
Abstract modelling of tethered DNA circuits

Matthew R. Lakin1, Rasmus Petersen2, Kathryn E. Gray2,3, and Andrew Phillips2

1 Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
2 Microsoft Research, Cambridge, UK

3 Computer Laboratory, University of Cambridge, Cambridge, UK

mlakin@cs.unm.edu aphillip@microsoft.com

Abstract. Sequence-specific DNA interactions are a powerful means of pro-
gramming nanoscale locomotion. These systems typically use a DNA track that
is tethered to a surface, and molecular interactions enable a signal or cargo to
traverse this track. Such low copy number systems are highly amenable to mech-
anized analyses such as probabilistic model checking, which requires a formal
encoding. In this paper we present the first general encoding of tethered DNA
species into a formal language, which allows the interactions between tethered
species to be derived automatically using standard reaction rules. We apply this
encoding to a previously published tethered DNA circuit architecture based on
hairpin assembly reactions. This work enables automated analysis of large-scale
tethered DNA circuits and, potentially, synthesis of optimized track layouts to
implement specific logic functions.

1 Introduction

Nanoscale locomotion, driven by motor proteins such as kinesin and myosin, is a key
component of many cellular processes [1]. Recent attempts to implement synthetic
analogs of such systems typically rely on DNA components that are physically teth-
ered to a surface, e.g., a DNA origami tile, to form a track. The intuition here is that
tethered components can only interact if they are tethered in close proximity to one an-
other, so that when a component is attached to a particular tethered track location it can
only move to nearby available track locations. This approach has been used to imple-
ment a range of DNA walkers [2, 3], molecular-scale assembly lines [4], and localized
DNA logic circuits [5, 6].

Since these systems typically involve small numbers of molecules, they are highly
suited to formal analysis using methods such as probabilistic model checking [7]. Prob-
abilistic model checking has previously been applied to solution-phase DNA strand
displacement circuits [8] but its practical utility is limited by the state space explo-
sion caused by large species populations. Previous work on model checking of DNA
walkers [9] used a manually constructed representation of the state space, which is
not scalable to larger track sizes with more reachable states. Therefore, it is important
to define a general mechanism for deriving the interactions of tethered DNA species
in large-scale systems. In this paper we present such a mechanism, by extending the
DSD language [10, 11] with new syntactic constucts and reaction rules for encoding
of tethered DNA strand displacement systems on tiles. This encoding could be used to
formalize, simulate and analyze large-scale tethered DNA circuits.

Domain lists without tethers S ::= D1 · · · Dn
Left domain lists L ::= tether(a1, . . . ,an) S | S
Right domain lists R ::= S tether(a1, . . . ,an) | S
Strands A ::= 〈L〉 | 〈R〉 | {L} | {R}
Segments (no hairpins) MNH ::= {L′}〈L〉[S]〈R〉{R′}
Segments (left hairpin) MLH ::= 〈S′}[S]〈R〉{R′}
Segments (right hairpin) MRH ::= {L′}〈L〉[S]{S′〉
Segment join operators ∼ ::= : | ::
Gates (no hairpins) GNH ::= MNH | MNH ∼ GNH
Gates (left hairpin) GLH ::= MLH | MLH ∼ GNH
Gates (right hairpin) GRH ::= MRH | GNH ∼ MRH
Gates (two hairpins) GT H ::= MLH ∼ GRH
Gates G ::= GNH | GLH | GRH | GT H
Species X ::= A | G
Tethered species XT ::= X (if tethered(X))
Untethered species XU ::= X (if untethered(X))
Tethered systems T ::= XT | (T1 || T2)
Mixed systems I ::= X | (I1 || I2)
Systems U ::= XU | [[T]] | (U1 || U2)

Fig. 1: Extended syntax for DSD with tethered species, hairpins, and DNA tiles. The
predicate tethered(X) is satisfied if X contains at least one tether, and the predicate
untethered(X) is satisfied if X contains no tethers.

2 Abstract specifications of tether locations

In an initial design of a large-scale tethered DNA circuit, the designer will not necessar-
ily have precise locations in mind for each of the individual tethered species. Hence, in
this early design phase it may be simpler to represent the relationship between tethered
species abstractly, by simply specifying which tethered species are located sufficiently
close to react with which other tethered species.

Here we adopt this abstract approach to the specification of the locations of tethered
species. We represent physical proximity using location tags, which are chosen from
an alphabet A = {a,b,c, . . .}. Each tether in a species will be annotated with a finite
number of tags, and we assume that all of the species which share a particular tag
are tethered such that they are close enough together to react with each other (but not
with any species that do not share that tag). Hence, two tethered species can interact if
they have at least one tag in common. Below, we will associate each tag with a local
concentration, so that certain tethered species may interact at a faster rate than others.

3 DSD syntax for tethered species

To model tethered species in the DSD language, we introduce the reserved keyword
tether(a1, . . . ,an) to represent a tether point that attaches the species to a surface,
where a1, . . . ,an is a finite, non-empty list of location tags. This keyword is somewhat

like a domain, except that it cannot be complemented and its occurrences in structures
are syntactically restricted. A species with no tethers is free to diffuse in solution.

Figure 1 defines a grammar for tethered DSD systems. (For brevity, we omit mod-
ule definitions and local domain declarations, which are present in the standard DSD
syntax.) Here and henceforth, D ranges over domains excluding tethers. This enables
us to syntactically limit the occurrences of tethers in the segment syntax. Strands are
divided into “upper” strands (〈L〉 or 〈R〉, which are rendered 5’ to 3’ from left to right),
and “lower” strands ({L} or {R}, which are rendered 3’ to 5’ from left to right). Note
that this grammar limits single strands to at most one tether point.

Multi-strand complexes are known as “gates” in the DSD language, and are com-
posed of one or more concatenated “segments”, which have a double-stranded portion,
possibly with single-stranded overhangs. From our previous work [10, 11], the general
form of a segment is {L′}〈L〉[S]〈R〉{R′}. Here, S is the double-stranded portion and the
other domain sequences denote the upper and lower single-stranded overhangs, which
are distinguished based on the brackets as in the case of single strands. Multiple seg-
ments may be composed using the segment join operator (:) for concatenation of the
lower strand, or (::) for concatenation of the upper strand.

Here, we extend the DSD syntax with hairpin loops, which can occur at either end
of a gate. This is an important extension because metastable hairpins are widely used
as a fuel supply in the design of DNA nanomachines [2, 12–14], but they are not repre-
sentable in the previously published DSD syntax [11]. We write 〈S} for a hairpin loop
at the left-hand end of a gate and {S〉 for a hairpin loop at the right-hand end of a gate.
Within a hairpin loop, we list domains from 5’ to 3’, that is, clockwise (since, by con-
vention, the upper strand runs 5’ to 3’ from left to right). The grammar includes multiple
syntactic categories for gates, to ensure that hairpins can only appear at the ends of gate
structures. Note that we omit empty overhangs when writing down gate structures and,
as standard in DSD, we assume that the only single-stranded complementary domains
are toeholds.

We let the metavariables XT and XU range over species (i.e., strands or gates) with
and without tethers, respectively. We then define tethered systems T that consist en-
tirely of tethered species, and systems U that consist of untethered species and tiles [[T]],
which represent a DNA tile with the tethered species T attached to it. Hence, a system
corresponds to a DSD program, in which tethered species can only occur within a tile
construct. This provides a syntactic means of delimiting the occurrences of tethers in
a program, and allows us to encode and simulate solutions containing many tethered
circuits on many tiles. (We also define mixed systems I that may contain both tethered
and untethered species—these are not considered well-formed and only appear during
intermediate computations of reactions between tiles and untethered species.)

For simplicity, the grammar in Figure 1 admits gate structures with tethers in unre-
alistic locations at the joins between gate segments. Instead, we assume that such gates
are disallowed by a subsequent well-formedness check on grammatical structures which
requires that, if two neighbouring gate segments are joined along a particular strand, the
domains adajcent to the join operator cannot be tethers. To simplify the semantics, we
assume that hairpins are sufficiently short that nothing will bind to a domain in one
of these structures. These extensions to the DSD syntax will enable us to model teth-

Fig. 2: Example of computing the sets of tags that influence several exposed toeholds
in tethered gates G, G′ and G′′, together with evaluations of the interact predicate to de-
termine whether pairs of gates may interact. The gate structures are derived from the
transmission line design from [6], and corresponding DSD code is presented. In this ex-
ample, the domains labelled ` and `′′ have no tags in common and are therefore deemed
too far apart to interact, whereas the domains labelled `′ and `′′ are both influenced by
the location tag a and can therefore interact. Thus the design enforces that only neigh-
bouring structures in the transmission line can interact.

ered DNA circuits using hairpin fuels, as shown below. Appendix A presents additional
extensions to the DSD syntax and semantics to encode internal loops and bulges (the
Appendices are available for download from the corresponding authors’ websites).

4 Computing interactions between tethered species

In order to derive bimolecular interactions involving tethered species, we must calculate
whether the domains involved are close enough to interact. Thus we must determine
which tether points are exerting influence over which domains, in order to determine
whether those domains are tethered close enough to interact.

4.1 Labels

To identify the particular domains involved in an interaction, we fix a countably infinite
set Λ of labels `1, `2, . . . and assume that every occurrence of every domain is associated
with a globally unique label. For example, the gate {Tˆ∗}[X]〈X〉 might be labelled as
{Tˆ∗`1}[X`2]〈X`3〉. Domain labels are not part of the user-visible language syntax, rather,

Two strands binding / unbinding:

. . . where forward reaction is only derivable if interact(`,A, `′,A′).

A strand binding to / unbinding from a gate:

. . . where forward reaction is only derivable if interact(`,A, `′,G).

Two gates binding / unbinding:

. . . where forward reaction is only derivable if interact(`,G, `′,G′).

Fig. 3: Bimolecular DSD reaction rules for tethered species.

they are an internal mechanism to distinguish between multiple instances of the same
domain when calculating which tether is exerting influence over that domain. Hence,
the particular assignment of labels to domain occurrences is not important, provided
that they are globablly unique. We do not state labels explicitly unless they are required
in a reaction rule.

4.2 Computing bimolecular interactions with tethered species

The key operation in the tethered semantics is to compute the set of tethers that are cur-
rently exerting influence on a particular domain labelled with `. We write inftags(`,G)
for the set of location tags that influence the domain labelled by ` in the gate G. To
do this we traverse the structure of the species, starting from the labelled domain in
question and moving outwards, and assume that the first tethers that we find in either
direction (written as LHtags(`,G) and RHtags(`,G)) are those exerting influence on the

position of the labelled domain:

inftags(`,G) ,
⋃
(LHtags(`,G)∪RHtags(`,G))

In this definition, the inner union is over sets of tag lists, while the outer union combines
the resulting set of tag lists into a single set of location tags. The inftags(`,G) function,
and the case for tethered strands, can be fully defined as follows.

Given a segment M, we write LHtags(M) and RHtags(M) for the sets of tag lists
a1, . . . ,an such that tether(a1, . . . ,an) appears on the left or right overhang of the seg-
ment M, respectively. Furthermore, we write tags(M) for the set of all tag lists a1, . . . ,an
such that tether(a1, . . . ,an) appears anywhere in M.

We now define functions LHtags(G) and RHtags(G), which return the leftmost and
rightmost tag sets found by searching a gate G segment-wise, respectively. These func-
tions can be defined by recursion on the structure of gates, as follows.

LHtags(M), tags(M) LHtags(M∼ G),

{
tags(M) if tags(M) 6=∅
LHtags(G) otherwise.

RHtags(M), tags(M) RHtags(G∼ M),

{
tags(M) if tags(M) 6=∅
RHtags(G) otherwise.

We now define the first tag sets found by searching outwards from a particular labelled
domain in a gate structure. Suppose that the domain in question has label `, and that the
gate G has the form GL ∼ M∼ GR, where M is the segment containing the domain with
label `. Then, we define functions LHtags and RHtags that compute the first tag sets
found in a segment-wise search outward from the segment in G containing `, as follows.

LHtags(`,GL ∼ M∼ GR) ,

{
LHtags(M) if LHtags(M) 6=∅
RHtags(GL) otherwise.

RHtags(`,GL ∼ M∼ GR) ,

{
RHtags(M) if RHtags(M) 6=∅
LHtags(GR) otherwise.

In the case where G has the form M∼ GR, where M is the segment containing the domain
with label `, the definitions are as follows.

LHtags(`,M∼ GR) , LHtags(M)

RHtags(`,M∼ GR) ,

{
RHtags(M) if RHtags(M) 6=∅
LHtags(GR) otherwise.

Finally, in the case where G has the form GL ∼ M, where M is the segment containing the
domain with label `, the definitions are as follows.

LHtags(`,GL ∼ M) ,

{
LHtags(M) if LHtags(M) 6=∅
RHtags(GL) otherwise.

RHtags(`,GL ∼ M) , RHtags(M).

These functions are used to define inftags(`,G), as shown above. Furthermore, since
single strands may also be tethered, we must also define a similar function for strands:
assuming that the label ` appears in the strand A, we simply let inftags(`,A) return the
union of all tag lists a1, . . . ,an such that tether(a1, . . . ,an) appears in A. Our well-
formedness conditions on the occurrences of tethers mean that inftags(`,A) must con-
tain at tags from at most one tag set, as the syntax only allows a tether at one end of a
single strand.

The inftags(`,X) function, where X could be a gate G or a strand A, will be used
below to define interaction rules for tethered species. Figure 2 presents the result of
computing the sets of tags that influence exposed toeholds in an example interaction
between a tethered gate and a tethered strand.

We can now define the additional tests, expressed in terms of the inftags function,
to govern bimolecular interactions involving species that may be tethered. If species X1
and X2 may interact via toeholds with labels `1 and `2, the interaction is possible if the
predicate interact(X1, `1,X2, `2) is satisfied, which is defined as follows.

interact(X1, `1,X2, `2) , (inftags(X1, `1)∩ inftags(X2, `2)) 6=∅
∨ inftags(X1, `1) =∅∨ inftags(X2, `2) =∅

The first clause of the definition covers the case when the reactants X1 and X2 are both
tethered, and when the interacting toehold domains have one or more location tags in
common. This means that the species are tethered close enough together to interact. The
two remaining clauses cover the cases when one or both reactants contain no tethers,
and are therefore freely diffusing. In these cases, the reaction is always possible be-
cause a freely diffusing species can always find any other species to interact with. This
definition will be used below to formalize the reaction rules for tethered species.

5 Reaction rules for tethered species

We write GL for any gate capable of serving as a left-hand context, that is, either GNH
(no hairpins) or GLH (hairpin present only on the left-hand side), or an empty context.
Similarly, we write GR for any gate capable of serving as a right-hand context, that
is, either GNH (no hairpins) or GRH (hairpin present only on the right-hand side), or an
empty context. In this section we present rules that define the possible reactions between
species, including permissible structural contexts. Each reaction rule is labelled with the
reaction rate constant: we assume the existence of functions bindrate and unbindrate
that map each toehold domain Nˆ (and its complement Nˆ∗) to the associated binding
rate constant bindrate(Nˆ) and unbinding rate constant unbindrate(Nˆ) respectively,
and rate constants ρF for “fast” unimolecular reactions (e.g., branch migration) and
ρS for “slow” unimolecular reactions (e.g., formation of internal loops, which involves
internal diffusion).

Figure 3 presents bimolecular binding rules for strands and gates, and the corre-
sponding unimolecular unbinding rules. Since these species may be tethered, the bi-
molecular rules use the interact predicate defined in Section 4.2 as a crucial additional
test, so that two tethered species may only bind if they are tethered close enough to-
gether. Figure 4 recaps the basic unimolecular reaction rules from the DSD semantics

Branch migration:

Strand displacement:

Gate displacement:

Hairpin displacement:

Hairpin binding / unbinding:

Fig. 4: Unimolecular DSD reaction rules, including additional rules to model hairpins.
Note that the DSD convention is to list domains from left to right on the page, which
corresponds to 5’ to 3’ for “upper” strands but 3’ to 5’ for “lower” strands. The inclusion
of hairpins in the syntax muddies this distinction somewhat, and we must use the “rev”
keyword to reverse the appropriate domain sequences in hairpin reactions.

and presents additional rules to define intramolecular hairpin opening (displacement)
and (un)binding reactions. (ASCII representations of all rules, using the DSD syntax,
are presented in Appendix B.) Note that the formation rules for hairpins is an instance
of the remote toehold design concept [15]. To formalize the interactions of DNA tiles
as tethering surfaces in the DSD language, we require the following rules, to turn the
reactions of tethered species into reactions involving the corresponding tile species.

(TINT)
T

ρ−→ T′

[[T]]
ρ−→ [[T′]]

(TBND)
XU || T ρ−→ T′

XU || [[T]] ρ−→ [[T′]]
(TUBND)

T
ρ−→ T′ || XU

[[T]]
ρ−→ [[T′]] || XU

Rule (TINT) handles direct interactions between tethered species on the tile, since all re-
actants and products are tethered to the tile (see syntax definitions above). Rule (TBND)
handles the case where an incoming diffusing species XU (which could be a strand or
a gate) binds to a tile. Similarly, rule (TUBND) covers the case where a reaction on a
tile produces an untethered species that is now free to diffuse. Note that the premisses
of rules (TBND) and (TUBND) are instances of mixed systems of tethered and untethered
species, but the final derived reactions in all cases involve well-formed systems in which
all and only tethered species are encapsulated within tile constructs. These rules do not
allow any crosstalk between two tiles—a species that is tethered to a tile can only inter-
act with another species tethered to the same tile, or with a freely diffusing species. This
is a reasonable assumption because of the slow diffusion rate of large DNA tiles com-
pared to non-tile species, and means that two tile-based circuits can only communicate
via a freely diffusing signal. Hence, all interactions taking place inside a tile are mod-
eled as unimolecular reactions. Furthermore, the entire tile in a particular configuration
must be used as the reactant species, to enable accurate modelling and simulation of
populations of tiles. Finally, some additional contextual rules are required to complete
the definition of the semantics: these are presented in Appendix C.

6 Calculating the propensities of tethered interactions

For simulations or probabilistic model checking of tethered circuits, we must compute
the propensity of every possible interaction in the system, including tethered interac-
tions. In mass action kinetics, the propensity, p, of a bimolecular reaction with reactants
X1 and X2 and rate constant, k, is given by p, k× [X1]× [X2], where [Xi] is the concentra-
tion of species Xi. In tethered DSD systems, we use this expression for the propensity
of bimolecular reactions in which both reactants are freely diffusing or precisely one
reactant is tethered. In the latter case, we justify the use of this expression because the
tiles to which the tethered species are attached are assumed to be well-mixed in the
solution.

For bimolecular reactions involving two tethered reactants, however, this expression
is not valid because tethered species do not satisfy the well-mixed assumption of mass
action kinetics. To compute the propensities of bimolecular interactions between two
tethered species, we use the concept of “local concentration” developed in previous
work on the kinetics of biomolecular interactions between tethered species [5,15]. This
approach approximates the corresponding rates by computing the volume swept out by
flexible tethered strands, to estimate the probability that the two species will be close
enough to interact at a given point in time. For example, Genot et al. [15] computed
local concentrations of ∼ 1×105 nM for localized strand displacement reactions.

To incorporate this theory into our tethered DSD framework, we assume the ex-
istence of a function lc that maps every location tag a to the local concentration for
interactions occurring between species influenced by that tag. A higher value for the lo-
cal concentration means that species sharing that tag are tethered relatively close to each
other and will therefore interact at a faster rate. Then, for a bimolecular reaction between
two tethered species X1 and X2 that interact via domains labelled `1 and `2 with rate con-
stant k, we compute the reaction propensity, p, as p, k×max(lc(a1), . . . , lc(an)), where

a1, . . . ,an = inftags(`1,X1)∩ inftags(`2,X2). According to the rules from Figure 3, the
bimolecular reaction can only occur if inftags(`1,X1)∩ inftags(`2,X2) is non-empty. If
there are multiple shared tags in this intersection, we use the largest of the correspond-
ing local concentrations. We take this design decision because multiple shared tags do
not enable additional mechanisms for a given reaction to occur—instead, they simply
impose further constraints on how tethered species could be placed on a tile so that they
will interact with the specified local concentrations. Hence the largest local concentra-
tion is the dominant one when computing the rate of a given interaction. Thus we are
able to model the rates of bimolecular interactions between tethered species, enabling
simulation and probabilistic model checking of solutions of tile-based circuits.

7 Examples

As an example application of our abstract modelling framework for tethered DNA cir-
cuits, we encoded the hairpin-based tethered circuit architecture from [6] into our ex-
tended DSD language. Figure 5 presents the DSD code and reduction sequence for the
three-stator transmission line system from [6]. Note that the stators are all contained
within a syntactic tile construct, and that all of the tags are assigned the same local
concentration, i.e., the signal is passed between each pair of stators at the same rate.
Furthermore, the distribution of location tags prevents the fuel bound to the first stator
from binding directly to the third stator—hence, the signal must be passed sequentially
along the stators with none being missed. Importantly, this causal dependence between
the binding reactions can be deduced automatically by the DSD compiler, thanks to the
use of location tags. Finally, a freely-diffusing strand displacement probe produces an
increase in bulk fluorescence to indicate that the signal has reached the last stator. Fig-
ure 6 encodes a threshold-based spatial AND gate design from [6] by using different
local concentration values for different location tags. The resulting reaction propensi-
ties mean that there is a high probability that the first input will bind to the threshold
rather than the output stator. If this happens, the second input is required to trigger the
output, achieving the desired AND logic. However, there is a non-zero probability that
the first input will erroneously activate the output without the second input. We have
implemented our syntax and semantics for tethered systems in the Visual DSD soft-
ware tool [16], and Appendix D presents simulation and state space analysis results
from encoding the examples from this section in the latest version of Visual DSD.

8 Discussion

To summarize, we have defined an encoding of tethered DNA circuits on tiles in the
DSD language, which uses location tags to abstractly specify the pattern of tethering,
and therefore the pattern of possible interactions between tethered species. We have
extended the DSD syntax to include hairpins, which are often used as fuel for DNA
nanomachines, and also to include DNA tiles, which colocalize tethered species in
solution. We have demonstrated a formalization of the hairpin-based tethered circuit
design from [6]. Our abstract representation strategy removes the need to explicitly for-
malize the layout of the track and the structure of the supporting surface, which could

Fig. 5: DSD encoding of a variant on the full three-stator transmission line system from
Figure 7 of [6]. To derive the reaction rate constants, we assume that all toeholds bind at
the DSD default rate (3×10−4 nM−1 s−1) and that lc(a) = lc(b) = 1×105 nM, giving
a tethered interaction rate of 30s−1.

Fig. 6: DSD encoding of threshold-based spatial AND gate system from Figure 9 of [6].
We assume that input 1 arrives first, followed by input 2. The two possible trajectories
for the system are outlined: one where the first input correctly binds to the threshold,
and one where the first input erroneously triggers the output. To derive the reaction rate
constants, we assume that all toeholds bind at the DSD default rate (3×10−4 nM−1 s−1),
and that lc(a) = lc(c) = 1×106 nM and lc(b) = lc(d) = 1×105 nM. The differing local
concentrations produce a thresholding effect that gives AND logic.

be a complex DNA nanostructure that is non-trivial to represent in a formal language.
The inclusion of DNA tiles in the language provides a means of encapsulating tethered
species such that multiple tethered circuits can be simulated in a single solution. The re-
sult is a powerful tool for modelling and verifying more sophisticated tethered systems,
e.g., to analyze the possible routes taken by walkers in a multi-track system [9].

8.1 Abstractions for tethered circuit design

For detailed design of tethered DNA circuits, a coordinate-based system for specifying
the absolute positions of tethered components on a surface, e.g., a DNA origami tile,
would be required. Ideally, this would be paired with a graphical design tool, so that the
user could draw out the desired tether geometry directly, and could be integrated with
existing DNA origami design tools such as caDNAno [17].

However, the coordinate-based approach requires a highly general biophysical model
to predict the interaction rates of arbitrary DSD-representable structures with arbitrary
toehold and tether locations. Previous calculations [5, 15] have derived expressions for
tethered interaction rates for particular structures and tethering geometries, whereas to
cope with the full generality of the DSD metalanguage a far more comprehensive phys-
ical model would be required.

In the absence of such a model, we chose a level of abstraction that is similar to
the “channel-based” approach to specifying inter-process interactions in modelling lan-
guages such as the stochastic π-calculus [18, 19]. In the channel-based approach, all
possible interactions between processes must be provided explicitly by the design via
the mechanism of channel sharing. In this paper we have moved away from that idea
to some extent by using the DSD reduction semantics to derive certain interactions
between species, however, we still rely on a channel-like approach to specify which
tethered species are close enough to react according to the reduction rules, via the mech-
anism of shared location tags.

By requiring the modeller to directly associate location concentrations with the var-
ious location tags, we shift the burden of computing the local concentrations to the
modeller, who can perform structure-specific analyses to determine a reasonable value
for the local concentration value, or alternatively fit these rate constants directly to ex-
perimental data, if available. Hence, a fully general biophysical model of the dynamics
of tethered toehold interactions is not required. This approach gives a high degree of
modelling flexibility, allowing measured rates to be included directly where available,
or to be estimated using a biophysical model [5, 15]. However, the need to specify all
possible interactions between tethered species means that the user must have some idea
of the desired track geometry before encoding the system in DSD. Furthermore, po-
tentially undesired interactions, such as track-jumping behaviour in molecular walker
systems [9], cannot be inferred automatically by the compiler.

Hence, we envision that this method for the specification of tethered circuit be-
haviour will form but one layer of an abstraction hierarchy for the design and simulation
of tethered DNA circuits, similar to our approach to the semantics of strand displace-
ment reactions [11]. We see this model as sitting atop a more detailed coordinate-level
specification, as described above. A geometric interpretation of location tags is that

each tag corresponds to a point, whose physical coordinate is the average of the phys-
ical coordinates of the tether locations that share that tag. If we assume the existence
of a detailed, realistic model of tethered reaction kinetics, this geometric interpretation
could form the basis of a compilation phase that takes a tethered system specified ab-
stractly using location tags and computes possible physical coordinates for each tether
location, producing a concrete design suitable for experimental implementation. This
may involve an iterative optimization routine to find tether coordinates that satisfy the
constraints specified in the abstract model.

Alternatively, coordinate-level specifications could be translated back into the ab-
stract domain for ease of analysis—this process could automatically generate the loca-
tion tag-based encoding without further input from the user. Furthermore, these trans-
lations could be combined so that a tethered circuit design specified in the abstract
domain can be compiled into a detailed, coordinate-based representation and subse-
quently lifted back into the abstract domain. This process would exploit the detailed
model of tethered species to detect any spurious interactions between components in
an abstractly specified circuit, and could be iterated to refine the tether geometry to
minimize or eliminate the spurious interactions. This abstraction hierarchy could be
extended further by implementing automated layout algorithms that directly compile
logical specifications into geometrically arranged tracks that execute the corresponding
computation with minimal spurious interactions.

8.2 Molecular spiders

Another potential approach to implementing nanoscale locomotion is via multivalent
catalytic walkers known as molecular spiders. These comprise multiple “legs” each of
which is a catalytically active DNAzyme [20], all attached to a rigid body such as a
streptavidin molecule. Molecular spiders move in a biased random walk due to cleav-
age of substrates displayed on a surface, and have been realized experimentally [21,22].
Previous work on computational analysis of molecular spider behaviour has used mod-
els ranging from the physically detailed [23, 24] to the more abstract [25, 26]. These
simpler models have enabled computational studies of various effects, including coop-
erative nanoscale search due to self-avoidance [27] and maze navigation [28]. The latter
is of particular interest with regard to our emphasis on the verification of track designs
for molecular walkers. However, to model these systems in our framework would re-
quire us to extend the DSD framework further to model DNAzyme-catalyzed substrate
cleavage reactions. Furthermore, the mechanism of spider motion implies that, for a
given body position, any unattached leg has the choice of a number of potential attach-
ment points. Encoding this mechanism using the approach proposed in this paper would
require a very large number of interaction tags, because a separate tag would be needed
for each pair of displayed substrates S1 and S2 that are sufficiently close together that a
spider with a leg attached to S1 can attach another leg to S2. Hence, the resulting system
would be rather cumbersome to simulate. Therefore, we believe that existing methods
of simulating molecular spider dynamics using custom Monte Carlo simulation rou-
tines [23–26] are more practical than encoding them in our framework. Our work is
more suited to encoding of tethered circuits whose interactions are constrained by the
geometry of the track layout [5, 6].

8.3 Representable structures

As the set of DSD-representable structures grows, we will gain increased power and
flexibility for the design of tethered reaction systems. In particular, by enabling auto-
matic, integrated compilation of enzymatic reactions, such as restriction enzyme and
nickase reactions, we hope to model an important class of DNA walkers powered by
enzymatic reactions, e.g., as in [3]. We also hope to combine this work with a formal-
ization of dendritic DSD structures to enable simulation of tethered logic circuits with
fan-in where both inputs must bind simultaneously [5], although several examples, such
as the threshold-based AND circuit described in Section 7, do not require this exten-
sion. Finally, including four-way branch migration would enable us to encode additional
published DNA walker designs [2].

Acknowledgments

The authors thank Filippo Polo for his work on the DSD implementation of the tethered
semantics. This material is based upon work supported by the National Science Founda-
tion under grants 1028238 and 1318833. M.R.L. gratefully acknowledges support from
the New Mexico Cancer Nanoscience and Microsystems Training Center (NIH/NCI
grant 5R25CA153825).

References

1. R. D. Vale. The molecular motor toolbox for intracellular transport. Cell, 112(4):467–480,
2003.

2. R. A. Muscat, J. Bath, and A. J. Turberfield. A programmable molecular robot. Nano Lett,
11(3):982–987, 2011.

3. S. F. J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, and A. J. Turber-
field. A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotech,
7:169–173, 2012.

4. H. Gu, J. Chao, S.-J. Xiao, and N. C. Seeman. A proximity-based programmable DNA
nanoscale assembly line. Nature, 465:202–205, 2010.

5. H. Chandran, N. Gopalkrishnan, A. Phillips, and J. Reif. Localized hybridization circuits.
In L. Cardelli and W. Shih, editors, Proceedings of DNA17, volume 6937 of LNCS, pages
64–83. Springer-Verlag, 2011.

6. R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-based molecular architecture with
spatially localized components. In Proceedings of ISCA ’13, 2013.

7. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways. Theor Comput Sci, 319(3):239–257, 2008.

8. M. R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and analysis
of DNA strand displacement devices using probabilistic model checking. J R Soc Interface,
9(72):1470–1485, 2012.

9. F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J. Turberfield. DNA walker circuits:
Computational potential, design, and verification. In D. Soloveichik and B. Yurke, editors,
Proceedings of DNA19, volume 8141 of LNCS, pages 31–45. Springer-Verlag, 2013.

10. A. Phillips and L. Cardelli. A programming language for composable DNA circuits. J R Soc
Interface, 6(Suppl. 4):S419–S436, 2009.

11. M. R. Lakin, S. Youssef, L. Cardelli, and A. Phillips. Abstractions for DNA circuit design.
J R Soc Interface, 9(68):470–486, 2012.

12. A. J. Turberfield, J. C. Mitchell, B. Yurke, A. P. Mills, Jr., M. I. Blakey, and F. C. Simmel.
DNA fuel for free-running nanomachines. Phys Rev Lett, 90(11):118102, 2003.

13. G. Seelig, B. Yurke, and E. Winfree. Catalyzed relaxation of a metastable DNA fuel. J Am
Chem Soc, 128:12211–12220, 2006.

14. S. J. Green, J. Bath, and A. J. Turberfield. Coordinated chemomechanical cycles: A mecha-
nism for autonomous molecular motion. Phys Rev Lett, 101:238101, 2008.

15. A. J. Genot, D. Y. Zhang, J. Bath, and A. J. Turberfield. Remote toehold: A mechanism for
flexible control of DNA hybridization kinetics. J Am Chem Soc, 133(7):2177–2182, 2011.

16. M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips. Visual DSD: a design and anal-
ysis tool for DNA strand displacement systems. Bioinformatics, 27(22):3211–3213, 2011.

17. S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, and W. M.
Shih. Rapid prototyping of three-dimensional DNA-origami shapes with caDNAno. Nucleic
Acids Res, 37:5001–5006, 2009.

18. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes. Inform Process
Lett, 80:25–31, 2001.

19. A. Phillips and L. Cardelli. Efficient, correct simulation of biological processes in the
stochastic pi-calculus. In M. Cakder and S. Gilmore, editors, Proceedings of CMSB 07,
volume 4695 of LNCS, pages 184–199. Springer-Verlag, 2007.

20. Y. Li and R. R. Breaker. Deoxyribozymes: new players in the ancient game of biocatalysis.
Curr Opin Struct Biol, 9:315–323, 1999.

21. K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, S. Taylor,
R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, and H. Yan. Molecular robots guided by
prescriptive landscapes. Nature, 465:206–210, 2010.

22. R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic.
Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc,
128(39):12693–12699, 2006.

23. M. J. Olah. Multivalent Random Walkers: A computational model of superdiffusion at the
nanoscale. PhD thesis, University of New Mexico, 2012.

24. M. J. Olah and D. Stefanovic. Superdiffusive transport by multivalent molecular walkers
moving under load. Phys Rev E, 87:062713, 2013.

25. O. Semenov. Abstract Models of Molecular Walkers. PhD thesis, University of New Mexico,
2013.

26. O. Semenov, D. Mohr, and D. Stefanovic. First passage properties of molecular spiders. Phys
Rev E, 88:012724, 2013.

27. O. Semenov, M. J. Olah, and D. Stefanovic. Cooperative linear cargo transport with molec-
ular spiders. Natural Computing, 12(2):259–276, 2013.

28. D. Stefanovic. Maze exploration with molecular-scale walkers. In A.-H. Dediu, C. Martín-
Vide, and B. Truthe, editors, Proceedings of TPNC 2012, volume 7505 of LNCS, pages 216–
226. Springer-Verlag, 2012.

