU is the unification problem for arbitrary second-order
languages. Monadic SOU is SOU for monadic second-order languages. By SOU
with one second-order variable we mean the unification problem for second-order
languages L such that |Fr| = 1.

Following common practice, by an exponential function we mean an integer
function of the form f(n) = 2(" where P is a polynomial. The complexity class
EXPTIME is defined accordingly.

3. Rigid Reachability is Undecidable

We prove that rigid reachability is undecidable. The undecidability holds already

for constraints with some fixed, terminating system of ground rules. Our main tool
in proving the undecidability result is the following statement.
Lemma 2 (Gurevich and Veanes [23]) One can effectively construct two tree
automata Apy = (Qumv, Zmv, Bmvs {Gmv}), Aia = (Qid, Zid, Rid, {@a}), and two
canonical systems of ground rules I1;,Ilo C Tx_. X Ts,,, where the only common
symbol in Yy and Xiq is a binary function symbol .,* such that it is undecidable
whether, given tiq € Tx,,, there exists s € T(Any) and t € T(Aia) such that sl.f—1>t
and tig « S HLZM.

The main idea behind the proof of Lemma 2 is illustrated in Figure 1. In the
rest of this section, we consider fixed A, Aiq, [I; and II; as given by Lemma 2.

Undecidability of simultaneous rigid E-unification follows from this lemma by
viewing the rules Ry, and R;q of the automata A,,, and A;q, respectively, as well as
the rewrite systems II; and I, as sets of equations, and by formulating the reacha-
bility constraints between s and ¢ as a system of rigid equations. It is not possible,
though, to achieve the same effect by a single rigid F-unification constraint for a
combined system of equations. The interference between the component systems
cannot be controlled due to the symmetry of equality. This is different for reacha-
bility where rewrite rules are only applied from left to right. In fact, our main idea

@We write . (“dot”) as an infix operator.



Figure 1: Shifted pairing.

The terms recognized by Amy, ((v1 ® v]) . (v2@vF)..... (vn ® v])), represent a
sequence of independent moves of a given Turing machine, where v is the successor
of v; according to the transition function of the TM.

Each term ¢ recognized by Aiq represents a sequence of IDs of the TM (wi.w2.. . ..wr).
The two rewrite systems II; and Iy are such that s reduces in II; to t if and only if
v; = w; for 1 <¢ < k =n, and tiq - s reduces in II, to ¢ if and only if ¢;4 represents
w1, v = wiq1 for 1 <4 < n, and wy, is the final ID of the TM. It follows that such

2

s and t exist if and only if the TM accepts the input string represented by tiq.

in the undecidability proof is to combine the four rewrite systems Ry, Ri4, 111,
and Il into a single system and achieve mutual non-overlapping of rewrite rules by
renaming the constants in the respective signatures.

3.1. Renaming of Constants

For any integer m and a signature ¥ we write ©(™ for the constant-disjoint
copy of ¥ where each constant ¢ has been replaced with a new constant c("™), we
say that c¢(™) has label m. Note that non-constant symbols are not renamed. For
a ground term ¢ and a set of ground rules R over X, we define t(™) and R("™ over
(™) accordingly.

Given a signature ¥ and two different integers m and n, we write ©("»™ for the
following set of rules that simply replaces each label m with label n:

nimn) — fem oM ¢ e Con(D) ).
We write II("") | where II is either II; or IIy, for the following set of rules:
mmn = (1m0 | [ 5 p eI}

Lemma 3 Let m, n, k and l be pairwise distinct integers. The statements (i) and
(i) are equivalent for all all s € Ts,. and tiq,t € Tx,, -
(i) st and tia . st

k l
g

Proof. The left-hand sides of the rules in II; and II; are terms in 7x_, and the
right-hand sides of the rules in II; and II; are terms in 7x,,. But X5, and X;q are
constant-disjoint. a

(i) 5™ Wt(n) and ti(é) . s

3.2. The Main Construction
Let R, be the following system of ground rules:
R, = ROQURA UL, VUL, CYURYURY Uniy*® Uus,® U
CONEE I AEDET GRS | MERE)



Note that constants with odd labels occur only in the right-hand sides of rules and
can, once introduced, subsequently not be removed by R,. Let f, be a new function
symbol with arity 12. We consider the following constraint:

0) (2) (4) (6)

7
Ruv fu( To, T2, To, T2, Y4, Ye, Y4, Ys, Y4, To, Yse, tl(d) T2 )7 (2)
fu( qmv, qmv, T1, T1, Giq" s 9q » Y3, Y3, Ys, Ys, Y7, Yr )

Our goal is to show that solvability of (2), for a given t;q € X4, is equivalent to the
existence of s and t satisfying the condition in Lemma 2. Note that, for all ground
terms t; and s;, for 1 <i <12,

fu(tly--- ,t12)RLu)fu(81,...,812) = tiRLu%Si (fOI’lSZSlQ)

As a first step, we prove a lemma that allows us to separate the different subsystems
of R, that are relevant for the reductions between the corresponding arguments of
fu in the source term and the target term of (2).

Lemma 4 For every substitution 6, 6 solves the constraint (2) if and only if 0
solves the system (3)-(6) of constraints.

( R, z0, ) )

( g\)rgo y T2, Qr(r%\)r ) (3)
( Emv ’ ) Zo, T1 )

( Emv(271)a T2, T1 ) J

( Ri(dzzi 3 Ye, ql(d) ) (4)
( %™, Y4, ys )

( b d(673)7 Ye, Y3 ) J

( b d(475)7 Y4, Ys ) }

5

( I (075)7 o, Ys ) ( )
( Za®", Ys, yr ) (6)
( I,>7, tf(? T2, yr )

Proof. The direction ‘<=’ is immediate, since if 8 solves a constraint (R, s,t) then
obviously it solves any constraint (R',s,¢) where R C R’. We prove the direction
‘=", by showing that 6 solves the subsystems (3) and (5). The other cases are
symmetrical. Now let us assume that 6 solves (2).

0 solves (3): We first show that xiﬁﬁ () for i = 0. (By symmetry, this also

Gy

proves the case i = 2.) We know that x09—>q( ). We prove by induction on the

length of reductions that, for all ¢, if t—)q,(mz then tW)q(O) The base case (the

reduction is empty) holds trivially. If the reduction is nonempty, then we have for
some [ — r € Ry, and by using the induction hypothesis, that

t—)qur(r?‘),



Therefore, all constants in 7 have label 0, since r is a subterm of s and s € 7'2(0)UQ(0) .
0)

Hencel — r € Rx(nv, and consequently tﬁ)qf&.
We now prove that xiﬂﬁ)xlﬂ for i = 0. (The proof is symmetrical for
i = 2.) We know that z;0 5~ z,0 for i = 0,2. Suppose, for the purpose of obtaining

a contradiction, that

xﬁﬁ)smt;—“)xl@,
where | — r € R, \ Emv(o’l). All constants in s and thus in [ have label 0 or 1,
since, as we have shown in the previous part, all constants in z¢6 have label 0. It
follows that [ — r € R,(S\), orl—re H1(0’5). We consider both cases separately.

(i) Assume that [ — r € RY). Then r € Q\%, and thus Con(t) N Q) # 0.
Hence Con(z16)N QES\), # (). This contradicts that x20g—u>x10, as all constants in
x260 have label 2.

(ii) Assume that [ — r € II;
contradicting again that =0 ymaa! 0.

It follows that xoeﬁ)xl&

(0%) Then z:6 contains a constant with label 5,

6 solves (5): We know that ys0 £—ys0 and zof £—ysf. We first prove that
yﬁﬁ)yﬁ. Suppose, to the contrary, that
id

* *
yab SIC I e tRu ys0,

where | — r € R, \ Zid(4’5). Then either [ — r € Ri(g) orl - r € Eid(4’3).

The former case implies that Con(ys6) N Qi(g) # () and the latter case implies that
Con(ys0) N Ei(g) # (. Both cases contradict that zq6 7 ys0, because all constants
in zof have label 0.

To prove that xOGW%O, note that any rule outside 11, (%% with the left-
hand side having constants with label 0 would either introduce a constant from
QQ‘), to ys0 or a constant with label 1 to ys0, in both cases contradicting that
Y40 Eld?—“)} ys0. O

The following lemma relates the solvability of (2) to the Lemma 2.

Lemma 5 For tiq € Tx,,, the constraint (2) is solvable if and only if there exists
s € T(Any) and t € T'(Ajaq) such that sﬁ“—lﬂf and tiq . sﬁ“—2>t.

Proof. (<) Assuming that we are given s and ¢ with the required properties, we
define ;6 = s for i € {0, 1,2} and y;0 =t for i € {3,4,5,6,7}. It follows easily
from Lemma 3 and Lemma 4 that 6 solves (2).

(=) Assume that 6 solves (2). By Lemma 4, 0 solves (3)—(6). First we observe
the following facts.

(i) With 6 solving (3), there exists s € T'(Apny) such that 2o8 = s(*) and z,6 = s(?).
(ii) With 6 solving (4), there exists t € T((Ajq) such that ys0 = t®*) and ys6 = t(®).
From @ solving (5) and by using (ii), it follows that ys6 = ¢(®). Now, due to the

second component of (5) and by using (i), we may infer that s(* Wt@.
1



From 6 solving (6) and by using (ii), it follows that y76 = ¢("). Now, due to the
second component of (6) and by using (i), we conclude that ti(g) .5 H—zé‘zm—>t(7).
Now the result follows from Lemma 3. m|
Theorem 1 Rigid reachability is undecidable. More specifically, there exists a ter-
minating ground rewrite system R, and a term t such that the solvability of con-

straints of the form (R, s,t), where s and t do not share any variables, is undecidable.

Proof. The undecidability follows from Lemma 2 and Lemma 5, taking (R, s, t)
to be the constraints of the form (2) above, with Ry, representing the moves of a
universal Turing machine. It is not difficult to show that R, is terminating. O

We have not attempted to minimize the number of variables in the constraints (2).
Observe also that all but one of the occurrences of variables in (2) are shallow (the
target term is shallow).

4. An Application to Second-Order Unification

As a direct application of the previous result, we prove that second-order uni-
fication is already undecidable for unification problems containing just a single
second-order variable which, in addition, occurs only twice. This result contrasts a
claim to the opposite in [27]. Let %, be the signature consisting of the symbols in
R, and the symbol f,. Let Ry = {l; = r; |1 <i<m}. Let l_; denote the sequence
li,l,...,l and 7, the sequence r1,72,...,7,. Let L, be the following language:

Lu = (Euv {$0,$1,$2,ys,y4,y5,y6,y7})

Let F, be a second-order variable with arity m + 1. Let cons be a new binary
function symbol and nil a new constant. The language L; is defined as the following
expansion of Ly:

Li = (%, U{cons, nil}, X1, {Fu}).

We can show that, given tiq € 7x,,, the following second-order equation in L; is
solvable if and only if the constraint (2) is solvable:

- 4) (6 .
Fu(lu,m(fu(q&?@,qffv),xl,xl,qi(d),qi(d),yz,ys,ys,ys,y7,y7),n_ﬂ)) ~

m(fu(xo,xz,960,$2,y4,y6,y4,y6,y4,$0,y6,ti(g) . l’z),Fu(Fu,n_ﬂ)) (7)

Lemma 6 Given tiq € Ts,,, (2) is solvable if and only if (7) is solvable.
Proof. The direction ‘=’ follows from [35, Lemma 2] and the observation that if 6
solves (2) then z6 € Ty, for all z € Xp,,. In particular, it is not possible that cons
or nil appear in the terms that are substituted for X7 .

We now prove the converse direction. Assume that 6 solves (7). We show that
0 solves (2). A straightforward inductive argument shows that F,0 is an Lj-term
of rank m + 1 of the form (recall that z; denotes is the i’th bound variable of a
function)

F,6 = cons(sy,cons(sa, ... ,cons(Sg, Zm+1) ")),

10



for some k > 1, by using that R, is ground and that cons ¢ %, (see [35, Lemma 1]).
Hence, since 6 solves (7), it follows that

cons(s1[lu, t'], ... cons(sipi[lu,t'], ... cons(t6, mil) o)) =g
cons(sb, ... cons(s;[Fy,nil], ... cons(sy[fy,nil], nil)---)---),

where s is the source term of (2), ¢ is the target term of (2), and ¢’ = cons(t6, nil).
Therefore, there exists a reduction in R, U {t' — nil} of the following form:

-

s1[lu t'] s2[lu, '] sillu, ] t6
" N I I N "
s6 S]_[Fu,n_il] Sk,]_[’l_"u,n_ﬂ] Sk[Fu,Il_il]

In other words, s§ ——*—— t6, that is,
R, U{t'—nil}

7
fu( Lo, T2, To, T2, Y4, Ye, Y4, Y6, Y4, To, Ye, ti(d)'x2 )0

= .
R,U{t' —nil}
0 2 4 6
fu( qr(n\)r, qr(ﬂ\)fa T1, T1, qi(d)v Qi(d)v Y3, Y3, Ys, Ys, Y7, yr )9

Next we show that z¢8,x20,y40,ys0 € Tx,. We observe that

xiOquﬁ, (¢=0,2) and that yﬂmqg) (1 =4,6).
It follows by induction on the length of reductions that ¢ — nil can not be used in
these rewritings, since nil does not not occur in R,. Hence, x¢6, 220, y40,ys0 € Ts, -
This implies that sf is in 7y, so that the rule ¢ — nil can not be used in the
reduction of s6 to 6. a
We conclude with the following result, that follows from Lemma 2, Lemma 5,
and Lemma 6.
Theorem 2 Second-order unification for one second-order variable that occurs at
most twice is undecidable.
The presence of first-order variables in the unification problems is essential for
obtaining the undecidability result. Without first-order variables, and if there is
only one second-order variable that occurs at most twice, second-order unification
reduces to ground reachability [28], and thus is decidable.

5. Monadic Rigid Reachability

In the remainder of the paper we will identify restricted, decidable cases of SRR.
The restrictions will be defined by syntactic criteria on either the signature or the
form of the source and target terms in constraints. In all cases that we prove to
be decidable, the rewrite rules have to be ground. We will start by proving that
monadic SRR with ground rules is PSPACE-complete. Our main tool is a decision
problem of NFAs that we define next. In this section we consider only monadic
signatures. The Section 6 will exhibit decidable fragments over non-monadic signa-
tures.

11



5.1. Constrained Product Non-Emptiness of NFAs

Given a signature ¥ and a positive integer m, we want to select only a certain
subset from X7 through selection constraints (bounded by m). These are unordered
pairs of indices written as i &~ j, where 1 < 4,57 < m, i # j. Given a signature %
and a set I of selection constraints, we write X7 |/ for the following subset of X'

S = {{awax-am) €XT 0 (Vixjel)a; =a;}

For an automaton A, let A|I denote the reduction of A to the alphabet X""|I. We
write also L(A)|I for L(A|I). The automaton A|I has the same states as A, and
the transitions of A|I are precisely all the transitions of A with labels from X'7*|1.
We consider the following decision problem, that is closely related to the non-
emptiness problem of the intersection of a sequence of NFAs. Consider an alphabet
Z. Let (Ai)1<i<n, n > 1, be a sequence of (string product) NFAs over the alphabets
YT for 1 <14 < n, respectively. Let m be the sum of all the m; and let I be a set
of selection constraints. The constrained product non-emptiness problem of NFAs
is, given (A;j)1<i<n, and I, to decide if (Q)" ; L(A;))|] is nonempty. A key lemma
is given next. Its proof is a straightforward extension of the Kozen’s [26] PSPACE-
completeness result of the intersection non-emptiness problem of DFAs.
Lemma 7 Constrained product non-emptiness of NFAs (or monadic TAs) is in
PSPACE.
Proof. Let (A;)i<i<n, ms, m, X, and I be given as above. Assume, for simplicity,
that m; = 2 for 1 <7 < n, i.e., m = 2n and that each automaton has alphabet X2 .
We may also assume, without loss of generality, that none of the automata accepts
the empty string and that, whenever a string v is accepted by A; also (L 1)v is
accepted by A;. Consider the following nondeterministic decision procedure.

I: Initialize
Calculate the number of states in @, A;, which is the product of the number
of states in the individual A;, and save it in IterationlLimit.

Save in State; the initial state of A; for 1 <i <mn.

II: Guess the next letter
Select (a1,...,a,) € X7 |I and store a; in Letter;.

III: Guess the next transition
For 1 < i < n, guess nondeterministically a state q; from A;.

Check that, for 1 < i < n, there is a (Letters; ;Letters;)-transition in A;
from State; to q;, and if so, save q; in State;. If there is no such transition
then terminate and reject.

1V: Check acceptance
If, for 1 < i < n, State; is an accepting state of A; then terminate and
accept.

12



V: Iterate
If IterationLimit is 0 then terminate and reject, else decrease IterationLimit
by one and return to Step II.

The procedure traverses the graph of (Q)"_, A;)|, by starting from the initial state,
at each step just remembering the current state and guessing a valid transition from
that state to the next state. We only need to check if there exists a path of at most
IterationLimit transitions (as initialized in Step I) in L(Q);_, A;)|I from the
initial state to a final state. It is evident that the procedure always terminates, and
that it accepts if and only if L(Q);, 4;)|] is nonempty.

It is obvious that no more than polynomial space is required for the execution
of the procedure. In particular, via the usual binary encoding of numbers, the
iteration limit can be calculated in polynomial space. Hence, the procedure runs
in non-deterministic polynomial space and thus in PSPACE, by using the result of
Savitch [31].

Finally, note that the only difference between NFAs and monadic TAs is that in the
latter we may have several transitions of the form ¢ — ¢, where ¢ is a constant and
q a state. This corresponds roughly to allowing several initial states in NFAs. O

The proof of Lemma 7 can be extended in a straightforward manner to finite
tree automata. The only difference will be that the algorithm will do “universal
choices” when the arity of function symbols (letters) in the component automata
is > 1. This leads to alternating PSPACE, and thus, by the result of Chandra,
Kozen and Stockmeyer [2], to EXPTIME upper bound for the constrained product
non-emptiness problem of TAs.

Although we will not use this fact, it is worth noting that the constrained product
non-emptiness problem is also PSPACE-hard, and this so already for DFAs (or
monadic DTAs). It is easy to see that (1, L(A;) is nonempty if and only if
L(Q; , Aj)l{i~i+1:1<i<n} is nonempty.

5.2. Monadic SRR with Ground Rules is in PSPACE

We need the following notion of normal form of a system of reachability con-
straints. We say that a system S of reachability constraints is flat, if each constraint
in S is either of the form

e (R,z,t), R is nonempty, z is a variable, and ¢ is a ground term or a variable
distinct from z, or of the form

e (0,2, f(y)), where z and y are distinct variables and f is a unary function
symbol.

Note that the solvability of a reachability constraint with empty rule set is simply
the unifiability of the source and the target.

Lemma 8 Let S be a system of reachability constraints. There is a flat system
which can be obtained in polynomial time from S, and that is solvable if and only if
S is solvable.

Proof. Let S be a given system of reachability constraints and consider the follow-
ing procedure.

13



(i) Replace each constraint (R, s,t), such that s is not a variable, or s = ¢, by the
two constraints (R, z,t) and (0, z, s), where = is a new variable.

(ii) Replace each constraint (R, z,t), where R is nonempty, x is a variable and ¢ is
neither ground nor a variable, by the constraints (R, z,y) and (0, y,t), where
y is a new variable.

(iii) Replace each constraint ((), z, f(s)), where s is not a variable and not ground,
by the constraints (0, z, f(y)) and (0, y, s), where y is a new variable.

(iv) Repeat the above steps until the system is flat.

It is easy to check that each step preserves solvability, and clearly, the time com-
plexity of this procedure is polynomial in the size of S. a

By using the lemmas 7 and 8 we can now show the following theorem which is
the main result of this section.

Theorem 3 Monadic SRR with ground rules is PSPACE-complete.

Proof. The PSPACE-hardness has been proved already for the special case where
the rule sets are symmetric [22] and where there is only one variable [24]. We prove
membership in PSPACE by giving a polynomial time reduction to the constrained
product non-emptiness problem of NFAs.

Let S be a system of reachability constraints with ground rules. Let ¥ be the
signature of S. We may assume, by using Lemma 8, that S is flat. Enumerate all
the constraints in S as p1,..., Pm, Pm+1,--- » Pn, such that the constraints of the
form (0,z, f(y)) occur as pmi1,--.,pn. Let p; = (R, z4,t;) for 1 < i < m and
pi = (0,3, fi(yi)) for m <i <n.

For 1 < i < m, using Lemma 1, construct (in polynomial time) an NFA A; such
that,

L(4;) = {z;,0®t;0 : 6 solves p;}.
For m < i < n, construct an NFA A; such that
L(A;) = {zf®y0:0solvesp;} [={fi(s)®s:s€ T}

This construction is exemplified in Figure 2 and can be done in polynomial time.
Let now I be the set of the following selection constraints (where 1 < i,5 < n

and i # j):

(i) If the source of a p; is a variable that occurs as the source of a p;, then
2i—-1=m2j—-1€el

(ii) If the source of a p; is a variable that occurs in the target of a p;, then
2i—1=~2j€l.

(iii) If the target of a p; is a variable that occurs in the target of a p;, then
2i~2j€l.

Clearly, L(®}_, A;)|] is nonempty if and only if S is solvable. With this, the
theorem follows from Lemma 7. |
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(el)

(hh)
Figure 2: A DFA (or monadic DTA) A that recognizes {f(s) ® s : s € Ts},
where X consists of the unary function symbols f, g, and h, and the constant
c. For example A recognizes the string (cLl)(gc)(g9g)(hg)(fh), i.e., the term

(Fh)((hg)((99)({gc)((cL))))) that is the same as f(h(g(g(c)))) ® h(g(g(c)))-

The crucial step in the proof of Theorem 3 is the construction of an automaton

that recognizes the language {f(s) ® s : s € Tg} (cf. Figure 2). The reason why
the proof does not generalize to TAs is that the language {f(s) ® s : s € Tx} is not
regular for non-monadic signatures. The next example illustrates how the reduction
in the proof of Theorem 3 works.
Example 1 Consider the flat system S = {p1, p2,p3} with p; = (R,y,z), p2 =
(0,y, f(2)) and p3 = (0, z, g(x)), over a signature ¥ = {f, g, c}, where c is a constant
and R is ground. This system is solvable if and only if the constraint (R, f(g(z)), z)
is solvable.

The construction in the proof of Theorem 3 gives us the NFAs A;, As and A3
such that

L(4,) = {s®t:s?t,s,t€7};},
L(4)) = {f(s)®s:s€Tg},
L(43) = {9(s)®s:s€Tx},

and a set [ = {1~ 3,5~ 4,6 ~ 2} of selection constraints. So L(®?:1 A is as
follows.

L(A ® A2 ® A3) |1 =

{s®te flu)@uegv)®v:stuveTs, sipt}{l~3,5~4,6~2}
={s®t® f(u)@uag(v)®v:s,tuveTs, st s=f(u), glv) =u, v=_t}
={fe)ete fegt) ®gt)@g(t) @t:t €T, f(9(t) 3t}

Hence, solvability of S is equivalent to non-emptiness of L(A4; ® A> ® A3)|I.

If only the rules are (ground and) monadic but the source and target terms
are arbitrary, SRR remains decidable and in PSPACE. Furthermore, using the
intersection non-emptiness problem for DFAs one may easily show that PSPACE-
hardness of this fragment holds already for a single constraint with one variable.
This is in contrast with the fact that SREU with one variable and a fixed number
of constraints can be solved in polynomial time [10].
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6. Decidable Non-Monadic Cases

We show that rigid reachability and simultaneous rigid reachability are decidable
for arbitrary signatures if the rules are ground and if the source and target terms are
suitably restricted. We will consider two kinds of restrictions. In the next section
we consider the case where either the source s or the target ¢ of a constraint are
linear, and where s and ¢ are variable-disjoint, that is, Var(s) N Var(t) = 0. This
fragment turns out to be EXPTIME-complete. EXPTIME-hardness holds already
with just a single variable. This contrasts with the fact that rigid F-unification
with one variable is P-complete [10]. When, additionally, both the source and
target terms are linear, then rigid reachability and simultaneous rigid reachability
are both P-complete.

In the section 6.2 we will show EXPTIME completeness for the case of balanced
constraints which embeds the case where non-linear variables have to occur at the
same depth.

6.1. Linear and Variable-Disjoint Sources and Targets

We begin with defining a reduction from rigid reachability to the emptiness
problem of the intersection of n regular languages recognized by tree automata Aj,
... ,A,. This intersection emptiness problem is known to be EXPTIME-complete,
see [17], [33] and [36]. We may assume the state sets of the A, ... ,A, to be disjoint
and that each of these tree automata has only one final state. We call these final
states, respectively, ¢, , ..., ¢ . For stating the following lemma, we extend the
given signature X by a new symbol f of arity n, and assume that n > 1.

Lemma 9 L(A;)N...NL(A,) # 0 if and only if, the constraint
(Ra,U...UR4,, f(z,...,z), fldy,,...,dY ) has a solution.
Proof. (=) is obvious. For (<) we use the fact that the new symbol f does not

occur in any transition rule of the Ay, ..., A,. Therefore, and since the state sets
are disjoint, any reduction in f(z,...,z)0 Wf(qﬁh, ... ,q% ) (where 6 is
a solution) takes place in one of the arguments of f(z,...,z)0. Moreover, if the

reduction is in the i-th subterm, it corresponds to the application of a rule in Rg4,.
(It is possible, though, to apply a start rule in R4; within the i-th subterm, with
1 # j. But any reduction of this form blocks in that the final state qf4i can not be
reached from the reduct.) The facts that n > 1 and that the state sets are disjoint
make it impossible for states of the automata to appear in z6. O

Theorem 4 Rigid reachability 1s EXPTIME-hard even when the rules and the tar-
get are ground and the source contains only a single variable.

For obtaining an EXPTIME upper bound for a somewhat less restrictive case of
rigid reachability we will now apply certain tree automata techniques. In particular,
we will exploit the following fact of preservation of recognizability under rewriting,
which is a direct consequence of results in [8].

Proposition 1 (Coquidé and Gilleron [4]) Let R be a ground rewrite system
and t a linear term. The set {u € Ty | u - to,to ground} is recognizable by a tree
automaton A of size in O(||t|| * | R||?)-
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Proposition 2 The subset of Ts of ground instances of a given linear term s is
recognizable by a tree automaton A, of size linear in the size of s.

Theorem 5 Rigid reachability, when rules are ground, the target is linear and the
source and the target are variable-disjoint, can be decided in time O(n3***), where
n 1s the size of the constraint, and k is the total number of occurrences of non-linear
variables in the source term.

Observe that the upper time bound becomes O(n*) when the source term is linear,
since k = 0 in this case.

Proof. Assume to be given a constraint (R, s,t) of the required form. We first
construct a tree automaton A from ¢ and R with the properties as provided by
Proposition 1, recognizing the predecessors with respect to R of the ground instances
of t. The size of A is in O(n?).

If the source s is linear, then there is a solution for (R, s, t) iff L(A)NL(A,) # 0,
where A, is a tree automaton accepting the ground instances of s, cf. Proposition 2.
Since the intersection of recognizable languages is recognizable by a tree automaton
whose size is the product of the sizes of the given tree automata, the solvability of
the constraint can be decided in time O(]|s|| * n3) C O(n*).

If the source s is not linear, we reduce the problem to |Q4|* problems of the
above type. We assume wolog that A has only one final state ¢'. Let (s;) be the
finite sequence of terms which can be obtained from the source s by the following
replacements: for every variable £ which occurs 7 > 2 times in s, we choose a tuple
(q1,--.,q;) of states of A such that M;<;L(A4,q) # 0,° and we replace the [-th
occurrence of z in s by ¢, for [ < j.

Then the two following statements are equivalent:

(i) the constraint (R, s,t) has a solution.
(ii) one of the constraints (R4, s;, %) has a solution.

(i) = (it): Assume that o is a solution of the constraint (R, s,t¢). This means
in particular that so € L(A) i.e. sa?qf. Let 7 be the restriction of o to the set
of linear variables of s and 6 be its restriction to the set of non-linear variables of s.
We have s6 ﬁ) s;, for some i, by construction, and 7 is a solution of the constraint
(RA, Siy qf) .

(1) = (i): Assume sirﬁqf for some 7 and some grounding substitution 7.
To each non-linear variable z of s, we may associate (by a substitution 6) a term
sz € Mi<;L(A, q) where qq, ... ,g; are the states occurring in s; at the occurrences
of z in s. Hence s76 %> to for some grounding substitution o which is only defined
on the variables of ¢. Since Var(s) N Var(t) = 0, the domains of §, 7 and o are
pairwise disjoint and 7 U 8 U o is indeed a solution to the constraint (R, s,t).

Complezity: The number of possible s; is smaller than |Q4|*, that is, it is in
O(n®F). Rigid reachability for one constraint (4, s;,¢') can be decided in time
O(n*), according to the first part of this proof. Altogether, this gives a decision
time in O(n3%+4). ]

POne can decide these emptiness problems in time ||A|/* € O(n3F).
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By symmetry, rigid reachability is also decidable when rules are ground, the
source is linear and the source and the target are variable-disjoint, with the same
complexities as in Theorem 5 according to the (non)-linearity of the target.

As a consequence we obtain these two theorems:

Theorem 6 Rigid reachability is EXPTIME-complete when rules are ground, the
source and the target are variable-disjoint, and either the source or the target is
linear.

Theorem 7 Rigid reachability is P-complete if the rules are ground, the source and
the target are variable-disjoint, either the source or the target is linear, and if the
number of occurrences of non-linear variables in the non-linear term is bounded by
some fized constant k independent from the problem.

Note that the linear case corresponds to k = 0.

Proof. For obtaining the lower bound, one may reduce the P-complete uniform
ground word problem (see [25]) to rigid reachability where rules, source and target
are ground. The upper bound has been proved in Theorem 5. a

We now generalize Theorem 7 to the simultaneous case of rigid reachability.
Theorem 8 Simultaneous rigid reachability is P-complete for systems of pairwise
variable-disjoint constraints with ground rules, and sources and targets that are
variable-disjoint and linear.

Proof. Apply Theorem 7 separately to each constraint of the system. |

Similarly, we can prove:

Theorem 9 Simultaneous rigid reachability is EXPTIME-complete for systems of
pairwise variable-disjoint constraints with ground rules, and sources and targets that
are variable-disjoint and such that at least one of them is linear for each constraint.
The problem remains in P (see Theorem 7) if there is a constant k independent
from the problem and for each s; (resp. t;) which is non-linear, the total number of
occurrences of non-linear variable in s; (resp. t;) is smaller than k.

We can relax the conditions in the above Theorem 9 by allowing some common
variables between the s;.

Theorem 10 Simultaneous rigid reachability is in EXPTIME when all the rules
of a system of constraints ((Rl,sl,tl), cee (Rm,sm,tm)) are ground, every t; is
linear and for all 1,5 < m, the terms s; and t; and, respectively, the terms t; and
tj (for i # j), are variable-disjoint.

Proof. We reduce this problem to an exponential number of problems of the type
of Theorem 9.

We associate a TA A; to each pair (¢;, R;) which recognizes the language {u €
Ts | uf~+1ti0,t;0 ground} (see Proposition 1). The size of each A; is in O(||t;]| *
IR;||?). We may assume that the state sets of the A; are pairwise disjoint and that
the final states sets of the A; are singletons, say, Fa, = {¢}}. We construct for each
i < m a sequence of terms (s; ;) obtained by replacement of variables occurrences
in s; (regardless of linearity) by states of A;. To each m-tuple (s1j,,...,5m j..),
we associate a system which contains the constraints:

(1) (RAUSLjqu)v ceey (RAm7slyjm7qf’n)
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(ii) for every variable z which occurs k times in {s1,...,s,}, with & > 2,

(Ray W...W R4, f¥(x,...,2), fE(q1,... ,qx)), where fF is a new function
symbol of arity k and g1, ... ,qx are the states occurring in s; j,, ... ,51,j, at
the positions corresponding to z in s, ... ,Sm,.

Then the system ((Rl,sl,tl), ceey (Rn,sn,tn)) has a solution if and only if, one

of the above systems has a solution. Each of these systems has a size which is
polynomial in the size of the original system and moreover, each satisfies the re-
quirements of Theorem 9, and can thus be decided in EXPTIME. Since the number
of the above systems is exponential (in the size of the initial problem), we have an
EXPTIME upper bound for the decision problem. O

The theorem is true, symmetrically, when we exchange the réles of sources and
targets. We conclude this section by mentioning that the only difference between the
conditions for undecidability of rigid reachability in Theorem 1 and the condition
for decidability in Theorems 5, 6, and 7 is the linearity of source and (or) target
terms.

6.2. Balanced Reachability Constraints

In this section, we consider a second form of restrictions on source and target
terms which makes non-monadic SRR decidable for ground rules. The restriction
will be placed on the depth of non-linear variable occurrences.

6.2.1. Semi-linear sequences of terms

We call a sequence of terms (t1,t2,... ,ty) of terms in 7Tx U { L} semi-linear if
one of the following conditions holds for each t;:
(i) t; is a variable, or
(ii) t; is a linear term and no variable in ¢; occurs in ¢; for i # j.
Note that if ¢; is ground then it satisfies the second condition trivially.
Lemma 10 Let (s1,$2,...,8;) be a semi-linear sequence of Y-terms. Then the
subset {519®329®- - ®8,0 : 0 is a grounding E—substitution} C Ts™ is recognizable
by a TA of size in O((|Iscll +[IZ]1) - (lsell + [IZ]1)) -
Proof. Let ¥ and § = s1,82,...,5; be given. Let A; be the TA that recognizes
{50 : ;0 € Ts} for 1 < i < k. The desired TA is (Q) A;)|I, where I is the set of
all selection constraints ¢ ~ j such that s; and s; are identical variables. a
We shall also use the following lemma.
Lemma 11 Let A be a TA, s € T, and p1,... ,pr be independent positions in s.
Then there is a TA A', with ||A'|| € O(||A||**), that recognizes the set {s1®- - ®sy, :

$1,-+. 5k € T, S[s1]p, - - [Sklp. € L(A)}
Proof. For all states ¢ € Qa, let A, be the automaton (Qa,%, Ra,{q}). Let
{@i}1<i<m be the collection of all sequences ¢; = ¢;1,..., ¢ € Qa such that, for

some g € Fa, s[galp, ...[qik]pké‘—A>qf. For all such sequences ¢;, 1 < i < m,
construct a TA A; that recognizes

L(AQi1) - ® L(AQik)'
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Here we can assume that each L(A4,,;) is nonempty, or else L(A;) is empty. Assume
that all the A;’s have disjoint sets of states and let A’ be the union of all the A;’s.
It is easy to check that A’ recognizes the given set of terms. Note that m < |Qa|*.
The size of A’ is therefore [|A'|| < 3" |4l < S0, [JAlF < |QalF x ||Al* O

6.2.2. Parallel decomposition of sequences of terms

We generalize the notion of a product of terms given in the section 2 by also
admitting non-ground terms. The resulting term lives in an extended signature
with ® as an additional variadic function symbol. The definition is the same as
given in equation (1) in section 2, with the additional stipulation that if one of the
t; is a variable then

1 ® by =(t1,--- ,tm).

In other words, if one of the ¢; in a product is a variable, t; ® - - - ® t,, is left as it is
and considered a term in the extended language. Suppose that §= s1,...,5,, is a
sequence of terms, and let (®(%;))1<i<x be the sequence of all the subterms of the
product term ® § which have head symbol ® (applied to argument lists ;). The
parallel decomposition of § = s1,... , Sy, denoted pd(S), is the sequence (t_;)lgigk of
the argument lists of the ® subterms in §. The positions at which the ® subterms
occur will be denoted by pdp(5). More precisely, pdp(5) is the sequence (p;)i1<i<k,
where p; is the position of ®(t;) in & 5.

The following example illustrates these new definitions and lemmas and how
they are used.

Example 2 Let s = f(g(z),g9(z)) and t = f(y, f(z,y)) be two terms, and let R
be a ground rewrite system over ¥. We will show how to capture all the solutions
of the reachability constraint (R, s,t) as a certain regular set of ¥2 -terms. First,
construct the product s ® t.

s®t = f(g9(2),9(z)) ® f(y, f(z,y))
(ff9(z) ®y,9(z) ® f(z,y))

(fH(®(9(2),9), (9f)z®z, Ly)

(£ (®(9(2),9), (9f)(&(z, ), ®(L,y)))

The ®-terms in s ® t are ®(g(2),y), ®(z,z), ®(L,y). Appending their arguments
gives us the semi-linear sequence pd(s,t) = g(2),y,z,z, L,y. (Note that pdp(s,t) is
the sequence 1,21,22.) It follows from Lemma 10 that there is a TA A’ such that
A)={g(20) @yl ® 20 ® 20 ® L ® yb : 6 is a grounding E-substitution}.
Now, consider a TA Ag that recognizes the relation of %, see Lemma 1, i.e.,
L(ARr) = {u®v : u v, u,v € Ts}. From AR we can, by using Lemma 11, construct
a TA A" such that

L(A") = {51 ® 521 ® 522 : 51,821,522 € Ts", (ff)(51,(gf)(s21,522)) € L(AR)}
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This is the language which results from L(Ag) by projecting to the subterms at the
positions pdp(s,t). Let A recognize L(A’) N L(A"). We get that

L(A)=L(AYNnL(A")
51 ® S21 ® 822 ¢+ (Fzb,yb,20 € Tx)
= s1=g(20) ® yb, s21 = 20 @ z0, s22 = L ® yb),
(fF)(s1,(gf)(s21,522)) € L(AR)
={9(z0) @ @yb : (£)(9(20) ® Y, (gf) (20 ® 20, L ® y¥)) € L(AR)}
={9(20) ® - ®yb : f(g(20),9(z8)) 7 f(y0, f(0,y0))}
={9(20) @ --- @ yb : 0 solves (R, s,t)}

Hence L(A) # 0 if and only if (R, s,t) is solvable.

The crucial property that is needed in the example to decide the rigid reachabil-
ity problem is that the parallel decomposition of the sequence consisting of its source
and target terms is semi-linear. This observation leads to the following definition.

6.2.3. Balanced systems of reachability constraints

A system (R;, s;,t;)1<i<n of reachability constraints with ground rewrite systems
R; is called balanced if the parallel decomposition pd(si,t1, S2,t2,. .. , S, tn) is semi-
linear. The proof of Lemma 12 is a generalization of the construction in Example 2.

Lemma 12 From every balanced system S of reachability constraints we can con-
struct in EXPTIME a TA A such L(A) # 0 iff S is satisfiable.

Proof. Let S = ((Ry,81,t1),--.,(Rn,Sn,tn)) be a given a balanced system of
reachability constraints. Let U = 1 ® t1 ® ... ® s, ® t, and (p1,...,pr) =
pdp(s1,t1,---,Sn,tn)-

By definition, the sequence pd(si,t2,... ,8n,tn) = (U1,...,Us2x,) is semi-linear.
Therefore, it follows from Lemma 10 that there is a TA A’ such that

L(A") = {u19 ®...Q Uggsb : 0 is a grounding E—substitution}
Using Lemma 1, we can associate a TA A; to each R; (i < n) such that

L(A;) = {u®v:uRLi>U, u,v € To}

We can use Lemma 11 to construct a TA A" such that

L(A") = {vl ®...®UE: V..., 05 € T2 Ulvrlpy - - - [Vk]p, € L(® Ai)}
i=1

Note that both L(A') and L(A") are subsets of 75%*". Let A be a TA recognizing

L(A")N L(A"). We observe that L(A) # 0 if and only if, S is satisfiable. Let ¢ be

a term in Tx2*".

Now, t € L(A)
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iff t =u10®...Q® uz,b for some grounding X-substitution 6 (as ¢ is in L(A")),
in

and Ulwi]p, -- - [wilp, € L(Qj, Ai), where w; = QL 1), u;0 (as tis in
L(A")),

ff (5181 ®...Q 8, ®ty)[wilp, ... [Wilp, € LIQL; Ai),

iff 510@t:10®...®s,0®t,0 € L(Q;_, A;), because every variable of S occurs

in one of the uy,... ,usxn, by definition of pd,
iff 510 5=>110,... 500 5 1n0.

Let us, finally, calculate the size of A, as the complexity of its construction de-
pends linearly on its size. For each i < n, the size of A; is polynomial in ||R;]|,
thus H®?:1 A;|l £ M where M = max{||R;|]| : ¢ < n} and c is a constant inde-
pendent of the problem size. Therefore, ||A'|| < M2 cf. Lemma 11. According
to Lemma 10, ||A"]] < [Jug]] X «.. X [Jugn|] < T ||s]| x T2, ||¢;]] < N7, where
N = max{||s;||, ||t:|| : ¢ <n}. Hence,

JAIl = [|A”[| x [JA']] < N2 x MZer* < || 5P+,

a

Theorem 11 Simultaneous rigid reachability is EXPTIME-complete for balanced
systems with ground rules.
Proof. The EXPTIME hardness follows from the lemma 9, and the membership
in EXPTIME is a direct consequence of Lemma 12. O
The theorem can also be used to show the decidability of the following variation
of the fragment. Suppose that for each variable = there exists an integer d, such
that = occurs only at positions of length d,, as is the case for sy = f(z,g(y)),
t1 = f(f(y,y),z), s2 = g(z), and t2 = g(f(a,y)). To reduce the problem to
balanced case, one simply non-deterministically guesses terms with new variables
to be substituted for z (in the example we might guess the terms a, g(z;), or
f(z2,x3), among others) such that the outcome is a balanced system where all
variables occur at the same depth. Every solution of the original system arises as
the composition of the guessed substitution with a solution of the balanced system.

7. Conclusion

We have shown that absence of symmetry makes solving of rigid reachability
constraints much harder. In the non-simultaneous case one jumps from decidability
to undecidability. In the case of ground rewrite rules, source terms with just a single
variable, and ground target terms, the complexity increases from P-completeness
to EXPTIME-completeness. The undecidability of rigid reachability implies a new
undecidability result for second-order unification problems with just a single second-
order variable that occurs twice. We have also seen that automata-theoretic meth-
ods provide us with rather simple proofs of upper bounds for fragments with ground
rules, including the monadic case and certain non-monadic cases with restrictions
on non-linear occurrences of variables.
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