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Abstract

We present a modification of the traditional n-gram language

modeling approach that departs from the word-level data rep-

resentation and seeks to re-express the training text in terms of

tokens that could be either words, common phrases or instances

of one or several classes. Our iterative optimization algorithm

considers alternative parses of the corpus in terms of these to-

kens, re-estimates token n-gram probabilities and also updates

within-class distributions. In this paper, we focus on the cold

start approach that only assumes availability of the word-level

training corpus, as well as a number of generic class definitions.

Applied to the calendar scenario in the personal assistant do-

main, our approach reduces word error rates by more than 13%

relative to the word-only n-gram language models. Only a small

fraction of these improvements can be ascribed to a larger vo-

cabulary.

Index Terms: class-based LMs, phrase-level LMs

1. Introduction

While n-gram language models continue to prevail in industrial

speech recognition, their weaknesses are being increasingly ac-

knowledged and include inability to efficiently generalize from

limited training data as well as relatively short memory span.

New and more powerful continuous space LMs (such as expo-

nential and NN language models, including RNNs) find their

way into mainstream ASR [1, 2]. They are able to generalize

from observed histories to unobserved ones by learning word

similarities and, in the case of RNNs, also break the context

length limitations. In this paper, we postulate that similar goals

can be achieved within the n-gram modeling approach by cap-

italizing on idiosyncratic word patterns in the training data and

introducing prior knowledge (human expertise) into the models.

A significant body of relevant studies exists.

One example is phrase-based LMs where common and co-

hesive word sequences are replaced by phrases and used as

pseudo-words for n-gram training [3, 4]. Another example is

class-based language models with classes being either manu-

ally defined or automatically inferred from the data. The man-

ually defined classes usually reflect grammatical categories or

various (named) entities while inferred classes (word clusters)

typically take advantage of context-similarity to group similar

words into classes [5]. Several studies tried combining inferred

classes with phrases as well [6, 7].

There are several problems with these approaches: first,

phrases are constructed by merging word pairs. This makes

phrases of three and more words somewhat tedious to build and

evaluate. Second, the merging decisions are based solely on

the identity of the words. As a consequence, once the merging

decision is made, the affected words will always be replaced

by phrases, no matter what the context. For instance, “new

york times” will always be marked as a phrase, even in a sen-

tence: “mumbai has the population of new york times two”. The

same applies to inferred classes that, in addition, are difficult to

modify once formed. On the other hand, manual entity-based

classes are often difficult to justify from the probabilistic lan-

guage modeling perspective. Furthermore, they require an extra

tagging step. Taggers, in turn, need to be trained on manually

annotated in-domain corpus, which is often not feasible.

In this paper we will focus on combining phrases and

classes in a joint modeling approach with a goal of finding a

representation of the in-domain data in terms of such phrases

and classes that improve language modeling. We are motivated

by the desire to preserve simplicity and scalability of the n-gram

language models while enhancing their temporal modeling abil-

ity via longer phrases (to account for common expressions or

idioms) and improving their generalization power via entity-

based classes. The Word-Phrase-Entity (WPE) LMs will only

instantiate a phrase or an entity in the training corpus if it helps

improve likelihood of the data. As an example, consider the

bigram “angelina jolie”. In the presence of a named entity AC-

TOR, our algorithm will only cast the bigram as an instance of

that NE in the contexts where it makes sense from the likeli-

hood point of view. That is, if the previous history was “brad

pitt and”, the bigram is unlikely to be replaced by the entity; in

fact, in this context, the algorithm might even choose to model

“brad+pitt+and+angelina+jolie”1 as a single phrase rather

than “ACTOR and ACTOR”, allowing for longer span trigrams

such as “brad+pitt+and+angelina+jolie wedding photos” –

something we would not be able to get with the word-only rep-

resentation of the corpus. As a result, the WPE LMs com-

bine the discriminative power of words, generalization power

of classes, and context modeling power of common phrases.

We will demonstrate how a few iterations of the EM al-

gorithm starting with just the word-level representation of the

training corpus and a number of off-the-shelf NE definitions

can produce such representation. Apart from generating WPE

language models, we will also show that the generic NE defi-

nitions themselves can be adapted to the training corpus further

improving the model’s fit to the target domain. Using language

modeling for identifying NEs has been studied in the literature

[8, 9, 10]. Our approach bears some similarity to [9] where

weakly supervised generative models are built to locate NEs in

texts; however, there are important differences: we go beyond

unigrams, we obtain alternative sentence representations from

n-best parses and, finally, we use entity probabilities directly in

the generative model rather than via regularization.

The rest of the paper is organized as follows. In Section 2

we introduce the iterative approach that takes us from words to

tokens but also explains how named entity definitions can be

optimized. We will then present our experiments in Section 3

1We use notation “a+b” to denote a multi-word phrase that is
treated as a single pseudo-word unit for language modeling purposes.



Figure 1: An example parse ccck of sentence www induces segmen-

tation πππk.

and conclude with an outlook and a summary.

2. From Words to Tokens

Let us start by assuming that our training corpus is already rep-

resented as a collection of weighted token-level sentences with

tokens being either words or phrases, or entities; for example:

“i+would+like+to travel from CITY to CITY” with weight 10,

where CITY is a predefined NE class. It is straightforward to

estimate an n-gram language model from this training corpus

by incrementing the count for each n-gram by the weight of

the sentence it occurred in. Now imagine that each sentence

has its probability mass split among several alternative parses.

In the above case, the alternatives could be: “i+would like+to

travel from CITY to san+francisco” with weight 3 or “i would

like to travel+from+boston to CITY with weight 2. To build

a WPE LM, we count token n-grams from all of these alterna-

tives. However, the counters are incremented only by a fraction

of the original weight that is equal to the cumulative posterior

probability of the parses containing these n-grams. Having built

the new LM, we can go back to the original word-level repre-

sentation of the corpus and parse it with this language model,

producing a collection of alternative parses for each of its sen-

tences. After that, the next iteration can begin.

The above approach is essentially a version of the EM algo-

rithm for phrase generation that has been extensively studied in

the literature [11, 12]. However, the focus of prior research was

put squarely on dealing with multi-word (or multi-character)

phrases. In this study, the notion of “token” subsumes multi-

word phrases and named entities. The unified terminology is

useful for a clear separation between token-level n-gram LMs

and intrinsic within-tokens probabilities.

2.1. Re-estimating the Token LM

Consider a sentence of N words www = w1 . . . wN and real-

valued weight L (that in the beginning could reflect obser-

vation counts: L(www) := #www). This sentence can be seg-

mented in K different ways with single- and multi-word to-

kens competing against each other for words. Let a particu-

lar parse ccck = (ck1 . . . c
k

|ccck|), k = 1,K induce segmentation

πππk = (πk
1 . . . πk

|ccck|) that partitions the sentence into a number

of word sub-sequences πk
i , each sub-sequence being accounted

by a token instance cki . Figure 1 illustrates this process. Joint

likelihood of the sentence and the parse can be obtained via

chain rule2:

P (www,ccc
k) =

∏

ck
i
∈ccck

P (cki |h
k
i )P (πk

i |c
k
i ). (1)

The first term is an n-gram probability of token cki in token n-

gram history hk
i = cki−n+1 . . . c

k
i−1. The second one is de-

2For the sake of discussion, we can assume a unique segmentation
corresponding to each parse.

termined by the nature of the token. For words and phrases,

this probability is 1.0, and for a NE class, this is the prior of a

particular surface form of this class. Depending on the NE na-

ture, we use one of the following two formalisms to represent

it. For (weighted) lists such as personal names or movie titles,

we use word tries, and for combinatorial entities such as dates

and times, finite state machines (FSMs) are used [13]. Both

alternatives allow for efficient decoder implementations.

To obtain new maximum-likelihood (ML) estimates for the

n-gram probabilities P (c|h) for token c and its token-level his-

tory h from a single sentence www, we accumulate parse-specific

observation counts:

P
ML(c|h,www) =

∑

k

#ch

#h

∣

∣

∣

∣

ccck

P (ccck|www)

=
∑

k

#ch

#h

∣

∣

∣
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ccck

P (www,ccck)
∑

ccc
P (www,ccc)

, (2)

with notation ·|ccck used to signify counting on a single parse ccck.

Taking averages over an entire corpus {wwwj} closes the EM loop:

P
ML(c|h) =

∑

j

P (wwwj)P
ML(c|h,wwwj)

=
∑

www

L(www)
∑

w̄ww
L(w̄ww)

P
ML(c|h,www)

=
∑

www

∑

k

L
′(www, k)

#ch

#h

∣

∣

∣

∣

ccck

, (3)

where the weights of each parse are set to:

L
′(www, k) :=

L(www)
∑

w̄ww
L(w̄ww)

∗
P (www,ccck)

∑

ccc
P (www,ccc)

(4)

The maximization step (3) can be naturally extended to incorpo-

rate smoothing techniques such as discounting. In fact, this pro-

cess is equivalent to building an n-gram LM from a new repre-

sentation of the training corpus that now consists of a weighted

collection of token-level parses of the original sentences. The

entire cycle of Eqs. (1–4) can be repeated until convergence is

achieved.

2.2. Optimizing Named Entities

The re-estimation formulae from the previous section will up-

date token-level n-gram LM, but we can also tune up named en-

tities in the same maximum-likelihood fashion. For NEs mod-

eled as word tries, counting is simple. If π is a particular surface

form of NE-token c, then its probability is computed as:

P
ML(π|c) =

∑

j

P (wwwj)P
ML(π|c,wwwj)

=
∑

www

∑

k

L
′(www, k)

#(c, π)

#c

∣

∣

∣

∣

ccck

(5)

For combinatorial entities such as times and dates, the re-

estimation is similar, except it is carried out for each emanating

arc (and final costs) of each state in a normalized determinis-

tic FSM. Because training corpora are limited in size, the ML

estimator from Eq. (5) suffers from over-training. On the other

hand, the generic NE definitions might be robust, but lack do-

main specificity. Therefore, a trade-off needs to be established



between the two. In our experiments, on each iteration t we

achieve this by regularizing posterior PML
(t) with prior P

prior
(t) via

linear interpolation:

P(t)(π|c) := (1− λ(t))P
ML
(t) (π|c) + λ(t)P

prior
(t) (π|c) (6)

with iteration-specific inertia λ(t) defined as:

λ(t) :=

{

1.0, if t < κ or Z(t)(c) < θ1

λ0.5(t−κ)

, otherwise.
(7)

For the first κ iterations, the prior is determined by the initial

LM definition; after that: P
prior
(t) (π|c) := P(t−1)(π|c). Param-

eters θ1, κ and λ are set empirically and Z(t)(c) is the normal-

ization factor

Z(c) =
∑

www

∑

k

L
′(www, k)#c|ccck (8)

from iteration t. Z(t)(c) can be seen as the observation count of

c computed at this iteration.

2.3. Initialization

A sensible initialization is crucial for successful optimization.

In our case, we need to:

• suggest a set of candidate multi-word phrases

• build the initial token-level LM.

We start by extracting all word sub-sequences π of length up to

L from the training corpus. For each π, we query all NE-tokens

c for prior P prior(π|c) and, if it is positive, increment the count

of c by #www∗P prior(π|c). Corpus-wide counts of π are accumu-

lated as well. If they exceed the required minimum threshold,

π is designated as a phrase token. In addition, all regular words

and classes, no matter what their occurrence count, become to-

kens as well. After that, a unigram LM is trained from these

statistics as the initial token-level LM. All subsequent iterations

build LMs of higher order.

We are aware of the distorted probability space that ensues

from substring counting, where the same word span can give

rise to several tokens without sharing probability mass among

them. At this point, we do not have a proper justification for the

cold start like that, except that it turns out to work well in prac-

tice. However, certain precautions need to be exercised. Specifi-

cally, special attention needs to be paid to NE surface forms that

are common words or expressions, such as movie titles “it”,

“her” or “up”. To avoid NEs with these surface forms being

instantiated in every sentence with these words, we first iden-

tify them using a general purpose off-the-shelf language model,

and then ban them from participating in parsing for the first few

iterations.

2.4. Limiting Phrase Lexicon

Most of the studies involving derived multi-word units, keep

model complexity at bay by applying criteria such as MDL.

Similarly, we re-examine our inventory of phrase tokens at ev-

ery iteration, and purge all phrase-tokens c that have not been

observed often enough: Z(t)(c) < θ2.

3. Experiments

3.1. Implementation

We employed the SRILM toolkit [14] to train and com-

pute probabilities with n-gram language models (Witten-Bell

smoothing was selected to support fractional observation

counts), but also to perform decoding on a trellis that we use to

encode the search space for parsing. One of the two criteria we

utilize to measure optimization progress is the aggregated sen-

tence probability P (www) =
∑

ccc
P (www,ccc) measured on the unseen

test set. The summation is carried over the lattice of parses. For

the experiments below, we conduct a fixed number of iterations

(T = 10), but perplexity change could be used as an alternative

stopping criterion as well. The second metric is word error rate

(WER) observed when recognizing utterances from the test set

using the trained token-level LM.

The WPE LM treats NEs as classes. Furthermore, for each

selected phrase, a new pseudo-word is created with a concate-

nated pronunciation. While co-articulation effects may offer ad-

ditional improvement opportunities for multi-word phrases [4],

we leave them for future explorations. The minimum phrase

count is set to θ2 = 10.0, and the pool of candidate phrases

consists of all word sub-sequences of length ≤ 6.

3.2. Data

We expect multi-level LMs to be particularly helpful for boot-

strapping narrowly defined domains with a limited inventory of

named entities. High personalization potential or dynamic NEs

whose contents are subject to rapid changes offer additional mo-

tivation for WPE LMs. Consequently, only a moderate amount

of training data can be expected, without the ability to tag it

manually.3 As an example of such a setup, we have selected

the calendar scenario from the personal assistant domain, where

people use natural language to set up, query or edit appoint-

ments (but also perform other related tasks) in their smart phone

calendar. Below are four examples of in-domain utterances:

• am i free on saturday

• move appointment with rebecca to next week

• will john be at marketing meeting

• three pm every monday and wednesday yoga class

Our training set (180K words in 20K unique sentences) was

obtained via crowd-sourcing and our test set (20K words) con-

tains transcribed utterances from a Windows Phone calendar

application. The selection of NEs reflects expectations of the

domain at hand (see Table 1) and their initial weights are either

uniform or reflect authors’ experience from prior applications.

Table 1: Named entities used in the experiment.

NE type size examples

city trie 2000 new york city, boston

state trie 55 hawaii, california, p a

first name trie 1000 john, mary

week day trie 7 tuesday

date FSM 16st/132arcs march first two thousand

time FSM 11st/72arcs seven twenty p m

3.3. Results

Our baseline is a word-level n-gram language model built from

the training sentences. Table 2 compares perplexity, out-of-

vocabulary (OOV) rate and WER obtained with the WPE LM

3Automatic taggers for specific domains would still require sizable
amounts of in-domain training material.



trained on the same corpus using formulae from Section 2.1.

The WPE LMs were trained with 10 iterations of EM. On each

iteration, five best parses were used to estimate a new language

model. The table shows that WPE models improve perplexity

(despite their larger vocabulary) and decrease WER by almost

11%.

Table 2: WPE LM versus word-level n-gram LM.

LM test ppx word OOV (%) WER (%)

3-grams; words 57.9 4.5 19.99

5-grams; words 58.0 4.5 19.97

3-grams; WPE 48.9 3.8 17.81

5-grams; WPE 49.1 3.8 17.72

Since one of the advantages of the WPE LM is that it mod-

els longer spans, the table also reports on 5-gram versions of

the experiments. They show that only a small fraction of the

improvements due to WPE LM can be regained by increasing

the n-gram order of the word-level LM. This is in part due to the

relatively small size of the training corpus. Another reason for

a very weak improvement due to 5-grams is the potential slight

mismatch between the training and test sets.

Next, we want to see how much of the WER improvement

can be attributed to the trivial fact that WPE LMs have larger vo-

cabulary (via NE classes). On our test set, the 3-gram baseline

LM encountered 140 more OOV words than the 3-gram WPE

LM. This would account for about 0.7% WER, far less than the

overall improvement we have observed. Thus, the advantage of

the WPE LM consists in more than just having higher-coverage

vocabulary.

As for the generated phrases, the 3-gram run above selected

about 650 of them. Most of the phrases are intuitively plau-

sible (e.g. “yoga+class” or “when+is+my+next”, but there

are also a few, such as “two+pm”, that one would expect to be

identified as entity tokens if our goal had been to do NE tagging.

However, from the language modeling perspective, it is cheaper

to consider some occurrences of those common sequences as

independent tokens. This demonstrates the advantage of our

approach compared to a typical class-based LM.

As a next step, we add NE optimization from Section 2.2

starting with iteration κ = 3. Parameter θ1 was set to 2.0. Note

that these hyper-parameters were not tuned but rather reflected

the authors’ prior experience. With initial inertia λ = 0.5, the

WER falls to 17.30%, a total of more than 13.5% relative im-

provement from the baseline. Note that all NEs appear to con-

tribute to the observed gains. For instance, if we remove FSM-

based entities DATE and TIME from the setup, WER will rise

to 18.87%, about half way between the full model and WPE

LM with just phrases but no entities in it (WER=19.69%). The

plot in Figure 2 shows the effect of the initial inertia λ on the

WER of the final WPE LM. The lowest error rates of 17.25%

are achieved with λ = 0.75, though the optimal value is ex-

pected to change depending on the size of the training corpus.

Finally, we would like to see how the size of the training

corpus affects recognition accuracy. Figure 3 shows how WERs

of word-only baseline and WPE LM are changing as we restrict

the training material to ever smaller subsets. We see that WER

improvements remain relatively stable with a more significant

increase for a training subset of just 300 examples where lex-

icon size started playing a greater role. Thus, while unable to

experiment with larger training sets directly, the observed sta-

bility of improvements can be interpreted as a hint that WPE

Figure 2: Effect of the initial inertia λ on the WER.

Figure 3: WPE improvements remain relatively stable as a func-

tion of training corpus size.

will continue outperforming word-level LM for at least some-

what larger training corpora.

4. Future Work and Conclusion

We presented a method for building token-level language mod-

els that combine words, common word phrases and classes such

as named entities. Our iterative algorithm maximizes likelihood

of the training corpus by re-expressing it in terms of the tokens

while avoiding hard tagging decisions for phrases and classes

in favor of flexible context-specific decisions for each instance.

Starting with word-level text representation and a collection of

generic class-definitions (weighted lists and/or FSMs), we im-

prove perplexity of unseen data and reduce WER. Our next goal

is to extend this approach to personalize user-specific NE defi-

nitions (such as names from user’s address book) that could be

loaded at run-time. In addition, we intend to explore alternatives

to the cold start initialization where the initial unigram language

model is estimated from substrings, n-grams of different lengths

share the probability space and some common phrases need to

be artificially blocked for the first few iterations. We also plan to

apply the WPE-paradigm to continuous space language models

such as RNN. Finally, the effect of noise in the training material

needs to be investigated to tackle cases without textual training

data. The reported experiments demonstrated how WPE n-gram

LM can improve recognition accuracy for narrowly defined do-

mains with limited training data. Specifically for the Calendar

domain, our algorithm reduced WER by close to 11%, and more

than 13.5% when named entities were optimized jointly with the

language model.
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