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Abstract

We present a novel system to help visually impaired peo-
ple to move efficiently and safely in indoor environments by
mapping input from a depth camera to spatially localized
auditory cues. We propose a set of context-specific cues
which are suitable for use in systems that provide minimal
audio feedback and hence reduce masking of natural sounds
compared to the audio provided by general-purpose sense
substitution devices. Using simple but effective heuristics
for detecting the floor and the side walls, we propose au-
ditory cues that encode information about the distances to
walls, obstacles, the orientation of the corridor or room,
and openings into corridors or rooms. But the key to our
system is the use of a spatial sound engine that localizes
the generated sounds in 3D. We evaluate our system, com-
paring with [7, 16]. Our preliminary pilot study with ten
blindfolded participants suggests that our system was more
helpful for spotting smaller obstacles on the floor, though
neither system had a significant edge in terms of walking
speed or safety.

1. Introduction

The increasing ability to automatically understand the
environment based on visual data will have huge implica-
tions for assistive technologies for the visually impaired.
Technology is advancing rapidly on three fronts: camera
sensing, automatic real-time analysis and understanding of
the data, and in non-visual forms of output to the user.
In this paper, we investigate the combination of a head-
mounted depth camera as input, software to interpret the
depth image, and a 3D sound engine to provide spatially-
localized auditory cues to the user. Our goal is to improve
the efficiency and safety of visually impaired users as they
walk around indoor environments. In particular, we (i) ad-
dress the problem of avoiding obstacles which may slow a
user down even when using a cane, and (ii) aim to increase

the spatial awareness of the user and overcome the problem
of veering [9] by giving information about the orientation
of corridors and the proximity of walls.

Camera technology is progressing on many fronts. In
this work we exploit advances in depth sensing: small low-
power depth cameras are now becoming available, and these
greatly simplify the problem of understanding the 3D struc-
ture of the local environment. While currently of limited
use outdoors, there are important indoor scenarios that can
benefit today from depth sensors, and we expect that depth
sensing will advance to the point where it can be applied
more broadly.

Existing vision substitution technologies can be divided
into two categories depending on whether they interpret the
input image before generating the non-visual output. The
first category aims for a general-purpose sense substitution,
by converting the raw visual information into output, using
e.g. sound [7, 15, 16]. As these systems do not interpret
the visual information before generating the non-visual out-
put, they rely on the brain’s plasticity to learn the non-trivial
mapping of the resulting sound patterns into a mental repre-
sentation of the environment. While versatile, such general-
purpose sense substitution approaches are potentially tiring
on the user who is constantly bombarded with information.
The second category, of which our approach is a member,
instead tries to provide output cues only for specific pat-
terns, such as obstacles [2, 5, 6], obstacle-free paths [12],
and walls, by generating cues based on an interpretation
of the input image. These interpretations typically abstract
the complexity of the raw input image and thus help reduce
sensory overload. Minimizing audio feedback also avoids
masking natural sounds which is one of the key drawbacks
of general-purpose sense substitution systems with audio
output.

Non-visual output technology, which includes auditory
and haptic [13], is also advancing. We follow many ap-
proaches in using sound, but go beyond traditional stereo in
using a 3D spatial sound engine: the sounds in our system
are localized in 3D space to coincide with the 3D position of
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Figure 1. Our prototype. In the experiment, the laptop was carried
by the experimenter walking behind the participant.

the real obstacle, wall, or corridor. We hope this might allow
for a more precise and intuitive understanding of location
information from sound than other mappings, especially for
visually impaired users who may have superior sound lo-
calization abilities [14]. Also, spatial sound based on Head-
Related Transfer Functions (HRTFs) becomes more suitable
for use in assistive technology as simpler techniques for
generating personalized HRTFs are developed [1, 3, 17]. To
our knowledge, existing work that uses a 3D spatial sound
engine [4, 8] has only used a direct mapping from uninter-
preted input to output, and our approach is the first to com-
bine depth sensing, high-level interpretation of the image,
and a spatial sound engine.

2. System description

2.1. Physical setup

A time-of-flight depth camera is mounted to the front of a
hard hat, pointing forwards and slightly down. The camera
and headphones for audio feedback are connected to a lap-
top which runs the software that analyzes the depth images
and generates the 3D sound scape (see Figure 1). This setup
is clearly impractical for deployment (weight, ergonomics,
appearance, and the blocking of ambient sounds), but it
proved a useful prototype for our investigations and we be-
lieve a more appropriate form-factor would not be difficult
to build using even today’s technology, given suitable in-
vestment.

2.2. Preprocessing

Depth frames from the camera are downsampled by a
factor of 4 in each dimension to reduce both noise and
the amount of processing necessary in later steps of the
pipeline. This results in an input image of 94x66 pixels,
which is still ample to compute the auditory cues in our

system. The value of a pixel in the downsampled frame is
set to the average of the corresponding pixels in the orig-
inal frame. If more than half of the corresponding pixels
in the original frame have an ‘invalid’ depth measurement
(e.g. the pixel is too far from the sensor), the pixel in the
downsampled frame is also set to be invalid.

2.3. Detecting the floor and side walls

In order to give abstract auditory cues about indoor struc-
ture, the system heuristically classifies the points in the
downsampled frame according to whether they belong to
the floor, the right wall, or the left wall. To do so in a robust
and fast way, we exploit the strong prior knowledge about
the location and orientation of these planes relative to the
camera, and make use of local normals for fast plane de-
tection (for a performance comparison between a method
based on local normals and full RANSAC, see [18]).

The local normal at a point is computed by taking the
cross product of the differences between the camera space
points at neighboring pixel positions. The local normal at
~p(x, y) (denoting the camera space point at pixel coordinate
(x, y), with the origin being the top-left of the frame) is
calculated using:

~n(~p(x, y)) = (~p(x, y + 1)− ~p(x, y − 1))

× (~p(x− 1, y)− ~p(x+ 1, y))
(1)

We check that ~p(x, y) in fact lies on the lines connecting
~p(x, y−1) and ~p(x, y+1), and ~p(x+1, y) and ~p(x−1, y).
If not, this point is considered not to have an estimate of the
local normal. This condition avoids issues at the intersec-
tion of two planes, for example.
Finding the floor. To find the floor, one iteration over the
depth frame is performed and all pixel (x, y) are identified
that satisfy the following two conditions:

θmin ≤ θ ≤ θmax (2)

where θ is the elevation angle of ~n(~p(x, y)), and

h− ht
2
≤ d ≤ h+

ht
2

(3)

where d is the plane-origin distance of the plane defined
by the point ~p(x, y) and the local normal ~n(~p(x, y)), h is a
predefined estimate of the height of the camera, and ht is
the width of the tolerance interval.

For the first condition (2), we chose θmin = 65◦ and
θmax = 165◦. It expresses that the local normal at this
point is pointing up, slightly forward, or backwards. The
thresholds are chosen to cover cases in which the camera is
in parallel with the floor (θ ≈ 90◦), rare cases in which it
points slightly up relative to the floor plane, but parts of the
floor are still visible (θ < 90◦), e.g. when the floor is tilted



downwards, and cases in which the camera is oriented down
towards the floor (θ > 90◦).

For the second condition (3), we set h = 1.8m and
ht = 1m. It expresses that the point lies on a plane whose
distance to the camera indicates that it is the floor plane.
It excludes points lying on tables, for instance, which have
the same direction orientation as the floor plane, but define a
plane whose plane-origin distance is smaller. Given the val-
ues of h and ht for our system, we relied on the assumption
that the camera is always on a distance of 1.3m to 2.3m to
the floor. This assumption might seem unnecessarily weak,
but it should be taken into account that the plane-origin dis-
tance estimate will not be accurate because small errors at
local normals due to noise in the depth measurements at dis-
tant points can lead to large inaccuracy in the plane-origin
distance estimate.

The camera space points satisfying these two conditions
are then agglomeratively clustered into groups of points
considered to lie on the same plane. Two points are consid-
ered to lie on the same plane if their corresponding normals
are approximately parallel, and the difference between the
points is perpendicular to the direction of their normals. The
largest set of such points is taken to define the floor plane.
Finding the side walls. Firstly, all pixels are found that
satisfy

− θt
2
≤ θ ≤ θt

2
(4)

or

180◦ − θt
2
≤ θ ≤ 180◦ +

θt
2

(5)

where θ is the elevation angle of ~n(~p(x, y)), and θt is the
width of the tolerance interval. We chose θt = 90◦. (4) or
(5) is met for all points which have local normals that are
pointing roughly horizontally. The large tolerance interval
allows for inaccuracy in local normal estimates and possible
tilting of the head. The set of these points is clustered into
planes using the same procedure as for the floor.

Among these planes, the estimate of the left wall is cho-
sen as the largest plane satisfying

φmin ≤ φ ≤ φmax (6)

where φ is the azimuthal angle as measured in the XZ-plane,
with 0◦ corresponding to the x-axis which points to the right
of the camera. Additionally, if the floor is known, it is veri-
fied that

(avg{~p | ~p lies on the candidate left wall })x
< (avg{~p | ~p lies on floor })x .

(7)

For the first condition (6), we set φmin = −45◦ and
φmax = 20◦. This ensures that the plane normal is pointing
roughly to the right, allowing more room for pointing to the
back, which occurs when the camera does not point in the

Figure 2. Result of the image plane detection. On the top left, the
input frame is shown, with invalid measurements shown in red,
and valid measurements ranging light gray (close) to black (far
away). The remaining figures (in clockwise order) show which
pixels are classified as belonging to the floor, the right wall, and the
left wall. While there are some misclassifications, our approach
is sufficiently robust to serve as the basis for generating auditory
cues, e.g. about distances to walls or obstacles on the floor.

direction in which the wall is oriented, but is rotated towards
it. The second condition (7) checks that the x-coordinate av-
erage of the points on the candidate left wall lies to the left
of the average of the floor points.

Analogous conditions are applied to find the right wall.
If both a right wall and a left wall were found, it is verified
that the two purported side walls are facing each other by
checking that their dot product is close to 0. If that is not
the case, only the side wall with more points on it is kept.
Extension step. The resulting estimates of the floor and
side walls were found to reliably pick out points on the re-
spective structures, but they often did not include all pix-
els which belong to them. One reason for that is that the
local normals are not meaningful at the edge of such struc-
tures where the adjacent pixels belong to other planes; how-
ever, we still want to include points at these positions. To
overcome this issue, a single iteration over the frame is per-
formed which determines for each ~p(x, y) whether it lies on
the same plane as the points currently recognized as belong-
ing to the floor or one of the side walls. This is considered
to be the case if the point lies on the same plane as ran-
domly sampled triples of points known to be on the floor
or the respective side wall. The point is then added to the
set of pixels of the floor or the respective side wall. An ex-
ample of the system’s output of the final floor and side wall
estimates is shown in Figure 2.

2.4. Generating 3D sound

The downsampled frame is passed to a set of depth-
to-sound conversion routines, each of which implements
a mapping from the current (and possibly previous) depth



frame to a set of sound descriptions. All sound descriptions
contain the position of the sound in camera space, i.e. XYZ-
coordinates relative to the position of the camera. A spatial
sound engine generates audio on the basis of the sound de-
scriptions. Positions of sounds in space are continuously
updated during playback. For example, when the location
of an obstacle relative to the user changes during playback
of the sound for obstacles, the sound will move accordingly.
Thereby, the sensory-motor coupling that people know from
natural sounds, e.g. between the perceived sound and a ro-
tating movement of their head, is simulated by our system.

Our completely unoptimized implementation runs at in-
teractive rates (about 15 frames per second). The conversion
from depth data to sound takes less than 70ms, and every
other frame provided by the depth camera can be fully pro-
cessed to update sound parameters. The performance of the
system was measured on the laptop used in the prototype
with an Intel Core i7 2.70 GHz CPU running Windows 10.

2.5. Auditory cues

Side walls. The system checks which of the walls recog-
nized as left or right wall has the closest visible point on it,
and then plays a sinusoid located at that point if it is closer
than a threshold set to 1.5m in the experiment. If the user
gets closer to the side wall, the sound gets louder because
the sound engine simulates it getting closer. This effect is
manually enhanced in our system by scaling the amplitude
of the sound. This keeps the sound very quiet at distances
exceeding 1m, and quickly increases its volume if the user
is in danger of walking into the side wall.
Focal area. The system identifies the closest point in a re-
gion covering approximately the central 15% of the frame.
It gives an auditory cue if the closest depth in this area is
less than 1m. In such cases, the user is probably walking
towards a wall, or an obstacle on head height. This cue is
non-abstract since it has a simple relation to the raw depth
data. Consequently, it is versatile: for instance, the user can
determine whether there is a wall to the right by rotating
the head to the right and listening for that cue. The specific
sound for this cue was chosen to be a voice repeatedly say-
ing ‘stop’ until the closest point in the central area exceeds
the threshold again.
Vanishing point. If the system has recognized the floor
and at least one of the right or left wall, it provides a cue to
indicate the orientation of the corridor or room. The cue is
located in the direction of the vanishing point, which is es-
timated by taking the direction to which the line of intersec-
tion between the recognized wall and floor converges. As
the vanishing point is located at infinite distance from the
user and would hence be inaudible, the sound position was
set to 5m in front of the user (in the ideal direction of the
vanishing point estimate). This is intended to overcome the
problem of veering. If the user keeps that sound in a direc-

tion immediately to the front of her, she would walk straight
towards the end of the corridor, without being in danger of
walking into side walls. A low cello note was used as sound
for this cue, with a frequency one fifth below the pitch of
the sound for the side wall so that simultaneous playback of
the two sounds did not result in unpleasant dissonance.

Estimation of the vanishing point of the current indoor
structure was used in an existing project for guidance of vi-
sually impaired people [12]. However, rather than directly
providing a cue about the vanishing point, they use it in con-
junction with other information to compute a suggested free
walking path. Their approach for vanishing point detection
relies on detecting lines in the image frame, e.g. at wall in-
tersections or tiled floors. Given that our system needs to
estimate the floor and side wall positions, it is computation-
ally cheaper to estimate the vanishing point based on that
information.
Openings. Cues are provided if a side wall opens up.
For instance, if the corridor makes a right turn, a cue lo-
cated at the end of the right wall will be generated, while
at T-junctions, cues are given for both sides. To detect such
openings, the system scans rows of pixels, starting at the
corresponding end of the frame, e.g. from right to left to de-
tect openings of the right wall. It searches for the last pixel
classified as belonging to the wall, i.e. the end of the wall
in this row. It then keeps searching for the first point which
lies on the same plane as the side wall. This point does not
have to be classified as part of the side wall, only as lying on
the same plane as it. For instance, when the corridor makes
a turn, the next point lying on the same plane as the side
wall will be part of the wall which would be to the left after
the turn is taken. The distance between these two points, the
last on the wall and the first on the same plane, is computed
and used as an estimate of the width of the opening. If the
estimated width exceeds 0.5m, the opening detection test
succeeded at this row. This is done for the central 15% of
the rows, and if the test succeeds for more than half of them,
a cue is given. Taking multiple rows into account provides
robustness against noise. In the experiment, the sound for
this cue was chosen to be a voice saying ‘opening left’ or
‘opening right’, located in space at the end of the side wall.
Obstacles. Small obstacles on the floor, like bins, are
potentially hard to notice with non-abstract auditory cues
of general-purpose sense substitution devices because they
never lead to small depth values: since they are on the floor,
they leave the field of view of the depth camera before they
get depth values which are small compared to those at other
parts of the frame, e.g. points at side walls. Even if the depth
camera was pointing downwards with an obstacle immedi-
ately in front of the user, the distance would still be more
than 1.5m due to the height of the camera.

However, using the information of which pixels belong
to the floor, such obstacles can be detected, even if they



Figure 3. Output generated by the obstacle detection subsystem.
On the left, the input frame is shown, with invalid measurements in
red. On the right, all pixels classified as belonging to the obstacle
are marked in green. The camera space point corresponding to the
closest of these pixel is chosen as the position of the 3D auditory
cue.

never occupy a large proportion of the frame and never lead
to small depth values. The algorithm for obstacle detection
firstly searches for all pixels which satisfy three conditions.
Firstly, they must not be classified as part of the floor. Sec-
ondly, they must have floor pixels to the left and right of
them. This means that structures attached to side walls are
not considered as obstacles on the floor. Thirdly, they must
have a pixel above them which is further away, i.e. the depth
camera must be able to see a point behind them. Without
this third condition, obstacle warnings would be given for
structures like walls meeting in an angle greater than 180◦.
The set of pixels satisfying these three conditions are con-
sidered to belong to obstacles. The pixels are then grouped
into regions of adjacent pixels, and only groups of a cer-
tain minimal size are kept as representing obstacles. This
reduces the number of false positives due to noise. A cue
is provided at the closest obstacle pixel. Since the sound
is located in space at the position of the obstacle, the user
can figure out where the obstacle is and in what direction to
walk to pass it. A voice repeating ‘obstacle’ was chosen as
sound for this cue.

2.6. Stabilizing sounds

A common problem of the conversion procedures of
depth frames into sounds is that they sometimes tend to pro-
duce sounds with quickly changing parameters, either due
to noise or due to unfavorable surroundings (e.g. two obsta-
cles at roughly the same distance). This can result in both
unpleasant and confusing audio feedback. To overcome this
issue, we implemented sound stabilization methods which
can be used by different conversion routines. These take a
set of proposed sound descriptions and return a set of de-
scriptions of stabilized sounds, usually based on looking at
the change of sound parameters through time. For example,
a stabilization routine might average the position parame-
ter of a sound over the duration of the last 500ms, or mute
sounds if their position changes too quickly. In the sys-
tem, such sound stabilization routines are chained, with the
stabilized output of the previous stabilization routine being
further stabilized according to other criteria by the follow-

ing stabilization routine.

2.7. Comparison with MeloSee [7, 16]

In order to compare our system, which gives rather ab-
stract cues, to a system aiming for general-purpose sense
substitution, the MeloSee system was reimplemented [7,
16]. MeloSee uses a straightforward mapping of depth to
sound: the visual field is split up evenly into a grid of 8x8
‘receptive fields’. Each of the receptive fields can produce
a sinusoidal sound, depending on its ‘activation’. The acti-
vation of a receptive field is proportional to the average of
the depth values at ten pixels within it, chosen randomly,
but fixed across executions in a configuration file. This esti-
mate of the average depth is mapped to sound intensity, with
a receptive field producing no sound if the average depth in
that receptive field exceeds 2.5m. Each receptive field has
fixed parameters for binaural panning and sound frequency.
Binaural panning depends on the horizontal position of the
receptive field in the depth image and frequency on its ver-
tical position, with receptive fields at the top of the depth
frame corresponding to sinusoids of high frequency. The
frequencies for the eight possible vertical positions of re-
ceptive fields are chosen to lie on a just intonation scale
from C4 to C5.

A difference to the original implementation of the system
is that due to the better range of the depth camera in our
prototype, our system works at distances as close as 20cm,
while their prototype was limited to a minimal distance of
50cm.

3. Preliminary mobility evaluation
3.1. Study design

We wanted to evaluate the ability of our system to help
visually impaired users follow a route based on a verbal
description without losing orientation or colliding with ob-
stacles or walls. We chose to do a preliminary compari-
son of our system against MeloSee [7, 16], a system aim-
ing for general-purpose sense substitution, in order to un-
derstand whether a raw, general-purpose sense substitution
approach or an interpreted, specific sense substitution ap-
proach would be more helpful. Since we compared our sys-
tem against a general-purpose sense substitution system in a
scenario without a cane, all five sounds of our system were
switched on.
Tasks. Blindfolded participants carried out two tasks in
which they had to walk along routes in a real floor lay-
out, finding possibilities to make turns and evading static
obstacles. The type of task—following verbally described
routes in real indoor environments—was chosen to evaluate
the use of the systems to master challenges that visually im-
paired people might encounter. Each participant carried out
both tasks using a different system for each task. Hence,



Figure 4. A sketch of the floor layout in which blindfold partici-
pants carried out the two tasks. The expected walking paths for
the first and second task are shown by the dashed and dotted ar-
row, respectively. The positions of small and large obstacles are
indicated by ‘S’ and ‘L’.

each participant used both our system and MeloSee, but not
both systems on the same task. We do not assume the tasks
to be comparable as we wanted to use realistic routes on real
floor layouts with obstacles. As such, we could not assume
them to be equally difficult.

The order of the two tasks was kept fixed, but the or-
der of the systems used, and hence which system was used
for which task, was randomized across participants. Par-
ticipants were asked to solely rely on the audio feedback
provided by the systems and not use their hands to feel
where walls are. They were instructed to walk as quickly
as they were comfortable with, avoiding the need of the ex-
perimenter to intervene. Interventions were made when the
participant was about to walk into a wall or an obstacle,
or when she lost orientation after missing the possibility to
make a turn she was instructed to take.

Participants knew that there could be obstacles of various
sizes. However, the number, location and size of obstacles
were not known to the participants. Figure 4 and Figure 5
show the floor layout and a corridor with a small and a large
obstacle.
Protocol. Before the participant was blindfolded, the au-
dio feedback of the two systems was explained, but not
demonstrated to her. Also, general usage advice for both
systems was given. For instance, the importance of head
movements was emphasized for the MeloSee system, as
suggested in their paper [16]. Then, the two routes they
had to walk were verbally described to them.

After this introduction, participants were blindfolded and
the respective first system was switched on. Thus, partici-
pants never had simultaneous visual impression of the sur-
roundings and auditory feedback. They were given a short

Figure 5. The corridor in the last part of the second task. Partici-
pants had to evade a small and a large obstacle on different sides.

structured introduction to the first system while they were
hearing its sounds. This familiarization period lasted for
about two minutes, in which they were lead through two
situations: firstly, walking straight towards a wall, starting
from a distance of about 3m, until being close enough to
reach out and touch it, and, secondly, walking with a wall
to their side while veering and coming closer to it.

They were then lead to the beginning of the first task
and the task description was repeated to them. After car-
rying out the task, the system was swapped, they received
the structured introduction for the other system, and carried
out the second task using that system. Immediately after the
experiment, they filled out a questionnaire.
Participants. Ten participants took part in a pilot study,
aged between 18–26. They were not paid for their partic-
ipation. Participants were expected to have seen the floor
layout a small number of times before as it was carried out
in the basement area of the building they had been working
in for about six weeks. Thus, they could have potentially re-
lied on visual memory, except for obstacle avoidance. How-
ever, as they were blindfolded before being lead to the area
of the task, they did not have an immediate visual impres-
sion of the room, and generally reported that they had been
completely disoriented.
Data analysis. Two measures were recorded: the time
needed by a participant to walk the route, and the total num-
ber of interventions necessary. No distinction was made
between the kinds of interventions (orientation lost, obsta-
cles, walls). Thus, this measure aggregates several mobility
safety aspects.

For each of our two tasks, we have data from five dif-
ferent participants for each of the two systems: from the
total ten participants, five used MeloSee on the first task
and five used our system. We evaluated whether there was a
significant difference in the mean travelling time and num-
ber of interventions necessary for the two systems using
an unpaired t-test (equivalent to one-way ANOVA for two
groups), separately for each task. Thereby, we treat the two



MeloSee Our System
Mean time (Task 1) 2:51 ± 1:11 2:44 ± 1:25
Mean interventions (Task 1) 1.4± 1.11 1.2± 1.04
Mean time (Task 2) 2:56 ± 0:37 3:15 ± 1:06
Mean interventions (Task 2) 2.2± 2.04 0.8± 1.04

Table 1. Mean time needed to complete the task (in minutes) and
the mean number of interventions, with 95%-confidence intervals.
For each system and task, data was collected from five different
participants.

tasks as two distinct between-subject experiments, not as-
suming the tasks to be equally difficult.

The questionnaire asked for the level of agreement to
eight different comparative statements, such as “I found the
sounds used in the first system less intrusive than those in
the second system.” on a 5-point Likert scale from “strong
disagreement” to “strong agreement”. Again, ANOVA was
applied to test for significant differences in the mean re-
sponses given for the two systems. In addition, the ques-
tionnaire asked for general comments on the comparative
advantages and disadvantages of the two systems. Re-
sponses from the ten participants were aggregated, replac-
ing the “first” and “second” system of each participant with
“MeloSee” or “our system” depending on which system that
participant used first.

3.2. Results

The mean time to walk the routes and the mean number
of interventions necessary are given in Table 1. No con-
clusions can be drawn at a significance level of 0.05 about
one system allowing faster or safer performance in one of
the tasks. Generally, a large intersubject variability was
observed. For example, travelling times between different
subjects in the first task ranged by a factor of 2 for both
MeloSee and our system.

For none of the questionnaire questions, a significant de-
viation of the mean from 3, the midpoint on the 5-point
Likert scale, was observed. Again, the responses of the sub-
jects to the comparative questions between the two systems
showed a large intersubject variability.

In particular, based on the feedback on the questionnaire,
neither our system with all five sounds switched on, nor
MeloSee was found to be superior to the other system in
terms of intrusiveness of sounds. The mean agreement of
the ten responses to the statement “I found the sounds used
in our system less intrusive than those in MeloSee.” (with
the system names being replaced by “the first system” and
“the second system”) was 3.5± 1.03, where 3 is the neutral
midpoint of the scale.

In the open questions, some users reported to have re-
lied on the sound at the vanishing point. It was pointed out
that this gave them a feeling of orientation without vision

that MeloSee lacks. Explicit contextual cues about obsta-
cles and openings were found helpful. On the other hand,
the versatility of MeloSee’s audio feedback was praised, al-
though, in comparison to our system, it was pointed out that
there is the danger of becoming used to a constant, fairly
loud sound-level, so that dangerous situations like coming
close to a wall are not easily recognized.

3.3. Discussion

All participants were able to navigate the intended routes
with few safety issues regardless of system used. The re-
sults do not suggest that one system enables better mobility
than the other. However, the number of participants was low
and there was high intersubject variability which suggests
that significance is unlikely to be achieved. It is possible
that some sighted people feel anxious when walking with-
out sight and therefore walk more slowly than others who
feel more confident using other senses. This suggests that
an important next step is to test the two systems on compa-
rable routes with blind participants.

The results suggest that participants were aware of ob-
stacles with our system and could make use of the spatial
sound to get an idea of the location of the obstacle and on
which side to pass it. Although no statistical significant con-
clusion can be drawn about the number of interventions nec-
essary in the second task being lower with our system than
with MeloSee, none of the participants using MeloSee re-
ported to have recognized the smaller of the two obstacles,
even if they passed the obstacle without the need of an in-
tervention. Since the obstacle was a bin in a corridor, the
experimental setup made it possible to evade it by chance.
However, it might be possible to make MeloSee more ef-
fective for small obstacles by increasing the range in which
it produces sounds to depths greater than 2.5m, so that a
small obstacle stays within the audible cone of the system
for a longer time, even if the participant does not look down
at the floor. On the other hand, increasing the threshold
of MeloSee results in smaller volume differences at closer
distances and thus might affect the performance in other re-
spects.

We had expected a difference in a sense of intrusion be-
tween the two systems, which we did not see. That our sys-
tem had all sounds switched on lead to almost constant au-
dio feedback, in particular about close walls and the vanish-
ing point. Switching on all sounds seemed necessary since
participants did not use a cane, but it meant that one of the
design goals of our system, less masking of natural sounds
when used in conjunction with a cane, could not come into
effect.

In general, while the tasks might somewhat capture the
indoor mobility challenges faced by visually impaired peo-
ple, it should be kept in mind that participants in our pi-
lot were not visually impaired, and it is expected that visu-



ally impaired people have very different skills in handling
artificial sounds, just as they have very different skills in
handling natural sounds [14]. Also, participants only had a
short time to familiarize themselves with the systems, and
long-term use might greatly alter the achieved performance,
possibly increasing walking speed. For MeloSee, long-term
learning over a time in which the system was not used was
found to have a positive effect on the performance in a nav-
igation task [16].

4. Conclusions
When considering assistive technology that might be

adopted in the near future by more than just small groups of
the visually impaired community, it seems more likely that
visually impaired people are willing to use devices giving
minimal auditory feedback (i.e. only in very specific con-
texts, potentially on-demand) which transmits information
that they could not easily get using the white cane. An anal-
ogy can be made between ‘augmented vision’ for sighted
people, e.g. using smart glasses, and ‘augmented hearing’
for visually impaired people, using a system like ours. Both
types of technology make one sense more powerful by ar-
tificially inducing sensory perceptions on this sense to pro-
vide information which would normally not be accessible
to it. Just like sighted people want artificial visual informa-
tion to interfere as little as possible with the relevant nat-
ural visual information provided by the environment, visu-
ally impaired people might prefer artificial auditory infor-
mation that interferes as little as possible with relevant nat-
ural acoustic information.

In this paper, we suggested auditory cues which are suit-
able for such intelligent mobility aids that minimize inter-
ference. Also, we combined such abstract cues with spa-
tial sound to give location information, e.g. about obstacles,
in an intuitive way. Results from a pilot experiment indi-
cate that such specific cues would be useful to visually im-
paired people, possibly as useful in an indoor mobility set-
ting as sounds of general-purpose sensory substitution de-
vices, which have the disadvantage of being less suitable for
use in systems that minimize audio feedback.

There are many possible extensions of our system. Ad-
ditional spatially localized cues could be provided, e.g. for
faces. Going a step further, face recognition would allow
the system to inform the visually impaired user about who is
approaching her. Generally, object recognition techniques
are potentially useful in the area of assistive technology for
the visually impaired. In the specific scenario we have been
investigating, a classifier for obstacles (such as [2]) could
be integrated to inform the user about the type of obstacle in
front of her. Furthermore, it would be desirable to introduce
an interactive component to the system so that the user can
specifically require certain cues, e.g. about the orientation
of the room. Careful sound design, probably replacing spo-

ken voice by iconic sounds, has the potential of making the
system more pleasant to use, decreasing the cognitive load
on the user [11] and supporting the localization of structures
with spatial sound.

In terms of evaluation, only one preliminary pilot has
been conducted so far. Besides the obvious need to run
a larger study with visually impaired participants, differ-
ent audio output setups could be compared. Use of bone-
conducting headphones and restricting audio feedback to
one ear (see [14] for evidence that visually impaired peo-
ple are good at localizing spatial sound monaurally) are just
two ways in which future systems could potentially reduce
interference with natural sounds.
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