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AbstractSimultaneous rigid E-uni�cation, or SREU for short, is a fundamental prob-lem that arises in global methods of automated theorem proving in classicallogic with equality. In order to do proof search in intuitionistic logic withequality one has to handle SREU. Furthermore, restricted forms of SREU arestrongly related to word equations and �nite tree automata. Higher-orderuni�cation has applications in proof theory, computational linguistics, pro-gram transformation, and also in theorem proving. It was recently shown thatsecond-order uni�cation has a very natural reduction to simultaneous rigidE-uni�cation, which constituted probably the most transparent undecidabilityproof of SREU. Here we show that there is also a natural encoding of SREUin second-order uni�cation. It follows that the problems are logspace equiv-alent. We exploit this connection and use �nite tree automata techniques toprove that second-order uni�cation is undecidable in more restricted casesthan known before. We present a more elementary undecidability proof ofsecond-order uni�cation than the previously known proofs exposing that al-ready a very small fragment of second-order uni�cation has the universalcomputational power.
KeywordsSecond-order uni�cation, simultaneous rigid E-uni�cation, �nite tree au-tomata.



1 IntroductionSimultaneous Rigid E-Uni�cation, or SREU for short, is originally introducedin 1987 by Gallier, Raatz, and Snyder [15] as a fundamental problem thatarises in global or rigid-variable methods of automated theorem proving inclassical logic with equality. For example, in free variable tableau methods,SREU corresponds to the problem of deciding if some substitution closes agiven set of branches. In intuitionistic logic with equality, proof search leadsto SREU. It is shown in Voronkov [33] that SREU is actually polynomial-time equivalent to skeleton instantiation (the problem of deciding if there isa proof with a given proof skeleton) in certain proof systems in intuitionisticlogic with equality. There is a list of several fundamental decision problemsin both classical and intuitionistic logic with equality that are very closelyrelated to SREU [5].The undecidability of SREU is shown in 1995 by Degtyarev and Voron-kov [8]. Probably the most transparent undecidability proof of SREU [7, 10]is by reduction from second-order uni�cation, proved undecidable in Gold-farb [17]. This reduction shows that any semidecision algorithm for SREUcan be adapted to second-order uni�cation. It was observed by the au-thor and Voronkov that this connection should be studied further, in par-ticular that the techniques used to prove some undecidability results ofSREU [26, 29], could probably be adapted in the context of second-orderuni�cation. By using a recent construction from Levy [22], we present twolemmas in Section 3 that enable us to transfer techniques from the contextof SREU to the context of SOU. The �rst application of these lemmas is thefollowing result in Section 4, by using a restricted form of SREU [18].SREU and second-order uni�cation are logspace equivalent.The general content of this result is that second-order uni�cation plays thesame fundamental role as SREU in logic with equality. For example, itimplies that it is necessary to handle second-order uni�cation in order todo proof search in intuitionistic logic with equality. From the viewpointof automated theorem proving or proof search this connection is importantbecause currently there are no known reasonable semidecision algorithmsfor SREU, except for ones based of straightforward enumeration [25]. Thereduction to higher-order uni�cation may provide new insights into how todeal with this.By using a recent undecidability of a very restricted case of SREU [18],we obtain the following statement, that strengthens the result in Levy [22]with the last two conditions: 1



Second-order uni�cation is undecidable with the following restric-tions on equation systems S:1. each second-order variable occurs at most twice in S,2. there are at most 3 second-order variables in S,3. there are at most 2 �rst-order variables in S.There are many known relationships between SREU and intuitionisticlogic [9, 31, 32], �nite tree automata [16] and SREU [3, 4, 30], word equa-tions [23] and monadic SREU [6, 19], word equations and monadic second-order uni�cation [12], and there are connections between other restrictedforms of second-order uni�cation [21] and context-uni�cation [27]. In Sec-tion 5 we exploit some of these connections and the lemmas in Section 3 togive a new elementary undecidability proof of second-order uni�cation. Inparticular, we apply �nite tree automata techniques in combination with en-coding techniques involving valid Turing machine computations underlyingthe proofs in [18, 31]. To be precise, we construct (e�ectively) a universalsecond-order equation Su(x; F;G) of the formg(F (~t1); G(~t2)) � g(f(x; F (~t3)); g(F (~t4); G(~t5)))where all the ~ti's are sequences of ground terms of depth � 1 over a signature�u, and F and G are second-order variables with matching arities, such thatthe following decision problem is undecidable:Given a ground term s, is Su(s; F;G) solvable?The construction of the universal second-order equation is relatively shortand involves two steps that are intuitively clear. We can conclude the fol-lowing.Second-order uni�cation is undecidable with the following restric-tions on equation systems S:1. there are no �rst-order variables in S,2. at most two variables in S,3. at most �ve occurrences of variables in S,4. all occurrences of variables in S have ground arguments, and5. all arguments of variables have depth � k for some �xedk � 1. 2



By applying certain encoding techniques in Farmer [13], we prove in Section 6that a signature consisting of one constant and one binary function symbolis already enough to obtain undecidability, without violating the above re-strictions. Hence, our result implies the following complement to Farmer'sundecidability theorem:There is an integer n such that for all nonmonadic second-orderlanguages with at least two second-order variables with arities � nthe uni�cation problem is undecidable already if there are at most�ve variable occurrences all having ground arguments of depth� n.The value of n is any integer greater than the maximum of the arities of Fand G (in the universal second-order equation) and the value of k. Moreover,it seems that the use of two second-order variables is necessary to obtainundecidability, e.g., the problem is decidable if there is just one second-ordervariable and it occurs at most twice [22].Our result also con�rms the statement in Schubert [28] that the undecid-ability of second-order uni�cation holds for systems of equations where allvariables have ground arguments, and improves it with the conditions (1{3)and (5). Allowing variables to occur in arguments of second-order variablesis essential in Goldfarb's proof [17]. We note that the proof by Schubertinvolves a very complicated reduction from Minsky machines and appears tohave some gaps. The undecidability of second-order uni�cation for equationswhere all variables have ground arguments is used in Schubert [28] to derivethe undecidability of a certain type inference problem.12 PreliminariesWe assume that the reader is familiar with the notions of (�rst-order) terms,equations, substitutions, and standard notions related to �rst-order logic.We de�ne the corresponding second-order notions without using an explicitvariable binding operator like �, following Farmer [13] or Goldfarb [17].A signature � is a collection of function symbols with �xed arities � 0and, unless otherwise stated, � is assumed to contain at least one constantor function symbol with arity 0. We use (a; b; c; d; a1; : : :) for constants and(f; g; f1; : : :) for function symbols in general. A designated constant in � isdenoted by c�.1Schubert shows the undecidability of the following decision problem for the Church-style system F [1]: Given a term t, does there exist a base � and a type � such that� ` t : � is correct in the system F? 3



A term language or simply language is a triple L = (�L;XL;FL) of pair-wise disjoint sets of symbols, where� �L is a signature,� XL (x; y; x1; y1; : : :) is a collection of �rst-order variables, and� FL (F;G;F1; F 0; : : :) is a collection of symbols with �xed arities � 1,called second-order variables.Let L be a language. L is �rst-order, if FL is empty; L is second-order,otherwise. If L is �rst-order then we write it as the pair (�L;XL). L ismonadic if all function symbols in �L have arity � 1. We use (�; �1; : : :) todenote arbitrary variables in L, i.e., symbols in XL [ FL. A language L1 isan expansion of a language L, in symbols L1 � L or L � L1, if �L � �L1 ,XL � XL1, and FL � FL1.The set of all terms in a language L, or L-terms, is denoted by TL andis de�ned as the set of all terms in the �rst-order language (�L [ FL;XL).We use (s; t; l; r; s1; : : :) for terms. We usually omit mentioning L when it isclear from the context. The depth of a term is de�ned as usual, by letting thedepth of a constant or �rst-order variable be 0 and the depth of a compoundterm be 1 plus the maximum of the depths of its immediate subterms. Aground term is one that contains no variables. The set of all ground termsin a language L is denoted by T�L . Given a term F (~t), where F is a second-order variable with arity m and ~t is a sequence of m terms, the elementsof ~t are called the arguments of F . A (second-order) term is called simpleif there are no nested occurrences of variables in it, i.e., all occurrences ofsecond-order variables have ground arguments.An equation in L is an unordered pair of L-terms, denoted by s � t.Equations are denoted by (e; e1; : : :). A rule in L is an ordered pair of L-terms, denoted by s ! t.2 An equation or a rule is ground (simple) if theterms in it are ground (simple). The depth of an equation s � t is themaximum of the depths of s and t. A system of rules or equations is a �niteset of rules or equations. Let R be a system of ground rules, and s and ttwo ground terms. Then s rewrites (in R) to t, denoted by s �!R t, if t isobtained from s by replacing an occurrence of a term l in s by a term r forsome rule l ! r in R. The term s reduces (in R) to t, denoted by s ��!R t,if either s = t or s rewrites to a term that reduces to t. We assume that thethe reader is familiar with the basic concepts in ground rewriting [11].2By rules we understand thus directed equations. Only ground instantiations of rulesare considered as rewrite rules. 4



2.1 Second-Order Uni�cationGiven a language L, we need expressions representing functions that produceinstances of terms in L. For that purpose we introduce an expansion L� of L.We follow Goldfarb [17] and Farmer [13]. Let fzigi�1 be an in�nite collectionof new symbols not in L. The language L� di�ers from L by having fzigi�1 asadditional �rst-order variables, called bound variables. The rank of a term tin L�, is either 0 if t contains no bound variables (i.e., t 2 TL), or the largestn such that zn occurs in t. Given terms t and t1; t2; : : : ; tn in L�, we writet[t1; t2; : : : ; tn] for the term that results from t by simultaneously replacingzi in it by ti for 1 � i � n. An L�-term is called closed if it contains novariables other than bound variables. Note that closed L�-terms of rank 0are ground L-terms.A substitution in L is a function � with �nite domain dom(�) � XL [FLthat maps �rst-order variables to L-terms, and n-ary second-order variablesto L�-terms of rank � n. A substitution � with domain f �i j 1 � i � n gsuch that �(�i) = ti for 1 � i � n, is also denoted by f �i 7! ti j 1 � i � n g.The result of applying a substitution � to an L-term s, denoted by s�, isde�ned by induction on s:1. If s = x and x 2 dom(�) then s� = �(x).2. If s = x and x =2 dom(�) then s� = x.3. If s = F (t1; : : : ; tn) and F 2 dom(�) then s� = �(F )[t1�; : : : ; tn�].4. If s = F (t1; : : : ; tn) and F =2 dom(�) then s� = F (t1�; : : : ; tn�).5. If s = f(t1; : : : ; tn) then s� = f(t1�; : : : ; tn�).We write also F� for �(F ), where F is a second-order variable. A substitutionis called closed, if its range is a set of closed terms. Given a term t, asubstitution � is said to be grounding for t if t� is ground, similarly for otherL-expressions. Given a sequence ~t = t1; : : : ; tn of terms, we write ~t� fort1�; : : : ; tn�.Let E be a system of equations in L. A uni�er of E is a substitution �(in L) such that s� = t� for all equations s � t in E. E is uni�able if thereexists a uni�er of E. Note that if E is uni�able then it has a closed uni�erthat is grounding for E, since T�L is nonempty. The uni�cation problemfor L is the problem of deciding whether a given equation system in L isuni�able. In general, the second-order uni�cation problem or SOU is theuni�cation problem for arbitrary second-order languages. Monadic SOU isSOU for monadic second-order languages.5



2.2 Simultaneous Rigid E-Uni�cationIn the following let L be a �rst-order language. Given a system of equationsE in L and an equation e in L, the expression E `8 e is called a rigid equationin L, where E is called the left-hand side of E `8 e. A rigid equation E `8 eis solvable if there exists a substitution � that is grounding for E and e suchthat e� is a logical consequence of E�, such a substitution is said to solvethe rigid equation. Rigid E-uni�cation is the problem of deciding if a givenrigid equation is solvable.A system or �nite set of rigid equations is solvable, if there exists a sub-stitution that solves each rigid equation in that system. Simultaneous rigidE-uni�cation for L or SREU for L is the problem of deciding if a given sys-tem of rigid equations in L is solvable. In general, by SREU we mean SREUfor arbitrary �rst-order languages. Monadic SREU is SREU for monadic�rst-order languages.3 Relations between rewriting and second-order uni�cationIn this section we present two lemmas that show a close relationship betweencertain forms of rewriting and second-order uni�cation. These lemmas areused as basic tools in the following sections. The main statement is Lemma 1,that is inspired by the proof of the main lemma in Levy [22] and is used toderive a strengthened version of the latter (Lemma 2) with analogous proof.The basic techniques that are involved in these constructions appear alreadyin Farmer [13] and Goldfarb [17].We frequently need to refer to certain conditions on a sequence of pa-rameters. In order to avoid lengthy repetitions of such conditions we use thefollowing de�nition. We say that a parameter sequence(L; c; f; F;m;L1; s; t;~l; ~r)is appropriate if the following conditions hold:� L is a language;� c is a constant, f is a binary function symbol, and f; c =2 �L;� F is a second-order variable with arity m+ 1, m � 0, F =2 FL;� L1 � (�L [ ff; cg;XL;FL [ fFg);6



� s; t 2 TL, ~l = l1; : : : ; lm 2 TL, and ~r = r1; : : : ; rm 2 TL.Given appropriate (L; c; f; F;m;L1; s; t;~l; ~r), we use the following construc-tion from Levy [22]. Let SOE (c; f; F; s; t;~l; ~r) denote the following second-order equation in L1:SOE (c; f; F; s; t;~l; ~r) = F (~l; f(s; c)) � f(t; F (~r; c)):Note that the sequences ~l and ~r are empty when m = 0.Lemma 1 Let (L; c; f; F;m;L1; s; t;~l; ~r) be appropriate. The following state-ments are equivalent for all � in L1 such that ~l�; s� 2 T�L.(i) � solves SOE (c; f; F; s; t;~l; ~r), i.e., F�[~l�; f(s�; c)] = f(t�; F�[~r�; c]).(ii) Either t� = s� and F� = zm+1, or there exists k � 1 and closed L�-terms si of rank � m for 1 � i � k, such thatF� = f(s1; f(s2; : : : ; f(sk; zm+1) � � �)) (1)and t� = s1[~l�]; (2)si[~r�] = si+1[~l�]; for 1 � i < k; (3)sk[~r�] = s�: (4)Proof.(i)((ii) Straightforward.(i))(ii) Let � satisfying (i) be given. Say that an L�1-term t0 is a list ifeither t0 = zm+1, or t0 = f(t1; t2) for some t1 and t2, where t2 is a list. Weuse the following statement to show that F� is a list:(*) For all L�1-terms t1 and t2, ift2[~l�; f(s�; c)] = f(t1; t2[~r�; c]) (5)then t2 is a list. 7



Proof. By induction on the number of symbols in t2.Assume that t2 is either a constant, a variable in XL1, or a boundvariable. If (5) holds then the head symbol of the left-hand side of (5)must be f . The only possibility is t2 = zm+1 because ~l� 2 T�L andf =2 �L.Assume now that t2 is a compound term and (5) holds. Then the headsymbol of t2 must be f . So t2 = f(t21; t22) for some L�1 terms t21 andt22. Hence, by (5),f(t21; t22)[~l�; f(s�; c)] = f(t1; f(t21; t22)[~r�; c]);and thus t22[~l�; f(s�; c)] = f(t21[~r�; c]; t22[~r�; c]):By the induction hypothesis t22 is a list and hence so is t2. �We know that F� is an L�1-term of rank m + 1. It follows from (*) and (i)that F� is a list. If F� = zm+1 then (i) implies that s� = t�, and thus (ii)holds. Assume that F� 6= zm+1, i.e., there exists k � 1 and L�1-terms si (ofrank � m+ 1) for 1 � i � k, such thatF� = f(s1; f(s2; : : : ; f(sk; zm+1) � � �)):We show that each si is a closed L�-term of rank � m, such that (2{4) hold.It follows from (i) thatf(s1[~l�; s0]; : : : f(si+1[~l�; s0]; : : : f(s�; c) � � �) � � �) =f(t�; : : : f(si[~r�; c]; : : : f(sk[~r�; c]; c) � � �) � � �); (6)where s0 = f(s�; c). Hence, s1[~l�; s0] = t�, si+1[~l�; s0] = si[~r�; c] for 1 � i < k,and s� = sk[~r�; c]. So, sk is a closed L�-term of rank � m since s� is a groundL-term and c is not in L (recall that ~r is a sequence of m terms), and thus (4)holds. We prove by induction on k�i that each si is a closed L�-term of rank� m. The base case is i = k. Assume the statement is true for i + 1 � k,we prove it for i. Then si+1[~l�; s0] = si+1[~l�] is a ground L-term since ~l� areground L-terms, and by above, so is si[~r�; c]. Hence, si is a closed L�-termof rank � m, since c is not in L. The conditions (2) and (3) follow. �Lemma 2 Let (L; c; f; F;m;L1; s; t;~l; ~r) be appropriate. The following state-ments are equivalent for all � in L1 such that F =2 dom(�) and s�;~l�; ~r� 2T�L .(i) � [ fF 7! t0g solves SOE (c; f; F; s; t;~l; ~r) for some t0.(ii) (t� 2 T�L and) t� ��!f li�!ri�j1�i�m g s�.Proof. 8



((i))(ii)) Let �0 = � [ fF 7! t0g satisfying (i) be given. There are twocases by Lemma 1((i))(ii)). First case is t0 = zm+1 and t�0 = s�0, and thust� = s� (since s; t 2 TL and F =2 FL), and hence (ii) holds trivially. Thesecond case is that there exists k � 1 and closed L�-terms si of rank � m for1 � i � k, such that t0 = f(s1; f(s2; : : : ; f(sk; zm+1) � � �))and t� = s1[~l�], si[~r�] = si+1[~l�], for 1 � i < k, sk[~r�] = s�, where we havecorrectly inserted � for �0 since s; t;~l; ~r 2 TL and F =2 FL. Let R be thefollowing system of ground rules in L:R = f li� ! ri� j 1 � i � m g:Clearly, si[~l�] ��!R si[~r�] for 1 � i � k, and thus si[~l�] ��!R si+1[~l�], for1 � i < k, by above. It follows thatt� = s1[~l�] ��!R sk[~l�] ��!R sk[~r�] = s�;as needed.((ii))(i)) Let � satisfying (ii) be given and R = f li� ! ri� j 1 � i � m g.We have a reduction:t� = t0 �!R t1 �!R � � � �!R tk�1 �!R tk = s�:If k = 0 then let t0 = zm+1 and (i) follows from Lemma 1((ii))(i)). Assumethat k � 1 and consider a �xed i, 1 � i � k. The rewrite step ti�1 �!R tiuses a rule lj� ! rj� for some j, 1 � j � m, and replaces a certain subtermoccurrence of lj� in ti�1 by rj�. Construct si from ti�1 by replacing thatoccurrence by zj. Thus si[~l�] = ti�1 and si[~r�] = ti. Given such si for1 � i � k, obviously (2{4) are true. Let t0 be the term above. Statement (i)follows from Lemma 1((ii))(i)). �4 Reduction of SREU to SOUIn this section we show that there is a logspace reduction of SREU to SOU.The converse reduction, from SOU to SREU, is given in Degtyarev andVoronkov [7, 10] and is also logspace. We use a restricted form of SREUthat is logspace equivalent with SREU and allows us to apply Lemma 2 in adirect manner. 9



Let L be a �rst-order language and R a system of rigid equations in L andlet L1 be an arbitrary expansion of L. The following property for systemsof rigid equations guarantees that any substitution � in L1 that solves R,maps variables occurring in R to ground terms in L. Let x be a variablethat occurs in R. A guard for x in R, if one exists, is any rigid equationE `8 s � t in R such that� E is a set of ground equations,� s is a ground term, and� x occurs in t.The system R is called guarded if there is a guard in R for each variablethat occurs in R. Guarded SREU is SREU restricted to guarded systems ofrigid equations. The notion of guardedness is introduced in Gurevich andVeanes [18].Lemma 3 SREU is logspace equivalent to guarded SREU.Proof. Let R be a system of rigid equations and � the set of functionsymbols in R expanded with an additional constant if there is no constantin R. Let X be the set of variables in R and let L = (�;X ). For eachvariable x in X , for which there is no guard in R, construct the followingrigid equation:3Gr(�; x) = f f(c�; : : : ; c�) � c� j f 2 � n fc�g g `8 c� � x:Let R0 be the extension of R with such rigid equations. Obviously is R0guarded. It is straightforward to prove that for all substitutions �, � solvesGr(�; x) if and only if x� 2 T� [10, Lemma 3]. Hence, for all substitutions �in L, � solves R if and only if � solves R0. �The following result is implied by the reduction in Degtyarev and Voron-kov [10].4Theorem 1 (Degtyarev-Voronkov [10]) There is a logspace reduction ofSOU to SREU.3Note that f(c�; : : : ; c�) stands for f when f has arity 0, it stands for f(c�) when fhas arity 1, and so on.4Personal communication with Voronkov.10



We use the following de�nitions. Let L be a �rst-order language and R asystem of rigid equations in L. For an equation system E in L we write REfor the following set of rules in L:RE = f s! t; t! s j s � t 2 E g:Let FR denote the following set of distinct second-order variables:FR = fFE`8e of arity jREj+ 1 j E `8 e 2 Rg:Let fR be a binary function symbol and cR a constant that are not in L. Wewrite LR for the following expansion of L.LR = (�L [ ffR; cRg;XL;FR):For each rigid equation E `8 s � t in R, consider a �xed enumerationf li ! ri j 1 � i � jREj g = REand let ~l = l1; l2; : : : ; ljREj and ~r = r1; r2; : : : ; rjREj. It is easy to check that(L; cR; fR; FE`8s�t; jREj; LR; s; t;~l; ~r) is appropriate. De�neSOE (R; E `8 s � t) = SOE (cR; fR; FE`8s�t; s; t;~l; ~r);and SOE (R) = fSOE (R; E `8 s � t) j E `8 s � t 2 Rg:The construction corresponding to SOE (R) is applied in Levy [22] to avariant of SREU called simultaneous ground rigid O-uni�cation that disal-lows equations of the form t � x, where x is a variable, to appear in theleft-hand side of rigid equations. The following example shows that the no-tion of guardedness is important also in this restricted case.Example 1 Consider the system R = f; `8 x = yg where x and y arevariables. Then SOE (R) has the form fF (f(x; c)) � f(y; F (c))g. Let � =fF 7! f(z1; z1); x 7! c; y 7! f(c; c)g. It is easy to check that � solves SOE (R)but it doesn't solve R.Theorem 2 Let L be a �rst-order language and R a guarded system of rigidequations in L. The following statements are equivalent for all � in LR suchthat dom(�) \ FR = ;.(i) Some extension of � with FR solves SOE (R).(ii) � solves R.Proof. Let L, R and � be given. Let R = fEi `8 si � ti j 1 � i � n g andlet us write Fi for FEi`8si�ti and Ri for REi. The following holds by Birkho�'scompleteness theorem for all i, 1 � i � n, assuming � is grounding for R:� solves Ei `8 si � ti , ti� ��!Ri� si�: (7)11



((i))(ii)) Assume that �0 = � [ fFi 7! t0i j 1 � i � n g solves SOE (R).First we show that, for 1 � i � n, Ri� is a set of ground rules in L andsi� is a ground term in L. Consider a �xed i. Let x be a variable in Rior si. Let Ej `8 sj � tj be a guard for x in R. So Rj and sj are groundand � [ fFj 7! t0jg solves SOE (R; Ej `8 sj � tj). Hence, it follows fromLemma 2((i))(ii)) that tj� 2 T�L . But x occurs in tj, and thus x� 2 T�L .Second, since � [ fFi 7! t0ig solves SOE (R; Ei `8 si � ti) and all theterms in Ri� and si� are in T�L , it follows again from Lemma 2((i))(ii))that ti� ��!Ri� si�. Thus, it follows from (7) that � solves Ei `8 si � ti.Consequently � solves R.((i)((ii)) Assume that � solves R. From (7) and Lemma 2((i)((ii)) fol-lows that, for each i, 1 � i � n, there is a term t0i such that � [ fFi 7! t0igsolves SOE (R; Ei `8 si � ti). The rest is obvious, since Fi 6= Fj for i 6= j. �Note that an analogous way to prove Theorem 2 when starting from anarbitrary system of of rigid equations R over a signature �, is to add thesecond-order equation corresponding to Gr(�; x) (in Lemma 3), for eachvariable x in R (that has no guard in R), to the resulting system of second-order equations.Clearly, the system SOE (R) is just another representation ofR. It followsfrom Theorem 2 that any semidecision algorithm for SOU that also producesa solution if one exists, can directly be used as a semidecision procedure forguarded SREU that also produces a solution if one exists.Theorem 3 SREU is logspace equivalent to SOU.Proof. By Lemma 3, Theorem 1, and Theorem 2. �There is an important di�erence between the reduction from SREU toSOU on one hand and the reduction from SOU to SREU on the other hand.In the former reduction one needs a binary function symbol, whereas thelatter reduction [7, 10] shows that monadic SOU reduces to monadic SREU.The use of the binary function symbol in the former reduction seems tobe unavoidable because of the following reason. Decidability of monadicsecond-order uni�cation can be proved by reduction to word equations [12],whereas monadic SREU is only known to reduce to a nontrivial extensionof word equations [19]. The decidability of monadic SREU is currently anopen problem, only some special cases are known to be decidable [19, 6]. Thedecidability of monadic SREU is equivalent to the decidability of the prenexfragment of intuitionistic logic with equality restricted to function symbolsof arity � 1. A recent report by Voronkov discusses in detail the connectionsbetween SREU and other related problems [35].12



Undecidability of a restricted case of SOUThe following theorem is a central result in Levy [22]. It is proved by reducingsimultaneous ground rigid O-uni�cation to SOU, by using a constructioncorresponding to SOE (R) and noting that the reduction in Degtyarev andVoronkov [10] can be adapted to simultaneous ground rigid O-uni�cation.Theorem 4 (Levy [22]) SOU is undecidable when restricted to systems ofequations such that each second-order variable occurs at most twice in thesystem.By using the following lemma (an immediate corollary of [18, Theorem 18])and Theorem 2, we can conclude that Theorem 4 holds already with verystrong restrictions on the number of variables.Lemma 4 (Gurevich-Veanes [18]) Solvability of guarded systems of rigidequations with at most three rigid equations and at most two variables isundecidable.Theorem 5 SOU is undecidable when restricted to systems S such that1. each second-order variable occurs at most twice in S,2. there are at most 3 second-order variables in S, and3. there are at most 2 �rst-order variables in S.Proof. Let R be a guarded system of three rigid equations with two vari-ables. Then SOE (R) is a system of second-order equations that satis�es therestrictions (1{3). By Theorem 2, R is solvable if and only if SOE (R) issolvable. The undecidability follows from Lemma 4. �We can note that the second-order equations that we obtain in Theorem 5are not simple (even if we consider the most restricted case in [18]). Inorder to prove the undecidability of the other cases of SOU that are listedin the introduction we have to apply the techniques that underlie the proofof Lemma 4 directly in the context of second-order uni�cation. We do thisin Section 5. We note, however, that the main result in Section 5 is anindependent result that does not imply Theorem 5, because the numberof variable occurrences is violated. For example, the decidability of SOUrestricted to 2 second-order variables, each occurring at most twice, remainsan open problem. This case is strongly related to the decidability of SREUwith 2 rigid-equations, which is also an open problem.13



5 A new elementary undecidability proof ofSOUIn this section we present a new elementary undecidability proof of SOU,that does not rely on the deep theory underlying the undecidability proofof Hilbert's tenth problem due to Matiyasevich [24], that is used in Gold-farb [17]. As a corollary we can show the undecidability of SOU in morerestricted cases than known previously. We adopt techniques from Gure-vich and Veanes [18] and Veanes [30, 31], that originate from techniques inPlaisted [26], Goldfarb [17] and Hopcroft and Ullman [20, Lemma 8.6].The undecidability proof is by reduction from the halting problem forTuring machines. We consider a �xed deterministic Turing machineM withinitial state q0, �nal state qf, a blank character �b, and an input alphabet thatdoes not include the blank. By �M we denote the set of all the symbols inM , i.e., the states, the input characters and the blank. All elements of �Mare assigned arity 0, i.e., are treated as constants. M is allowed to writeblanks, however, M is only allowed to write a blank when it erases the lastnonblank symbol on the tape and the tape head must move left after that.We assume, without loss of generality, that when M enters the �nal statethen its tape is empty.An ID ofM is any string vqw where vw is a string over the input alphabetof M and q is a state of M . In particular, the initial ID of M for input stringv has the form q0v, and the �nal ID is simply the one character string qf.A move of M is any pair of strings (v; v+) where v is an ID and v+ is thesuccessor of v according to the transition function of M , if v is non�nal; v+is the empty string (�), otherwise (i.e., q+f = �).5.1 Main ideaWe construct two second-order equations from M : SMmv(F;G) and SMsp (x; F ),that have roughly the following properties: (for any substitution � such thatG =2 dom(�) and input string v0 for M)1. � [ fG 7! tg solves SMmv(F;G) (for some t) if and only if F� representsa sequence of moves of M :((v1; v+1 ); (v2; v+2 ); : : : ; (vk; v+k )):2. � solves SMsp (q0v0; F ) if and only if F� represents the shifted pairing ofa sequence of IDs (v1; v2; : : : ; vk) where v1 = q0v0. (See Figure 1.)Consequently, � solves both second-order equations (for some G�) if and onlyif F� represents a valid computation of M with input v0.14



v1 v2 v3 vk�1 vkv1 v2 vk�2 vk�1 vk(v1; v2) (v2; v3) (vk�2; vk�1) (vk�1 ; vk) (vk; �)Figure 1: ((v1; v2); (v2; v3); : : : ; (vk; �)) is a shifted pairing of (v1; v2; : : : ; vk).5.2 Encoding sequences of movesWe introduce a family of new constants fcabga;b2�M and use them to encodemoves of M in the following manner. Let v = a1a2 � � � am be any ID of Mand let v+ = b1b2 � � � bn. (Note that m � 1 � n � m + 1.) We let hv; v+idenote the following string:hv; v+i = 8<: ca1b1ca2b2 � � � cambmc�bbn ; if n = m+ 1;ca1b1ca2b2 � � � canbncam�b; if n = m� 1;ca1b1ca2b2 � � � cambn; if n = m:we call such a string a move also. (Note that hqf ; �i = cqf�b.) Intuitively,a blank is added at the end of the shorter of the two strings (in case theydi�er in length) and the pair of the resulting strings is encoded character bycharacter.We �x two new constants cw and ct and two new binary function symbolsfw and ft, and let �id and �mv be the following signatures:�id = �M [ fcw; fwg;�mv = f cab j (a; b) 2 �M � �M g [ fcw; fw; ct; ftg:A term s is a called a word if either s = cw (the empty word), or s =fw(c; s0) for some constant c that is distinct from cw and word s0. Wheneverconvenient, we write a word as the corresponding string surrounded by doublequotes: fw(a1; fw(a2; : : : ; fw(an; cw) � � �)) = \a1a2 � � � an";and say that the word represents the string. A term t is called a train, ifeither t = ct (the empty train), or t = ft(s; t0) for some word s and traint0. So trains are simply representations of string sequences. Conceptually weidentify words with strings and trains with sequences of strings.A train that represents a sequence of moves is called a move-train. Thefollowing lemma is used together with Lemma 2 to construct the second-orderequation SMmv(F;G) with the desired properties.Lemma 5 There is a system Rmv of ground rules of depth � 1 over a signa-ture �0mv, where �mv � �0mv and �0mv n �mv is a set of constants, such that,for all terms t 2 T�mv, t is a move-train if and only if t ��!Rmv ct.15



Proof. One can construct a deterministic �nite bottom-up tree automaton(or DTA) that recognizes the set of all move-trains [18, 30, Train Theo-rem]. In particular, such a DTA can be constructed with one �nal state.When viewing DTAs as certain ground rewrite systems (see for exampleDauchet [2]) then the rule set Rmv is simply the rule set of that DTA. �5.3 The main reductionThroughout the rest of this section we use the following shorthand notation.Let Rmv and �0mv be given by Lemma 5, such that (�0mv n �mv) \ �id = ;.� m = j�M j2 and (a1; b1); (a2; b2); : : : ; (am; bm) is a �xed sequence of allthe pairs in �M � �M .� ~c = ca1b1 ; ca2b2; : : : ; cambm , note that ~c 2 T�mv.� ~a = a1; a2; : : : ; am and ~lsp = ~a; \�b"; cw; \�b", note that ~lsp 2 T�id .� ~b = b1; b2; : : : ; bm and ~rsp = ~b; cw; \�b"; \�b", note that ~rsp 2 T�id .� m1 = m+ 3 and F is a new second-order variable with arity m1 + 1.� Consider a �xed sequence of all the rules in Rmv. Let ~lmv be the corre-sponding sequence of all the left-hand sides, and ~rmv the correspondingsequence of all the right-hand sides. Note that ~lmv; ~rmv 2 T�0mv.� m2 = jRmvj and G is a new second-order variable with arity m2 + 1.� Lid = (�id; ;; ;).� L0mv = (�0mv; ;; fFg).� d is a new constant and g is a new binary function symbol.� L is (any expansion of) (�id [ �0mv [ fd; gg; ;; fF;Gg).We use the following facts without further notice:� (Lid; ct; ft; F;m1; L; \�b"; t;~lsp; ~rsp) (for t 2 T�id) is appropriate.� (L0mv; d; g;G;m2; L; ct; F (~c; cw; cw; cw; ct);~lmv; ~rmv) is appropriate.16



For t 2 T�, we de�ne the second-order equations SMsp (t; F ) and SMmv(F;G)and the system SM (t; F;G) in L as follows:SMsp (t; F ) = SOE (ct; ft; F; \�b"; t;~lsp; ~rsp);SMmv(F;G) = SOE (d; g;G; ct; F (~c; cw; cw; cw; ct);~lmv; ~rmv);SM(t; F;G) = fSMsp (t; F ); SMmv(F;G)g:Let us brie
y recall the intuition behind this construction. Assume that� solves the system. To start with consider SMmv(F�;G�). It follows fromLemma 5 (with a little help from Lemma 6 below) that F�[~c; cw; cw; cw; ct] isa term in T�mv representing a sequence of moves:(hv1; v+1 i; hv2; v+2 i; : : : ; hvk; v+k i):Next consider SMsp (t; F�) and Lemma 1, which tells us �rstly that the functionsymbols in F� are in �id [ fftg. So F� cannot contain any symbols from ~c,because the only constant that �id and �mv have in common is the emptyword. Consequently, F� has the bound variable zi for every occurrence ofcaibi in F�[~c; cw; cw; cw; ct]. Therefore F�[~lsp; ft(\�b"; ct)] represents (roughly)the sequence: (v1; v2; : : : ; vk;�b);and F�[~rsp; ct] represents (roughly) the sequence:(v+1 ; v+2 ; : : : ; v+k );and the conditions (2{4) in Lemma 1 imply that (v1; v2; : : : ; vk) is a validcomputation.Lemma 6 Let t 2 T�id . If � solves SM(t; F;G), then F�[~c; cw; cw; cw; ct] 2T�mv.Proof. Given t 2 T�id and � in L, assume that � solves SM (t; F;G). Then �solves SMsp (t; F ). It follows from Lemma 1 that F� is a closed (�id[fftg; ;)�-term of rank � m1+1. Since � solves also SMmv(F;G), Lemma 2 implies thatF�[~c; cw; cw; cw; ct] 2 T�0mv. The rest is obvious from the fact that (�0mv n�mv) \ �id = ;. �Given an input string v for M , we let SMv (F;G) = SM (\q0v"; F;G): (Recallthat q0v is the initial ID of M with input v.) We can now prove the maintheorem.Theorem 6 For any input string v0 for M , SMv0 (F;G) is solvable if and onlyif M accepts v0.Proof. Let v0 be an input string for M .17



()) Assume that SMv0 (F;G) is solvable. Let � be a substitution in L thatsolves SMv0 (F;G). Since � solves SMmv(F;G), it follows from Lemma 2 thatF�[~c; cw; cw; cw; ct] ��!Rmv ct:Hence, by Lemma 6 and Lemma 5, F�[~c; cw; cw; cw; ct] is a move-train:F�[~c; cw; cw; cw; ct] =ft(\hv1; v+1 i"; ft(\hv2; v+2 i"; : : : ; ft(\hvk; v+k i"; ct) � � �)); (8)where each vi is an ID of M and k � 0. But � solves also SMsp (\q0v0"; F ).Hence, it follows from Lemma 1 thatF� = ft(s1; ft(s2; : : : ; ft(sk; zm1+1) � � �)); (9)where each si is a closed L�id-term of rank � m1 and k � 1. (The caseF� = zm1+1, i.e., k = 0, is not possible because \q0v0" 6= \�b".) Moreover,\q0v0" = s1[~lsp]; (10)si[~rsp] = si+1[~lsp]; for 1 � i < k; (11)sk[~rsp] = \�b": (12)It follows from (8), (9), and each si having rank � m1, thatsi[~c; cw; cw; cw] = \hvi; v+i i"; for 1 � i � k: (13)Note that si[~c; cw; cw; cw] 2 T�mv and si[~lsp]; si[~rsp] 2 T�id for 1 � i � k. Theonly constant that can occur in any si is therefore cw.In order to show that M accepts v0 we show that v1 = q0v0, v+i = vi+1for 1 � i < k, and vk = qf. Consider a �xed i, 1 � i � k. Recall that thej'th constant in the sequence ~c is cajbj and it occurs only at position j in ~c(since there are no two identical constants in ~c). Thus, given that\hvi; v+i i" = fw(caj1bj1 ; fw(caj2bj2 ; : : : ; fw(cajnbjn ; cw) � � �));it follows from (13) thatsi = fw(zj1; fw(zj2 ; : : : ; fw(zjn; s0i) � � �));where s0i 2 fcw; zm1�2; zm1�1; zm1g, and 1 � jn0 � m for 1 � n0 � n. Recallthat, for j � m, the j'th constant in ~lsp is aj and the j'th constant in ~rsp isbj. Hence, for 1 � i � k,si[~lsp] 2 f\vi"; \vi�b"; \vi�b�b"g;si[~rsp] 2 f\v+i "; \v+i �b"; \v+i �b�b"g:Now, (10) implies that v1 = q0v0, (11) implies that v+i = vi+1 for 1 � i < k,and (12) implies that \v+k �b" = \�b", i.e., v+k = � and hence vk = qf . Thus Maccepts v0. 18



(() Assume that M accepts v0. We construct a substitution � that solvesSMv0 (F;G). Consider a valid computation of M with input v0:(v1; v2); (v2; v3); : : : ; (vk�1; vk); (vk; vk+1);for some k � 1, i.e., v1 = q0v0, v+i = vi+1 for 1 � i � k, and vk+1 = �(vk = qf). We construct F� like above, where the si's are the followingterms. Let i, 1 � i � k, be �xed and assume thathvi; v+i i = caj1bj1caj2bj2 � � � cajnbjn ;where 1 � jn0 � m for 1 � n0 � n. Letsi = fw(zj1; fw(zj2 ; : : : ; fw(zjn; s0i) � � �));where s0i is one of cw, zm1�2, zm1�1 or zm1 (speci�ed below). Given such sifor 1 � i � k, obviouslysi[~c; cw; cw; cw] = \hvi; vi+1i"; (1 � i � k):Hence, F�[~c; cw; cw; cw; ct] is a move-train. It follows from Lemma 5 thatF�[~c; cw; cw; cw; ct] ��!Rmv ct;and then from Lemma 2((ii))(i)) that (for some termG�) � solves SMmv(F;G).Next, we choose the s0i's, for 1 � i � k, in fcw; zm1�2; zm1�1; zm1g, so thatthe conditions (10{12) hold. Consider hvi; vi+1i above, let us call aj1aj2 � � � ajnits �rst projection, denoted by �1(hvi; vi+1i), and bj1bj2 � � � bjn its second pro-jection, denoted by �2(hvi; vi+1i). It is easy to check that for a given choiceof s0i, the terms si[~lsp] and si[~rsp] are as follows:s0i = si[~lsp] = si[~rsp] =cw \�1(hvi; vi+1i)" \�2(hvi; vi+1i)"zm1�2 \�1(hvi; vi+1i)�b" \�2(hvi; vi+1i)"zm1�1 \�1(hvi; vi+1i)" \�2(hvi; vi+1i)�b"zm1 \�1(hvi; vi+1i)�b" \�2(hvi; vi+1i)�b"Now, the key point to observe is that, for 1 < i � k, if �2(hvi�1; vii) and�1(hvi; vi+1i) are distinct, the one of them is vi and the other one is vi�b.Hence, the table shows that it is possible to de�ne the s0i's so that si[~rsp] =si+1[~lsp] for 1 � i < k and sk[~rsp] = \�b". It is also necessary to assume that�1(hv1; v2i) = v1, and to de�ne s01 so that s1[~lsp] = \q0v0". The conditions(10{12) follow. Hence, � solves SMsp (\q0v0"; F ) by Lemma 1((ii))(i)). �19



Let us consider a �xed universal Turing machine Mu with input alphabet�u and initial state q0. Any pair (M;v), where M is a TM and v an inputstring for M is encoded e�ectively as a string over �u, denoted by hM;vi.The details of such an encoding are not relevant here and can be found forexample in Hopcroft and Ullman [20]. The universal TM accepts hM;vi ifand only if M accepts v. The following corollary is an easy consequenceof Theorem 6. Recall that a simple second-order equation is one where alloccurrences of second-order variables have ground arguments.Corollary 1 There is a simple second-order equation Su(x; F;G) of depth 4and of the formg(F (~t1); G(~t2)) � g(f(x; F (~t3)); g(F (~t4); G(~t5)));such that the problem of determining whether Su(t; F;G) is solvable for agiven ground term t, is undecidable.Proof. Consider the systemSMu(x; F;G) = fF (~t1) � f(x; F (~t3)); G(~t2) � g(F (~t4); G(~t5))g;for some sequences ~ti, 1 � i � 5, of ground terms. Pair the two equationstogether to form Su(x; F;G). The depth of Su(x; F;G) is 4 since the elementsof each ~ti have depth � 1. Evidently, for any given term t, Su(t; F;G) issolvable if and only if SMu(t; F;G) is solvable. In particular, given a TM Mand input v for M , Su(\q0hM;vi"; F;G) is solvable if and only if SMuhM;vi(F;G)is solvable if and only if (by Theorem 6) Mu accepts hM;vi if and only if Maccepts v. �Let us call the second-order equation Su in Corollary 1 a universal second-order equation and let us denote the language of Su by Lu.Corollary 2 Second-order uni�cation is undecidable under the following re-strictions:1. there are no �rst-order variables,2. at most two variables,3. at most �ve occurrences of variables,4. the equations are simple (Schubert [28]), and5. the arguments of all variables have constantly bounded depth.20



In the following section we get further improvements of this result by applyingcertain encoding techniques in Farmer [13].It is interesting to note that, by applying the reduction in Degtyarev andVoronkov [10] to a system of simple second-order equations, one obtains asystem of rigid equations with ground left-hand sides.5 (The converse doesnot hold, i.e., the reduction from a system of rigid equations with ground left-hand sides, by using Theorem 2, does in general not yield a system of simplesecond-order equations.) Thus, by using Schubert's result that is con�rmedby Corollary 2, one obtains an elegant proof of the following statement.Corollary 3 (Plaisted [26]) SREU is undecidable with ground left-handsides.6 A complement to Farmer's theoremLet us recall the following result.Theorem 7 (Farmer [13]) There is an integer n such that the second-order uni�cation problem is undecidable for all nonmonadic languages, thatcontain at least n second-order variables.One important point of this result is that all the second-order variables maybe unary. So undecidability of second-order uni�cation arises for all non-monadic languages with su�ciently many second-order variables, even if allof them are unary and there are no �rst-order variables and only one con-stant in the language. However, as is noted in Farmer [13, page 30], there is apossibility, that there is some second-order, nonmonadic language containinga small number of second-order variables for which second-order uni�cationis decidable.The main result of this section is Theorem 8, showing that this is notpossible if the arities of the second-order variables are large enough, in whichcase the undecidability arises already with two second-order variables. Theabove possibility remains only if there is one second-order variable, or if thereis a small number of second-order variables with low arities.We use a special case of a result in Farmer [13, Lemma 6.5] (Lemma 7) toshow that Corollary 2 holds for all nonmonadic languages. We make explicitsome additional information that we extract from the main part of its proof.65This observation was made by Voronkov.6Lemma 7 holds actually not just for simple equations but for a larger class of second-order equations that are called \rigid" by Farmer. This notion is not related to thede�nition of rigid equations in the context of rigid E-uni�cation.21



Lemma 7 Let L1 be a nonmonadic second-order language and let L be thelanguage (ff; cg;XL1;FL1), where f is a binary function symbol and c is aconstant. There is an e�ective mapping ' : TL1 ! TL such that, for allsimple e = s � t in L1:1. '(e) = '(s) � '(t) in L is simple,2. e is solvable in L1 if and only if '(e) is solvable in L,3. the set of variables in e coincides with the set of variables in '(e),4. the number of variable occurrences in e and '(e) are equal,5. if s = s1fx 7! s2g for some simple s1 and ground s2 then '(s) ='(s1)fx 7! '(s2)g.Theorem 8 There is a positive integer n, such that, for any nonmonadicsecond-order language L with at least two second-order variables with arity� n, the uni�cation problem for L is undecidable already for simple equationswith at most �ve variable occurrences having arguments of depth � n.Proof. It is enough to prove the statement for some second-order variablesF and G and L = (ff; cg; ;; fF;Gg), where f is a binary function symbol,and c is a constant (cf [13, Lemma 2.1]). Let L0 be L expanded with the �rst-order variable x. Consider the universal second-order equation Su(x; F;G)(that is obviously simple) and let ' : TLu ! TL0 be given by Lemma 7.Let S0(x; F;G) = '(Su(x; F;G)). It follows that for any term t 2 T�Lu ,Su(t; F;G) is solvable in Lu if and only if '(Su(t; F;G)) is solvable in L0 (i.e.,in L) if and only if S0('(t); F;G) is solvable in L. The statement follows nowfrom Corollary 1 for n equal to some integer greater that the arities of F andG and the depth of S0(x; F;G). �7 Some open problemsDespite the similarity of SREU and second-order uni�cation in general, theirmonadic fragments (i.e., when all function symbols have arity � 1) seemto be farther apart. The reason is that the decidability of monadic second-order uni�cation can be proved by reduction to word equations [12], whereasmonadic SREU is only known to reduce to a nontrivial extension of wordequations [19] and its decidability is currently an open problem, with onlysome special decidable cases [19, 6]. It is also known that SREU is undecid-able with three rigid equations [18] and decidable with one rigid equation [14].22



The two rigid equations case remains an intriguing open problem, and therelationship to second-order uni�cation might be useful to settle this ques-tion. Further open problems related to SREU are discussed in Voronkov [34].With respect to the number of variables, the decidability of SREU has re-cently been settled completely [4, 31].We conjecture that, by applying the techniques that are used by Farmer(in particular [13, Lemma 5.2 and Lemma 6.1]), to the universal second-orderequation Su, one can obtain a more elementary proof of Farmer's main the-orem that holds already for simple equations. We estimate that the numberof unary second-order variables that the reduction from Su would lead tois roughly 4n where n is the maximum of the arities of the second-ordervariables in Su. It is still not known whether second-order uni�cation is de-cidable for \small" number of second-order variables with \low" arities. Aswe have shown, when the arities can be large enough, then undecidabilityarises already with two second-order variables. It is also an open problem ifsecond-order uni�cation is decidable with one second-order variable, unlessthere are at most two occurrences of the second-order variable [22].References[1] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M.Gabbay, and T.S.E. Mainbaum, editors, Handbook of Logic in ComputerScience, volume 2, pages 117{309. Oxford University Press, 1992.[2] M. Dauchet. Rewriting and tree automata. In H. Comon and J.P.Jouannaud, editors, Term Rewriting (French Spring School of Theo-retical Computer Science), volume 909 of Lecture Notes in ComputerScience, pages 95{113. Springer Verlag, Font Romeux, France, 1993.[3] A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov.Decidability and complexity of simultaneous rigid E-uni�cation withone variable and related results. Theoretical Computer Science, 1998.To appear.[4] A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov.The decidability of simultaneous rigid E-uni�cation with one variable. InRewriting Techniques and Applications, 1998. To appear, also availableas UPMAIL Technical Report 139, March 1997, Uppsala University,Computing Science Department.[5] A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand's theoremand equational reasoning: Problems and solutions. UPMAIL Techni-23
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