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Abstract. We propose a symbolic framework called guarded labeled as-
signment systems or GLASs and show how GLASs can be used as a
foundation for symbolic analysis of various aspects of formal specifi-
cation languages. We define a notion of i/o-refinement over GLASs as
an alternating simulation relation and provide formal proofs that relate
i/o-refinement to ioco. We show that non-i/o-refinement reduces to a
reachability problem and provide a translation from bounded non-i/o-
refinement or bounded non-ioco to checking first-order assertions.

1 Introduction

The view of a system behavior as a labeled transition system (LTS) provides the
semantical foundation for many behavioral aspects of systems in the context of
formal verification and testing. The central problem in testing is to determine
if an implementation LTS conforms to a given specification LTS and to find a
counterexample if this is not the case. In the case of open systems, or in the
presence of input (controllable) and output (observable) behavior, the confor-
mance relation is commonly described as input-output conformance or ioco [39].
A closely related notion of alternating simulation [4] is used in the context of
open system verification, in particular for interface automata refinement [19,
18]. In this paper we propose a theory of guarded labeled assignment systems or
GLASs that formally relates these two notions and provides a foundation for
their symbolic analysis.

The main characteristic of symbolic analysis techniques is that it makes use of
implicit representations of (parts of) program behavior, typically as constraints
in an appropriate logic, avoiding state-space explosion that would otherwise arise
if the analysis would be performed using explicit state exploration or concrete
execution. For scalability, symbolic techniques are often considered as a nec-
essary ingredient in modern testing techniques, including, but not limited to,
fuzz testing [26], unit testing [38] and model-based testing [17]. Some key en-
abling factors behind the use of symbolic techniques can be attributed to recent
advances in satisfiability modulo theories solving [21].

GLASs are a generalization of non-deterministic model programs [45] to a
purely symbolic setting, by abstracting from the particular background universe
and the particular (action) label domain. The semantics of GLASs uses classical
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model theory. A GLAS is a symbolic representation of behavior whose trace se-
mantics is given by an LTS that corresponds to the least fix-point of the strongest
post-condition induced by the assignment system of the GLAS. We define the
notion of i/o-refinement over GLASs that is based on alternating simulation
and show that it is a generalization of ioco for all GLASs, generalizing an earlier
result [42] for the deterministic case. The notion of i/o-refinement is essentially
a compositional version of ioco. We provide a rigorous account for formally deal-
ing with quiescence in GLASs in a way that supports symbolic analysis with or
without the presence of quiescence. We also define the notion of a symbolic com-
position of GLASs that respects the standard parallel synchronous composition
of LTSs [32, 34] with the interleaving semantics of unshared labels. Composition
of GLASs is used to show that the i/o-refinement relation between two GLASs
can be formulated as an condition of the composite GLAS. This leads to a map-
ping of the non-i/o-refinement checking problem into a reachability checking
problem for a pair of GLASs. For a class of GLASs that we call robust we can
furthermore use established methods developed for verifying safety properties
of reactive systems. We show that the non-i/o-refinement checking problem can
be reduced to first-order assertion checking by using proof-rules similar to those
that have been formulated for checking invariants of reactive systems. It can also
be approximated as a bounded model program checking problem [45].

Although the focus of the paper is theoretical, GLASs provide a foundation of
applying state-of-the-art satisfiability modulo theories [7, 21] (SMT) technology
to a wide range of problems that are difficult to tackle using other techniques.
Modern SMT solvers combine a hybrid set of technologies. Most state-of-the-art
solvers include efficient SAT solvers for handling finite domains. They also sup-
port operations over unbounded universes, such as integers, and integrate reason-
ing with quantifiers. Compared to many automated theorem proving techniques,
they provide solutions as witness of satisfiability. The following three are sam-
ple applications: 1) symbolic model-checking of a given specification GLAS [45]
with respect to a given property automaton; 2) symbolic refinement checking
between two symbolic LTSs represented as GLASs; 3) incremental model-based
parameter generation during on-the-fly testing for increased specification GLAS
coverage. In all cases, the use of GLAS composition is central, e.g., for symbolic
i/o-refinement or ioco, composition is used in Theorem 9. All examples used
in the paper are tailored to such analyses and illustrate the use of background
theories that are supported by state-of-the-art SMT solvers such as Z3 [20].

The paper is an extension of the conference papers [44, 42]. Besides minor
corrections and changes in the structure of the paper, it includes full details of
all proofs, more examples and explanations, an experimental evaluation section,
and a more comprehensive related work section.

2 Preliminaries

We use classical logic and work in a fixed multi-sorted universe U of values. For
each sort σ, Uσ is a sub-universe of U . The basic sorts needed in this paper
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are the Boolean sort B, (UB = {true, false}), and the integer sort Z. There
is a collection of functions with a fixed meaning associated with the universe,
e.g., arithmetical operations over UZ. These functions (and the corresponding
function symbols) are called background functions. For example, the background
function < : Z × Z → B denotes the standard order on integers. There is also a
generic background function Ite:B× σ × σ → σ where σ is a given sort.

Terms are defined by induction as usual and are assumed to be well-sorted.
The sort σ of a term t is denoted by sort(t) or by t:σ. We write FV(t) for the set
of free variables in t. Boolean terms are also called formulas or predicates. For
example if P is the formula x < y ∧ ∃x′(x < x′ ∧ x′ < y) then FV(P ) = {x, y}.
A term t over Σ has FV(t) ⊆ Σ. A term with no free variables is closed.

We use x′ as an injective renaming operation on variables x, and lift the

renaming to sets of variables,Σ′ def
= {x′ | x ∈ Σ}. We also introduce the following,

technically very convenient, convention. If t is a term, then t′ is a term where
each variable x in t, including each bound variable, has been renamed by x′, e.g.,
given P as above, P ′ is the formula x′ < y′ ∧ ∃x′′(x′ < x′′ ∧ x′′ < y′).

A Σ-model M is a mapping from Σ to U .1 The interpretation of a term t
over Σ in a Σ-model M , is denoted by tM and is defined by induction as usual.
In particular, for Ite-terms:

Ite(ϕ, t, f)M =

{

tM , if ϕM = true;
fM , otherwise.

Let ϕ be a formula over Σ. A Σ-model M satisfies ϕ or ϕ is true in M ,
denoted by M |=ϕ, if ϕM = true; ϕ is satisfiable if it has a model; ϕ is true if
ϕM = true for all Σ-models M . We use elements in U also as terms and define

the predicate of a Σ-model M as the predicate PM
def
=
∧

x∈Σ x = xM over Σ.
Note that for any predicate P over Σ, ∃ΣP and ∃Σ′P ′ are equivalent closed
formulas.

3 Guarded Labeled Assignment Systems

This section introduces Guarded Labeled Assignment Systems, GLAS for short.
The definition of GLAS combines labels, guarded updates, and internal choice.
They capture the semantics of model programs. Model programs are high-level
operational specifications [31]. Model programs are being used to model com-
plex application level network protocols in the industrial protocol testing tool
SpecExplorer [17]. A sample model program is illustrated below in Example 2.

We start by providing the formal definition, which is followed by examples
illustrating the definition. An assignment is a pair x := u where x is a variable,
u is a term, and sort(x) = sort(u).

1 More precisely, variables are viewed as fresh constants expanding the background
signature. Note that the background function symbols have the same interpretation
in all models (and are thus implicit).
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Definition 1. A Guarded Labeled Assignment System or GLAS G is a tuple
(Σ,X, `, ı, α, γ,∆) where

– Σ is a finite set of variables called the model signature;
– X is a finite set of variables disjoint from Σ called the choice signature;
– ` is a variable not in Σ or X , called the label variable;
– ı is a satisfiable formula over Σ called the initial condition;
– α is a formula over {`} called the label predicate;
– γ is a formula over Σ ∪X ∪ {`} called the guard ;
– ∆ is a set of assignments {z := uz}z∈Σ where, for all z ∈ Σ, uz is a term

over Σ ∪X ∪ {`}; ∆ is called the assignment system.

The set Σ ∪X is called the internal signature of G.

We first illustrate a simple two-state GLAS.

Example 1. Consider the GLAS

A = ({z:Z}, {x:B}, `:L, z = 1, IsReq(`) ∨ IsRes(`),
Ite(IsReq(`), z = 1, z = 2), {z := Ite(z = 1, 2, Ite(x, 1, 2))}).

A has one integer valued model variable z; one Boolean choice variable x; the
labels have sort L (suppose L is associated with predicates IsReq, IsRes:L → B);
the initial condition is that z = 1; the label predicate specifies that ` is either
a “request” (satisfies the predicate IsReq) or a “response” (satisfies the predi-
cate IsRes). We will enforce that the predicates IsReq and IsRes are mutually
exclusive by treating L as an algebraic data-type with two constructors, one for
requests, the other for responses. The predicates IsReq and IsRes recognize the
respective data-type constructors. The guard of A states that requests are only
enabled when z = 1 and responses are only enabled when z = 2; the assignment
system contains the assignment that either changes the value of z from 1 to 2,
or nondeterministically changes the value of z from 2 to 1 or 2. The nondeter-
ministic choice is given by the value of x, that can be either true or false. A can
be visualized as the following FSM where each state is labeled by the value of
the model variable z.

0 1 2
`/IsReq(`)

`/IsRes(`)
`/IsRes(`)

Intuitively, A specifies a sequence of request and response labels where a single
request is followed by one or more responses. �

The following example illustrates how an AsmL [5, 27] program can be repre-
sented as a GLAS. Other encodings are possible using different techniques. The
example makes use of several background sorts. Such sorts are derived from the
given program. An important point regarding practical applications is that all
sorts and associated axioms that are used, are either directly supported, or user
definable without any significant overhead, in state-of-the-art SMT solvers.
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Example 2. We consider the following model program called Credits that de-
scribes the message-id-usage facet of a client-server sliding window protocol [31].

var ranges as Set of (Integer,Integer) = {(0,0)}
var used as Set of Integer = {}

var max as Integer = 0
var msgs as Map of Integer to Integer = {->}

IsValidUnusedMessageId(m as Integer) as Boolean
return not (m in used) and Exists r in ranges where First(r)<=m and m<=Second(r)

[Action] Req(m as Integer, c as Integer)

require IsValidUnusedMessageId(m) and c > 0
msgs(m) := c

add m to used

[Action] Res(m as Integer, c as Integer)

require m in msgs and 0<=c and c<=msgs(m)
remove m from msgs

if c>0 add (max, max+c) to ranges

max := max+c

Let us assume a sort L derived from the method signatures of the program; UL

is an algebraic data type. In addition to the predicates IsReq and IsRes introduced
in Example 1, L is associated with the constructors: Req,Res:Z × Z → L and
accessors: Req m ,Res m,Req c,Res c:L → Z. For example, IsReq(Res(6, 7)) is
false and Req c(Req(3, 4)) is equal to 4.

The example uses tuples. There is a generic n-tuple sort T(σ0, . . . , σn−1)
of given element sorts σi for i < n. An n-tuple constructor is denoted by
〈t0, . . . , tn−1〉 and the projection functions are denoted by πi for i < n. For
example π1(〈t0, t1〉) = t1.

The example also uses arrays, the sort A(σ, ρ) is a generic sort for extensional
arrays (mathematical maps) with domain sort σ and range sort ρ. The functions
on arrays are reading and storing elements in the array:

Read :A(σ, ρ) × σ → ρ, Store:A(σ, ρ) × σ × ρ→ A(σ, ρ).

The empty array ε maps every domain element to a default value of the range
sort. For Z the default is 0 and for B the default is false . We map Credits to the
GLAS GCredits : (Σ, ∅, `, ı, IsReq(`) ∨ IsRes(`), γ,∆) where

Σ = {ranges:A(T(Z,Z),B), used :A(Z,B),max :Z,msgs :A(Z,Z)}.

The axioms assumed for arrays are the usual ones for propagating reads over
store and the extensionality axiom:

∀a i v j (Read(Store(a, i, v), j) = Ite(i = j, v,Read(a, j)))

∀a b (∀i (Read(a, i) = Read(b, i)) ⇒ a = b)

For example, Read(Store(ε, 1, 2), 1) = 2, Read(Store(ε, 1, 2), 3) = default , and
Store(array , key, default) = array . We write key ∈ array for Read(array , key) 6=
default . The initial condition ı is

ranges = Store(ε, 〈0, 0〉, true) ∧ used = ε ∧max = 0 ∧msgs = ε.
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Given by the require-statements, the guard γ is:

(IsReq(`) ∧ Req m(`) /∈ used
∧ ∃r (r ∈ ranges ∧ π0(r) ≤ Req m(`) ∧ Req m(`) ≤ π1(r))
∧ Req c(`) > 0) ∨

(IsRes(`) ∧ Res m(`) ∈ msgs ∧ 0 ≤ Res c(`)
∧ Res c(`) ≤ Read(msgs ,Res m(`)))

The assignment system ∆ consists of the assignments:

ranges :=Ite(IsReq(`), ranges , Ite(Res c(`) > 0,
Store(ranges , 〈max ,max + Res c(`)〉, true), ranges))

used :=Ite(IsReq(`), Store(used ,Req m(`),Req c(`)), used)
max :=Ite(IsReq(`),max ,max + Res c(`))
msgs :=Ite(IsReq(`), Store(msgs ,Req m(`),Req c(`)),

Store(msgs ,Res m(`), default
Z
))

The right-hand-sides of the assignments are easy to automatically generate from
the program, but much harder to comprehend than the original assignments in
the program, since they combine all the assignments from the separate actions
by doing a case split based on the action label. They also add trivial assignments
that take care of the implicit frame condition in AsmL that states that all
variables not updated retain their previous values. �

A GLAS is a symbolic representation of a labeled transition system (LTS). Before
defining the formal semantics, let us briefly revisit the GLAS A in Example 1.
Assume also that L and UL are as defined in Example 2. Then the concrete LTS
bAc (formally defined in Definition 7) represented by A has two states S1 and
S2 (corresponding to the states of the displayed FSM in Example 1) and bAc
has infinitely many transitions; namely, for each a ∈ UL, if IsReq(a) holds then

there is a transition S1
a
→ S2 and if IsRes(a) holds then there is a transition

S2
a
→ S2 and a transition S2

a
→ S1. Thus, in this case A is a finite (symbolic)

representation of the infinite LTS bAc.
In order to keep the paper self-contained and to fix notation we include the

standard definitions of LTSs and traces.

Definition 2. An LTS is a tuple L = (S,S0, L, T ), where S is a set of states ;
S0 ⊆ S is a nonempty set of initial states ; L is a set of labels ; T ⊆ S× L× S is
a transition relation. A label a ∈ L is enabled in a state S if (S, a, S′) ∈ T for
some S′ ∈ S.

We use L as a subscript to identify its components. If (S, a, S′) ∈ TL we write

S
a
→L S

′ or S
a
→ S′ if L is clear from the context. If a ∈ LL is enabled in S ∈ SL

write S
a
→L. If a ∈ LL is not enabled in S ∈ SL, we write S

a
9L. In this paper

we are only concerned with finite traces.

Definition 3. A label sequence a = (ai)i<k such that Si
ai→L Si+1, i < k, is a

trace of L from S0 or a trace of L if S0 ∈ S0
L; we write S0

a

→ Sk and S
ε
→ S

where ε is the empty sequence. The set of all traces of L is denoted by Tr(L).
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Definition 4. LTS L is deterministic if L has a single initial state and for all
a ∈ L and S ∈ SL there is at most one S1 ∈ S such that S

a
→L S1. We view a

deterministic LTS L as a function from L∗
L to SL ∪ {⊥L}:

L(a)
def
=

{

⊥L, if a /∈ Tr(L);

S, otherwise, where S0
L = {S0} and S0 a

→L S.
(1)

Note that L(ε) is the unique initial state of a deterministic LTS L.
A GLAS is associated with a transition relation formula that describes a

single application of its assignments and a predicate transformer that maps a
given predicate to a new predicate. The predicate transformer is used below
to define semantics of GLASs in terms of LTSs. Recall the variable renaming
convention on terms that is used below.

Definition 5. LetG = (Σ,X, `, ı, α, γ, {z := uz}z∈Σ) be a GLAS. We define the
transition relation TRG, and the strongest post-condition predicate transformer
SPG, for G, where P is a predicate over Σ and a ∈ Usort(`):

TRG(Σ
′, `′, Σ)

def
= α′ ∧ ∃X ′ (γ′ ∧

∧

z∈Σ

z = u′z)

SPG(P, a)
def
= ∃Σ′ (P ′ ∧ TRG(Σ

′, a, Σ))

Note that SPG(P, a) is a predicate over Σ. The intuition behind TRG is that
it is the symbolic transition relation corresponding to one step of G, where choice
variables have a local scope within one step. The intuition behind SPG(P, a) is
that it describes the strongest post-condition [23] of one step of G with respect to
the symbolic state P and the concrete label a. The following example illustrates
the definition of GLAS on a simple case.

Example 3. Let G be the GLAS

({z:Z}, {x:B}, `:Z, z ≥ 0, ` 6= 0, Ite(x, ` > 0, ` < 0), {z := Ite(x, z + `, z − `)}).

Then TRG is the following predicate, where we apply equivalence preserving
simplifications with respect to the assumed background of integer arithmetic:

TRG(z
′, `′, z) = (`′ 6= 0 ∧ ∃x′(Ite(x′, `′ > 0, `′ < 0) ∧ z = Ite(x′, z′ + `′, z′ − `′)))

⇔ (`′ 6= 0 ∧ ((`′ > 0 ∧ z = z′ + `′) ∨ (`′ < 0 ∧ z = z′ − `′)))
⇔ (`′ 6= 0 ∧ z = z′ + `′)

Let P be the initial condition z ≥ 0 and consider the concrete label 3. Then
SPG(P, 3) is the following predicate, where we apply equivalence preserving sim-
plifications:

SPG(P, 3) = ∃ z′(z′ ≥ 0 ∧TRG(z
′, 3, z))

⇔ ∃ z′(z′ ≥ 0 ∧ (3 6= 0 ∧ z = z′ + 3))
⇔ z ≥ 3

Note that in this particular case the existential quantifiers could be simplified
away. This is clearly not the case in general, but typical for GLASs that corre-
spond to model programs, such as the one in Example 2. �
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Next, we define two related semantics of a GLAS G in terms of LTSs. One is
the concrete semantics bGc and the other one is the symbolic semantics dGe. In
the concrete semantics, states are ΣG-models. In the symbolic semantics, states
are predicates over ΣG.

Definition 6. The set of labels of G is LG
def
= {`MG |M |=αG}.

Definition 7. bGc
def
= (S, {M | M |= ıG}, LG, T ) where S, T are the least sets

such that S0
bGc ⊆ S and (M,a,N) ∈ T for a ∈ LG,M ∈ S, andN |=SPG(PM , a),

then N ∈ S.

Thus, in bGc states are ΣG-models and there is a transition M
a
→bGc N if

the assignments of G, when evaluated in a state M where a is enabled yield the
state N (for some choice of XG).

Definition 8. dGe
def
= (S, {ıG}, LG, T ) where S, T are the least sets such that

ıG ∈ S, (P, a, SPG(P, a)) ∈ T for a ∈ LG and P ∈ S if SPG(P, a) is satisfiable.

Note that dGe is a deterministic LTS by definition. In dGe, states are predi-
cates over ΣG, so several models may correspond to a single state in dGe. Also,
dGe may have several distinct but logically equivalent states. It is useful to con-
sider the quotient of dGe under logical equivalence, where logically equivalent
states of dGe form a single equivalence class. For a predicate P , define [P ] as the
class of all formulas logically equivalent to P and lift the definition to sets S of

formulas in the usual way: [S]
def
= {[P ] | P ∈ S}.

Definition 9. [G]
def
= ([SdGe], [S

0
dGe], LG, {([P ], a, [Q]) | (P, a,Q) ∈ TdGe}).

We know from the definition of SPG that if P ⇔ Q then SPG(P, a) ⇔

SPG(Q, a). Thus, if [P ]
a
→[G] then [P ]

a
→[G] [SPG(P, a)], i.e., [G] is also a de-

terministic LTS. [G] provides a more intuitive way of understanding the sym-
bolic semantics. In many cases, infinitely many equivalent predicates that arise
through repeated applications of SPG in dGe are collapsed into a single state of

[G]. Let ⊥[G]
def
= [false] and let ⊥dGe

def
= false (recall (1)).

Lemma 1. For a ∈ L∗
G, [G](a) = [dGe(a)].

Proof. Use definitions 5, 8, and 9. �

Formally, the notion of traces of G is based on the symbolic semantics of
G, reflecting its use in symbolic analysis. While the standard definition of LTS
semantics of programs is based on their concrete execution semantics (that cor-
responds to the concrete semantics of a GLAS), the intended correctness of
Definition 10 follows from Theorem 1 proved next.

Definition 10. Tr(G)
def
= Tr(dGe).



9

We show that both the concrete and the symbolic semantics of G yield the
same traces, i.e., dGe does not introduce new traces, although several models
of bGc may collapse into a single state in dGe. We use the following technical
lemma. Given a sequence a and an element a, we write a · a for the extended
sequence. The empty sequence is denoted by ε.

Lemma 2. For a ∈ L∗
G and ΣG-models M ,

M |= dGe(a) ⇔ ∃M0 ∈ S0
bGc (M0

a

→bGc M).

Proof. By induction over the length of a. The base case, a = ε, holds trivially
by {M | M |= dGe(ε)} = S0

bGc = {M | ∃M0 ∈ S0
bGc (M0

ε
→bGc M)}. Assume as

IH (induction hypothesis) that the statement holds for a, we prove it for a · a.

M |= dGe(a · a)
(def 8)
⇔ M |= SPG(dGe(a), a)

(def 5)
⇔ M |= ∃Σ′(dGe(a)′ ∧ TRG(Σ

′, a, Σ))

⇔ ∃N(N |= dGe(a),M |=∃Σ′(P ′
N ∧ TRG(Σ

′, a, Σ)))
(def 5)
⇔ ∃N(N |= dGe(a),M |=SPG(PN , a))
(IH)
⇔ ∃N ∃M0 ∈ S0

bGc (M0
a

→bGc N,M |= SPG(PN , a))

(def 7)
⇔ ∃N ∃M0 ∈ S0

bGc (M0
a

→bGc N, N
a
→bGc M)

⇔ ∃M0 ∈ S0
bGc (M0

a·a
→bGc M)

The statement follows by the induction principle. �

The lemma implies the following theorem that is a fundamental property of
the symbolic semantics. It justifies the whole approach presented in the paper
and provides a symbolic generalization of the classical LTS determinization.

Theorem 1. Tr(bGc) = Tr(dGe) = Tr([G]).

Proof. Tr(dGe) equals {a | {M |M |= dGe(a)} 6= ∅} that, by Lemma 2, equals

{a | {M | ∃M0 ∈ S0
bGc(M0

a

→bGc M)} 6= ∅} that is the definition of Tr(bGc).
The second equality follows from Lemma 1. �

There is an important point about this choice of trace-style semantics. It
is tailored for the case where internal choices of GLASs are opaque. Symbolic
semantics plays an important role when we later define alternating simulation
and conformance, where G may be nondeterministic, i.e., bGc is nondeterminis-
tic, but where dGe is used, which, by Theorem 1, does not change the intended
trace semantics of G. Moreover, dGe directly reflects the symbolic unfolding of
the transition relation of a GLAS, that is fundamental in the construction of
first-order assertions for reduction to symbolic analysis. Note that dGe is, by
definition, a deterministic LTS although bGc may be nondeterministic, since the
predicate transformer operates on the level of symbolic states. Symbolic states
may be satisfied by more than one model in the case when the choice signature
is nonempty or the initial condition is satisfied by more than one model.
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Example 4. The Credits program in Example 2 is deterministic. The following
is a trace of GCredits :

(Req(0, 3),Res(0, 2),Req(2, 1),Req(1, 1),Res(2, 0),Res(1, 0)).

Intuitively, the trace describes a valid communication scenario between the client
and the server (based on a sliding window protocol), where the client is able to
use message ids based on credits granted earlier by the server.

The client sends a request with message id 0 and asks for 3 credits. The
server responds to that message, granting the client 2 credits. Then the client
sends two more requests to the server using the message ids 2 and 1, respectively.
The server first responds to the first request (with id 2) and then to the second
request (with id 1) not granting more credits in either response. Note that the
client has now run out of message ids and cannot send more requests. �

Definition of a GLAS G is motivated by separation of concerns. By provid-
ing the label predicate, the guard, the assignments, and the choice variables
separately, several operations over GLASs, such as composition and quiescence
extension discussed below, have simple and intuitive definitions. Note also that
if XG = ∅ and if SbGc is a singleton set then G (i.e. bGc) is deterministic and
there is a one-to-one mapping between the concrete and the symbolic semantics.
A natural question that arises is if the definition of GLASs is general enough
to describe arbitrary symbolic transition systems or if the assignment form lim-
its the expressivity. The following example implies that the results of the paper
carry over to arbitrary symbolic labeled transition systems that can be described
by a predicate.

Example 5. Let P (x, `, y) be an arbitrary predicate over {x:σ, `:ρ, y:σ}. Assume
P specifies the LTS L = (Uσ,Uσ,Uρ, {(xM , `M , yM ) |M |=P}). Let

G = ({x}, {y}, `, true, true, P, {x := y})

Then TRG ⇔ ∃y′ (P ′ ∧ x = y′) ⇔ P (x′, `′, x) and L ≡ bGc. �

3.1 GLAS Composition

The use of composition of model programs for numerous analysis tasks is the
core theme of the textbook [31] and is also discussed at a more technical level
in [47]. Composition of GLASs is a symbolic generalization of model program
composition. The composition of two GLASs has practical benefits. The size
of the composed GLAS is linear in the sizes of the individual GLASs, while
preserving the intended semantics, as shown in Theorem 2. Moreover, standard
DFS algorithms can be developed for special cases of GLASs that use an external
solver to incrementally eliminate unsatisfiable predicates that arise when forming
a conjunction of guards.
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Definition 11. Let Gi = (Σi, Xi, `, ıi, αi, γi, {z := uz}z∈Σi
), for i ∈ I, be

GLASs with disjoint internal signatures. We also assume that I is non-empty.
The composition of Gi for i ∈ I, is the GLAS
∏

i∈I

Gi
def
= (
⋃

i∈I

Σi,
⋃

i∈I

Xi, `,
∧

i∈I

ıi,
∨

i∈I

αi,
∧

i∈I

(αi ⇒ γi),
⋃

i∈I

{z := Ite(αi, uz, z)}z∈Σi
)

We abbreviate
∏

i∈I Gi by
∏

I Gi and for
∏

{1,2}Gi we write G1×G2. Note that
∏

I Gi is indeed well-defined as a GLAS. In particular, ı∏
I Gi

is satisfiable be-
cause all the individual initial conditions are satisfiable and do not share free
variables. The other side conditions in Definition 1 hold similarly. The following
technical lemma is used below. Let Gi, for i ∈ I, be as above.

Lemma 3. Let G =
∏

I Gi. Assume αi ⇔ αj for i, j ∈ I. Let Pi be a predicate
over Σi for i ∈ I and let a ∈ LG. Then SPG(

∧

i∈I Pi, a) ⇔
∧

i∈I SPGi
(Pi, a).

Proof. Let Σ = ΣG and X = XG. We first show

TRG(Σ
′, `′, Σ) ⇔

∧

i∈I

TRGi
(Σ′

i, `
′, Σi) (2)

as follows:

TRG(Σ
′, `′, Σ)

(def 5)
⇔ α′

G ∧ ∃X ′ (γ′G
∧

z∈Σ

z = u′z)

(def 11)
⇔ (

∨

i∈I

α′
i) ∧ ∃X ′ (

∧

i∈I

(α′
i ⇒ γ′i)

∧

i∈I,z∈Σi

z = Ite(α′
i, u

′
z, z

′))

(αi⇔αj)

⇔ (
∧

i∈I

α′
i) ∧ ∃X ′ (

∧

i∈I

(α′
i ⇒ γ′i)

∧

i∈I,z∈Σi

z = Ite(α′
i, u

′
z, z

′))

⇔ (
∧

i∈I

α′
i) ∧ ∃X ′ (

∧

i∈I

(γ′i
∧

z∈Σi

z = u′z))

(X′

is disjoint)

⇔
∧

i∈I

(α′
i ∧ ∃X ′

i (γ
′
i ∧

∧

z∈Σi

z = u′z)))

(def 5)
⇔

∧

i∈I

TRGi
(Σ′

i, `
′, Σi)

Now:

SPG(
∧

i∈I

Pi, a)
(def 5)
⇔ ∃Σ′ (

∧

i∈I

P ′
i ∧ TRG(Σ

′, a, Σ))

(by (2))
⇔ ∃Σ′ (

∧

i∈I

(P ′
i ∧ TRGi

(Σ′
i, a, Σi)))

(Σ′

is disjoint)

⇔
∧

i∈I

∃Σ′
i(P

′
i ∧ TRGi

(Σ′
i, a, Σi))

(def 5)
⇔

∧

i∈I

SPGi
(Pi, a)

that proves the lemma. �
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One can show that composition of GLASs respects the standard parallel
synchronous composition of LTSs with the interleaving semantics of unshared
labels. Here we prove the special case of all labels being shared, i.e. LGi

= LGj

for i, j ∈ I, that is used below.

Theorem 2. Let G =
∏

I Gi. Assume αi ⇔ αj for i, j ∈ I.
(i) For all a, dGe(a) ⇔

∧

i∈IdGie(a).
(ii) Tr(G) =

⋂

i∈I Tr(Gi).

Proof. We prove (i) by induction over a. The base case holds trivially since
dGe(ε) =

∧

i∈I ıi =
∧

i∈IdGie(ε). Assume (i) holds for a; we prove (i) for a · a:

dGe(a · a)
(def 8)
⇔ SPG(dGe(a), a)

(IH)
⇔ SPG(

∧

IdGie(a), a)
(lemma 3)

⇔
∧

I SPGi
(dGie(a), a)

(def 8)
⇔

∧

IdGie(a · a)

Statement (i) follows by the induction principle. Now:

Tr(G) = {a | dGe(a) 6= false}
(by (i))
= {a |

∧

IdGie(a) is satisfiable}
(Σi’s disjoint)

= {a | ∀i ∈ I(dGie(a) 6= false)}
= {a | ∀i ∈ I(a ∈ Tr(Gi))}

that proves (ii). �

Example 6. Consider the composition G = GCredits×GA with GCredits and GA

from examples 2 and 1, respectively. The traces of G are the traces of both
GCredits and GA, i.e., the traces that conform to the Credits specification while
restricted to the scenarios described by A. For example, the trace illustrated in
Example 4 is therefore not a trace of G. �

Example 7. Consider the FSM B:

0 1 2 3
`/IsReq(`) ∧ Req m(`) = 0 `/IsReq(`) ∧ Req m(`) > 0

B describes a scenario where only two requests occur, the first request uses
message id 0 and the second request uses a message id > 0. Suppose that the re-
sponses are irrelevant rather than disabled, i.e., αGB

= IsReq(`GB
). In this case,

the composition GCredits×GB represents the intended slice of GCredits where re-
sponses are considered as internal actions of GCredits from the point of view of
B and are unconstrained by B (i.e., viewed as “self-loops” in B). �

We will use the following closed composition of GLASs (in Theorem 7) that
disables non-shared labels.

Definition 12. Given a GLAS G and a predicate β over {`G}, let G�β denote

the modification of G such that αG�β
def
= αG ∨ β and γG�β

def
= γG ∧ (β ⇒ αG).

The closed composition of GLASs G and H with disjoint internal signatures and

`G = `H is the GLAS G⊗H
def
= G�αH×H�αG.
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Observe that if α ⇒ αG (e.g. when α = false) then G�α is a logical noop.
When α = true then LG�α = Usort(`G) and G�α strengthens the guard of G
with αG. In the general case, LG�α extends LG with labels accepted by α, while
the guard γG�α is disabled with respect to any new labels (if any). We use the
following corollary of Theorem 2.

Corollary 1. Let G and H have disjoint internal signatures and ` = `G = `H .
(i) For all a, dG⊗He(a) ⇔ dGe(a) ∧ dHe(a).
(ii) Tr(G⊗H) = Tr(G) ∩ Tr(H).

Proof. We use (3), i.e., for all `, ` is enabled in G�αH and H�αG iff ` is enabled
in G and H :

((αG�αH
∧ γG�αH

) ∧ (αH�αG
∧ γH�αG

)) ⇔ ((αG ∧ γG) ∧ (αH ∧ γH)) (3)

that follows by expaning the l.h.s. using Definition 12 and using standard logic:

(

((αG ∨ αH) ∧ γG ∧ (αH ⇒ αG))∧
((αH ∨ αG) ∧ γH ∧ (αG ⇒ αH))

)

⇔ ((αG ∨ αH) ∧ (αH ⇔ αG) ∧ γG ∧ γH)

To prove (i) let a be any finite sequence over Usort(`):

dG⊗He(a)
(def 12)
⇔ dG�αHe×H�αG(a)

(thm 2(i))
⇔ dG�αHe(a) ∧ dH�αGe(a)

(by (3))
⇔ dGe(a) ∧ dHe(a)

Statement (ii) follows from Theorem 2(ii) and that for any GLAS G and any
predicate α over `G, Tr(G) = Tr(G�α). �

The label variable provides a way to abstract behaviors. In order to expose
the values of all model variables {xi}i<k, the label variable can be declared
as a tuple of the sort of the model variables and the guard can be defined as
∧

i<n πi(`) = xi.

4 I/O GLAS

Here we consider GLASs where the labels are divided into input and output
labels that describe reactive or open system behavior.

Definition 13. An i/o-GLAS G is an extension (H,αout) of a GLAS H where
αout is a formula, called the output label predicate, such that αout ⇒ αH .

In the corresponding i/o LTS the labels are separated so that Lout

G is the
set of all labels that satisfy αout

G and Lin

G is the set of all labels that satisfy

αin

G

def
= αG ∧ ¬αout

G . We say GLAS (LTS) to also mean i/o-GLAS (i/o LTS) and
let the context determine whether the labels are separated into input and output
labels.
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We define ENG
def
= αG ∧ ∃XG(γG) as the enabling condition of G, OG

def
=

αout

G ∧ ENG as the output enabling condition of G, and IG
def
= αin

G ∧ ENG as
the input enabling condition of G. Note that the input and output enabling
conditions are mutually exclusive predicates overΣG∪{`}. They characterize the
states where G has successor states for an input, respectively output, label. The
definition is consistent with the usual enabling condition on transition relations.
In particular, ENG(`,Σ) is derived from αG∧∃Σ′ TRG(Σ, `,Σ

′), which expands
to αG ∧ ∃Σ′ ∃XG (γG ∧

∧

z′∈Σ′ z′ = uz), and simplifies to αG ∧ ∃XG (γG).

Example 8. Consider the Credits program and assume that Req is marked as an
input-action and Res is marked as an output-action. The output label predicate
αout is a disjunction over all cases of action labels in the AsmL program that are
marked as output-actions, i.e, in this case αout is IsRes(`). �

4.1 Quiescence

When dealing with formal notions of conformance, in particular ioco [39], an
important aspect is how to deal with quiescence, that is a special output label,
usually denoted by δ, indicating absence of other enabled output labels in a given
state. An LTS can be extended to include δ as a new output label [39]:

Definition 14. Let L be an LTS and δ /∈ LL. Then Lδ is the extension of L

where Lout

Lδ = Lout

L ∪ {δ} and S
δ
→Lδ S iff for all a ∈ Lout

L , S
a
9L.

We define a corresponding symbolic extension for GLASs.

Definition 15. For G = (Σ,X, `, ı, α, γ, {z := uz}z∈Σ, α
out), δ ∈ Usort(`) \ LG:

Gδ def
= ( Σ, X, `, ı, α ∨ ` = δ, Ite(` = δ,¬∃`X (αout ∧ γ), γ),

{z := Ite(` = δ, z, uz)}z∈Σ , α
out ∨ ` = δ)

Thus, in Gδ there is a new output label δ and M
δ
→bGδc if and only if for all

a ∈ Lout

G , M
a
9bGc. For example, in the case of the L sort used in Example 2,

assume that δ:L is an additional constructor, i.e., δ ∈ UL. The intended meaning
of Gδ is made precise by the following theorem that says that the symbolic
extension precisely captures the intended suspension trace semantics [39] of bGc.

Theorem 3. (i) bGδc = bGcδ. (ii) Tr([Gδ]) = Tr(bGcδ).

Proof. (i) follows from definitions 14,15. (ii) uses (i) and Theorem 1. �

One can also show that Tr([G]δ) ⊆ Tr(Gδ). However, Tr(Gδ) 6= Tr([G]δ) as
illustrated by the following example.

Example 9. The example is derived from a standard example that is used to
illustrate properties of quiescence during determinization of non-deterministic
LTSs [39, Figure 6]. The GLAS G is represented below by an FSM where there
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is a single input label 1 and a single output label 0. We assume the following
representation for G:

G = ( {z:Z}, {x:B}, `:Z, z = 1, 0 ≤ ` ≤ 1, ` = 0 ⇔ z = 2,
{z := Ite(z = 1, Ite(x, 2, 4), 3)}, ` = 0 )

Gδ is the following GLAS where we have simplified γGδ by using that the formula
¬∃` x (` = 0 ∧ (` = 0 ⇔ z = 2)) is equivalent to z 6= 2. (Below let, e.g. δ = 42),

Gδ = ( {z:Z}, {x:B}, `:Z, z = 1, 0 ≤ ` ≤ 1 ∨ ` = δ,
Ite(` = δ, z 6= 2, ` = 0 ⇔ z = 2),
{z := Ite(` = δ, z, Ite(z = 1, Ite(x, 2, 4), 3))}, ` = 0 ∨ ` = δ )

We can illustrate the GLASs as follows:

bGc : 1 2 3

4

1 0

1

bGδc : 1 2 3

4

1 0

1

δ δ

δ

[Gδ] : [z=1] [z=2∨z=4] [z=3]

[z=4]

1 0

δ

δ δ

δ

[G] : [z=1] [z=2∨z=4] [z=3]
1 0 [G]δ : [z=1] [z=2∨z=4] [z=3]

1 0

δ δ

Thus Tr([Gδ]) 6= Tr([G]δ). In order to see how we obtained the equivalent state
predicates and the transitions of [Gδ], we illustrate the use of the definitions

explicitly for the case [ıGδ ]
1
→[Gδ] [SPGδ(ıGδ , 1)]:

SPGδ (ıGδ , 1) ⇔ ∃z′ (ı′Gδ ∧ TRGδ(z′, 1, z))

⇔ ∃z′ (z′ = 1 ∧ (0 ≤ 1 ≤ 1 ∨ 1 = δ) ∧

∃x′ (Ite(1 = δ, z′ 6= 2, 1 = 0 ⇔ z′ = 3) ∧

z = Ite(1 = δ, z′, Ite(z′ = 1, Ite(x′, 2, 4), 3))))

⇔ ∃z′ (z′ = 1 ∧ (1 = 0 ⇔ z′ = 3) ∧

∃x′ (z = Ite(z′ = 1, Ite(x′, 2, 4), 3)))

⇔ ∃x′ (z = Ite(x′, 2, 4))

⇔ z = 2 ∨ z = 4

and the case [z = 2 ∨ z = 4]
δ
→[Gδ] [SPGδ (z = 2 ∨ z = 4, δ)]:

SPGδ(z = 2 ∨ z = 4, δ) ⇔ ∃z′ ((z′ = 2 ∨ z′ = 4) ∧ TRGδ(z′, δ, z))

⇔ ∃z′ ((z′ = 2 ∨ z′ = 4) ∧ (0 ≤ δ ≤ 1 ∨ δ = δ) ∧



16

∃x′ (Ite(δ = δ, z′ 6= 2, δ = 0 ⇔ z′ = 3) ∧

z = Ite(δ = δ, z′, Ite(z′ = 1, Ite(x′, 2, 4), 3))))

⇔ ∃z′ ((z′ = 2 ∨ z′ = 4) ∧ z′ 6= 2 ∧ z = z′)

⇔ z = 4

The remaining state predicates and transitions are obtained similarly. �

Example 10. Consider G = GCredits from Example 2. The formula that defines
absence of outputs in G, ¬∃`XG(α

out

G ∧ γG), is, after simplifications, equivalent
to the formula msgs = ε. Intuitively, there should not be a response from the
server, i.e. the server must be quiescent, if there is no pending request from the
client, i.e., δ is enabled in any model of bGδc where msgs is empty. �

4.2 I/O refinement

We define a notion of conformance between two GLASs that is based on al-
ternating simulation [4] between two LTSs and show below that this notion of
conformance coincides with ioco for GLASs.

Let Li = (Si, {S0
i }, Li, L

in

i , L
out

i , Ti), for i = 1, 2, be deterministic LTSs.2 The
intuition behind the following definition is that L1 can only make outputs that
L2 can make, and L2 can only make inputs that L1 can make.

Definition 16. L1 i/o-refines L2, L1 � L2, iff there exists an alternating sim-
ulation ρ from L1 to L2 such that (S0

1 , S
0
2) ∈ ρ, where an alternating simulation

from L1 to L2 is a relation ρ ⊆ S1 × S2 such that, for all (S1, S2) ∈ ρ

∀o ∈ Lout
1 (S1

o
→L1 S

′
1 ⇒ ∃S′

2(S2
o
→L2 S

′
2 ∧ (S′

1, S
′
2) ∈ ρ))

∀i ∈ Lin
2 (S2

i
→L2 S

′
2 ⇒ ∃S′

1(S1
i
→L1 S

′
1 ∧ (S′

1, S
′
2) ∈ ρ))

Note that, since L1 and L2 are deterministic, the choice of S′
1 and S′

2 above
is unique, i.e., S →L S

′ behaves as a function. When considering i/o-refinement
it is natural to assume that the LTSs agree on what is an input label and what
is an output label.

Definition 17. L1 is i/o-compatible with L2 if Lout
1 ⊆ Lout

2 and Lin
2 ⊆ Lin

1 .

We will impose the i/o-compatibility requirement, both, to simplify the technical
presentation as well as the intuition. We lift the definitions to GLASs: G is i/o-
compatible with H if dGe is i/o-compatible with dHe; and G � H if dGe � dHe.
Note that G (bGc) and H (bHc) are not assumed be deterministic.

It follows from definitions that dGe � dHe iff [G] � [H ]. The latter view is
often more natural, as it avoids duplicate equivalent states but the former view
maps more directly to symbolic analysis that works with concrete formulas.

Definition 16 is consistent with [18]. In particular, several foundational prop-
erties of � (like reflexivity and transitivity, i.e., � is a preorder) are established
in [18] that show that � is a suitable refinement relation.

2 Deterministic LTSs are called interface automata in [19].
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Example 11. Consider two GLASs Spec and Impl where `:B and αout is ¬`.

Spec :S1 S1
false

Impl :S2 S2
true

dSpece = ({S1}, {S1},UB, {true}, {false}, {(S1, false, S1)})
dImple = ({S2}, {S2},UB, {true}, {false}, {(S2, true, S2)})

It is easy to see that Impl � Spec and Spec 6� Impl . �

A useful characterization of i/o-refinement uses counter-examples.

Definition 18. A sequence a · a is a witness of L1 6� L2 or a counterexample of
L1 � L2 if a ∈ Tr(L1) ∩ Tr(L2) and either

– a ∈ Lin
2 and a · a ∈ Tr(L2) \ Tr(L1), or

– a ∈ Lout
1 and a · a ∈ Tr(L1) \ Tr(L2).

The intuition in the definition of L1 � L2 is that L1 is the implementation
and L2 is the specification. The first case means that L2 (specification) produces
an input that is not allowed in L1 (implementation). Converesely, the second case
means that L1 produces an output that is not allowed according to L2, e.g., the
implementation produces an output that does not conform to the specification.

For example, the (singleton) sequence true is a counterexample of dSpece �
dImple in Example 11. The following lemma justifies Definition 18.

Lemma 4. L1 � L2 ⇐⇒ L1 � L2 has no counterexamples.

Proof. Let Tr = Tr(L1) ∩ Tr(L2). We need to show

L1 � L2 ⇐⇒ RHS

where RHS is: for all a ∈ Tr : for all b ∈ Lout
1 if b is enabled in L1(a) then b is

enabled in L2(a); and for all b ∈ Lin
2 if b is enabled in L2(a) then b is enabled in

L1(a).
(⇐=): Assume RHS . Let

ρ = {(L1(a),L2(a)) | a ∈ Tr}.

Clearly (S0
1 , S

0
2) ∈ ρ since the empty trace is in Tr . We show that ρ is an

alternating simulation from L1 to L2. Fix (S1, S2) ∈ ρ. By definition of ρ there
is fixed a ∈ Tr such that S1 = L1(a) and S2 = L2(a). Consider any b ∈ Lout

1

such that b is enabled in S1. It follows from RHS that b is enabled in S2. Thus,
a · b ∈ Tr and, by definition of ρ, (L1(a · b),L2(a · b)) ∈ ρ. Symmetrical argument
is used for b ∈ Lin

2 . Thus L1 � L2.
(=⇒): Assume that L1 � L2. Consider a fixed a ∈ Tr . We show RHS . Let

ρ be an alternating simulation from L1 to L2 such that (S0
1 , S

0
2) ∈ ρ. It follows

from the definition of alternating simulation and a ∈ Tr that (L1(a),L2(a)) ∈ ρ.
Consider b ∈ Lout

1 such that b is enabled in L1(a). Then b is enabled in L2(a)
since ρ is an alternating simulation. Symmetrical argument is used for b ∈ Lin

2 .
Thus, RHS holds. �
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For symbolic analysis, we are interested in the approximations of i/o-refinement
that hold for a given upper length bound on traces.

Definition 19. L1 �n L2
def
= L1 � L2 has no conterexamples of length ≤ n.

It follows directly from Lemma 4 that L1 � L2 iff L1 �n L2 for all n > 0.
For example, Spec 6�1 Impl in Example 11.

4.3 Relation to ioco

The conformance relation ioco [39] is used for testing reactive systems, it stands
for input-output conformance. There are several variations of ioco, here we con-
sider basic ioco. An LTS L is input-enabled if in all states in L that are reachable
from the initial state, all input-labels are enabled.3 The following definition of
ioco is consistent with the definition in [39].

Definition 20. Let L be an LTS and M an input-enabled LTS. M ioco L iff,
for all a ∈ Tr(L) and output-labels a, if a · a ∈ Tr(M) then a · a ∈ Tr(L).

Note that G and H are not required to be deterministic in Theorem 4.

Theorem 4. If bGc is input-enabled then bGc ioco bHc ⇐⇒ G � H.

Proof. Assume bGc is input-enabled. Thus dGe is input-enabled by Lemma 2.

(=⇒): Assume G 6� H . We show that bGc ioco bHc does not hold. From
Definition 16 follows that there exists a trace a of dGe and dHe and a label a
such that either

1. a is a output-label that is enabled in dGe(a) but not enabled in dHe(a), or
2. a is a input-label that is enabled in dHe(a) but not enabled in dGe(a).

The second case cannot be true since dGe is input-enabled. So there exists a
trace a ∈ Tr(dHe) and an output-label a such that a · a ∈ Tr(dGe) but a · a /∈
Tr(dHe). By Theorem 1, Tr(dGe) = Tr(bGc) and Tr(dHe) = Tr(bHc). Thus
bGc ioco bHc is not true.

(⇐=): Assume bGc ioco bHc is not true. We show that G 6� H . From Defini-
tion 20 follows that there exists a trace a ∈ Tr(bHc) and an output-label a such
that a · a ∈ Tr(bGc) but a · a /∈ Tr(bHc). Now use Theorem 1 and Lemma 4. �

We also get the following corollary from Theorem 4 and Theorem 3 that
considers the suspension traces of LTSs.

Corollary 2. If bGc is input-enabled then bGcδ ioco bHcδ ⇐⇒ Gδ � Hδ.

3 Such LTSs are called input-output transition systems in [39].
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4.4 Bounded Non-Conformance

We are interested in the following decision problem. For GLASs G and H , a
counterexample of G � H is a counterexample of dGe � dHe and we let G �n

H
def
= dGe �n dHe.

Definition 21. Bounded Non-Conformance or BNC is the problem of deciding
if G 6�n H , for given G, H and n > 0, and finding a witness of G 6�n H .

The general case of BNC can be mapped to deciding unsatisfiability of a
bounded alternating simulation formula ASIM (ıG, ıH , n) that is defined as fol-
lows by induction over n. The correctness of the definition, i.e., thatASIM (ıG, ıH , n)
is true if and only if G �n H holds, follows by induction over n from the definition
of i/o-refinement (Definition 16). Note that ASIM (ıG, ıH , n) is a closed formula
that, in general, contains n alternations of universal and existential quantifiers
over model variables.

ASIM (P,Q, 0)
def
= true;

ASIM (P,Q, n+ 1)
def
= ∀`n(∃ΣG(P ∧OG) ⇒ (∃ΣH(Q ∧OH) ∧

ASIM (SPG(P, `n), SPH(Q, `n), n))) ∧

∀`n(∃ΣH(Q ∧ IH) ⇒ (∃ΣG(P ∧ IG) ∧

ASIM (SPG(P, `n), SPH(Q, `n), n)))

We can simplify ASIM (P,Q, n+1) to an equivalent and more pleasing form. To
see this, first observe by using de-Morgan distribution laws it is equivalent to:

∀`n(∃ΣG(P ∧OG) ⇒ ∃ΣH(Q ∧OH)) ∧ (4)

∀`n(∃ΣH(Q ∧ IH) ⇒ ∃ΣG(P ∧ IG)) ∧ (5)

∀`n

(

(∃ΣG(P ∧OG)) ∨ (∃ΣH(Q ∧ IH)) ⇒
ASIM (SPG(P, `n), SPH(Q, `n), n)

)

(6)

The antecedents of the implications encode that G andH are enabled on states P
and Q. On states where G and H are not enabled, the strongest post-conditions
are false, so we have

∀`n(α
out(`n) ∧ ¬(∃ΣG(P ∧OG)) ⇒ ¬∃ΣGSPG(P, `n))) (7)

and the same for H,Q:

∀`n(α
in(`n) ∧ ¬(∃ΣH(Q ∧ IH)) ⇒ ¬∃ΣHSPH(Q, `n))) (8)

Notice that αout(`n) and α
in(`n) are complementary, so by resolving (7) and (8)

with (6), we obtain a formula that after further simplifications is

∀`n(∃ΣGΣH(ENG∧ENH∧P∧Q) ⇒ ASIM (SPG(P, `n), SPH(Q, `n), n)) (9)

So ASIM (P,Q, n+ 1) is equivalent to the conjunction of (4), (5) and (9).



20

There is a dual symbolic view of bounded non-conformance that builds on

Lemma 4 and Definition 18. For a glas G and n ≥ 0 let SP
(n)
G be the n-fold

strongest postcondition transformation of G for a fixed sequence of distinct
unique label variables (`0, . . . , `n−1):

SP
(n)
G

def
=

{

ıG, if n = 0;

SPG(SP
(n−1)
G , `n−1), otherwise.

In other words, there exists M |=SP
(n)
G and a = (`M0 , . . . , `

M
n−1) iff a is a trace

of G of length n. Now, satisfiability of the following formula W=n
G 6�H for n > 0 is

intended to mean that there exists a witness of G 6� H of length n (note that
the empty trace cannot be such a witness), and thus, satisfiability of the formula

W≤n
G 6�H is intended to capture G 6�n H :

W=n
G 6�H

def
= SP

(n−1)
G ∧ SP

(n−1)
H ∧

(

(OG ∧ ∀ΣH (SP
(n−1)
H ⇒ ¬OH)) ∨

(IH ∧ ∀ΣG (SP
(n−1)
G ⇒ ¬IG))

)

W≤n
G 6�H

def
=
∨n

m=1W
=m
G 6�H

The witness formulas W=n
G 6�H and W≤n

G 6�H are formulas over the free variables
ΣG ∪ ΣH ∪ {`i}i<n ∪ {`}, where, besides i/o-compatibility, it is assumed that
the internal signatures are disjoint (in particular ΣG ∩ ΣH = ∅) and the label
variables are the same (` = `G = `H). The intended meaning of the witness
formula is made precise by the following theorem.

Theorem 5. Assume G is i/o-compatible with H, the internal signatures are

disjoint, and ` = `G = `H . Then W≤n
G 6�H is satisfiable iff G 6�n H.

Proof. Let G and H be as stated. Note that i/o-compatibility means that αout

G ⇒

αout

H and αin

H ⇒ αin

G. By using Lemma 4 and definition of W≤n
G 6�H it suffices to

show that W=n
G 6�H is satisfiable ⇐⇒ there exists a witness of G 6� H of length n.

Let n ≥ 1 be fixed.
(=⇒): AssumeM |=W=n

G 6�H . Let a = (`M0 , . . . , `
M
n−1) and b = `M . SoMG |= SP

(n−1)
G

and MH |=SP
(n−1)
H where MG omits ΣH (resp. MH omits ΣG).

Now assume that M satisfies the output refinement violation condition (first
disjunct of the second conjunct) of W=n

G 6�H , so

MG |=OG ∧ ¬∃ΣH (SP
(n−1)
H ∧OH).

because the variables ΣH are not free (and thus unrelated to the interpretation

given by MH). Since MG |=OG we have b ∈ Lout

G and dGe(a)
b
→dGe, and thus

a · b ∈ Tr(G). We show that a · b /∈ Tr(H) by way of contradiction:

– Suppose that a · b ∈ Tr(H). Then there exists a model N |= SP
(n−1)
H ∧ ENH

such that a = (`N0 , . . . , `
N
n−1) and `N = b. Since αout

G ⇒ αout

H , it follows
from N |=ENH and N |=αout

G that N |=OH . Let M ′ = MG ∪ N ; M ′ is



21

well-defined because ΣG and ΣH are disjoint and the interpretations of the

label variables are identical. So M ′ |= SP
(n−1)
H ∧ OH that contradicts that

MG |=¬∃ΣH (SP
(n−1)
H ∧OH).

It follows that a ∈ Tr(G) ∩Tr(H), b ∈ Lout

G and a · b ∈ Tr(G) \ Tr(H).
The case whenM satisfies the input refinement violation condition ofW=n

G 6�H

is symmetrical and shows that there exists a ∈ Tr(G) ∩ Tr(H) of length n− 1,
b ∈ Lin

H and a · b ∈ Tr(H) \ Tr(G).
(⇐=): Assume there exists a witness a · b of G 6� H of length n. Thus

a ∈ Tr(G)∩Tr(H), |a| = n− 1, and, assume b ∈ Lout

G and a · b ∈ Tr(G) \Tr(H)
(the input refinement violation case is symmetrical). So there existsN |= dGe(a)∧
dHe(a). LetM = N∪{` 7→ b}∪{`i 7→ a[i]}0≤i<|a|. It follows by similar reasoning
that is used above that M |=W=n

G 6�H . �

The dual formulation follows the lines of the bounded model program checking
(BMPC) problem [45], here adapted for GLASs. In terms of GLASs, BMPC [45]
is the following decision problem: given a glas G, bound n, and a reachability
condition ϕ that is a formula such that FV(ϕ) ⊆ ΣG, decide if there exists
a trace a of G of length ≤ n such that M |=ϕ for some M |= dGe(a). For n-
bounded approximation of i/o-refinement the reachability condition ϕ for G⊗H
corresponds to the second conjunct ofW=n

G 6�H . In the following we examine a sub-
class of GLASs when the reachability condition can be simplified by eliminating

the components SP
(n−1)
G and SP

(n−1)
H and in this way reducing the reachability

condition to (OG ∧ ¬OH) ∨ (IH ∧ ¬IG).

4.5 Robust Bounded Non-Conformance

The above formulation requires several alternations of quantifiers. This poses
a challenge even to modern SMT solvers and theorem provers, especially when
there are many quantified variables or they range over large or infinite domains.
We will therefore show in the following how to reduce BNC to a simpler BMPC
problem. For this reduction we consider GLASs that are robust in the following
sense.

Definition 22. For a ∈ LG and P ∈ SdGe, a is universal in P if P
a
→dGe implies

M
a
→bGc for all M |=P .

Intuitively, if a is universal and enabled in a symbolic state, then a is enabled in
all of the corresponding concrete states.

Definition 23. G is output-robust (input-robust) if all output (input) labels
are universal in all states of SdGe. G is robust if it is both input-robust and
output-robust.

The following is a logical formulation of the robustness conditions of a GLAS G
where we omit the index G, (observe that the conditions hold trivially when G
is deterministic):
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G is output-robust : ∀P ∈ SdGe ∀`[ ∀Σ(P ⇒ ¬O) ∨ ∀Σ(P ⇒ O) ]
G is input-robust : ∀P ∈ SdGe ∀`[ ∀Σ(P ⇒ ¬I) ∨ ∀Σ(P ⇒ I) ]

We make use of the following simple observations that follow directly from the
robustness conditions but are useful to emphasize.

Lemma 5. Let G be a GLAS and P ∈ SdGe.
(a) If G is output-robust then (P ∧ ∀Σ (P ⇒ ¬O)) ⇔ P ∧ ¬O.
(b) If G is input-robust then (P ∧ ∀Σ (P ⇒ ¬I)) ⇔ P ∧ ¬I.

Proof. (⇒) is a logical fact; (⇐) follows by robustness as follows for the case
(a): P ∧¬O implies ∃Σ (P ∧¬O), i.e., ¬∀Σ (P ⇒ O), and therefore, by output-
robustness, ∀Σ (P ⇒ ¬O) must hold. �

The robustness criterion is a sufficient condition under which BNC reduces to
the simpler BMPC problem by avoiding alternation of existential and universal
quantification of model variables of G and H that arises in the general case in
the W=n

G 6�H formula. Robustness is therefore not a limitation of the approach per
se, but a criterion that enables direct use of theories that are supported in SMT
solvers today. We define the following counterparts of the witness formulas for
the robust case.

INVG�H
def
= (OG ⇒ OH) ∧ (IH ⇒ IG)

RobustW=n
G 6�H

def
= SP

(n−1)
G ∧ SP

(n−1)
H ∧ ¬INVG�H

RobustW≤n
G 6�H

def
=

n
∨

m=1

RobustW=m
G 6�H

The corretness of the formulas with respect to the intended use, is implied
by the following theorem and Theorem 5.

Theorem 6. If G is input-robust and H is output-robust then, for all n > 0,
W=n

G 6�H ⇔ RobustW=n
G 6�H .

Proof. Assume that G is input-robust and H is output-robust. We have the
following equivalences.

W=n
G 6�H ⇔ SP

(n−1)
G ∧ SP

(n−1)
H ∧

(

(OG ∧ ∀ΣH (SP
(n−1)
H ⇒ ¬OH)) ∨

(IH ∧ ∀ΣG (SP
(n−1)
G ⇒ ¬IG))

)

⇔ (SP
(n−1)
G ∧ SP

(n−1)
H ∧OG ∧ ∀ΣH (SP

(n−1)
H ⇒ ¬OH)) ∨

(SP
(n−1)
G ∧ SP

(n−1)
H ∧ IH ∧ ∀ΣG (SP

(n−1)
G ⇒ ¬IG))

(Lma 5)
⇔ (SP

(n−1)
G ∧ SP

(n−1)
H ∧OG ∧ ¬OH) ∨

(SP
(n−1)
G ∧ SP

(n−1)
H ∧ IH ∧ ¬IG)

⇔ SP
(n−1)
G ∧ SP

(n−1)
H ∧ ((OG ∧ ¬OH) ∨ (IH ∧ ¬IG))

⇔ SP
(n−1)
G ∧ SP

(n−1)
H ∧ ¬((OG ⇒ OH) ∧ (IH ⇒ IG))

⇔ RobustW=n
G 6�H



23

�

The core idea of the reduction of BNC to BMPC is to reduce existence of
witness of G 6�n H to reachability of ¬INVG�H of bounded explorations of the
composition G⊗H , where INVG�H is an invariant P0 ∧ P1 (as defined above)
for expressing the i/o refinement relation in a given symbolic state. P0 has the
following basic form for stating the output label conformance of the alternating
simulation relation (definition of P1 is symmetrical):

∀` (∃XG(ϕ(`,XG, ΣG)) ⇒ ∃XH(ψ(`,XH , ΣH)))

where ∃XGϕ (resp. ∃XHψ) corresponds to OG (resp. OH). When the choice
variables XH have a finite sort σ, i.e., Uσ is finite, then P0 is equivalent to the
formula

∀`

(

∃XG(ϕ(`,XG, ΣG)) ⇒
∨

uH∈Uσ

ψ(`, uH , ΣH)

)

Note that the sorts of ` and model variables do not need to be finite. In this case
¬P0 is equivalent to the existential formula

∃`XG

(

ϕ(`,XG, ΣG) ∧
∧

uH∈Uσ

¬ψ(`, uH , ΣH)

)

that is handled as a quantifier-free formula (over the expanded signature) for the
purposes of satisfiability checking, assuming of course that the guards themselves
are quantifier free.

The intuition behind robustness is that internal choices should behave uni-
formly in terms of external behavior. For example, deterministic GLASs (such
as GCredits) are trivially robust, since there are no internal choices. The following
example illustrates a nontrivial example of a robust GLAS that is nondetermin-
istic and where internal choices arise naturally as a way of abstracting externally
visible behavior. Nondeterministic but robust model-programs arise naturally in
object-oriented modeling when objects are used internally and lead to isomorphic
but behaviorally indistinguishable models.

Example 12. We consider the Credits program and modify it by abstracting the
message ids from the labels. The constructors of the L sort are also modified so
that Req,Res : Z → L and the accessors Req m and Res m are removed. We
call the resulting program Credits2 :

[Action] Req(c as Integer)
require exists m where IsValidUnusedMessageId(m) and c > 0

choose m where IsValidUnusedMessageId(m)
msgs(m) := c

add m to used

[Action] Res(c as Integer)

require exists m where m in msgs and 0<=c and c<=msgs(m)
choose m where m in msgs and 0<=c and c<=msgs(m)

remove m from msgs

if c>0 add (max, max+c) to ranges

max := max+c
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We write Credits and Credits2 also for the corresponding GLASs. Credits2 has
two choice variables, say mReq and mRes, the guard and the assignment system
of Credits2 is obtained from the guard and the assignment system of Credits
by replacing each occurrence of Req m(`) (Res m(`)) with mReq (mRes). The
resulting assignment system is thus given by the require-statements, the guard
γ is:

(IsReq(`) ∧ mReq /∈ used
∧ ∃r (r ∈ ranges ∧ π0(r) ≤ mReq ≤ π1(r)) ∧ Req c(`) > 0) ∨

(IsRes(`) ∧ mRes ∈ msgs ∧ 0 ≤ Res c(`) ≤ Read(msgs ,mRes))

The assignment system ∆ consists of the assignments:

ranges :=Ite(IsReq(`), ranges , Ite(Res c(`) > 0,
Store(ranges , 〈max ,max + Res c(`)〉, true), ranges))

used :=Ite(IsReq(`), Store(used ,mReq ,Req c(`)), used)
max :=Ite(IsReq(`),max ,max + Res c(`))
msgs :=Ite(IsReq(`), Store(msgs ,mReq ,Req c(`)),

Store(msgs ,mRes, 0)

It is easy to see (at least it is easy by considering the more readable AsmL pro-
gram) that Credits2 is non-deterministic. For example, a = (Req(3),Res(3),Req(1))
is a trace of Credits2 . Initially, ranges contains the singleton 〈0, 0〉 range. So af-
ter Req(3) there is a pending request with message id (identifier) 0 (because 0 is
the only possible number in the range 〈0, 0〉. The effect of Req(3) also updates
the map msgs with to [0 7→ 3], and finally the set used becomes {0}. After
Res(3) the range of possible message ids contains the pair 〈1, 3〉 and the set of
used messages is still {0}. After Req(1), i.e., in the state S = dCredits2 e(a),
there are 3 possible models because there are three different valid unused mes-
sage ids. The three models are different on msgs. One sets msgs = [1 7→ 1], the
other sets msgs = [2 7→ 1], and the last sets msgs = [3 7→ 1]. One can show
that Credits2 is both input-robust and output-robust. The key property that
determines enabledness of a request is the number of available message ids, but
not their identity. So all models of a reachable symbolic state P are isomorphic
modulo the values of the message ids. The value of the message ids do not influ-
ence whether a guard is enabled. This property is also used for enabledness of a
response. �

The following example illustrates a GLAS that is not output-robust.

Example 13. We consider the Credits program again and this time we modify
only the Req action as in Example 12. We call it Credits3 . The AsmL formulation
is listed below.

[Action] Req(c as Integer)
require exists m where IsValidUnusedMessageId(m) and c > 0

choose m where IsValidUnusedMessageId(m)
msgs(m) := c

add m to used

[Action] Res(m as Integer, c as Integer)
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require m in msgs and 0<=c and c<=msgs(m)

remove m from msgs

if c>0 add (max, max+c) to ranges

max := max+c

For example, consider the trace a = (Req(3),Res(0, 3),Req(1)) of Credits3 .
The state S = dCredits3 e(a) contains 3 models, where, for example, the output
label Res(1, 1) is only enabled in the model in S where request 1 is pending but
not in the model where request 2 is pending. So Credits3 is not output-robust.
�

Theorem 7. Assume G is input-robust, H is output-robust, G is i/o-compatible

with H, ΣG ∩ ΣH = ∅ and `G = `H . Then G 6�n H iff (
∨n

m=1 SP
(m−1)
G⊗H ) ∧

¬INVG�H is satisfiable.

Proof. By Theorem 5, Theorem 6, and Corollary 1. �

The robustness assumptions cannot be omitted in general. This is illustrated
by the following example.

Example 14. Consider the GLAS G illustrated by the FSM in Example 9. Note
that G is not output-robust. Let G1 be a copy of G where z is replaced by z1
and x is replaced by x1. Clearly [G] � [G1] (since [G] � [G] by reflexivity of �).
Now consider G×G1 (that is the same as G⊗G1 here), where

ıG×G1 = (z = 1) ∧ (z1 = 1);

γG×G1 = (` = 1 ∧ z = 1 ∧ z1 = 1) ∨ (` = 0 ∧ z = 2 ∧ z1 = 2);

∆G×G1 = {z := Ite(z = 1, Ite(x, 2, 4), 3),

z1 := Ite(z1 = 1, Ite(x1, 2, 4), 3)}.

The LTSs bG×G1c and [G×G1] can be illustrated as follows where a pair 〈z, z1〉
shows the values of the respective model variables in bG×G1c:

bG×G1c [G×G1]

G : 〈1, 1〉 〈2, 2〉 〈3, 3〉

〈2, 4〉

〈4, 2〉

〈4, 4〉

1 0

1
1

1
G :

[z = 1∧
z1 = 1]

[(z = 2∨
z = 4)∧
(z1 = 2∨
z1 = 4)]

[z = 3∧
z1 = 3]

1 0

Consider the singleton trace (1). Fix M = {z 7→ 2, z1 7→ 4} |= dG×G1e(1).

We show that M |= ∃`¬INVG�G1 , thus SP
(1)
G⊗G1

∧ ¬INVG�G1 is satisfiable but
G � G1. The formula ∃`¬INVG�G1 is

∃`¬( ((` = 0 ∧ ∃x(` = 0 ⇔ z = 2)) ⇒ (` = 0 ∧ ∃x1(` = 0 ⇔ z1 = 2))) ∧
((` = 1 ∧ ∃x1(` = 0 ⇔ z1 = 2)) ⇒ (` = 1 ∧ ∃x(` = 0 ⇔ z = 2))))
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that is equivalent to

∃` ( ((` = 0 ∧ (` = 0 ⇔ z = 2)) ∧ ¬(` = 0 ∧ (` = 0 ⇔ z1 = 2))) ∨
((` = 1 ∧ (` = 0 ⇔ z1 = 2)) ∧ ¬(` = 1 ∧ (` = 0 ⇔ z = 2))))

and after further simplifications is equivalent to

(z = 2 ∧ ¬(z1 = 2)) ∨ (¬(z1 = 2) ∧ ¬(¬(z = 2))),

which simplifies to
z = 2 ∧ ¬(z1 = 2)

Hence, M |= ∃`¬INVG�G1. �

The following example illustrates an application of Theorem 7 when the
specification GLAS H is nondeterministic but robust.

Example 15. We consider a model program CreditsImpl that describes the ab-
stracted behavior of a protocol implementation.

var cs as Seq of Integer = []
[Action] Req(c as Integer)

require true

cs := cs + [c]
[Action] Res(c as Integer)

require cs <> [] and c <= Head(cs) and c >= 0
cs := Tail(cs)

The GLASs Credits2 (from Example 12) and CreditsImpl are both robust.
One can show that CreditsImpl �n Credits2 for any n by using Theorem 7. The
following is an AsmL formulation of the composition CreditsImpl⊗Credits2 :

var cs as Seq of Integer = []

var ranges as Set of (Integer,Integer) = {(0,0)}
var used as Set of Integer = {}

var max as Integer = 0
var msgs as Map of Integer to Integer = {->}

[Action] Req(c as Integer)
require exists m where IsValidUnusedMessageId(m) and c > 0

cs := cs + [c]
choose m where IsValidUnusedMessageId(m)

msgs(m) := c

add m to used

[Action] Res(c as Integer)
require cs <> [] and c <= Head(cs) and c >= 0

and exists m where m in msgs and 0<=c and c<=msgs(m)
cs := Tail(cs)
choose m where m in msgs and 0<=c and c<=msgs(m)

remove m from msgs

if c>0 add (max, max+c) to ranges

max := max+c

The output label (response) conformance part P0 of the invariant INVCreditsImpl�Credits2
can be formulated roughly as the following condition in AsmL (the check that
we are dealing with response messages is left implicit here):
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forall c ((cs <> [] and c <= Head(cs) and c >= 0)

implies
exists m where m in msgs and 0<=c and c<=msgs(m))

The negation ¬P0 corresponds to the following condition where c is the credits
parameter of a response message:

exists c ((cs <> [] and c <= Head(cs) and c >= 0)

and
forall m in msgs (0>c or c>msgs(m))

Within the context of a response message, the condition ¬P0 states that
a response from the implementation provides c credits, but according to the
specification there exists no justification for receiving those credits. �

Theorem 7 can be seen as a bounded exploration of a symbolic generalization
of the ioco-product of LTSs [12] that uses special fail states that detect violations
of ioco. The following definition is such a generalization.

Definition 24. Assume that G is input-robust, H is output-robust, G is i/o-
compatible with H , ΣG ∩ ΣH = ∅, and ` = `G = `H . The i/o refinement
composition of G with H is the following GLAS:

G�H
def
= (ΣG⊗H ∪ {safe}, XG⊗H , `, ıG⊗H ∧ safe, αG⊗H ,

safe ∧ (INVG�H ⇒ γG⊗H), ∆G⊗H ∪ {safe := INVG�H})

where safe is a fresh Boolean variable called the safety flag of G�H .

We say that a GLAS G can reach a predicate P over ΣG, if there exists n ≥ 0

such that SP
(n)
G ∧ P is satisfiable, and we say that a trace a of G reaches P if

dGe(a) ∧ P is satisfiable.

Theorem 8. Assume that G is input-robust, H is output-robust, G is i/o-
compatible with H, ΣG∩ΣH = ∅, and ` = `G = `H . Then G 6� H ⇐⇒ G�H can
reach ¬safe, and if a ∈ Tr(G�H) reaches ¬safe then a is a witness of G 6� H.

Proof. Let G and H be as stated. Let C = G⊗H . We show first that

ENC ⇒ INVG�H . (10)

From Corollary 1(i) follows that ENC ⇔ ENG∧ENH . By using i/o-compatibility,
we have that

(ENG ∧ ENH) ⇔ ((IG ∧ IH) ∨ (OG ∧OH) ∨ (IG ∧OH))

where IH ∧ OG has been eliminated because IH ⇒ ¬αout

H , ¬αout

H ⇒ ¬αout

G (by
i/o-compatibility), and ¬αout

G ⇒ ¬OG, i.e., IH ⇒ ¬OG. We now get, by case
analysis (recall that INVG�H is (OG ⇒ OH) ∧ (IH ⇒ IG)):

– (IG ∧ IH) ⇒ (IG ∧ IH ∧ ¬OG) ⇒ INVG�H ,
– (OG ∧OH) ⇒ (OG ∧OH ∧ ¬IH) ⇒ INVG�H ,
– (IG ∧OH) ⇒ (¬OG ∧ ¬IH) ⇒ INVG�H .
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That proves (10). We have that

ENG�H ⇔ αC ∧ ∃XC(safe ∧ (INVG�H ⇒ γC))

⇔ safe ∧ ((αC ∧ ¬INVG�H) ∨ ENC)

Where, by (10), the predicates αC ∧¬INVG�H and ENC are mutually exclusive.
The initial state is safe and G�H behaves exactly as C on safe states, i.e., has
exactly the same traces as C up to the point when the i/o-refinement invariant
INVG�H is violated at which point it transitions to an unsafe state where no
further labels are enabled. Thus,

Tr(G�H) = Tr(C) ∪
⋃

a∈Tr(C)

{a · `M |M |= dCe(a) ∧ ¬INVG�H}

The main statement follows now by Theorem 7. �

Theorem 7 (or Theorem 8) also identifies conditions where we can use stan-
dard techniques for verification of safety formulas. We use this in Theorem 9 to
formulate checking for INVG�H as a symbolic bounded model checking problem.

It can be derived from a general safety rule given in Figure 1. It is also using
the result from Theorem 7. It modifies the standard proof rule for checking
invariants to instead check for INVG�H . It uses an auxiliary invariant I for the
composed system G⊗H . The premises Ini and Ind ensure that I is inductive,
thus encode (super-sets) of the reachable states in G⊗H .

The last premise checks that INVG�H holds under the assumption of I, and
therefore holds in all reachable states. The invariant I summarizes states reach-
able in G⊗H . The internal choices are opaque in the strongest post-condition,
so I cannot distinguish states based on internal choices.

Ini : ϕ0

G ∧ ϕ0

H ⇒ I

Ind : SPG⊗H(I, a) ⇒ I for each a

INV� : I ⇒ INVG�H

G⊗H ` INVG�H

Fig. 1. Invariant rule for checking INVG�H when G is input- and H is output robust.

For bounded i/o refinement checking we have the following result.

Theorem 9. Assume that G is input-robust, H is output-robust, and G is i/o-
compatible with H. There is an effective procedure that given G, H and a bound
n > 0, creates a formula BNC (G,H, n) of size O(n(|G| + |H |)) containing free
variables `i, safei for 1 ≤ i ≤ n, and is such that BNC (G,H, n) is satisfiable iff
G 6�n H. Morover, if M |=BNC (G,H, n) then ((`1)M , . . . , (`m)M ) is a witness
of G 6�n H where m ≤ n is such that for all i < m,M |= safei, and M |=¬safem.
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Proof. Let G, H , and n be as stated and assume (wlog) that the internal signa-
tures of G and H are disjoint and ` = `G = `H . Let C = G�H . Let Σ0 = ΣC

and Σi+1 = (Σi)′. Define BNC (G,H, n) as follows, illustrated for n = 3:

ıC ∧ ( TRC(Σ
0, `1, Σ1) ∧ (safe1 ⇒

( TRC(Σ
1, `2, Σ2) ∧ (safe2 ⇒

( TRC(Σ
2, `3, Σ3) ∧ ¬safe3)))))

Theorem 8 implies that BNC (G,H, n) is satisfiable iff G 6�n H . The size of the
formula is O(n|C|). �

For the bounded version of ioco we restrict the length of the traces by a given
bound n so that all traces in Definition 20 have a length that is at most n; denoted
here by iocon. We get the following corollary of Theorem 9 and Theorem 4. Note
that input-enabledness of bGc implies input-robustness of G because if all input
labels are enabled in all rechable states in bGc then, by Lemma 2, all input labels
are universal in all symbolic states in dGe.

Corollary 3. LetH be output-robust and let bGc be input-enabled. Then BNC (G,H, n)
is satisfiable iff bGc iocon bHc does not hold.

5 Experiments

We created a prototype implementation for checking bounded i/o-refinement
formulas. The prototype uses the F# programmatic interface to the state-of-the
art SMT solver Z3 [20] to represent GLASs as a collection of transition pairs.
Each pair consists of a specification and an implementation transition and is
tagged as either in or out to indicate which direction to check the i/o-refinement.
The sample AsmL model programs used in the experiment are shown in Figure 2.
The data-types used in the model programs are mapped directly to native Z3
theories. For example, the Mode enumeration type is mapped into a special case
of algebraic data-types where enumerations are encoded as nullary constructors.

The finite map M is represented as an array, and the theory of extensional ar-
rays is used to handle the operations on M . Similarly, the set R is represented as
an array that maps integers to Booleans. The operations, element-wise addition
and removal required by Req and Res) are simply array updates. Z3 supports
richer set operations as an extension to the theory of arrays, but this example
does not make use of these. The prototype uses the fact that terms in Z3 are
internally represented as shared directed acyclic graphs. Each distinct formula
is built only once, and reused in different occurrences. The size of the resulting
path formula is therefore proportional to the number of unfoldings n and to the
size of the input model programs.

On the other hand, the size of the input does not depend on the size of the
state space. The potentially unbounded size of the state space is also not a factor
when checking for bounded i/o-refinement, but our techniques are sensitive to
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Model program Spec (H) Model program Impl (G)

enum Mode

Undef = 0
Sent = 1

Canceled = 2

var M as Map of Integer to Mode = {->}

[in,Action]

Req(m as Integer)
require not (m in M)
M(m) := Sent

[in,Action]

Cancel(m as Integer)
require true

if M(m) = Sent
M(m) := Canceled

[out,Action]
Res(m as Integer, b as Boolean)

require m in M and
(b or M(m) = Canceled)

remove m from M

var R as Set of Integer = {}

[in,Action]
Req(m as Integer)

require true
add m to R

[in,Action]

Cancel(m as Integer)
require true
skip

[out,Action]

Res(m as Integer, b as Boolean)
require (m in R) and b
remove m from R

Fig. 2. Here Req and Cancel are in-actions and Res is an out-action. The model program
Spec specifies a request cancellation protocol. A request, identified by a message id m,
can be Canceled at any time. A response must be associated to some pending request,
where if b is false then the request must have been Canceled. The model program Impl
describes a particular implementation that never cancels any requests, and responds to
all requests in some arbitrary order. Spec is an abstracted version of the cancellation
feature in the SMB2 protocol [37] (successor of the Windows SMB protocol used for
file sharing by Windows machines and machines running third party implementations,
such as Samba).

the number of paths in the unfoldings. Figure 3 shows the timings required for
checking the property BNC (G,H, n). We observed that the time overhead grows
exponentially with the number of unfoldings n (that is linear in the number
of paths that are checked). Not shown is the space overhead, which was very
modest: space consumption during solving grew linearly with n, from 12 MB to
around 20 MB.

A more interesting use of bounded conformance checking is to detect bugs in
the models used for either the specifications or implementations. We can plant a
bug in our example from Figure 2 by changing the Impl transition Res to forget
removing m from R. The bogus transition is therefore:

[out,Action]
Res(m as Integer, b as Boolean)

require (m in R) and b
skip

It takes Z3 well below a second to create a counter-example of length 3. Since
the BNC (G,H, n) formula contains equalities that track which actions are taken
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Fig. 3. Timing BNC (G,H,n), n = 1..47.

together with their parameters, it is easy to use Z3’s model-producing facilities
to extract the counter-example:

actions0 -> (req 1)
actions1 -> (res 1 true)

actions2 -> (res 1 true)

The counter-example says that the client request (Req) action is applied with
input 1, followed by two server responses (Res) using the same parameter 1. The
Spec model program is not enabled in response to this second action.

6 Related work

The current paper is an extension of [44] that generalizes the notion of model
programs to GLASs and generalizes the results in [42] related to determinis-
tic input-output model programs to GLASs. For the reduction from non i/o-
refinement checking to bounded model checking over GLASs the paper extends
the corresponding result in [42] to a class of robust GLASs that provide a nontriv-
ial extension over deterministic model programs. The experiments in Section 5
are based on the implementation originally discussed in [42]. Several computa-
tional complexity results about i/o-refinement are also studied in [42] (where
i/o-refinement is called game conformance) that carry over to the general case
of GLASs. There is a related notion of conformance of nondeterministic model
programs [43] (that checks trace inclusion, rather than i/o-refinement). An in-
teresting topic is to formally investigate its relation to i/o-refinement.

Theorem 1 is a fundamental result. It provides a link between the symbolic
and the concrete semantics of GLASs, or symbolic labeled transition systems in
general, that is instrumental for example in Theorem 4 relating i/o-refinement
to ioco. Theorem 1 may have other uses. For example, it is easy to see that it
implies the classical theorem that for each nondeterministic automaton there is
a deterministic automaton accepting the same language (set of finite traces) by
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using a special label or symbol identifying final states and considering only traces
ending with this symbol. Theorem 1 is also related to fundamental results that
relate trace semantics of CSP and CCS [28, 29], where the former correponds to
a declarative (symbolic) semantics and the latter to an operational (concrete)
semantics.

The literature on ioco [13, 40, 41] and various extension of ioco is extensive.
A recent overview and the formal foundations are described in [39]. An extension
of ioco theory to symbolic transition systems is proposed in [25]. Composition
of GLASs is a generalization of composition of model programs [47] and is also
related to composition of symbolic transition systems [24]. The application of
composition for symbolic analysis and formal relation to open system verifica-
tion has not been studied in those contexts as far as we know. We believe that
the results presented here can be used and complement the work on symbolic
transition systems in [25, 24].

The definition of SPG can be seen as a generalization the strongest postcondi-
tion (sp) transformer for discrete event dynamic systems [33], by incorporating a
(possibly infinite) alphabet theory of event labels and allowing nondeterminism.
In control theory, a (symbolic) plant is a tuple G = (P , Σ, sp, I) where P is a set
of predicates, Σ is a finite set of events, sp is the strongest post-condition trans-
former over P , and I ∈ P is a predicate (called the initial condition). The plant
G corresponds to the symbolic semantics dGe of a GLAS G such that P = SdGe,
I = S0

dGe, Σ = LdGe, and, for S ∈ P , a ∈ Σ, TdGe = {(S, a, SPG(S, a)) | S ∈ P},

and where sp(S) for S ∈ P inG is defined as
∨

a∈Σ SPG(S, a). Similar to GLASs,
the motivation for symbolic plants is to generalize the state space evolution of a
discrete event dynamic system to an infinite state space by using predicates.

Recent work on verification of hybrid systems uses qualitative action sys-
tems [3] that build on hybrid action systems [36] that provide a discretized view
of hybrid systems through action systems [6]. The discrete event view makes it
possible to verify the ioco relation between two hybrid systems [12]. Definition 24
is a symbolic generalization of the ioco-product of LTSs [12] that uses special
fail states that detect violations of ioco. For ioco, the input-conformance part
of INVG�H can be omitted, and while G is assumed input-enabled and thus
input-robust, the construct G�H assumes H to be output-robust and G to be
i/o-compatible with H .

Action systems can be viewed as GLASs, where the semantics is given through
strongest postcondition transformers rather than through the dual weakest pre-
condition transformers [23]. We believe that the results here can be used as a
mathematical foundation for a fully symbolic analysis approach of qualitative
action systems through GLASs and SMT solving, using i/o-refinement as a gen-
eralization of ioco.

We believe that GLASs can also be used as a foundation for symbolic analysis
of Event-B models [2] that is an extension of the B-method [1] with events
(corresponding to labels of a GLAS) that describe atomic behaviors, where each
event is associated with a guard and an assignment, that causes a state transition
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when the guard is true in a given state. Composition of Event-B models is
discussed in [35, 16].

Symbolic analysis of refinement relations through theorem proving are used
in hardware [15, 14]. Various refinement problems between specifications are also
the topic of many analysis tools, where sets and maps are used as foundational
data structures, such as ASMs, RAISE, Z, TLA+, B, see [8], where the techniques
introduced here could be applied. In some cases, like in RAISE, the underlying
logic is three-valued. In many of the formalisms, frame conditions need to be
specified explicitly, and are not implicit as in the case of model programs or
ASMs. In Alloy [30], the analysis is reduced to SAT, by finitizing the data types.
In our case we bound the search depth rather than the size of the data types.

For implementation, we use the state of the art SMT solver Z3 [20], discussed
in Section 5. Our experiment indicated that Z3 could be used for modest bounded
exploration. More interestingly, it posed an intriguing challenge for solvers like
Z3 to better handle diamond structured formulas. One technique for handling
diamond style formulas is explored in [9]. It uses a combination of abstract
interpretation and constraint propagation to speed up the underlying constraint
solving engine.

BMPC [45], that is used in Section 4, is a generalization of SMT based
bounded model checking [22] first to deterministic model programs [46] and then
to GLASs. The notion of i/o-refinement of GLASs uses the game view of open
systems [18]. The game view can also be used to formulate other problems related
to input-output GLASs, such as finding winning strategies to reach certain goal
states. Game based testing approaches with finite model programs are discussed
in [10] using reachability games. There is a different notion of IO-refinement,
introduced in [11], that is used in Z as a generalization of data refinement by
allowing refinement of input and output parameters. This is quite different from
i/o-refinement of GLASs, that is based on refinement of interface automata.

7 Conclusions

GLASs provide a framework for symbolic analysis of labeled transition systems
and close the, almost decade-long, discussion regarding the precise relationship
between alternating simulation and ioco, where both notions are being used in
state-of-the-art model-based testing tools both in industry as well as academia.
In a more general setting, the results of the paper relate the areas of open system
verification and testing of reactive systems by providing a common mathematical
foundation for the basic underlying notions. We believe that recent advances in
symbolic analysis techniques, in particular SMT solving, make the approach
also practical, expose new challenges, and will lead to new algorithmic insights
in software testing and verification.
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