
Fast and Precise Sanitizer Analysis withBEK

Pieter Hooimeijer
University of Virginia

Benjamin Livshits
Microsoft Research

David Molnar
Microsoft Research

Prateek Saxena
UC Berkeley

Margus Veanes∗

Microsoft Research

Abstract

Web applications often use special string-manipulating
sanitizerson untrusted user data, but it is difficult to rea-
son manually about the behavior of these functions, lead-
ing to errors. For example, the Internet Explorer cross-
site scripting filter turned out to transform some web
pages without JavaScript into web pages with valid Java-
Script, enabling attacks. In other cases, sanitizers may
fail to commute, rendering one order of application safe
and the other dangerous.

BEK is a language and system for writing sanitiz-
ers that enables precise analysis of sanitizer behavior,
including checking idempotence, commutativity, and
equivalence. For example, BEK can determine if a tar-
get string, such as an entry on the XSS Cheat Sheet, is
a valid output of a sanitizer. If so, our analysis synthe-
sizes an input string that yields that target. Our language
is expressive enough to capture real web sanitizers used
in ASP.NET, the Internet Explorer XSS Filter, and the
Google AutoEscape framework, which we demonstrate
by porting these sanitizers to BEK.

Our analyses use a novelsymbolic finite automata
representation to leverage fast satisfiability modulo the-
ories (SMT) solvers and are quick in practice, tak-
ing fewer than two seconds to check the commutativ-
ity of the entire set of Internet Exporer XSS filters,
between 36 and 39 seconds to check implementations
of HTMLEncode against target strings from the XSS
Cheat Sheet, and less than ten seconds to check equiv-
alence between all pairs of a set of implementations of
HTMLEncode. Programs written in BEK can be compiled
to traditional languages such as JavaScript and C#, mak-
ing it possible for web developers to write sanitizers sup-
ported by deep analysis, yet deploy the analyzed code
directly to real applications.

1 Introduction

Cross site scripting (“XSS”) attacks are a plague in to-
day’s web applications. These attacks happen because
the applications take data from untrusted users, and then
echo this data to other users of the application. Because
web pages mix markup and JavaScript, this data may
be interpreted as code by a browser, leading to arbitrary
code execution with the privileges of the victim. The first

∗Authors are listed alphabetically. Work done while P. Hooimeijer
and P. Saxena were visiting Microsoft Research.

line of defense against XSS is the practice ofsanitiza-
tion, where untrusted data is passed through asanitizer,
a function that escapes or removes potentially danger-
ous strings. Multiple widely used Web frameworks offer
sanitizer functions in libraries, and developers often add
additional custom sanitizers due to performance
or functionality constraints.

Unfortunately, implementing sanitizerscorrectly is
surprisingly difficult. Anecdotally, in dozens of code re-
views performed across various industries, just about any
custom-written sanitizer was flawed with respect to secu-
rity [38]. The recent SANER work, for example, showed
flaws in custom-written sanitizers used by ten web ap-
plications [9]. For another example, several groups of
researchers have found specially crafted pages that do
not initially have cross site scripting attacks, but when
passed through anti-cross-site scripting filters yield web
pages that cause JavaScript execution [10, 22].

The problem becomes even more complicated when
considering that a web application maycomposemulti-
ple sanitizers in the course of creating a web page. In
a recent empirical analysis, we found that a large web
application often applied the same sanitizers twice, de-
spite these sanitizers not being idempotent. This analysis
also found that the order of applying different sanitizers
could vary, which is safe only if the sanitizers are com-
mutative [32], providing further evidence suggesting that
developers have a difficult time writing correct sanitiza-
tion functions without assistance.

Despite this, much work in the space of detecting and
preventing XSS attacks [19, 23, 25, 27, 39] has optimisti-
cally assumed that sanitizers are in fact both known and
correct. Some recent work has started exploring the is-
sue of specification completeness [24] as well as san-
itizer correctness by explicitly statically modeling sets
of values that strings can take at runtime [13, 26, 36, 37].
These approaches use analysis-specific models of strings
that are based on finite automata or context-free gram-
mars. More recently, there has been significant interest
in constraint solving tools that model strings [11, 17, 18,
20, 31, 34, 35]. String constraint solvers allow any client
analysis to express constraints (e.g., path predicates fora
single code path) that include common
string manipulation functions.

Sanitizers are typically a small amount of code, per-
haps tens of lines. Furthermore, application developers
know when they are writing a new, custom sanitizer or set
of sanitizers. Our key proposition is that if we are will-

ing to spend a little more time on this sanitizer code, we
can obtain fast and precise analyses of sanitizer behavior,
along with actual sanitizer code ready to be integrated
into both server- and client-side applications. Our ap-
proach is BEK, a language for modeling string transfor-
mations. The language is designed to be (a) sufficiently
expressive to model real-world code, and (b) sufficiently
restricted to allow fast, precise analysis, without needing
to approximate the behavior of the code.

Key to our analysis is a compilation from BEK pro-
grams tosymbolic finite state transducers, an extension
of standard finite transducers. Recall that a finite trans-
ducer is a generalization of deterministic finite automata
that allows transitions from one state to another to be an-
notated withoutputs: if the input character matches the
transition, the automaton outputs a specified sequence of
characters. In a symbolic finite transducer, transitions
are annotated with logicalformulas instead of specific
characters, and the transducer takes the transition on any
input character that satisfies the formula. We apply algo-
rithms that determine if two BEK programs are equiva-
lent. We also can check if a BEK program can output a
specific string, and if so, synthesize an input
yielding that string.

Our symbolic finite state transducer representation
enables leveragingsatisfiability modulo theories (SMT)
solvers, tools that take a formula and attempt to find in-
puts satisfying the formula. These solvers have become
robust in the last several years and are used to solve com-
plicated formulas in a variety of contexts. At the same
time, our representation allows leveraging automata the-
oretic methods to reason about strings of unbounded
length, which is not possible via direct encoding to SMT
formulas. SMT solvers allow working with formulas
from any theory supported by the solver, while other
previous approaches using binary decision diagrams are
specialized to specific types of inputs.

After analysis, programs written in BEK can be com-
piled back to traditional languages such as JavaScript or
C# . This ensures that the code analyzed and tested is
functionally equivalent to the code which is actually de-
ployed for sanitization, up to bugs in our compilation.

This paper contains a number of experimental case
studies. We conclusively demonstrate that BEK is ex-
pressive enough for a wide variety of real-life code by
converting multiple real world Web sanitization func-
tions from widely used frameworks, including those used
in Internet Explorer 8’s cross-site scripting filter, to BEK

programs. We report on which features of the BEK lan-
guage are needed and which features could be added
given our experience. We also examine other code,
such as sanitizers from Google AutoEscape and func-
tions from WebKit, to determine whether or not they can
be expressed as BEK programs. We maintain samples of
BEK programs online1.

1http://code.google.com/p/bek/

We then use BEK to perform security specific analy-
ses of these sanitizers. For example, we use BEK to de-
termine whether there exists an input to a sanitizer that
yields any member of a publicly available database of
strings known to result in cross site scripting attacks. Our
analysis is fast in practice; for example, we take two sec-
onds to check the commutativity of the entire set of In-
ternet Explorer 8 XSS filters, and less than 39 seconds to
check an implementations theHTMLEncode sanitization
function against target strings from the
XSS Cheat Sheet [5].

To experimentally demonstrate the difficulty of writ-
ing correct sanitizers, we hired several freelance devel-
opers to implementHTMLEncode functionality. Using
BEK, we checked theequivalenceof the seven differ-
ent implementations ofHTMLEncode and used BEK to
find counterexamples: inputs on which these sanitizers
behave differently. Finally, we performed scalability ex-
periments to show that in practice the time to perform
BEK analyses scales near-linearly.

1.1 Contributions

The primary contributions of this paper are:

• Language. We propose a domain-specific lan-
guage, BEK, for string manipulation. We describe a
syntax-driven translation from BEK expressions to
symbolic finite state transducers.

• Algorithms. We provide algorithms for performing
composition computation and equivalence check-
ing, which enables checking commutativity, idem-
potence, and determining if target strings can be
output by a sanitizer. We show how JavaScript and
C# code can be generated out of BEK programs,
streamlining the client- and server-side deployment
of BEK sanitizers.

• Evaluation. We show that BEK can encode real-
world string manipulating code used to sanitize un-
trusted inputs in web applications. We demonstrate
the expressiveness of BEK by encoding OWASP
sanitizers, many IE 8 XSS filters, as well as func-
tions written by freelance developers hired through
odesk.com andvworker.com for our experiments
presented in this paper. We show how the analy-
ses supported by our tool can find security-critical
bugs or check that such bugs do not exist. To
improve the end-user experience when a bug is
found, BEK produces a counter-example. We dis-
cover that only 28.6% of our sanitizers commute,
∼79.1% are idempotent, and that only 8% are re-
versible. We also demonstrate that most hand-
written HTMLEncode implementations disagree on
at least some inputs.

• A Scalable Implementation.BEK deals with Uni-
code strings without creating a state explosion. Fur-
thermore, we show that our algorithms for equiv-
alence checking and composition computation are

Figure 1: BEK architecture. We use a representation
based onsymbolic finite state transducers(defined in-
text) to model string sanitization code without approxi-
mation.

very fast in practice, scaling near-linearly with the
size of the symbolic finite transducer representation.
The main reason for this is the symbolic representa-
tion of the transition relation.

While the focus of this paper is on XSS attacks2, our
language and analyses are more general and apply to
any string manipulating function. For example Chenet
al. check interactions between firewall rules, finding re-
dundant and order-dependent rules in routers [40]. Cho
and Babić [12] check the equivalence between a specifi-
cation and an implementation for
state machines in SMTP servers.

2 Overview

Figure 1 shows an architectural diagram for the BEK sys-
tem. At the center of the picture is the transducer-based
representation of a BEK program. At the moment, we
support a BEK language front end, although other front
ends that convert Java or C# programs into BEK are also
possible. We provide motivating examples of the BEK

language in Section 2.1 and discuss the applications of
BEK to analyzing sanitizers in Section 2.2.

2.1 Introductory Examples

Example 1. The following BEK program is a basic san-
itizer that backslash-escapes single and double quotes
(but only if they are not escaped already). Theiter con-
struct is a block that uses a character variablec and a
single boolean state variableb that is initially f (false).
Each iteration of the block binds the character variable to
a single character of the stringt; iteration continues un-
til no more characters remain. The block is broken into

2The dual of the issue of code injection is data privacy; BEK is
equally suitable to analyzing the corresponding data cleansing func-
tions.

private static string EncodeHtml(string t)

{

if (t == null) { return null; }

if (t.Length == 0) { return string.Empty; }

StringBuilder builder =

new StringBuilder("", t.Length * 2);

foreach (char c in t)

{

if ((((c > ’‘’) && (c < ’{’)) ||

((c > ’@’) && (c < ’[’))) || (((c == ’ ’) ||

((c > ’/’) && (c < ’:’))) || (((c == ’.’) ||

(c == ’,’)) || ((c == ’-’) || (c == ’_’))))){

builder.Append(c);

} else {

builder.Append("&#" +

((int) c).ToString() + ";");

}

}

return builder.ToString();

}

Figure 2: Code forAntiXSS.EncodeHtml version 2.0.

case statements. If a character satisfies the condition of
the case statement, the corresponding code is executed.
Hereyield(c) outputs the current characterc.

iter(c in t) {b := f ; } {

case(¬(b) ∧ (c = ‘’’ ∨ c = ‘"’)) {

b := f ; yield(‘\’); yield(c); }

case(c = ‘\’) {

b := ¬(b); yield(c); }

case(t) {

b := f ; yield(c); }

}

The boolean variableb is used to track whether the previ-
ous character seen was an unescaped slash. For example,
in the input\\" the double quote is not considered es-
caped, and the transformed output is\\\". If we apply the
BEK program to\\\" again, the output is the same. An
interesting question is whether this holds for any output
string. In other words, we may be interested in whether
a given BEK program isidempotent.

If implemented incorrectly, double applications of
such sanitization functions can result in duplicate escap-
ing. This in turn has led to command injection of script-
injection attacks in the past. Therefore, checkingidem-
potenceof certain functions is practically useful. We will
see in the next section how BEK can
perform such checks. �

Example 2. The code in Figure 2 is from the public
Microsoft AntiXSS library. The sanitizer iterates over
the input character-by-character. Depending on the char-
acter encountered, a different action is taken, such as in-
cluding the character verbatim or encoding it in some
manner, such as numeric HTML escaping.

The BEK program corresponding toEncodeHtml is

iter (c in t){
case (¬ϕ(c)){
yield [‘&’,‘#’] + dec(c) + [‘;’]; }

case(true){
yield [c]; }}

wheredec is a built-in library function that returns the
decimal representation of the character andϕ(c) is the
formula

(‘a’ ≤ c ∧ c ≤ ‘z’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’) ∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘.’ ∨
c = ‘,’ ∨ c = ‘−’ ∨ c = ‘ ’

The BEK program iterates over each character of the
input. If the character satisfies the formulaϕ(c), then the
program outputs the character. Otherwise the program
escapes the character by outputting its decimal encod-
ing, together with the&# prefix and semicolon. Note
that this sanitizer is not idempotent, because applying the
function twice to the string&# will result in double es-
caping. Our tool can detect this in under a second.�

Multiple implementations may exist of the “same”
sanitizer. For example, Figure 3 shows the result of run-
ning the Red Gate Reflector .NET decompiler on the Sys-
tem.NET implementation ofEncodeHTML. We have con-
verted this code to BEK as well, noticing that thegoto
structure is the result of a loop after decompilation. Us-
ing our analyses, we can check these implementations for
equivalence. Our implementation can detect in less than
one second that the System.NET implementation does
not escape single quote characters, while the AntiXSS
implementation does, meaning that the two implementa-
tions are not equivalent. Failure to escape single quotes
can lead to XSS attacks, so this
difference is significant [33].

2.2 Security Applications

Web sanitizers are the first line of defense against cross-
site scripting attacks for web applications: they are func-
tions applied to untrusted data provided by a user that
attempt to make the data “safe” for rendering in a web
browser. Reasoning about the security properties of web
sanitizers is crucial to the security of web applications
and browsers. Formal verification of sanitizers is there-
fore crucial in proving the absence of injection attacks
such as cross-site and cross-channel scripting as well as
information leaks.

2.2.1 Security of Sanitizer Composition

Recent work has demonstrated that developers may
accidentally compose sanitizers in ways that are not
safe [32]. BEK can check two key properties of sanitizer
composition: commutativity and idempotence.

public static string EncodeHtml(string s)

{

if (s == null)

return null;

int num = IndexOfHtmlEncodingChars(s, 0);

if (num == -1)

return s;

StringBuilder builder=new StringBuilder(s.Length+5);

int length = s.Length;

int startIndex = 0;

Label_002A:

if (num > startIndex)

{

builder.Append(s, startIndex, num-startIndex);

}

char ch = s[num];

if (ch > ’>’)

{

builder.Append("&#");

builder.Append(((int) ch).

ToString(NumberFormatInfo.InvariantInfo));

builder.Append(’;’);

}

else

{

char ch2 = ch;

if (ch2 != ’"’)

{

switch (ch2)

{

case ’<’:

builder.Append("<");

goto Label_00D5;

case ’=’:

goto Label_00D5;

case ’>’:

builder.Append(">");

goto Label_00D5;

case ’&’:

builder.Append("&");

goto Label_00D5;

}

}

else

{

builder.Append(""");

}

}

Label_00D5:

startIndex = num + 1;

if (startIndex < length)

{

num = IndexOfHtmlEncodingChars(s, startIndex);

if (num != -1)

{

goto Label_002A;

}

builder.Append(s, startIndex, length-startIndex);

}

return builder.ToString();

}

Figure 3: Code forEncodeHtml from version 2.0 of
System.Net. This code is not equivalent to the AntiXSS
library version.

Commutativity: Consider two default sanitizers in
the Google CTemplate framework:JavaScriptEscape
and HTMLEscape [4]. The former performs Uni-
code encoding (\u00XX) for safely embedding untrusted
data in JavaScript strings while the latter sanitizer per-
forms HTML entity-encoding (<) for embedded un-
trusted data in HTML content. It turns out that if
JavaScriptEscape is applied to untrusted data before
the application ofHTMLEscape, certain XSS attacks are
not prevented [32]. The opposite ordering does prevent
these attacks. BEK can check if a pair of sanitizers are
commutative, which would mean the programmer does
not need to worry about this class of bugs.

Idempotence: BEK can check if applying the sanitizer
twice yields different behavior from a single application.
For example, an extra JavaScript string encoding may
break the intended rendering behavior in the browser.

2.2.2 Sanitizer Implementation Correctness

Hand-coded sanitizers are notoriously difficult to write
correctly. Analyses provided by BEK help achieve cor-
rectness in three ways.

Comparing multiple sanitizer implementations: Mul-
tiple implementations of the same sanitization function-
ality can differ in subtle ways [9]. BEK can check
whether two different programs written in the BEK lan-
guage are equivalent. If they are not, BEK exhibits inputs
that yield different behaviors.

Comparing sanitizers to browser filters: Internet Ex-
plorer 8 and 9, Google Chrome, Safari, and Firefox em-
ploy built-in XSS filters (or have extensions [3]) that ob-
serve HTTP requests and responses [1, 2] for attacks.
These filters are most commonly specified as regular
expressions, which we can model with BEK. We can
then check for inputs that are disallowed by browser fil-
ters, but which are allowed by sanitizers. For example,
BEK can determine that the AntiXSS implementation of
the EncodeHTML sanitizer in Figure 2 does not block
strings such asjavascript: which are prevented by
IE 8 XSS filters. These differences indicate potential
bugs in the sanitizer or the filter.

Checking against public attack sets: Several pub-
lic XSS attack sets are available, such as XSS cheat
sheet [5]. With BEK, for all sanitizers, for all attack vec-
tors in an attack set, we can check if there exists an input
to the sanitizer that yields the attack vector.

3 The BEK Language and Transducers

In this section, we give a high-level description of a
small imperative language, BEK, of low-level string op-
erations. Our goal is two-fold. First, it should be possible
to model BEK expressions in a way that allows for their
analysis using existing constraint solvers. Second, we
want BEK to be sufficiently expressive to closely model
real-world code (such as Example 2). In this section

Bool ConstantsB ∈ {t, f}
Char Constants d ∈ Σ

Bool Variables b, . . .
Char Variables c
String Variables t

Strings sexpr ::= iter(c in sexpr) {init} {case∗}
| fromLast(ccond, sexpr)
| uptoLast(ccond, sexpr) | t

init ::= (b := B)∗

case ::= case(bexpr) {cstmt}| endcase
endcase ::= end(ebexpr){yield(d)∗}
cstmt ::= (b := ebexpr; | yield(cexpr);)∗

Booleans bexpr ::= Boolcomb(bexpr) |B | b | ccond
ebexpr ::= Boolcomb(ebexpr) |B | b
ccond ::= Boolcomb(ccond) |cexpr = cexpr

| cexpr < cexpr | cexpr > cexpr
Char strings cexpr ::= c | d | built-in-fnc(c) | cexpr + cexpr

Figure 4: Concrete syntax for BEK. Well-formed BEK

expressions are functions of typestring → string;
the language provides basic constructs to filter and trans-
form the single input stringt. Boolcomb(e) stands for
Boolean combination ofe using conjunction, disjunc-
tion, and negation.

we first present the BEK language. We then define the
semantics of BEK programs in terms ofsymbolic finite
transducers(SFTs), an extension of classicalfinite state
transducers. Finally, we describe several core decision
procedures for SFTs that provide an algorithmic founda-
tion for efficient static analysis
and verification of BEK programs.

3.1 TheBEK Language

Figure 4 describes the language syntax. We define a sin-
gle string variable,t, to represent an input string, and
a number of expressions that can take eithert or an-
other expression as their input. TheuptoLast(ϕ, t) and
fromLast(ϕ, t) are built-in search operations that ex-
tract the prefix (suffix) oft upto (from) and excluding
the last occurrence of a character satisfyingϕ. These
constructs are listed separately because they cannot be
implemented using other language features. Finally, the
iter construct allows for character-by-character iteration
over a string expression.

Example 3. uptoLast(c = ‘.’,"w.abc.org")
= "www.abc", fromLast(c = ‘.’,"w.abc.org")
="org". �

Theiter construct is designed to model loops that tra-
verse strings while making imperative updates to boolean
variables. Given a string expression (sexpr), a char-
acter variablec, and an initial boolean state (init), the
statement iterates over characters insexpr and evaluates
the conditions of the case statements in order. When a
condition evaluates to true, the statements incstmt may
yield zero or more characters to the output and update the
boolean variables for future iterations. Theendcase ap-
plies when the end of the input string has been reached.
When no case applies, this correspond to yielding zero

characters and the iteration continues or the loop termi-
nates if the end of the input has been reached.

3.2 Finite Transducers

We start with the classical definition offinite state trans-
ducers. The particular sublass of finite transducers that
we are considering here are also calledgeneralized se-
quential machinesor GSMs [29], however, this defini-
tion is not standardized in the literature, and we there-
fore continue to say finite transducers for this restricted
case. The restriction is that, GSMs read one symbol at
each transition, while a more general definition allows
transitions that skip inputs.

Definition 1. A Finite TransducerA is defined as a six-
tuple(Q, q0, F,Σ,Γ,∆), whereQ is a finite set ofstates,
q0 ∈ Q is theinitial state,F ⊆ Q is the set offinal states,
Σ is theinput alphabet, Γ is theoutput alphabet, and∆
is thetransition functionfromQ× Σ to 2Q×Γ∗

.

We indicate a component of a finite transducerA by
usingA as a subscript. For(q, v) ∈ ∆A(p, a) we define

the notationp
a/v
−→A q, wherep, q ∈ QA, a ∈ ΣA and

v ∈ Γ∗
A. We writep

a/v
−→ q whenA is clear from the

context. Given wordsv andw we let v · w denote the
concatenation ofv andw. Note thatv · ε = ε · v = v.

Givenqi
ai/vi
−→A qi+1 for i < n we writeq0

u/v
−→A qn

whereu = a0 ·a1 ·. . .·an−1 andv = v0 ·v1 ·. . .·vn−1. We

write alsoq
ε/ε
−→A q. A induces thefinite transduction,

TA : Σ∗
A → 2Γ

∗

A :

TA(u)
def
= {v | ∃q ∈ FA (q0A

u/v
−→ q)}

We lift the definition to sets,TA(U)
def
=

⋃
u∈U T (u).

Given two finite transductionsT1 andT2, T1 ◦ T2 de-
notes the finite transduction that maps an input wordu to
the setT2(T1(u)). In the following letA andB be finite
transducers. A fundamental composition ofA andB is
the join composition ofA andB.

Definition 2. Thejoin ofA andB is the finite transducer

A◦B
def
= (QA×QB, (q

0
A, q

0
B), FA×FB,ΣA,ΓB,∆A◦B)

where, for all(p, q) ∈ QA ×QB anda ∈ ΣA:

∆A◦B((p, q), a)
def
= {((p′, q), ε) | p

a/ε
−→A p

′}

∪ {((p′, q′), v) | (∃u ∈ Γ+
A)

p
a/u
−→A p

′, q
u/v
−→B q′}

The following property is well-known and allows us
to drop the distinction betweenA andTA
without causing ambiguity.

Proposition 1. TA◦B = TA ◦ TB.

The following classification of finite transducers plays a
central role in the sections discussing translation from
BEK and decision procedures for
symbolic finite transducers.

Definition 3. A is single-valuedif for all u ∈ Σ∗
A,

|A(u)| ≤ 1.

3.3 Symbolic Finite Transducers

Symbolic finite transducers, as defined below, provide a
symbolic representation of finite transducers using terms
modulo a given background theoryT . The background
universeV of values is assumed to bemulti-sorted, where
each sortσ corresponds to a sub-universeVσ. The
boolean sort isBOOL and contains the truth valuest
(true) andf (false). Definition of terms and formulas
(boolean terms) is standard inductive definition, using
the function symbols and predicate symbols ofT , log-
ical connectives, as well asuninterpreted constantswith
given sorts. All terms are assumed to be well-sorted. A
termt of sortσ is indicated byt : σ. Given a termt and a
substitutionθ from variables (or uninterpreted constants)
to terms or values,Subst(t, θ) denotes the term resulting
from applying the substitutionθ to t.

A model is a mapping of uninterpreted constants to
values.3 A model for a termt is a model that provides
an interpretation for all uninterpreted constants that oc-
cur in t. (All free variables are treated as uninterpreted
constants.) Theinterpretationor valueof a termt in a
modelM for t is given by standard Tarski semantics us-
ing induction over the structure of terms, and is denoted
by tM . A formula (predicate)ϕ is true in a modelM
for ϕ, denoted byM |= ϕ, if ϕM evaluates to true. A
formulaϕ is satisfiable, denoted byIsSat(ϕ), if there
exists a modelM such thatM |= ϕ. Any termt:σ that
includes no uninterpreted constants is called avalue term
and denotes a concrete value[[t]] ∈ Vσ.

Let Termγ
T (x̄) denote the set of all terms inT of sort

γ, wherex̄ = x0, . . . , xn−1 may occur as the only un-
interpreted constants (variables). LetPredT (x̄) denote
TermBOOL

T (x̄). In order to avoid ambiguities in notation,
given a setE of elements, we write[e0, . . . , en−1] for
elements ofE∗, i.e., sequences of elements fromE. We
use both[] andε to denote the empty sequence. As above,
if e1, e2 ∈ E∗, thene1 · e2 ∈ E∗ denotes the con-
catenation ofe1 with e2. We lift the interpretation of
terms to apply to sequences: foru = [u0, . . . , un−1] ∈

Term
γ
T (x̄)

∗ letuM
def
= [uM0 , . . . , u

M
n−1] ∈ (Vγ)∗.

In the following letc:σ be afixeduninterpreted con-
stant of sortσ. We refer toc:σ as theinput variable(for
the given sortσ).

Definition 4. A Symbolic Finite Transducer (SFT) forT
is a six-tuple(Q, q0, F, σ, γ, δ), whereQ is a finite set of
states, q0 ∈ Q is the initial state, F ⊆ Q is the set of

3The interpretations of background functions ofT is fixed and is
assumed to be an implicit part of all models.

// GFED@ABC?>=<89:;q0

(c 6=′.′)/[c]

�� (c=′.′)/[]
,,

(c=′.′)/[c] ++

GFED@ABC?>=<89:;q1

(c 6=′.′)/[]

��

GFED@ABCq2

(t)/[c]

UU

(c=′.′)/[]

==

Figure 5: Symbolic finite state transducer for
uptoLast(c=‘.’, input). This transducer is non-
deterministic; there are two transitions that match‘.’
from stateq0.

final states, σ is the input sort, γ is theoutput sort, and
δ is thesymbolic transition functionfromQ×PredT (c)
to 2Q×Term

γ
T
(c)∗ .

We use the notationp
ϕ/u
−→A q for (q,u) ∈ δA(p, ϕ)

and callp
ϕ/u
−→A q a symbolic transition, ϕ/u is called

its label, ϕ is called itsinput (guard)andu its output.
An SFT A = (Q, q0, F, σ, γ, δ) denotes the finite

transducer[[A]] = (Q, q0, F,Vσ,Vγ ,∆) wherep
a/v
−→[[A]]

q if and only if there existsp
ϕ/u
−→A q and a modelM

such thatM |= ϕ, cM = a, uM = v.
For an STFA let the underlyingtransductionTA be

T[[A]]. For a stateq ∈ QA let T qA(v) (T q[[A]](v)) denote
the set of outputs when starting fromq with input v. In
particular, ifq = q0A thenTC = T qA andT[[A]] = T q[[A]].
The following proposition follows directly from the def-
inition of [[A]].

Proposition 2. For v ∈ Σ∗
[[A]] and q ∈ QA: T qA(v) =

T q[[A]](v).

Example 4. The identitySFT Id (for sortσ) is defined

follows. Id = ({q}, q, {q}, σ, σ, {q
t/[c]
−→ q}). Thus, for

all a ∈ Vσ, q
a/a
−→[[Id]] q, and [[Id]](v) = {v} for all

v ∈ (Vσ)∗. �

Example 5. Assumeσ is the sort for characters. The
predicatec = ‘.’ says that the input character is a dot.
The SFTUptoLastDot such that for all stringsv,

UptoLastDot(v) = uptoLast(c = ‘.’, v),

whereuptoLast is the BEK function introduced above,
is shown in Figure 5. �

Composition works directly with SFTs, and keeps the
resulting SFTcleanin the sense that all symbolic transi-
tions arefeasible, and eliminates states that areunreach-
able from the initial stateas well as non-initial states
that arenot backwards reachable from any final state. In
order to preserve feasibility of transitions the algorithm
uses a solver for checking satisfiability of formulas in
PredT (c).

3.4 BEK to SFT translation

The basic sort needed in this section, besidesBOOL, is
a sortCHAR for characters. We also assume the back-
ground relation< : CHAR × CHAR → BOOL as a strict
total order corresponding to the standard lexicographic
order over ASCII (or Unicode) characters and assume>,
≤ and≥ to be defined accordingly. We also assume that
each individual character has a built-in constant such as
‘a’:CHAR. For example,

(‘A’ ≤ c ∧ c ≤ ‘Z’) ∨ (‘a’ ≤ c ∧ c ≤ ‘z’)∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’

descibes the regex character class\w of all word char-
acters in ASCII. (Direct use of regex character classes
in BEK, such ascase(\w) {. . .}, is supported in the en-
hanced syntax supported in the BEK analyzer tool.)

Each sexpr e is translated into an SFTSFT (e).
For the string variablet, SFT (e) = Id , with Id

as in Example 4. The translation ofuptoLast(ϕ, e)
is the symbolic compositionSTF (e) ◦ B where B
is an SFT similar to the one in Example 5, except
that the conditionc = ‘.’ is replaced byϕ. The
translation offromLast(ϕ, e) is analogous. Finally,
SFT (iter(c in e) {init} {case∗}) = SFT (e) ◦ B
whereB = (Q, q0, Q, CHAR, CHAR, δ) is
constructed as follows:

Step 1: Normalize. Transformcase∗ so that case con-
ditions are mutually exclusive by adding the nega-
tions of previous case conditions as conjuncts to all
the subsequent case conditions, and ensure that each
boolean variable has exactly one assignment in each
cstmt (add the trivial assignmentb := b
if b is not assigned).

Step 2: Compute states.Compute the set of statesQ.
Let q0 be an initial state as the truth assignment to
boolean variables declared ininit.4 Compute the
setQ of all reachable states, by using DFS, such
that, given a reached stateq, if there exists a case
case(ϕ) {cstmt} such thatSubst(ϕ, q) is satisfi-
ablethen add the state

{b 7→ [[Subst(ψ, q)]] | b := ψ ∈ cstmt} (1)

toQ. (Note thatSubst(ψ, q) is a value term.)

Step 3: Compute transitions. Compute the symbolic
transition functionδ. For each stateq ∈ Q and
for each casecase(ϕ) {cstmt} such thatφ =
Subst(ϕ, q) is satisfiable. Letp be the state com-
puted in (1). Letyield(u0), . . . ,yield(un−1) be
the sequence of yields incstmt and let u =
[u0, . . . , un−1]. Add the symbolic

transitionq
φ/u
−→ p to δ.

4Note thatq0 is the empty assignment ifinit is empty, which trivi-
alizes this step.

// GFED@ABC?>=<89:;q0

(c/∈{′′′,′”′,′\′})/[c]

��

(c∈{′′′,′”′})/[′\′, c]

UU

(c=′\′)/[c]
++ GFED@ABC?>=<89:;q1

(t)/[c]

kk

Figure 6: SFT for BEK program in Example 1. This
SFT escapes single and double quotes with a backslash,
except if the current symbol is already escaped. The ap-
plication of this SFT is idempotent.

The translation of end-cases is similar, resulting in sym-
bolic transitions with guardc = ⊥, where⊥ is a spe-
cial character used to indicate end-of-string. We assume
⊥ to be least with respect to<. For example, assum-
ing that the BEK programs use concrete ASCII charac-
ters,⊥:CHAR is either anadditionalcharacter, or the null
character‘\0’ if only null-terminated strings are consid-
ered as valid input strings. Although practically impor-
tant, end-cases do not cause algorithmic complications,
and for the sake of clarity we avoid them
in further discussion.

The algorithm uses a solver to check satisfiability of
guard formulas. If checking satisfiability of a formula for
example times out, then it is safe to assume satisfiabil-
ity and to include the corresponding symbolic transition.
This will potentially add infeasible guards but retains the
correctnessof the resulting SFT, meaning that the under-
lying finite transduction is unchanged. While in most
cases checking satisfiability of guards seems straight-
forward, but when considering Unicode, this perception
is deceptive. As an example, the regex character class
[\W-[\D]] denotes an empty set since\d is a subset of
\w and \W (\D) is the complement of\w (\d), and thus,
[\W-[\D]] is the intersection of\W and\d. Just the charac-
ter class\w alone contains 323 non-overlapping ranges in
Unicode, totaling 47,057 characters. A naı̈ve algorithm
for checking satisfiability (non-emptiness) of[\W-[\D]]

may easily time out.
Consider the BEK program in Example 1. The cor-

responding SFT constructed by the above translation is
shown in Figure 6. There are two symbolic transitions
from stateq0 to itself. The first corresponds to the cases
where the input characterc needs to be escaped, and the
second to cases where the input does not
need to be escaped.

3.5 Join Composition and Equivalence

We now give an informal description of our core algo-
rithms for reasoning about SFTs:join compositionand
equivalence. We then show how these algorithms can be
used to check properties such as idempotence, existence
of an input yielding a target string, and commutativity.

Thejoin compositionA ◦B corresponds to a program
transformation that constructs a single loop over the in-
put string out of two consecutive loops in SFTsA andB.

The join composition algorithm constructs an SFTA◦B
such thatT[[A◦B]] = T[[A]]◦T[[B]]. The intuition behind the
construction is that the outputs produced byA are sub-
stitutedsymbolicallyin as the inputs consumed by the
B. The composition algorithm proceeds by depth-first
search, first computingQA◦B as constructed as a reach-
able subset ofQA × QB, starting from(q0A, q

0
B). Here

we use the SMT solver to determine reachability, calling
the solver as a black box to determine if a path from one
state to another is feasible or not. This makes our con-
structionindependentof the particular background the-
ory. In general, this is not true for other recent exten-
sions of finite transducers such as streaming transduc-
ers [6], where compositionality depends on properties of
the background theory that is being used.

Two SFTsA andB areequivalentif TA = TB. Let

Dom(A)
def
= {v | TA(v) 6= ∅}.

Checking equivalence ofA andB reduces to two sepa-
rate tasks:

1. Deciding domain-equivalence: Dom(A) =
Dom(B).

2. Deciding partial-equivalence: for all v ∈
Dom(A) ∩ Dom(B), TA(v) = TB(v).

Note that 1 and 2 are independent and do not imply
each other, but together they imply equivalence. Do-
main equivalence holds for all SFTs constructed by BEK,
because all programs share the same domain, namely
that of strings. Checking partial equivalence is more in-
volved. We leverage the fact that all SFTs we construct
are single-valued. Our equivalence algorithm first com-
putes the join composition ofA andB, then uses the
SMT solver to search for inputs that causeA to differ
from B. We have anonconstructiveproof of termina-
tion for this algorithm: it establishes that ifA andB
are equivalent, then the search must terminate in time
quadratic in the number of states of the composed au-
tomata. In practice, the SMT solver carries out this
search, and our results in Section 4 show scaling is closer
to linear in practice.

Equivalence and join composition allow us to carry out
a variety of other analyses. Idempotence of an SFTA
can be first checked by computingB = A ◦ A, then
checking the equivalence ofA andB. If the two SFTs are
not equivalent, thenA fails to be idempotent. Similarly,
commutativity of two SFTsA andB can be determined
by computingC = A◦B andD = B ◦A, then checking
equivalence. The idea is illustrated in Figure 7. We can
also compute theinverse imageof a SFT with respect to a
strings, which lets us find out the set of inputs to the SFT
that yields as an output. We use all of these analyses to
check sanitizers for security
properties in the next section.

Our approach has an advantage over traditional finite
transducers (FTs), due to succinctness of SFTs. Suppose

� ^]v�µ�����]vP_
z

A not

idempotent

A x A

A A

A

� ^]v�µ�����]vP_ z
A and B not

commutative

B x A

B A

A x B

A B

Figure 7: Using composition and equivalence of SFTs
to decide idempotence and commutativity.

for example that the background character theoryT is k-
bit bit vector arithmetic wherek depends on the desired
character range (e.g., for Unicode,k = 16). An explicit
expansion of a BEK SFTA to [[A]] may increase the size
(nr of transitions) by a factor of2k. Partial-equivalence
of single-valued FTs is solvableO(n2) [15] time. Thus,
for an SFTA of sizen, using the partial-equivalence al-
gorithm for [[A]] takesO((2kn)2) time. In contrast, the
partial-equivalence algorithm for BEK SFTs isO(n2).
When the background theory is linear arithmetic, then
the alphabet is infinite and a correspoding FT algorithm
is therefore not even possible.

4 Evaluation

In the following subsections, we evaluate the real-world
applicability of BEK in terms of expressivess,
utility, and performance:

• Section 4.1 evaluates whether BEK can model ex-
isting real-world code. We conduct an emperical
study of a large body of code to see how widely-
used BEK-modelable sanitizer functions are (Sec-
tion 4.1.1), and we evaluate which BEK features
are needed to model sanitizers from AutoEscape,
OWASP, and Internet Explorer 8 (Section 4.1.2).

• We put BEK to work to check existing sanitizers for
idempotence, commutativity, and reversibility (Sec-
tion 4.2).

• We perform pair-wise equivalence checks on a num-
ber of portedHTMLEncode implementations, as well
as two outsourced implementations (Section 4.3).

• We evaluate effectiveness of existingHTMLEncode
implementations against known attack strings taken
from the Cross-site Scripting Cheat Sheet (Sec-
tion 4.4).

• We use a synthetic benchmark to evaluate the scal-
ability of performing equivalence checks on BEK

programs (Section 4.5).

• We provide a short example to highlight the fact
that BEK programs can be readily translated to other
programming languages (Section 4.6).

These experiments are based on an implementation that
consists of roughly5, 000 lines of C# code that imple-
ments the basic transducer algorithms and Z3 [14] inte-
gration, with another1, 000 lines of F# code for transla-
tion from BEK to transducers. Our experiments were car-
ried out on a Lenovo ThinkPad W500 laptop with 8 GB
of RAM and an Intel Core 2 Duo P9600 processor run-
ning at2.67 GHz, running 64-bit Windows 7.

4.1 Expressive Utility

Thus far, we discussed the expressiveness of BEK pri-
marily in theoretical terms. In this subsection, we turn
our attention to real-world applicability instead, through
a case study that aims to demonstrate that a wide variety
of commonly used sanitizers can be ported to
BEK with relative ease.

4.1.1 Frequency of Sanitizer use in PHP code.

PHP is a widely-used open source server-side scripting
language. Minamide’s seminal work on the static anal-
ysis of dynamic web applications [26] includes finite-
transducer based models for a subset of PHP’s sanitizer
functions. These transducers are hand-crafted in several
thousand lines of OCaml. We conducted an informal re-
view of the PHP source to confirm that each transducer
could be modeled as a BEK program.

Our goal is to perform a high-level quantitative com-
parison of the applicability of BEK, on the one hand,
and existing string constraint solvers (e.g., DPRLE [17],
Hampi [20], Kaluza [30], and Rex [35]) on the other. For
this comparison, we assume that each Minamide trans-
ducer could instead be modeled as a BEK program. We
then use statistics from a study by Hooimeijer [16] that
measured the relative frequency, by static count, of 111
distinct PHP string library functions. The Hooimeijer
study was conducted in December 2009, and covers the
top 100 projects onSourceForge.net, or about 9.6 mil-
lion lines of PHP code. The study considered most, but
not all, sanitizers provided by Minamide.

Out of the 111 distinct functions considered in the
Hooimeijer study,27 were modeled as transducers by
Minamide and thus encodable in BEK. In the sam-
pled PHP code, these27 functions account for68, 238
out of 251, 317 uses, or about 27% of all string-related
call sites. By comparison, traditional regular expression
functions modeled by tools like Hampi [20] and Rex [35]
account for just 29,141 call sites, or about 12%. We note
that BEK could be readily integrated into an automaton-
based tool like Rex, however, and our features are largely
complimentary to those of traditional string constraint
solvers. These results suggest that BEK provides a signif-
icant improvement in the “coverage” of real-world code
by string analysis tools.

4.1.2 Language Features

For the remainder of the experiments, we use a small
dataset of ported-to-BEK sanitizers. We now discuss
that dataset and the manual conversion effort required.
The results are summarized in Figure 8, and described in
more detail below.

Google AutoEscape and OWASP. We converted san-
itizers from the OWASP sanitizer library to BEK pro-
grams. We also evaluated sanitizers from the Google
AutoEscape framework to determine what language fea-
tures they would need to be expressed in BEK. These
sanitizers are marked with prefixesGA andOWASP, re-
spectively, in Figure 8. We verified that each of these
sanitizers can be implemented in BEK. In several cases,
we find additional non–native features that could be
added to BEK to support these sanitizers.

Internet Explorer. In addition, we extracted sanitizers
from the binary of Internet Explorer 8 that are used
in the IE Cross-Site Scripting Filter feature, denoted
IEFilter1 to IEFilter17 in Figure 8. For this study,
we analyze the behavior of the IE 8 sanitizers under
the assumption the server performs no sanitization of
its own on user data. Of these21 sanitizers, we could
convert17 directly into BEK programs. The remaining4
sanitizers track a potentially unbounded list of characters
that are either emitted unaltered or escaped, depending
on the result of a regular expression match. BEK does
not enable storing strings of input characters.

The manual translation took several hours per sani-
tizer. Figure 8 breaks down our BEK programs based on
“Native” features of the BEK language, and “Not Native”
features which are not currently in the BEK language.
Many of these features can be integrated modeled using
transducers, however, by enhancing the language of con-
straints used for symbolic labels. In addition, with the
exception of4 Internet Explorer sanitizers, we found that
a maximum lookahead window of eight characters would
suffice for handling all our sanitizers. Finally, we discov-
ered that the arithmetic on characters was limited to right
shifts and linear arithmetic, which can be expressed in
the Z3 solver we use.

We note that all “Not Native” features could be added
to the BEK language with few or no changes to the under-
lying SFT algorithms for join composition and equiva-
lence checking: only the front end would need to change.

4.1.3 Browser Code

Ideally, we could use BEK to model the parser of an ac-
tual web browser. Then, we could use our analyses to
check whether there exists a string that passes through a
given sanitizer yet causes javascript execution. We per-
formed a preliminary exploration of the WebKit browser
to determine how difficult it would be to write such

Native Not Native
boolean multiple mult.

Name vars iters regex lookahead arith. functions

a2bb2a 1 ✗ X ✗ ✗ ✗
escapeBrackets 1 X ✗ ✗ ✗ ✗
escapeMetaAndLink 1 X X ✗ ✗ ✗
escapeString0 1 ✗ ✗ ✗ ✗ ✗
escapeString 1 ✗ ✗ ✗ ✗ ✗
escapeStringSimple 1 ✗ ✗ ✗ ✗ ✗
getFileExtension 2 ✗ ✗ ✗ ✗ ✗
GA HtmlEscape 0 ✗ ✗ ✗ ✗ ✗
GA PreEscape 0 ✗ ✗ ✗ ✗ ✗
GA SnippetEsc 3 ✗ ✗ X ✗ ✗
GA CleanseAttrib 1 ✗ ✗ X ✗ ✗
GA CleanseCSS 0 ✗ ✗ ✗ ✗ ✗
GA CleanseURLEsc 0 ✗ ✗ ✗ ✗ ✗
GA ValidateURL 2 X ✗ X X ✗
GA XMLEsc 0 ✗ ✗ ✗ ✗ ✗
GA JSEsca 0 ✗ ✗ X ✗ ✗
GA JSNumber 2 X ✗ X ✗ ✗
GA URLQueryEsc 1 X ✗ ✗ X ✗
GA JSONESc 0 ✗ ✗ ✗ ✗ ✗
GA PrefixLine 0 ✗ ✗ ✗ ✗ ✗
OWASPHTMLEncode 0 ✗ ✗ X ✗ ✗
IEFilter1 3 ✗ X ✗ ✗ ✗
IEFilter2 4 ✗ X ✗ ✗ ✗
IEFilter3 5 ✗ X ✗ ✗ ✗
IEFilter4 4 ✗ X ✗ ✗ ✗
IEFilter5 4 ✗ X ✗ ✗ ✗
IEFilter6 5 ✗ X ✗ ✗ ✗
IEFilter7 4 ✗ X ✗ ✗ ✗
IEFilter8 4 ✗ X ✗ ✗ ✗
IEFilter9 5 ✗ X ✗ ✗ ✗
IEFilter10 5 ✗ X ✗ ✗ ✗
IEFilter11 4 ✗ X ✗ ✗ ✗
IEFilter12 4 ✗ X ✗ ✗ ✗
IEFilter13 4 ✗ X ✗ ✗ ✗
IEFilter14 4 ✗ X ✗ ✗ ✗
IEFilter15 1 ✗ X ✗ ✗ ✗
IEFilter16 1 ✗ X ✗ ✗ ✗
IEFilter17 1 ✗ X ✗ ✗ ✗

Figure 8: Expressiveness: different language features
used by the original corpus of different programs. A
cross means that the feature was not used by the pro-
gram in its initial implementation. A checkmark means
the feature was used by the program. boolean variables,
multiple iterations over a string, and regular expressions
are native constructs in BEK. Multiple lookahead, arith-
metic, and functions are not native to BEK and must be
emulated during the translation. We also show the dis-
tinct boolean variables
used by the BEK implementation.

a model with BEK. Unfortunately, we found multiple
functions that require features, such as bounded looka-
head and transducer composition, which are not yet sup-
ported by the BEK language.

For example, we considered a function in the Safari
implementation of WebKit that performs Javascript de-
coding [7]. This function requires at a minimum the use
of functions to connect hexadecimal to ASCII, a looka-
head of5 characters, function composition, and scan-
ning for occurrences of a target character. While as
noted above we believe these features could be added
to BEK without fundamentally changing the underlying
algorithms for symbolic transducers, the BEK language
does not yet support them.

4.2 Checking Algebraic Properties

We argued in Section 2 that idempotence and commuta-
tivity are key properties for sanitizers. In addition, the
property ofreversibility, that from the output of a sani-
tizer we can unambiguously recover the input, is impor-
tant as an aid to debugging.

4.2.1 Order Independence

We now evaluate whether17 sanitizers used in IE 8 are
order independent. Order independence means that the
sanitizers have the same effect no matter in what order
they are applied. If the order does matter, then the choice
of order can yield surprising results. As an example, in
rule-based firewalls, a set of rules that are not order in-
dependent may result in a rule never being applied, even
though the administrator of the firewall believes the rule
is in use.

Each IE 8 sanitizer defines a specificinput set on
which it will transform strings, which we can compute
from the BEK model. We began by checking all136 pairs
of IE 8 sanitizers to determine whether their input sets
were disjoint. Only one pair of sanitizers showed a non-
trivial intersection in their input sets. A non-trivial in-
tersection signals a potential order dependence, because
the two sanitizers will transform the same strings. For
this pair, we used BEK to check that the two sanitizers
output the same language, when restricted to inputs from
their intersection. BEK determined that the transforma-
tion of the two sanitizers on thesel inputs was exactly the
same — i.e., the two sanitizers were equivalent on the
intersection set. We conclude that the IE 8 sanitizers are
in fact order independent, up to errors in our extraction
of the sanitizers and our assumption that no server-side
modification is present.

4.2.2 Idempotence and Reversibility

We now examine the idempotence of several BEK pro-
grams, including the IE 8 sanitizers. Figure 9 reports
the results. The number of states in the symbolic finite
transducer created from each BEK program. For each
transducer, we then report whether it is idempotent and
whether it is reversible. This shows the number of states
acts as a rough guide to the complexity of the sanitizer.
For example, we see that IE filter9 out of 17 is quite
complicated, with25 states.

4.2.3 Commutativity

We investigated commutativity of seven different imple-
mentations ofHTMLEncode, a sanitizer commonly used
by web applications. Four implementations were gath-
ered from internal sources. Three were created for our
project specifically by hiring freelance programmers to
create implementations from popular outsourcing web
sites. We provided these programmers with a high
level specification in English that emphasized protection

Name States Idempotent? Reversible?

a2bb2a 1 ✗ X

escapeBrackets 1 X ✗
escapeMetaAndLink 1 X X

escapeString0 1 ✗ ✗
escapeString 1 ✗ ✗
escapeStringSimple 1 ✗ ✗
getFileExtension 2 ✗ ✗
IEFilter1 6 X ✗
IEFilter2 9 X ✗
IEFilter3 19 X ✗
IEFilter4 13 X ✗
IEFilter5 13 X ✗
IEFilter6 16 X ✗
IEFilter7 13 X ✗
IEFilter8 12 X ✗
IEFilter9 25 X ✗
IEFilter10 18 X ✗
IEFilter11 11 X ✗
IEFilter12 11 X ✗
IEFilter13 14 X ✗
IEFilter14 14 X ✗
IEFilter15 1 X ✗
IEFilter16 1 X ✗
IEFilter17 1 X ✗

Figure 9: For each BEK benchmark programs, we report
the number of states in the corresponding symbolic trans-
ducer. We then report whether the transducer is idempo-
tent, and whether the transducer is reversible.

HTMLEncode1 X X X ✗ ✗ X ✗
HTMLEncode2 X X X ✗ ✗ X ✗
HTMLEncode3 X X X ✗ ✗ X ✗
HTMLEncode4 ✗ ✗ ✗ X ✗ ✗ ✗
Outsourced1 ✗ ✗ ✗ ✗ X ✗ ✗
Outsourced2 X X X ✗ ✗ X ✗
Outsourced3 ✗ ✗ ✗ ✗ ✗ ✗ X

Figure 10: Commutativity matrix for seven different im-
plementations ofHTMLEncode. TheOutsourced imple-
mentations were written by freelancers from a high level
English specification.

against cross-site scripting attacks. Figure 10 shows a
commutativity matrixfor the HTMLEncode implementa-
tions. A X indicates the pair of sanitizers commute,
while a✗ indicates they do not. The matrix contains12
check marks out of42 total comparisons of distinct sani-
tizers, or28.6%. Our implementation took less than one
minute to complete all42 comparisons.

4.3 Differences Between Multiple Implementations

Multiple implementations of the “same” functionality are
commonly available from which to choose when writing
a web application. For example, newer versions of a li-
brary may update the behavior of a piece of code. Differ-
ent organizations may also write independent implemen-
tations of the same functionality, guided by performance
improvements or by different requirements. Given these
different implementations, the first key question is “do
all these implementations compute the same function?”
Then, if there are differences, the second key question is
“how do these implementations differ?”

As described above, because BEK programs corre-
spond to single valued symbolic finite state transduc-
ers, computing the image of regular languages under the

HTMLEncode1 X X X 0 − X 0

HTMLEncode2 X X X 0 − X 0

HTMLEncode3 X X X 0 − X
′

HTMLEncode4 0 0 0 X 0 0 0

Outsourced1 − − − 0 X − 0

Outsourced2 X X X 0 − X 0

Outsourced3 0 0 ′ 0 0 0 X

Figure 11: Equivalence matrix for our implementations
of HTMLEncode. A X indicates the implementations are
equivalent. For implementations that are not equivalent,
we show an example character that exhibits different be-
havior in the two implementations. The symbol0 refers
to the null character.

function defined by a BEK program is decidable. By tak-
ing the image ofΣ∗ under two different BEK programs,
we can determine whether they output the
same set of strings.

We checked equivalence of seven different implemen-
tations in C# (as explained above) of theHTMLEncode
sanitization function. We translated all seven implemen-
tations to BEK programs by hand. First, we discovered
that all seven implementations had only one state when
transformed to a symbolic finite transducer. We then
found that all seven are neither reversible nor idempotent.
For example, the ampersand character& is expanded to
& by all seven implementations. This in turn con-
tains an ampersand that will be re-expanded on future
applications of the sanitizer, violating idempotence.

For each BEK program, we checked whether it was
equivalent to the otherHTMLEncode implementations.
Figure 11 shows the results. For cases where the
two implementations are not equivalent, BEK derived
a counterexample string that is treated differently by
the two implementations. For example, we discov-
ered thatOutsourced1 escapes the− character, while
Outsourced2 does not. We also found that one of the
HTMLEncode implementations does not encode the sin-
gle quote character. Because the single quote charac-
ter can close HTML contexts, failure to encode it could
cause unexpected behavior for a web developer who uses
this implementation. For example, a recent attack on the
Google Analytics dashboard was enabled by failure to
sanitize a single quote [33].

This case study shows the benefit of automatic analy-
sis of string manipulating functions to check equivalence.
Without BEK, obtaining this information using manual
inspection would be difficult, error prone, and time con-
suming. With BEK, we spent roughly3 days total trans-
lating from C# to BEK programs. Then BEK was able
to compute the contents of Figure 11 in less than one
minute, including all equivalence
and containment checks.

HTML Attribute
Implementation context context

HTMLEncode1 100% 93.5%
HTMLEncode2 100% 93.5%
HTMLEncode3 100% 93.5%
HTMLEncode4 100% 100%
Outsourced1 100% 93.5%
Outsourced2 100% 93.5%
Outsourced3 100% 93.5%

Figure 12: Percentage of XSS Cheat Sheet strings, in
both HTML tag context and tag attribute contexts, that
are ruled out by each implementation ofHTMLEncode.

4.4 Checking Filters Against The Cheat Sheet

The Cross-Site Scripting Cheat Sheet (“XSS Cheat
Sheet”) is a regularly updated set of strings that trigger
JavaScript execution on commonly used web browsers.
These strings are specially crafted to cause popular web
browsers to execute JavaScript, while evading common
sanitization functions. Once we have translated a sani-
tizer to a program in BEK, because BEK uses symbolic
finite state transducers, we can take a “target” string and
determine whether there exists a string that when fed to
the sanitizer results in the target. In other words, we
can check whether a string on the Cheat Sheet has apre-
imageunder the function defined by a BEK program.

We sampled28 strings from the Cheat Sheet. The
Cheat Sheet shows snippets of HTML, but in practice a
sanitizer might be run only on a substring of the snip-
pet. We focused on the case where a sanitizer is run
on the HTML Attribute field, extracting sub-strings from
the Cheat Sheet examples that correspond to the attribute
parsing context. WhileHTMLEncode should not be used
for sanitizing data that will become part of a URL at-
tribute, in practice programmers may accidentally use
HTMLEncode in this “incorrect” context. We also added
some strings specifically to check the handling of HTML
attribute parsing by our sanitizers. As a result, we ob-
tained two sets of attack strings: HTML and Attribute.

For each of our implementations, for all strings in
each set, we then asked BEK whether pre-images of that
string exist. Figure 12 shows what percentage of strings
have no pre-image under each implementation. All seven
implementations correctly escape angle brackets, so no
string in the HTML set has a pre-image under any of the
sanitizers. In the case of the Attribute strings, however,
we found that some of the implementations do not escape
the string“&#”, potentially yielding an attack. Only one
of our implementations ofHTMLEncode made it impos-
sible for all of the strings in the Attribute set from ap-
pearing in its output. Each set of strings took between36
and39 seconds for BEK to check the entire set of strings
against a sanitizer.

Figure 13: Self-equivalence experiment.

4.5 Scalability of Equivalence Checking

Our theoretical analysis suggests that the speed of
queries to BEK should scale quadratically in the number
of states of the symbolic finite transducer. All sanitiz-
ers we have found in “the wild,” however, have a small
number of states. While this makes answering queries
about the sanitizers fast, it does not shed light on the em-
pirical performance of BEK as the number of states in-
creases. To address this, we performed two experiments
with synthetically generated symbolic finite transducers.
These transducers were specially created to exhibit some
of the structure observed in real sanitizers, yet have many
more states than observed in
practical sanitizer implementations.

Self-equivalence experiment. We generated symbolic
finite transducersA from randomly generated BEK pro-
grams having structure similar to typical sanitizers. The
time to check equivalence ofA with itself is shown in
Figure 13 where the size is the number of states plus
the number of transitions inA. Although the worst case
complexity is quadratic, the actual observed complexity,
for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic
finite transducers from randomly generated BEK pro-
grams having structure similar to typical santizers. For
each symbolic finite transducerA, we checked commu-
tativity with a small BEK programUpToLastDotthat re-
turns a string up to the last dot character. The time to
determine thatA ◦ UpToLastDotandUpToLastDot◦ A
areequivalentis shown in Figure 14 where the size is the
total number of states plus the number of transitions in
A. The time to check non-equivalence was in most cases
only a few milliseconds, thus all experiments exclude the
data where the result isnot equivalent, and only include
cases where the result isequivalent. Although the worst
case complexity is quadratic, the actual observed com-
plexity, over a sample size of 1,000
individual cases, was near-linear.

Figure 14: Commutativity experiment.

4.6 From BEK to Other Languages

We have built compilers from BEK programs to com-
monly used languages. When the time comes for deploy-
ment, the developer can compile to the language of her
choice for inclusion into an application.

// orginal Bek program

program test0(t);

string s;

s := iter(c in t)

{b := false;} {

case ((c == ’a’)): i

b := !(b) && b;

b := b || b;

b := !(b);

yield (c);

case (true) :

yield (’$’);

};

//

// JavaScript translation

//

function test0(t) {

var s = function ($){

var result = new Array();

for(i=0;i<$.length; i++){

var c = $[i];

if ((c == String.fromCharCode(97))) {

b = (!(b) && b);

b = (b || b);

b = !(b);

result.push(c);

}

if (t) {

result.push(String.fromCharCode(36));

}

};

return result.join(’’);

}

return s(t);

}

Figure 15: A small example BEK program (top) and its
compiled version in JavaScript (bottom). Note the use of
result.push instead of explicit array assignment.

Figure 15 shows a small example of a BEK program
and the result of its JavaScript compilation. As part of
the compilation, we have taken advantage of our knowl-
edge of properties of JavaScript to improve the speed of
the compiled code. For example, we push characters into
arrays instead of creating new string objects. The result
is standard JavaScript code that can be easily included in
any web application. By adding additional compilers for
common languages, such as C#, we can give a developer
multiple implementations of a sanitizer that are guaran-
teed to be equivalent for use in different contexts.

5 Related Work

SANER combines dynamic and static analysis to validate
sanitization functions in web applications [9]. SANER
creates finite state transducers for an over-approximation
of the strings accepted by the sanitizer using static anal-
ysis of existing PHP code. In contrast, our work focuses
on a simple language that is expressive enough to capture
existing sanitizers or write new ones by hand, but then
compile to symbolic finite state transducers that precisely
capture the sanitization function. SANER also treats the
issue of inputs that may be tainted by an adversary, which
is not in scope for our work. Our work also focuses on ef-
ficient ways to compose sanitizers and combine the the-
ory of finite state transducers with SMT solvers, which
is not treated by SANER.

Minamide constructs a string analyzer for PHP code,
then uses this string analyzer to obtain context free gram-
mars that are over-approximations of the HTML output
by a server [26]. He shows how these grammars can
be used to find pages with invalid HTML. The method
proposed in [21] can also be applied to string analysis
by modeling regular string analysis problems ashigher-
order multi-parameter tree transducers(HMTTs) where
strings are represented as linear trees. While HMTTs al-
low encodings of finite transducers, arbitrary background
character theories are not directly expressibly in order to
encode SFTs. Our work treats issues of composition and
state explosion for finite state transducers by leveraging
recent progress in SMT solvers, which aids us in reason-
ing precisely about the transducers created by transfor-
mation of BEK programs and by avoiding state space ex-
plosion and bitblasting for large character domains such
as Unicode. Moreover, SMT solvers provide a method
of extracting concrete counterexamples.

Wasserman and Su also perform static analysis of
PHP code to construct a grammar capturing an over-
approximation of string values. Their application is to
SQL injection attacks, while our framework allows us to
ask questions about any sanitizer [36]. Follow-on work
combines this work with dynamic test input generation to
find attacks on full PHP web applications [37]. Dynamic
analysis of PHP code, using a combination of symbolic
and concrete execution techniques, is implemented in the
Apollo tool [8]. The work in [39] describes a layered

static analysis algorithm for detecting security vulnera-
bilities in PHP code that is also enable to handle some
dynamic features. In contrast, our focus is specifically
on sanitizers instead of on full applications; we empha-
size analysis precision over scaling to large code bases.

Christensenet al.’s Java String Analyzer is a static
analysis package for deriving finite automata that charac-
terize an over-approximationof possible values for string
variables in Java [13]. The focus of their work is on an-
alyzing legacy Java code and on speed of analysis. In
contrast, we focus on precision of the analysis and on
constructing a specific language to capture sanitizers, as
well as on the integration with SMT solvers.

Our work is complementary to previous efforts in ex-
tending SMT solvers to understand the theory of strings.
HAMPI [20] and Kaluza [31] extend the STP solver to
handle equations over strings and equations with mul-
tiple variables. Rex extends the Z3 solver to handle
regular expression constraints [35], while Hooimeijeret
al.show how to solve subset constraints on regular lan-
guages [17]. We in contrast show how to combine any
of these solvers with finite transducers whose edges can
take symbolic values in any of the theories
supported by the solver.

The work in [28] introduces the first symbolic ex-
tension of finite state transducers called apredicate-
augmented finite state transducer(pfst). A pfst has two

kinds of transitions: 1)p
ϕ/ψ
−→ q whereϕ andψ are char-

acter predicates orε, or 2) p
c/c
−→ q. In the first case

the symbolic transition corresponds to all concrete tran-

sitionsp
a/b
−→ q such thatϕ(a) andψ(b) are true, the

second case corresponds toidentity transitionsp
a/a
−→ q

for all charactersa. A pfst is not expressive enough for
describing an SFT. Besides identities, it is not possible
to establish functional dependencies from input to out-
put that are needed for example to encode sanitizers such
asEncodeHtml.

A recent symbolic extension of finite transducers is
streaming transducers[6]. While the theoretical expres-
siveness of the language introduced in [6] exceeds that
of BEK, streaming transducers are restricted to charac-
ter theories that are total orders with no other operations.
Also, composition of streaming transducers requires an
explicit treatment of characters. It is an interesting future
research topic to investigate if there is an extension of
SFTs or a restriction of streaming transducers that allows
efficient symbolic analysis techniques to be applied.

6 Conclusions

Much prior work in XSS prevention assumes the correct-
ness of sanitization functions. However, practical expe-
rience shows writing correct sanitizers is far from triv-
ial. This paper presents BEK, a language and a compiler
for writing, analyzing string manipulation routines, and
converting them to general-purpose languages. Our lan-

guage is expressive enough to capture real web sanitizers
used in ASP.NET, the Internet Explorer XSS Filter, and
the Google AutoEscape framework, which we demon-
strate by porting these sanitizers to BEK.

We have shown how the analyses supported by our
tool can find security-critical bugs or check that such
bugs do not exist. To improve the end-user experience
when a bug is found, BEK produces a counter-example.
We discover that only 28.6% of our sanitizers commute,
∼79.1% are idempotent, and only 8% are reversibe. We
also demonstrate that most hand-writtenHTMLEncode
implementations disagree on at least some inputs. Un-
like previously published techniques, BEK deals equally
well with Unicode strings without creating a state ex-
plosion. Furthermore, we show that our algorithms for
equivalence checking and composition computation are
extremely fast in practice, scaling near-linearly with the
size of the symbolic finite transducer representation.

References

[1] About Safari 4.1 for Tiger. http://support.apple.com/kb/DL1045.

[2] Internet Explorer 8: Features.
http://www.microsoft.com/windows/internet-
explorer/features/safer.aspx.

[3] NoXSS Mozilla Firefox Extension. http://www.noxss.org/.

[4] OWASP: ESAPI project page. http://code.google.com/p/owasp-
esapi-java/.

[5] XSS (Cross Site Scripting) Cheat Sheet.
http://ha.ckers.org/xss.html.

[6] R. Alur and P. Cerný. Streaming transducers for algorithmic
verification of single-pass list-processing programs. InProceed-
ings of the Symposium on Princples of Programming Languages,
pages 599–610, 2011.

[7] Apple. Jsdecode implementation, 2011.http://trac.
webkit.org/browser/releases/Apple/Safari%205.0/

JavaScriptCore/runtime/JSGlobalObjectFunctions.

cpp.

[8] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. D. Ernst. Finding bugs in Web applications using dynamic
test generation and explicit-state model checking.Transactions
on Software Engineering, 99:474–494, 2010.

[9] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. SANER: Composing static and dy-
namic analysis to validate sanitization in Web applications. In
Proceedings of the Symposium on Security and Privacy, 2008.

[10] D. Bates, A. Barth, and C. Jackson. Regular expressionscon-
sidered harmful in client-side XSS filters. InProceedings of the
Conference on the World Wide Web, pages 91–100, 2010.

[11] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analy-
sis for string-manipulating programs. InProceedings of the Inter-
national Conference on Tools And Algorithms For The Construc-
tion And Analysis Of Systems, 2009.

[12] C. Y. Cho, D. Babić, E. C. R. Shin, and D. Song. Inferenceand
analysis of formal models of botnet command and control proto-
cols. InProceedings of the Conference on Computer and Com-
munications Security, pages 426–439, 2010.

[13] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise
Analysis of String Expressions. InProceedings of the Static Anal-
ysis Symposium, 2003.

[14] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the International Conference on Tools And Algo-
rithms For The Construction And Analysis Of Systems, 2008.

[15] A. J. Demers, C. Keleman, and B. Reusch. On some decidable
properties of finite state translations.Acta Informatica, 17:349–
364, 1982.

[16] P. Hooimeijer. Decision procedures for string constraints. Ph.D.
Dissertation Proposal, University of Virginia, April 2010.

[17] P. Hooimeijer and W. Weimer. A decision procedure for subset
constraints over regular languages. InProceedings of the Con-
ference on Programming Language Design and Implementation,
pages 188–198, 2009.

[18] P. Hooimeijer and W. Weimer. Solving string constraints lazily. In
Proceedings of the International Conference on Automated Soft-
ware Engineering, 2010.

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis
tool for detecting Web application vulnerabilities (shortpaper).
In Proceedings of the Symposium on Security and Privacy, May
2006.

[20] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst.
HAMPI: a solver for string constraints. InProceedings of the
International Symposium on Software Testing and Analysis, 2009.

[21] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program
verification. InProceedings of the Symposium on Principles of
Programming Languages, pages 495–508, 2010.

[22] D. Lindsay and E. V. Nava. Universal XSS via IE8’s XSS filters.
In Black Hat Europe, 2010.

[23] B. Livshits and M. S. Lam. Finding security errors in Java pro-
grams with static analysis. InProceedings of the Usenix Security
Symposium, pages 271–286, Aug. 2005.

[24] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee.Merlin:
Specification inference for explicit information flow problems. In
Proceedings of the Conference on Programming Language De-
sign and Implementation, June 2009.

[25] M. Martin, B. Livshits, and M. S. Lam. SecuriFly: Runtime
vulnerability protection for Web applications. Technicalreport,
Stanford University, Oct. 2006.

[26] Y. Minamide. Static approximation of dynamically generated
web pages. InProceedings of the International Conference on
the World Wide Web, pages 432–441, 2005.

[27] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening Web applications using pre-
cise tainting. InProceedings of the IFIP International Informa-
tion Security Conference, June 2005.

[28] G. V. Noord and D. Gerdemann. Finite state transducers with
predicates and identities.Grammars, 4:2001, 2001.

[29] G. Rozenberg and A. Salomaa, editors.Handbook of Formal Lan-
guages, volume 1. Springer, 1997.

[30] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for JavaScript. Tech-
nical Report UCB/EECS-2010-26, EECS Department, University
of California, Berkeley, Mar 2010.

[31] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and
D. Song. A symbolic execution framework for JavaScript. In
Proceedings of the IEEE Symposium on Security and Privacy,
2010.

[32] P. Saxena, D. Molnar, and B. Livshits. ScriptGard: Prevent-
ing script injection attacks in legacy Web applications with auto-
matic sanitization. Technical Report MSR-TR-2010-128, Micro-
soft Research, Sept. 2010.

[33] B. Schmidt. Google analytics XSS vulnerability,
2011. http://spareclockcycles.org/2011/02/03/

google-analytics-xss-vulnerability/.

[34] M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata

constraint solving. In C. Fermüller and A. Voronkov, editors,
LPAR-17, volume 6397 ofLNCS, pages 640–654. Springer, 2010.

[35] M. Veanes, P. de Halleux, and N. Tillmann. Rex: SymbolicRegu-
lar Expression Explorer. InProceedings of the International Con-
ference on Software Testing, Verification and Validation, 2010.

[36] G. Wassermann and Z. Su. Sound and precise analysis of Web
applications for injection vulnerabilities. InProceedings of the
Conference on Programming Language Design and Implementa-
tion, 2007.

[37] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and
Z. Su. Dynamic test input generation for Web applications. In

Proceedings of the International Symposium on Software Testing
and Analysis, 2008.

[38] J. Williams. Personal communications, 2005.

[39] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. InProceedings of the Usenix Security
Symposium, pages 179–192, 2006.

[40] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapa-
tra. Fireman: A toolkit for firewall modeling and analysis. In
Proceedings of the Symposium on Security and Privacy, pages
199–213, 2006.

