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ABSTRACT 
In this work, we propose a combined multi-core 

architecture with the capability for instruction set extension 

(ISE).  We show that while both multi-core and ISE exploit 

parallelism, they do so differently.  For this reason multiple 

cores and ISE could be combined to obtain greater 

performance improvement than the sum of the two alone.  

To evaluate this, we implement a dual core microprocessor 

on a FPGA using an extensible soft-core, eMIPS and 

mapped the Floyd-Warshall all points shortest path 

algorithm to this system.  Overall, the combined technique 

yielded performance 3.25x faster and 1.73x faster than 

parallel or ISE techniques alone. 

 

1. Introduction 
The advancement of microprocessor performance based on 

increasing clock frequencies into the higher gigahertz range 

has come to an end.  Modern technology and 

manufacturing processes cannot overcome the stability and 

thermal issues at these higher frequencies.  New fabrication 

processes however have made it possible to make denser 

logic at the same or reduced cost.  The availability of 

additional computing resources has made parallel execution 

on multiple functional blocks or processing units a 

promising new vector for microprocessor advancement. 

These parallel execution blocks have taken the form of 

additional general purpose processor cores, application 

coprocessors and instruction set extensions.  These 

additional processing units can perform tasks in parallel 

increasing throughput and performance and in some cases 

more efficiently than the general purpose microprocessor 

cores they support.  Additionally, these processing units 

can be specialized to perform functions not previously 

available to general purpose microprocessors. 

Combined with their respective programming models and 

APIs, these new architecture exploit different types of 

parallelism that exists within user applications with varying 

levels of success.  As these different architecture features 

for improving performance by exploiting parallelism 

emerge, we should recognize that these techniques are not 

mutually exclusive.  These techniques could be combined 

without one detracting from another and in some cases the 

combination can be more than the sum of its parts. 

This is the case we make for extensible instruction set 

multi-core microprocessors.  In this work, we present the 

design of a extensible instruction set multi-core 

microprocessor based on previous work done with the 

extensible MIPS RISC microprocessor, eMIPS [7].  Then 

we will demonstrate how better performance can be 

achieved combining extensible processor cores into a single 

microprocessor than either multiple cores or instruction 

extension alone. 

 

2. Multi-Core versus Instruction Set 

Extension (ISE) 
The multi-core revolution occurred in the convergence of 

two important circumstances.  First, hardware engineers 

have pushed the frequency and thermal capabilities of 

modern circuit technology.  Second, improvements in 

fabrication processes have significantly reduced the sizes of 

transistors that make these circuits, making it possible to 

pack orders of magnitude more logic density into the same 

die. 

Microprocessor developers can now manufacture more of 

their existing architectures smaller and more cheaply with 

these new processes.  However, since they could not find a 

way to clock them any faster they could not continue the 

aggressive progress in processing power from generation to 

generation to which they had become accustomed.  The 

solution that emerged was to pack more these smaller, 

cheaper cores into a single microprocessor chip. 

Multi-core microprocessors are now becoming ubiquitous 

in all types of computing.  Sony, Toshiba and IBM 

produced their well-known CELL processor which contains 

a single Power Processor Element and eight Synergistic 

Processor Elements [1].  NVIDIA's multi-core graphics 

processor units (GPUs), e.g. 128-core GeForce 8800, 

provide another example of multi-cores in graphics 

applications [2].  General purpose processor providers, 

Intel and AMD, have their own multi-core architectures 

represented by the Xeon [3] and Opteron [4] respectively. 

The ideal maximum improvement in performance a multi-

core microprocessor provides over a single core is directly 

proportional to the number of cores used to perform the 

same task.  In other words, a microprocessor with X cores 

should be at most X times faster than a microprocessor with 

a single similar core.  However, software developers 



continue to have difficulty taking full advantage of the 

computing power modern multi-core microprocessors 

provide.  This shortcoming is represented in Amdahl's Law, 

which states that there exists a limit to the performance 

improvement provided by multi-core microprocessor on 

applications where only a portion can be parallelized.  In 

addition, the degree of parallelism within these portions of 

the application is a factor [5]. 

If the application can only be partitioned into two, the most 

improvement a multi-core implementation can expect on a 

multi-core system with more than two cores is 2x assuming 

this is true for the entire application.  If this is true for only 

half the application this performance improvement further 

degrades to 1.34x.  These approximations do not account 

for the effects of other factors including cache architectures 

and memory speeds.  They do not account for overheads 

for partitioning and synchronization required in multi-core 

systems either. 

Instruction set extension has gained popularity in the 

embedded space where microprocessors with reduced or 

minimal capabilities are augmented with specialized 

instructions for a particular application to conserve area, 

power and cost with relative minimal impact on 

performance.  These specialized static microprocessors are 

the predecessor of a new trend, configurable computing 

where dynamically extensible microprocessor can 

configure specialized hardware to augment capabilities and 

application performance at runtime. 

Our own eMIPS microprocessor is an example of a 

dynamically extensible processor [7].  Figure 1 provides a 

high level block diagram of the eMIPS extensible 

microprocessor.  There are several commercial examples of 

statically extensible or custom microprocessors such as the 

Tensilica Xtensa [19] , the MIPS Pro Series [20] and the 

ARC 6000 Series [21]. 

Rather than partitioning out large task to be carried out in 

parallel like multi-core, instruction set extension augments 

the capabilities of a single core by making highly repeated 

and common task more efficient.  In some cases this is 

done by taking advantage of low level parallelism in the 

operations or data of the application's execution.  Like the 

multi-cores, the instruction set extension performance is 

bounded by Amdahl's Law [5].  The performance 

improvement provided by an instruction extension is 

derived by the proportion of execution time the instruction 

extension is in use times the speed up using the instruction 

extension over using the general purpose hardware.  

Therefore, if an instruction set extension can perform a task 

2x faster than the general purpose hardware but the task 

only makes up half the execution time, the overall speed up 

is only 1.34x like the multi-core. 

However, unlike the multi-core scenario, the use of 

dynamic instruction set extensions to accelerate application 

performance requires a level of hardware knowledge that 

most software developers simply do not possess.  In the 

past tools for assisting software developers with this have 

been difficult to use and variable in their effectiveness.  

This has improved in recent years but they still have much 

further to go before the average software developer will 

consider them.  Despite this, the demonstration of some 

computational and data intensive applications attaining 

orders of 1000x speed up using instruction set extension 

and dedicated hardware keeps interest alive. 

Given an application where at least half can be partitioned 

between two processing cores.  Lets propose that both 

partitions of this code contain tasks that can be optimized 

using instruction set extensions to increase performance of 

those task like the previous paragraphs.  By combining 

these techniques on this part of the application, the overall 

performance could theoretically approach 1.6x.  Then, if 

we could use instruction set extension on the part of the 

application that could not be partitioned, the application 

could come closer the 2x speed up you would expect from 

a dual core system. 

 

3. MultiCore eMIPS Research Platform 
We used the Berkeley Emulation Engine (BEE3) developed 

in cooperation with Microsoft Research and UC Berkeley 

for implementing the MultiCore eMIPS system.  The BEE3 

includes four Virtex 5 FPGAs (xc5vlx110t-2ff1136).  Each 

FPGA has two channels of 8 GB of DDR2 memory for a 

total of 16 GB per FPGA and 64 GB for the entire system.  

Each FPGA also has a serial line and Ethernet.  The FPGAs 

of the BEE3 are linked in a ring configuration to allow for 

high speed communication between them. 

Development of the MultiCore eMIPS can be configured 

into two different ways:  Single FPGA shared memory 

configuration and the Multi-FPGA message passing 
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Figure 1.  eMIPS architecture [7]. 



configuration.  The following sections describe the design 

of these configurations in greater detail.   

 

3.1 Single FPGA Shared Memory 
The original eMIPS microprocessor from which this work 

is derived utilizes a memory mapped IO system for 

interfacing to memory and peripheral devices.  This method 

is carried over into this phase of the multi-core 

development.  In order to maximize flexibility within the 

system, we classified peripherals into two classes:  local 

memory peripherals (LMP) and shared memory peripherals 

(SMP). 

Figure 2 represents a organization of the single FPGA 

shared memory system with two cores.  Given the size of 

the FPGA, resource requirements of the cores and 

supporting hardware interfaces we decided to include two 

cores to leave enough room to make implementation easier 

and add features later. 

 

3.1.1 Local Peripherals 
Local Peripherals are connected directly to the memory 

interface of their host core.  Each core in the eMIPS 

MultiCore system has its own set of local peripherals and 

cannot access the local peripherals of any other core.  For 

this reason the address spaces of these local peripherals can 

overlap.  Local peripherals of each core can be assigned to 

the same address space and each core will only access their 

own.  The set of local peripherals includes a local block 

ram and timer. 

The local block ram is a memory that is fast and close to its 

host core.  It provides the core with a memory space that it 

can use for performing local task without competing with 

other cores for the memory resource.  The typical 

configuration is 32-bit wide, one cycle access time, and 64 

kB bytes total.  The local timer is used for local scheduling 

task.  The host core can use either a free running counter or 

down counter to trigger interrupts or keep track of elapsed 

time.  The timer uses a 10 MHZ clock which makes 

converting ticks from the timers to real time very easy. 

 

3.1.2 Shared peripherals and the Bridge 
The shared peripherals are those that can be used by either 

core in the single FPGA system.  These peripherals either 

have a global effect that is used for synchronization or 

communication between the cores, or controls a singly 

instantiated, shared physical resource.  These peripherals 

were designed for use with the original eMIPS 

microprocessors and thus interface to the local memory bus 

of one core.  In order to allow two cores to share this 

peripheral, bridges were implemented for each peripheral to 

connect them to the local memory bus of each core.  The 

bridge implements the local bus protocol using three ports: 

one to each core and one to the peripheral.  Memory 

commands enter through the core ports and are either 

routed to the peripheral port or held waiting depending on 

the free/busy state of the bridge. 

In order to add and remove peripherals in an easy modular 

fashion, address decoding is performed distributed within 

the peripherals themselves.  Each peripheral connects to the 

address bus of the memory interface.  The peripherals 

evaluate the address on the address bus to determine if it is 

within range assigned to this peripheral.  If so it 

acknowledges the request and performs the read or write 

transaction.  Based on which peripheral acknowledges the 

request the memory interface routes data from the 

peripheral to the core or vice versa. 

In order to design the bridge, an issue with the address 

decoding had to be solved.  The problem is that the bridge 

does not include this address decoding logic and does not 

know the address range for the peripheral it is connected to.  

In order to maximize model reuse, we chose to implement 

the bridge as a series of multiplexor controlled by a state 

machine.  The state machine implements a round-robin 

protocol for connecting the two core ports to the one 

peripheral port on each bridge. 

The state machine contains six states including idle, 

listening and active for each core.  Figure 3 provides a flow 

chart of the bridge state machine.  States S00, S01 and S02 

are mirror states to S10, S11 and S12 respectively.  States 

S0x act on Core 0 and states S1x act on Core 1. 
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Figure 2.  Structure of the Single FPGA shared 

Memory system. 



States Sx0 are idle states.  During these states, the shared 

peripheral connected to the bridge is not connected to either 

core and the local bus connecting the peripheral to the 

bridge is inactive.  While in states Sx0, the bridge waits for 

a memory request from the cores.  If the state machine is in 

state S00, it gives preference to Core 0 and in state S10 to 

Core 1.  When the bridge gets a request it transitions states 

to one of the states Sx1:  state S01 for a request from Core 

0 and state S11 for Core 1. 

States Sx1 are the listening states.  During these states, the 

bridge has received a memory request from one of the 

cores.  In state S01 Core 0 is active and in state S11 Core 1 

is active.  The bridge routes the address of the memory 

request from the active core to the peripheral and waits for 

the peripheral to respond.  If the address is within the 

peripheral‟s range it will send an acknowledgement.  The 

bridge routes this acknowledgement to the active core and 

transitions to states Sx2:  S02 for Core 0 and S12 for Core 

1.  If the peripheral does not respond within seven cycles or 

another peripheral responds, the bridge transitions to the 

Sx0 state of the core opposite of the active core:  S10 for 

Core 0 and S00 for Core 1. 

States Sx2 are the active states.  During these states the 

bridge has received a memory request from a core and the 

peripheral has acknowledged it.  In state S01 Core 0 is 

active and in state S11 Core 1 is active.  In these states the 

data busses in and out of the peripheral are routed between 

the active core and the peripheral through the bridge.  The 

bridge waits for the peripheral to signal the transaction is 

complete before disconnecting the core from peripheral and 

returning to the idle state opposite to the active core:  S10 

for Core 0 and S00 for Core 1. 

Peripherals included in the shared peripherals include the 

DDR2 memory, serial line, Ethernet, global timer, shared 

block ram, interrupt controller, message boxes and 

processor id registers.  Some of these peripherals provide 

essential functions for the multi-core system and will be 

discussed in more detail.  The DDR2 memory, serial line 

and Ethernet are physical resources and must be shared by 

the cores. 

 

3.1.3 Contention Resolution for Shared Memory and 

the Memory Reservation Unit (MRU) 
In a single FPGA system, the cores share access to the 

memory resources including the shared block ram and the 

DDR2.  In this situation it is possible for one core to 

modify the memory being accessed by another.  Software 

can be written to avoid this situation but a hardware 

mechanism is still required to prevent collision.  The MIPS 

ISA provides support for atomic read modify write that can 

be used for this purpose.  This mechanism is realized via 

the instructions LoadLink (LL) and StoreConditional (SC). 

LoadLink is a 32-bit word load that reads data from a given 

address into a general purpose register inside the MIPS 

core.  In addition to reading the data, Loadlink reserves that 

address for that core.  The reservation remains valid until 

another LoadLink is issued for another address or a store 

occurs on that address that is not a store conditional for that 

core. 

StoreConditional is a 32-bit word store that writes the 

contents of a general purpose register to a given address.  

What makes this different from a normal store is that the 

store only happens if the address being written to has a 

valid reservation from a previous LoadLink.  If the 

reservation is still valid, the store completes and a one is 

written into the general purpose register the data had come 

from.  Otherwise the data is not written and the general 

purpose register is given the value of zero. 

The value of the register after the StoreConditional 

communicates to software whether the store occurred or  

whether a collision has occurred.  In this way, it is possible 

for a MIPS core to support lock free atomic read modify 

write across threads, processes, and cores on shared 

memory.  This mechanism is implemented in the memory 

reservation unit (MRU). 

The memory reservation works using physical memory 

addresses instead of virtual memory addresses.  For this 

reason, in the original eMIPS implementation the MRU 

was placed in the memory data path after the memory 

management unit (MMU) but before the local memory bus 

to evaluate the reservation status as early as possible.  

However, to support two cores, it was necessary to move 

this element after the local memory bus and before the 

peripherals, as seen in Figure 2. 
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Figure 3.  State Machine for the Distributed Shared 

Peripheral Bridges. 



The MRU receives memory transaction request from both 

cores in parallel and evaluates them against any address 

stored in the reservation with a valid flag.  MRU passes 

loads through to the local memory bus regardless.  

LoadLink instructions are passed through but the MRU 

updates the reservation and sets the valid flag.  The MRU 

passes stores through but if the address matches the address 

in the reservation, the MRU clears the valid flag.  If the 

MRU gets a StoreConditional instruction it evaluates the 

reservation address and the valid flag.  If the address 

matches and the valid flag is set, the store goes through and 

the MRU notifies the core of the success.  If the address 

does not match or the valid flag is clear the store does not 

go through and the MRU similarly notifies the core of the 

failure. 

The MRU includes only one reservation for the two cores 

in the single FPGA system.  Therefore, it is possible for the 

two cores to get into livelock condition if they repeatedly 

attempt an atomic read modify write at the same time that 

interleaves the LoadLink and StoreConditional instructions.  

Software mechanisms such as random delays on a failed 

StoreConditional are possible solutions to this situation. 

 

3.1.4 Other Synchronization Mechanisms 
The single FPGA multi-core system supports several 

mechanisms for core synchronization.  It is necessary for 

the cores working on related problems to communicate in 

order to deal with data and control dependencies.  In order 

to facilitate this communication, the single FPGA system 

includes the shared message boxes. 

Each core in the single FPGA system has its own message 

box within the shared address space.  In order to coordinate 

and synchronize, cores can send messages to each other 

using these messages boxes.  The current implementation 

of the messages box includes a 32-bit register accessible 

through memory mapped IO where cores can write user 

specified command codes within their applications.  

Additional space could be added for more complex 

commands and communications. 

With these message boxes, we implement a simple barrier 

synchronization function for the two cores.  At certain 

points in the application execution, the barrier function is 

called to force the core to wait on the other core.  Inside the 

barrier function the core spins polling its message box.  It is 

waiting for the other core to write the go message into its 

message box.  Example code for these functions is provided 

in Figure 4. 

In some cases, polling the shared message box would not 

be preferred because of the additional traffic on the shared 

peripheral.  Instead the barrier could be modified spin on a 

global Boolean variable in the cores local memory.  The 

state of this variable can be changed in an interrupt service 

routine triggered by an interrupt from the other core. 

The shared interrupt controller allows the software 

developer to route interrupts from peripheral devices to one 

or both cores.  The interrupt controller also allows each 

core to send interrupts to the other.  In this way the barrier 

functions could be modified to have the active core write 

the go command to the idle cores message box and then 

trigger an interrupt to that core through the interrupt 

controller.  The idle core stop spinning in the barrier 

function to service the interrupt.  Since it is a neighbor core 

interrupt, the interrupt service routine will read the message 

box.  If it sees the go command, it changes the state of the 

barrier Boolean variable and the idle core will exit the 

barrier function. 
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Figure 5.  Dual core boot up and initialization process. 

/* barrier function for core 0 */ 

1. void barrier(void){ 

2.         volatile UINT32 * mb0 = MBADDR0;  

3.         volatile UINT32 * mb1 = MBADDR1;  

4.         *mb0 = 0x5555aaaa; 

5.         while(*mb1 != 0x5555aaaa); 

6.         *mb1 = 0x0; 

7. } 

 

/* barrier function for core 1 */ 

1. void barrier(void){ 

2.         volatile UINT32 * mb0 = MBADDR0;  

3.         volatile UINT32 * mb1 = MBADDR1;  

4.         *mb1 = 0x5555aaaa; 

5.         while(*mb0 != 0x5555aaaa); 

6.         *mb0 = 0x0; 

7. } 

Figure 4.  Barrier synchronization functions. 



3.1.5 Initialization 
When the microprocessor system starts up for the first time 

or reboots, it is necessary for the system to initialize itself 

and prepare to run application code.  In the first eMIPS 

version this was done by running a short program stored in 

the on-chip block ram at the reset vector.  With multiple 

cores however, this becomes a little more complicated.  A 

flow chart of the initialization sequence is given in Figure 

5. 

To configure the peripherals, we read and write the 

configuration registers available to us through the memory 

mapped IO.  If we naively allowed both cores to share the 

same start up code and had both start configuring the 

peripherals same time.  This would result in these reads and 

writes occurring twice and in different orders.  Some of 

these reads and writes have side effects that would result in 

invalid configurations if documented initialization is not 

performed correctly. 

Since we cannot have both cores executing initialization 

code at the same time, we designate Core 0 to be the master 

core in the system and the only active core at system reset.  

This is accomplished using the processor id registers.  Only 

the master core, Core 0, has a valid processor id and can 

start running.  All other cores, such as Core 1, do not have 

valid processor ids and are considered inactive. 

When the system comes out of reset, Core 0 has a valid 

processor id and Core 1 does not.  Both Cores start fetching 

instructions from their reset vectors which point to their 

local block rams.  Contained within the block ram is the 

processor initialization code.  Both cores run this local 

initialization until they reach a processor id check.  The 

check forces the processor to spin checking its processor id 

register until reads a valid processor id.  Since only Core 0 

has one, it is the only core that gets past this check and does 

not spin. 

While Core 1 spins, Core 0 proceeds to initialize the system 

including initializing the memory system and the serial 

line.  Then the Core 0 either activates Core 1 by writing a 

valid processor id to its register or it can put the core to 

sleep.  At this time, the system enters the application code.  

Only Core 0 can write to the processor id registers of the 

cores on its system. 

 

3.2 Multi-FPGA Message Passing 
The single FPGA system currently contains two processing 

cores in a largely self contained system.  This same design 

could be configured to all four of the FPGAs of the BEE3 

and they could communicate over the Ethernet in cluster 

like configuration. 

However, since the FPGAs on the BEE3 are linked using 

the ring, it is possible to link them into a more tightly 

coupled system of eight processing cores.  To achieve this, 

the original dual core design is expanded to include a 

message passing router on the BEE3 ring as presented in 

Figure 6.  These four pairs of cores will be more decoupled 

with their own memory than the pairs on the same FPGA 

that share memory.  There are three considerations when 

setting up this system: 

1) How to guarantee the low level signal stability 

transferring data on the ring? 

2) How to route data from one processor core to 

another? 

3) How to initialize the system across multiple 

FPGAs and cores? 

The following sections will discuss these issues and present 

the solutions we developed to deal with them. 

 

3.2.1 BEE3 Ring 
The BEE3 ring connects the four FPGAs using point to 

point wired connections between a pair of neighbor 

FPGAs.  Figure 7 shows how the ring connects the FPGAs 

on the BEE3 system.  Each connection between a pair of 

FPGAs includes 72 bidirectional data lines and five 

bidirectional strobes.  On top of this we constructed two 

36-bit rings, 32-bit data and 4-bit parity, with some control 

signals each going in opposite directions.  In this way, each 

ring is unidirectional which simplifies the design and 

implementation but maintains two way communication 

between each pair of FPGAs 

There are two concerns that must be addressed in order to 

reliably use the ring for inter-chip communication.  First, 

the trace delays of the wires that make up the ring 

connections are not guaranteed to be of the same length, 
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Figure 6.  Structure of Single FPGA with Multi-

FPGA Message Passing. 



which skews signals across different wires.  Even if the 

traces are very close, minor variations in e.g. temperature 

can have significant impact in how fast a signal propagates 

through one wire versus another.  The second issue, is that 

we cannot know or guarantee that the clocks of any pair of 

FPGAs on the BEE3 are in any way aligned. 

It is possible to align the trace delays of the data lines 

between the FPGAs, using the configurable input delays of 

the FPGA's configurable I/O pins.  This would require a 

complex calibration procedure each time the system is 

reset, and recalibration could be required during system 

operation due to changes in temperature.  The costs in 

engineering effort and FPGA logic resources to make it 

work correctly were considered too high.  Given the short 

time frame for this work, and high speed communication 

between FPGAs is not the focus of this work, this approach 

was not taken. 

If the frequency at which the data lines switch on the ring is 

sufficiently low the small difference in propagation delay 

become negligible compared to the overall time the data is 

valid.  We developed and tested the communication frame 

work using a relatively low 50 MHz clock, and we 

achieved complete reliable communication between the 

FPGAs, under saturated conditions.  We tested the ring 

using a 100 MHz clock as well, but the testing rig we 

designed was not able to saturate the ring at this frequency.  

At a frequency of 50 MHz, we were able to maintain a 

bandwidth roughly 1.6 Gb/s, versus 1 Gb/s for Ethernet due 

to the wider data width over a direct point to point 

connection.  For this reason, we proceeded with the 50 

MHz implementation. 

We still have to deal with the lack of clock alignment 

between the FPGAs.  The send and receive pins on each 

FPGA are implemented using FIFOs with independent read 

and write clocks.  In addition to this, we used two of the 

five strobe lines in the ring to transmit the clock of the 

transmitter to the receiver.  The transmitter fills the 

transmitter FIFO using its internal logic clock, at 100 MHz.  

The transmitter sends data from its transmit FIFO using its 

50 MHz ring clock.  This clock is sent over one of the 

strobe lines to the receiver and is used as the write clock 

input of the receiver FIFO.  The receiving FPGA then reads 

the contents of the FIFO using its own clock, at 100 MHz.  

In this way the clock used to receive the data is aligned to 

the data, but does not need to be aligned with the receiver's 

main clock. 

 

3.2.2 Message Packets and Routers 
The messages the FPGAs send to each other on the ring are 

organized into packets.  Each packet has four parts:  lead 

in, header, payload, and lead out. 

The lead in and lead out are patterns of bits appended to the 

beginning and end of the packet by the transmitter and 

stripped off by the receiver.  The purpose of these is to 

communicate between the transmitter and the receiver what 

is the beginning and end of the packet currently in 

transmission.  The transmitter first sends the lead in before 

sending the packet from the FPGA cores and sends the lead 

out after the last word of the packet.  The receiver listens 

for the lead in on its ring inputs to activate its capturing and 

forwarding logic and listens for the lead out to reset it. 

Immediately following the lead in is the packet header.  

The packet header is a single 32-bit word that contains four 

fields:  8-bit destination, 8-bit source, 6-bit control and 10-

bit size.  The destination and source fields contain the 

processor ids of the destination and source cores for the 

packet.  The destination field is used by the routers to 

deliver the packet to the correct FPGA and core.  The 

source is simply for record keeping so the core receiving 

the packet can know where it came from.  The control field 

contains information about the packet including the 

direction on the ring it is travelling, whether it is a data or 

command packet and the count of hops the packet has 

already made.  The direction control tells the transmitter 

FPGA 0

FPGA 3

FPGA 1

FPGA 2

R
IN

G
_

U
P

_
E

R
IN

G
_

U
P

_
W

RING_UP_S

RING_DOWN_N

RING_DOWN_S

RING_UP_N

R
IN

G
_

D
O

W
N

_
W

R
IN

G
_

D
O

W
N

_
E

CLOCK

DATA

FULL

FULL

DATA

CLOCK

 

Figure 7.  BEE3 Ring. 
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Figure 8.  Message Packet Router. 



which ring output to send the packet on.  When the hop 

count reaches four without reaching its destination the 

receiver drops the packet as dead or undeliverable.  This 

case will only happen if the value in the destination field 

does not correspond to an assigned processor id.  Most 

packets sent on the ring are data packets.  A small number 

of command packets are used to configure the 

communication on the ring at initialization.  With the size 

field, the ring's transmitters and receivers can support 

packets up to a kilobyte in size. 

The message packet router implemented on each FPGA has 

multiple levels as depicted in Figure 8.  There is local 

routing between cores on the same FPGA without 

involving the ring.  If the destination is outside the local 

FPGA it is dispatched appropriately on the ring. 

Using a DMA interface, the source core writes the header 

to the command FIFO and the data to a data FIFO.  The 

high level router control pulls the head off the command 

FIFO and evaluates the destination of the message packet.  

If the destination processor id is within the same FPGA as 

the source, the header and data are forwarded to the 

receiving command and data FIFOs of the destination core.  

Similarly a DMA operation transfers the header and data to 

memory before interrupting the receiving core. 

If the packet is bound for another FPGA, it arrives at the 

transmitter where the direction control bit determines the 

ring transmit FIFO the packet is written to.  The transmitter 

first sends the lead in, then the header, data and finally the 

lead out.  When the packet is received by the neighbor 

FIFO the destination processor id is evaluated against the 

processors ids of the cores on that FPGA.  If it is a match 

for any of them, the packet is stripped of the lead in and 

lead out as it is forwarded to the appropriate core by the 

high level router control.  However, if this is not the 

destination FPGA for the packet, the hop count is 

incremented before forwarding the packet to the next 

FPGA in the ring through this FPGA's transmitter.  If the 

hop count manages to get to four without being delivered, it 

is dropped. 

 

3.2.3 Multi-FPGA Initialization 
As was discussed in section 3.1.5, the task of system 

initialization at start up and reset can be complicated by the 

addition of additional processing cores that can access 

peripheral hardware devices and that share software.  This 

scenario is further complicated by having multiple cores 

residing on different physical FPGAs with their own 

clocks, configuration registers, memories and hardware 

peripherals.  To handle this we extend the model we 

previously used for the multiple cores on a single FPGA. 

Similarly to the single FPGA case we use the processor ids 

to control the flow of the initialization sequence.  In the 

Multi-FPGA system there is one master core for the whole 

system that will coordinate the others, like the single FPGA 

system.  In addition, each FPGA will have a primary core 

of its own.  In the case of the FPGA with the master core, 

the master core is the primary core.  Figure 9 provides a 

flow chart of the boot up and initialization sequence for the 

larger multiple FPGA system. 

Here the most significant bit of the processor id is used to 

designate the processor id as valid or invalid.  If the most 

significant bit of the processor id is set, it is considered 

invalid.  The least significant bit of the processor id 

distinguishes the primary core of a single FPGA from the 

other cores in the same FPGA.  This bit of the processor id 

is read only to the master core like the rest of the processor 

id is read only to the other cores.  If the least significant bit 

of the processor id is clear, this is the primary core.  

Otherwise it is one of the secondary cores on the FPGA.  

The master core for the system is initialized with the 

processor id of zero (0x0), making it both a valid and 
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Figure 9.  Multi-Core boot up and initialization across 

multiple FPGAs. 



primary core.  The other primary cores are initialized with 

the processor id 0x80 and other cores are initialized to 

0x81. 

First, each core checks its processor id to determine if it is a 

primary core.  If so, it initializes the local resources of that 

FPGA including the memory.  Other resources can be 

initialized here as well or left for the application software to 

configure.  At this point all cores check if they are the 

master core.  Since Core 0 on FPGA 0 is the only master 

core, it proceeds to configure the serial line for console 

communication and any other initialization required for the 

primary core and FPGA that was not already done.  The 

serial lines and Ethernet resources of the other non-master 

FPGA can be made usable by the application software if 

necessary.  Meanwhile, the other cores spin polling their 

processor ids to see when they become valid. 

To activate a core, the master core must change processor 

id that the core is initialized to a unique valid one.  In the 

single FPGA shared memory implementation this was 

easily done through memory mapped IO with master core 

writing the processor id to the register.  However, with 

multiple cores on different FPGAs that do not all share the 

same memory subsystem as the master core, this is not 

sufficient.  Using the message passing capabilities of the 

ring the master core begins activating the other cores in the 

system. 

As stated in section 3.2.2, there are two types of message 

packets used in the eMIPS MultiCore system:  data and 

command packets.  The master core makes use of these 

command packets to assign processor ids and activate other 

cores in the system.  Control logic is included in the ring 

message packet router to update the processor id of a core 

when a command packet for assigning a processor id 

arrives. 

Using the message passing infrastructure for configuring 

the system seems like the obvious solution.  However, the 

message routing utilizes the processor ids to route the 

message to the intended core.  So, how do we send a packet 

to a core to assign its processor id if it does not already 

have one?  The solution is in the processor id assignment 

protocol implemented with the command packets. 

The command packet for assigning a processor id is a 

single word header with no data payload.  The source 

processor id field contains the processor id of the master 

core, 0x0.  This is required for the command packet 

because only the master core can assign processor ids.  The 

destination field of the header contains the new processor 

id to be assigned to the core.  The command bit in the 

control flags is set and the direction bit is arbitrary.  The 

size field is set to 0x0. 

The protocol establishes that any core that does not have a 

valid processor id will receive this packet and the router 

control logic will assign the core the processor id in the 

destination field.  After the processor id is assigned, the 

master core and any other core may send data packets to 

the core for synchronization or communication purposes. 

There are no hardware mechanisms to prevent duplicate 

processor ids.  It is the responsibility of the application 

software to assign and account for the processor ids in use.  

Consequently, software could choose to realize other, more 

complex schemes that do not assume the master is chosen 

by hardware. 

 

3.3 Multi-Core Software 
The current implementation of the eMIPS MultiCore 

system does not have any operating system support.  The 

base ISA of the eMIPS MultiCore system is the MIPS 

R3000 ISA and to our knowledge there is no publicly 

available operating system for supporting multiple cores on 

a MIPS. 

For this reason, we are limited to testing the system using 

custom test applications.  We have written shared memory 

test programs to test the hardware features of the single 

FPGA and Multi-FPGA systems.  This includes tests of the 

shared memory peripheral bridges, message boxes, 

processor ids, interrupts, synchronization, initialization and 

message routing. 

Based on these tests using the barrier functions for 

synchronization we developed two test applications for the 

single FPGA system including a parallel Montgomery 

Multiplication and parallel Floyd-Warshall Algorithm.  A 

case study using the Floyd-Warshall Algorithm to analyze 

the benefits and trade-offs of multi-core, ISE and the 

combination of the two is present in section 4. 

At this time, the hardware support for the Multi-FPGA 

message passing has been completed, however software for 

using the message passing in an application is still required.  

As a result, all performance data collected and presented in 

this work reflect the single FPGA system using shared 

memory and barrier synchronization. 

 

4. A Case Study on the Floyd-Warshall 

Algorithm 
The Floyd-Warshall Algorithm (FW) is a popular algorithm 

that solves the all pairs shortest path for a directed weighted 

graph with no negative cycles.  The Floyd-Warshall 

Algorithm is an example of dynamic programming using an 

NxN matrix to represent the graph where N is the number 

of vertices in the graph.  In order to evaluate our extensible 

multi-core system we implement four versions of this 

algorithm and gather performance data on each.  We 

implemented a sequential version as our base line, a dual 

core version to run on our single FPGA multi-core system, 

an instruction set extension version using a hardware 



accelerator and dual core version also using a pair of 

hardware accelerators (one in each core). 

A pseudo-code description of the FW is presented in Figure 

10.  Both the dual core and the ISE versions of our 

implementation exploit the parallelism within the inner 

loop of the three deep for loop in lines 12 through 16.  In 

this way, the FW differs from our hypothetical application 

described in section 2.  The part of the FW that is targeted 

by both the dual core and ISE occupies over 95% of the 

application execution for sufficiently large graphs and 

approaching near 100% as the size of the graph grows.  The 

remaining 5% or less is required for the initialization of the 

NxN matrix representation of the graph.  Since we have 

very little going on except the computation we are 

interested in accelerating, the effects of the optimizations 

are more pronounced.  This makes the FW a good 

candidate for evaluation of our strategy to use both 

techniques. 

 

4.1 Sequential Version (Baseline) 
Since both the dual core and ISE techniques attempt to 

exploit parallelism within a computational task to improve 

performance it is important to have a fair point from which 

to compare the two.  For this reason, we implement a 

sequential version of the FW to run on a single base core 

with no hardware optimizations to assess the amount of 

work required to solve this shortest path problem for a 

given graph size, in our case thirty vertices.   

FW finds the shortest path between all N vertices in a 

weighted, directed graph. In the first part of the algorithm 

given in Figure 10 (from Line 1 to Line 8), the dist and 

pred matrixes are initialized with the edge weights of the 

direct connections between all vertices and the destination 

vertex number, respectively. If no connection is found 

between two vertices, the values infinity and null are used.  

The second part of the algorithm is a 3-level nested loop. It 

iteratively updates dist and pred with shortest path weights 

and the next vertex in the shortest path using N
3
 

comparisons. In detail, the basic operation within this part 

of the algorithm is to update the dist and pred matrixes for 

N times. Each time, the algorithm chooses a pivot row and 

a pivot column in dist (as shown in Figure 11). For each 

element of the matrix dist[i][j], the program compares it 

with the sum of dist[i][k] and dist[k][j] which reside in the 

pivot column and pivot row. If the current dist[i][j] is 

larger than this sum, dist[i][j] is updated. Accordingly, k is 

stored to pred[i][j]. Looking at this algorithm, we can see 

that the pivot row and pivot column remains the same 

during each set of N*N matrix updates. 

 

4.2 Dual Core Version 
To investigate the performance benefits of partitioning an 

application across two processing cores, we apply a parallel 

programming scheme to the FW.  The dominant 

computation within this application is the inner loop of the 

1. for i = 1 to N 

2.   for j = 1 to N 

3.     if there is an edge from i to j 

4.       dist[i][j] = length(i,j) 

5.       pred[i][j] = j 

6.     else 

7.       dist[i][j] = INFINITY 

8.       pred[i][j] = NULL 

9.  

10. for k = 1 to N 

11.   for i = 1 to N 

12.     for j = 1 to N 

13.       dist2 = dist[i][k] + dist[k][j] 

14.       If(dist[i][j] > dist2) 

15.         dist[i][j] = dist2 

16.         pred[i][j] = k 

 

Figure 10.  Floyd-Warshall Algorithm. 
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Figure 11.  Sequential Floyd-Warshall Algorithm. 

// If core ID matches CORE0 

1. for k = 1 to N 

2.   for i = 1 to N 

3.     for j = 1 to i-1 

4.       dist2 = dist[i][k] + dist[k][j] 

5.       if(dist[i][j] > dist2) 

6.         dist[i][j] = dist2 

7.         pred[i][j] = k 

8.   barrier(); 

 

// If core ID matches CORE1 

9. for k = 1 to N 

10.   for i = 1 to N 

11.     for j = i+1 to N 

12.       dist2 = dist[i][k] + dist[k][j] 

13.       if(dist[i][j] > dist2) 

14.         dist[i][j] = dist2 

15.         pred[i][j] = k 

16.   barrier(); 

 

Figure 12.  Parallelized Floyd-Warshall Algorithm. 



second half of the algorithm presented in Figure 10 (from 

Line 10 to Line 16).  For this reason we focus our efforts at 

parallelizing the FW in this part of the algorithm. 

In order to design an effective parallel programming 

scheme for the FW, we must identify a way to partition the 

work load of the algorithm in two parts as equally as 

possible.  In addition, we need to minimize data 

dependencies between the two parts.  Then we need to 

assign these parts to the two available cores. 

After careful consideration of the FW we designed the 

following parallel programming scheme.  Since the matrix 

elements where i=j are always 0, there is no need to handle 

them.  As shown in the previous sections, in order to 

evaluate each element dist[i][j] and pred[i][j] requires 

current element, dist[i][j], and a element on the pivot 

column and pivot row, dist[i][k] and dist[k][j] respectively.  

The k
th

 pivot column and pivot row are not updated during 

k
th

 iteration of the outer loop.  Therefore each element in 

the NxN matrix can be evaluated independently, for each 

k
th

 iteration.  Given these observations we partition the FW 

along the i=j diagonal. 

The pseudo-code description of the second half of the FW 

using this parallel programming scheme is given in Figure 

12.  When comparing this to the second half of the pseudo-

code previously in Figure 10, attention should be given to 

the boundary conditions of the inner loop:  Line 12 in 

Figure 10 and Lines 3 and 11 in Figure 12.  These 

boundary conditions exclude the i=j diagonal itself and 

partitions the matrix along this line between the two cores.  

This produces two triangular regions of the NxN matrix 

that can be processed in parallel as presented in Figure 13:  

one with i<j and the other with i>j. 

For each iteration through the matrix, CORE0 updates  first 

triangle (i<j) and CORE1 handles the other (i>j).  When 

each core finished processing its own triangle , it enters the 

barrier function presented in Section 3.1.4.  The barrier 

function synchronizes the two cores at the end of each outer 

loop where the pivot column and row selections are 

updated.  Both cores must remain synchronized to the same 

iteration of the outer loop because the (k+1)
th

 iteration of 

each loop requires the k
th

 iteration in both cores to be 

complete and updated matrix data available. 

To map the parallelized FW to our dual-core platform, we 

store the parallelized FW program instructions in the local 

BlockRAM memories of each core. This eliminates all 

memory conflicts due to instructions fetching, and 

optimizes instruction fetch time, effectively caching the 

whole program in high speed memory. The matrixes dist 

and pred are stored in the shared DDR2 SDRAM.  

This parallel programming implementation has three major 

positive features: 

1) The numbers of elements that need processing are the 

same for the two eMIPS cores. In total, each eMIPS 

core needs to process N*N*(N-1)/2 elements.  

2) The two eMIPS cores are loosely coupled. To update 

one element, we only need the element itself and 

another two elements in the pair of pivot row k and 

pivot column k. The eMIPS cores only need to be 

synchronized at the end of each iteration of these 

loops indexed by k. In total, the number of 

synchronizations is N. 

3) As for the control synchronization cost, we consider it 

very small because between two successive barrier 

synchronizations, each core should process one 

triangle (N*(N-1)/2 elements). Assuming every 

element has a similar probability to be updated, the 

task loads for the two cores between two 

synchronizations should be similar. 

Based on the above analysis of the high level software 

implementation, it appears that the proposed parallel 

programming scheme is very symmetric and loosely 

coupled between the two cores. Therefore, a nearly linear 

speedup (close to 2) should be expected from the dual-core 

system using this algorithm. 

 

4.3 ISE Hardware Accelerated Version 
The eMIPS microprocessor core is a dynamically 

extensible microprocessor.  As such, it has the capability to 

dynamically reconfigure a portion of its logic to support 

ISE.  These ISE can be used to improve the performance of 

applications as well.  We implement an ISE for the FW 

using the design flow described in [7] [24] [33]. 

By inspecting the pseudo-code representation of the 

algorithm in Figure 10, we can reduce the whole algorithm 

to a repetition of the following steps:  load, add, compare, 
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Figure 13.  Parallel Floyd-Warshall Algorithm. 



conditional branch, store, compare, and conditional branch.  

These steps are encapsulated in the inner loop of the second 

half of the algorithm (from Line 12 to Line 16).  This 

observation is borne out by the profiling results that 

identified this loop to be the most executed basic block of 

the FW.  This basic block is referred to as the hot block.  

The MIPS assembly representation of this hot block 

identified by profiling the application in simulation is given 

in Figure 14.  The hot block contains fourteen instructions 

that will be combined into a single instruction requiring 

multiple clock cycles, but in total less than the fourteen 

cycles required by the original code block. 

An ISE in eMIPS is implemented as an additional 

processing data path tightly coupled with the MIPS data 

path. We use a Finite State Machine (FSM) to control the 

execution of the ISE. In the beginning, we used one state 

for each instruction in Figure 14. After that, optimization 

was performed to process several instructions without data 

dependencies in one state.  Figure 15 illustrates all the 

states that the FSM goes through. Every level represents 

one state. Circles in each state represent the assembly 

instructions handled in that state. States with white circles 

cost one clock cycle while those with shaded circles cost 

multiple clock cycles. In detail, this processing procedure 

consists of 5 steps. 

1) Activation.  Decode instruction to determine if it is 

an Extension instruction.  If instruction activates 

the Extension, it petitions the data path to 

execution. 

2) Request inputs.  Copy input registers from general 

purpose register file to local registers. 

3) Processing instructions.  FSM performs the 

semantic functions of the instructions in the basic 

block in parallel where possible. 

4) Write Back.  All registers that have changed state 

during execution are written back to the general 

purpose register file. 

5) Resume Pipeline.  The Extension writes to the 

pipeline stage it is returning to, in this case WB.  

The Extension removes the stall and the pipeline 

resumes normal execution.  The Extension 

instruction is committed in the WB stage. 

The Extension watches the instruction decode path of the 

data path.  It evaluates each instruction as it returns from 

memory to determine if it is an Extension instruction.  If it 

is, the Extension petitions the data path for permission to 

execute.  If permission is granted, the Extension signals the 

pipeline to stall while it is executes and updates the PC in 

IF to the address of the instruction immediately following 

the hot block. 

The Extension fetches six registers from the general 

purpose register file:  a1, a3, t0, t1, t2 and t3,  The registers 

a3, t2 and a1 are pointers to the values dist[i][k], dist[k][j] 

and dist[i][j] in the NxN matrix respectively.  The register 

t1 is a pointer to pred[i][j].  The registers t0 and t3 are the 

loop counters j and k respectively. 

The Extension is implemented using a FSM that executes 

the functional semantic of the instructions in hot block in 

parallel as much as data and control dependencies will 

allow.  First, the FSM performs three loads to fetch data 

from the NxN matrix in memory.  The eMIPS Extension 

1. 05c4: lw a0,0(a3)

2. 05c8: lw v1,0(t2)

3. 05cc: lw v0,0(a1)

4. 05d0: addiu t0,t0,1

5. 05d4: addu a0,a0,v1

6. 05d8: sltu v0,a0,v0

7. 05dc: beqz v0,05ec

8. 05e0: addiu a3,a3,4

9. 05e4: sw a0,0(a1)

10. 05e8: sw t3,0(t1)

11. 05ec: li v0,30

12. 05f0: addiu a1,a1,4

13. 05f4: bne t0,v0,5c4

14. 05f8: addiu t1,t1,4

Load dist[i][k], dist[k][j], 
and dist[i][j] from DDR2.

Compare dist[i][j] and 
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index, jump 
back if boundary has not 
been met.

 

Figure 14.  Hot Block for Sequential Floyd-Warhall 

Algorithm in MIPS Assembly. 

load 
registers

lw a0,0,(a3)

lw v1,0,(t2)

lw v0,0,(a1)

addiu t0,t0,1 addu a0,a0,v1

sltu v0,a0,v0

addiu a3,a3,4

beqz v0,ffff05ec

sw a0,0,(a1)

sw t3,0,(t1)

li v0,30 addiu a1,a1,4 addiu t1,t1,4

bne
t0,v0,ffff05c4

writeback
registers

 

Figure 15.  ISE for Sequential Floyd-Warshall. 



only has one memory port and these require several cycles 

to perform.  For this reason these loads are executed 

sequentially.  These loads can also result in a TLB Miss.  

Mechanisms for mitigating interrupts and exceptions in 

Extension execution are described in [7].  Next, the FSM 

performs three additions.  Since these additions have no 

data or control dependency between them they can be 

executed in parallel.  These instructions add dist[i][k] (a0) 

and dist[k][j] (v1), increment j (t0) and the dist[i][k] pointer 

(a3) respectively.  Then the FSM compares the sum (a0) of 

dist[i][k] and dist[k][j] to dist[i][j] (v0) and branches if it is 

greater.  If the branch is not taken, the sum (a0) is stored to 

the location of dist[i][j] (a1) and pred[i][j] (t1) is updated 

with the value of k (t3).  Then, a constant for the boundary 

condition is loaded, thirty, and the pointers for dist[i][j] and 

pred[i][j] are incremented.  The counter j (t0) is compared 

with the boundary condition and if it is less, the FSM 

updates the PC to the address of the Extension Instruction 

to loop back on itself.  Otherwise, the PC remains the 

address of the instruction that immediately follows the hot 

block as it was set during activation.  Finally, the FSM 

writes all registers that have changed state back to the 

general purpose register file including a0, a1, a3, t0, t1, v0, 

and v1. 

The Extension pipeline synchronization logic reads the 

state of the FSM when it is complete and writes the PC of 

the Extension instruction and all pipeline state information 

to the WB pipeline stage of the data path.  The Extension 

releases the stall on the data path, and the data path resumes 

execution normally as the Extension instruction commits in 

WB.  If the Extension instruction loops back on itself, the 

PC is that of the Extension instruction.  The Extension 

instruction will be fetched again and the process will repeat 

until the boundary conditions are met. 

Compared with pure software execution, our ISE solution 

wins on three aspects. First, there is no instruction fetch 

operation. Second, different instructions without data 

dependencies are processed in parallel.  Finally, 

intermediate register values are not written back to the 

register file during the intermediate stages.  Only the final 

value of the register at the end of the execution is written 

back. 

Our way to exploit parallelism with ISE is very straight 

forward. Several other methods or techniques can be used 

to obtain better solutions. For example, we can integrate a 

self-loop technique that would allow all the operations to 

stay in the ISE until the loop ends [33]. This would save 

operations to load and write back general purpose registers 

after each iteration. Looping within the hardware extension 

also saves synchronization overhead required to activate 

the extension hardware, stall the processor, release the 

pipeline and activate the extension again.  Also, from a 

circuit designer‟s perspective, operations can be 

decomposed and regrouped to achieve a more efficient data 

path, especially to memory. However, as our goal is to 

show that multi-core processors and ISE complement each 

other, it does not matter how efficient the ISE is per se. 

 

4.4 Dual Core ISE Hardware Accelerated 

Version 
We implemented a version of the FW that incorporates 

both multi-core and ISE techniques.  We started with the 

dual core implementation described in Section 4.2.  Then 

we applied the same design flow for the eMIPS Extensions 

used in Section 4.3 [7]. 

Like the sequential version (Figure 10), in the dual core 

;; Hot block assembly for eMIPS CORE0

1. 0660: lw v0,0(t1)

2. 0664: lw a0,0(a0)

3. 0668: lw v1,0(a1)

4. 066c: addu a0,a0,v0

5. 0670: sltu v1,a0,v1

6. 0674: lui v0,0x8008

7. 0678: beqz v1,688

8. 067c: addu v0,t0,v0

9. 0680: sw a0,0(a1)

10. 0684: sw s0,0(v0)

11. 0688: sll v0,a3,0x1

12. 068c: sll a0,a3,0x5

13. 0690: subu a0,a0,v0

14. 0694: addu v0,a2,s1

15. 0698: lui v1,0x8010

16. 069c: addu a1,a0,s0

17. 06a0: sll v0,v0,0x2

18. 06a4: addu a0,a0,a2

19. 06a8: sll a1,a1,0x2

20. 06ac: sll t0,a0,0x2

21. 06b0: addu t1,v0,v1

22. 06b4: slt v0,a2,a3

23. 06b8: addu a0,a1,v1

24. 06bc: addiu a2,a2,1

25. 06c0: bnez v0,660 

26. 06c4: addu a1,t0,v1

;; Hot block assembly for eMIPS CORE1

1. 03cc: lw a0,0(a3)

2. 03d0: lw v0,0(t1)

3. 03d4: lw v1,0(a1)

4. 03d8: addiu a2,a2,1

5. 03dc: addu a0,a0,v0

6. 03e0: sltu v1,a0,v1

7. 03e4: lui v0,0xfff8

8. 03e8: slti t2,a2,30

9. 03ec: addiu a3,a3,4

10. 03f0: beqz v1,400 

11. 03f4: addu v0,a1,v0

12. 03f8: sw a0,0(a1)

13. 03fc: sw s1,0(v0)

14. 0400: bnez t2,3cc 

15. 0404: addiu a1,a1,4

Load dist[i][k], dist[k][j], 
and dist[i][j] from DDR2.

Compare dist[i][j] and 
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index, jump 
back if boundary has not 
been met.

Load dist[i][k], dist[k][j], 
and dist[i][j] from DDR2.

Compare dist[i][j] and 
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index, 
compare with the boundary.

Jump back if boundary 
has not been met.

 

Figure 16.  Hot Blocks for Parallel Floyd-Warshall in 

MIPS Assembly. 



version (Figure 12) most of the application execution 

occurs within the inner loop of the second half of the 

application comparing new and old distances and updating 

the matrix if the new distance is better.  Except in the case 

of the dual core version we have two instances of this loop 

now acting on different parts of the matrix in parallel.  This 

means that we will have potentially two different hot 

blocks, one for each core.  Since both versions of the inner 

loop are performing the same task on both cores, we would 

expect them to be similar.  However, the difference in the 

boundary conditions of the two versions results in 

significant differences as the compiler attempts to optimize 

the code at the machine level. 

The difference is reflected in the profiling results of the 

dual core implementation of the FW.  The assembly 

representation of the hot blocks for CORE0 and CORE1 

are given in Figure 16.  We observe that while the 

dominant function of these basic blocks is the same 

operation of load, add, compare, conditional store and 

branch, CORE0 has significantly more instructions than 

CORE1 and both are longer than the sequential version. 

Both the Extensions based on these hot blocks function 

similarly to the one implemented for the sequential version.  

After the Extension is activated by the Extension 

Instruction, the input registers are fetched from the general 

purpose register file.  The register assignments differ 

between the sequential and these parallel versions of the 

hot block but they represent the same symbols of the 

pointers to dist[i][k], dist[k][j], dist[i][j], and pred[i][j] and 

loop counters j and k.  Both Extensions add dist[i][k] and 

dist[k][j] and compare it to dist[i][j].  If the sum is less, 

dist[i][j] is updated with the sum and pred[i][j] is updated 

with the value of k.  Finally, the Extension cleans up state 

by writing registers back to the general purpose register file 

and resuming pipeline execution. 

In both cases, changes to the inner loop boundary 

conditions given in Figure 12 (Line 3 and Line 11) resulted 

in additional instructions for calculating the more complex 

boundaries.  After careful inspection of the assembly of 

both hot blocks we find that the boundary conditions that 

partitioned the NxN matrix into two triangular pieces 

changed how the compiler traversed through the addresses 

of the matrix elements through the pointers. 

In the hot blocks, pointers to dist[i][k], dist[k][j], dist[i][j], 

and pred[i][j] are given as inputs.  In the sequential version 

(Figure 10) each of these is incremented by four except for 

dist[i][k] which is constant in this scope.  In the dual core 

(Figure 12) version the simple increment by four is 

replaced in the CORE0 by a set of shifts and adds to 

constant base for each pointer.  The hot block for CORE1 

still increments by four for most of the pointers except for 

the pred[i][j] which is derived by adding the pointer to 

dist[i][j] to a constant. 

Load 
Registers

read memory

addu a0,a0,v0 lui v0,0x8008

sltu v1,a0,v1

addiu v0,t0,v0

beqz v0,ffff0688

write memory

sll v0,a3,1 sll a0,a3,5 lui v1,8010

writeback
registers

subu a0,a0,v0 addu v0,a2,s1

addu a1,a0,s0 sll v0,v0,2 addu a0,a0,a2

sll a1,a1,2 ssl t0,a0,2 addu t1,v0,v1 slt v0,a2,a3

addu a0,a1,v1 addiu a2,a2,1 addu a1,t0,v1

bnez
v0,ffff0660

(a)

Load 
Registers

read memory

addiu a2,a2,1 addu a0,a0,v0

write memory

writeback
registers

bnez
t2,ffff03cc

sltu v1,a0,v1 addu v0,a1,v0 slti t2,a2,1e addiu a3,a3,4

beqz
v1,ffff0400

addiu a1,a1,4

(b)
 

Figure 17.  ISEs for Parallel Floyd-Warshall:  (a) ISE 

for CORE0 and (b) ISE for CORE1. 



These low level compiler 'optimizations' increases the 

number of instructions of the hot blocks by twelve and one 

for CORE0 and CORE1 respectively.  The workload of the 

CORE0 is significantly increased over that of CORE1 and 

they are not as balanced as they initially appeared from the 

high level software representation.  A flow chart of the 

FSMs for each of the parallel ISEs is given in Figure 17.  

They operate similarly to Figure 15 and their discussion is 

therefore omitted for brevity. 

 

5. Discussion 
In the previous section, we presented the design strategies 

and resulting implementations for four versions of the FW, 

three with different performance enhancing techniques.  

The last implementation combined the multi-core and ISE 

techniques of the other two.  Both these techniques 

accelerate application performance by exploiting 

parallelism.  However, each exploits different types of 

parallelism and in different ways.  These techniques are not 

mutually exclusive where one provides all the benefits 

while the other adds little.  To understand the synergy of 

these techniques it is important to discuss where the 

advantages of each are found.  We illustrate this through 

our example of the FW and show how the combination of 

these techniques provides opportunities not available to 

either alone. 

 

5.1 A System Perspective 
From a system perspective, multi-core based parallel 

programming and ISE are two orthogonal methods that do 

not contradict each other. As we hope to have proven in 

this paper, their acceleration contributions can be added up 

to achieve higher performance. Moreover, although both of 

these methods deliver acceleration by exploiting 

parallelism, they are at different levels of granularity. This 

means that there is no concern that one of them handles all 

the parallelism while the other has nothing left to do. 

In general, there are 4 levels of parallelism [28]: Instruction 

Level Parallelism (ILP), Data Level Parallelism (DLP), 

Task Level Parallelism (TLP), and Process and Thread 

Level Parallelism (PTLP).  We observe that the types of 

parallelism suitable for ISE and multi-core vary along the 

parameters of granularity and observability.  Multi-core 

based parallel programming works well when parallelism is 

coarse grained and has high observability.  By comparison, 

ISE works well when parallelism is fine grained and 

observability is low because it resides underneath the 

software implementation. Figure 18 illustrates the overall 

picture of different levels of parallelism. 

ILP has the lowest level of granularity. It is achieved by 

operating several different instructions in the same clock 

cycle. A critical feature of ILP is that it is not visible in the 

source code. Therefore, ILP is out of the programmers‟ 

control. We already showed that this „out of control‟ 

characteristic also brings practical problems to the higher-

level parallelism in Section 4.4. ISE is the perfect solution 

to exploit ILP. Also, ISE brings low-level control back to 

developers. We can use it to solve the practical problems 

we encounter. 

DLP means that several different data elements can be 

processed in parallel. This level of parallelism is suitable to 

be exploited by ISE. For example, we can unroll the inner 

most loop of FW and process several matrix elements in 

parallel with the ISE. 

TLP is achieved by processing several different blocks of 

codes, e.g. loops, in parallel. Parallelism at this level is too 

high to be exploited by ISE. Instead, multi-core becomes a 

more suitable solution. Consider the parallel FW case. We 

divide the middle loop in Figure 10 into 2 parallel smaller 

loops in Figure 12 and assign them to different eMIPS 

cores.  In this way, we process two instances of a loop at 

the same time using two cores. 

PTLP is even higher than TLP. It is the most prevalent 

parallelism we can see in parallel computing systems. Here, 

multi-core is the best solution.  

 

5.2 A Multi-Core Perspective 
By adding different hardware instruction set extensions to 

different eMIPS cores, we gradually change the 

homogeneous multi-core system into a heterogeneous one. 

The heterogeneous system gives developers more options 

and control for task partitioning among different cores. As 

a result, it is less likely to see some cores finish their jobs 

earlier and sit idle waiting for the others. This makes it 

easier to achieve balanced task partitioning, and therefore, 

it increases the efficiency of the multi-core system. 

While the above benefit from ISE to multi-core is easy to 

see, there are also other benefits that are more subtle. In the 

rest of this section, we propose our solution based on ISE to 

remedy the assembly level imbalance problem mentioned 

in Section 4.4. 
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Figure 18.  Different Levels of Parallelism. 

 



As discussed in Section 4.2, the task loads assigned to 

different eMIPS cores appear quite balanced. However, in 

Section 4.4 when we compile the program for each core 

with GCC (O2), we obtained the assembly codes for the 

dual-core system, shown in Figure 16. Although the C 

programs for the sequential FW and both CORE0‟s and 

CORE1‟s parallel FW all look very similar, the resulting 

assembly code shows significant differences. Specifically, 

by only changing the bottom or upper limit of the inner 

most loop‟s index, we find large differences in the 

assembly code.  The number of instructions in CORE0‟s 

parallel FW implementation is much larger than that of the 

sequential FW. This means that although the number of 

iterations are reduced for each core in the dual-core system, 

the length of every iteration for CORE0 is increased. Thus, 

the overall acceleration will not be very high.  

The increased complexity of CORE0‟s parallel FW is 

caused by the changes to the inner loop boundary 

conditions used to partition the NxN matrix into two 

triangle pieces. As discussed in Section 4.4, this changes 

the way the compiler updated the pointers to the matrix 

elements processed by the loop.  This is because of the 

inefficiency of compilers when compiling irregular nested 

loops (the innermost loop‟s boundary is changing). This 

problem is usually out of the programmers‟ control. 

In order to balance the task partitioning of different eMIPS 

cores, we accelerate the operations in CORE0 and CORE1 

with ISEs, which are illustrated in Figure 17. The ISE for 

CORE0 only has 3 more states than CORE1‟s ISE. This 

means that the difference in execution time is only 3 clock 

cycles between the two cores. Compared with the previous 

difference (11 instructions), the task loads are much more 

balanced. In such a way, developers regain control over 

low-level issues again. This grants developers more power 

to achieve balanced multi-core systems. Similarly, for other 

applications that cannot be partitioned in a balanced way in 

the C program, ISE can also be used to re-balance the 

execution times of the various parts. 

 

5.3 An ISE Perspective 
Due to the low-level features of the ISE, it is difficult to 

achieve a global optimum in terms of speed and area cost, 

if we only look at one single ISE. Fortunately, high-level 

parallel programming on multi-core systems gives us a 

global view of an application. Thus, it helps to guide the 

design of ISE to a global optimum. 

In Section 5.2, we showed an example where ISE could be 

used to benefit multi-core systems. With the same example, 

we can also find that the multi-core system makes ISE 

more efficient. As we mentioned, the difference between 

the two ISEs is 3 clock cycles. This means that CORE1 still 

has a lighter task load. In such a case, we can lower the 

speed requirement for CORE1. Our solution is to add 2 

additional states to CORE1‟s ISE and reduce the number of 

instructions performed in one state. Figure 19 shows the 

improved operation procedure. Consequently, the 

difference in the number of states in CORE0 and CORE1 is 

reduced to 1. The overall performance remains the same. 

However, CORE1‟s ISE takes less area. Previously, there 

were at most four operations processed in parallel in one 

clock cycle. The hardware resources needed to accomplish 

that are two comparators and two adders. After the 

optimization, the ISE only requires at most one comparison 

and one addition in each state. The hardware resources 

needed are reduced to one comparator and one adder. 

Experimental results in the next section will show that it 

takes approximately 6% less area. If the reused resources 

were more complicated, for example multipliers, or 

consisted of more computational elements, the area 

reduction would be higher. 

The above analysis tells us that parallel programming on 

multi-core gives developers a high-level view of a problem.  

Therefore, they can discover more globally efficient ISE 

implementations solutions that are locally sub-optimal in 

one dimension, but more efficient in another dimension. 
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Registers

read memory

addiu a2,a2,1

addu a0,a0,v0

write memory

writeback
registers

bnez
t2,ffff03cc

sltu v1,a0,v1

addu v0,a1,v0 slti t2,a2,1e

addiu a3,a3,4

beqz
v1,ffff0400

addiu a1,a1,4

 

Figure 19.  More Efficient ISE for CORE1. 



6. Experimental Results 
In order to demonstrate our analysis in the last section, we 

tested four versions of Floyd-Warshall algorithm: Seq, 

SeqExt, Para, and ParaExt.  The relationships between 

these different versions is summarized in Table 1. 

Table 1.  Summary of Different Versions of FW 

 Sequential Parallel 

No 

extension 
Seq Para 

With  

extensions 
SeqExt ParaExt 

Seq is our baseline implementation of Figure 10. It is a 

single threaded program that sequentially updates each 

entry in the matrix.  Para is our dual core implementation 

splitting the matrix diagonally allowing each core to update 

half the matrix (Figure 12).  

We profiled both of these programs and identified that the 

basic block with the highest execution frequency is the 

most inner loop of the algorithm. The profile revealed that 

the assembly code of the three versions of the innermost 

loop were similar but not exactly the same. This required us 

to implement three different extension designs. 

The SeqExt version implements Seq accelerated by the 

extension hardware (shown in Section 4.3). The extension 

instruction is inserted into Seq‟s binary using our patching 

tool.  Similarly, ParaExt is Para implemented with two 

different extensions loaded into each of the two eMIPS 

cores (the combined method discussed in Section 4.4 and 

5). The binaries of each core are also patched with the 

appropriate extension instructions. 

The experiments were performed on a Virtex 5 

(xc5vlx110t-2ff1136) FPGA, where our dual-core eMIPS 

design including peripheral and memory support were 

implemented. For each experiment, the algorithms were run 

on one or both cores with the instructions stored in the local 

BlockRAM of the host core and the graph matrix data is 

stored in the DDR2 RAM shared by both cores. The 

algorithms were applied to a random weighted directed 

graph of 30 vertices.  Measurements were taken using the 

local timer, running at 10 MHz. 

Table 2, presents the execution time for all versions. 

Table 2.  Execution Time of Different Versions of FW 

 Seq SeqExt Para ParaExt 

Execution 

Time (ms) 
25.85916 12.10826 22.72854 7.00032 

To compare the acceleration of the various techniques, the 

speed ups are presented in Table 3. We can see that parallel 

programming without extensions only gives us a speedup 

of 1.138. Also, we find that the hardware instruction set 

extension in SeqExt gives a 2.136 speedup over the version 

Seq. After combining parallel programming and ISE 

together, we find ParaExt has a speedup of 3.7 over Seq 

and 1.73 over SeqExt.  

Table 3.  Speedup of Different Versions of FW 

 Seq Para SeqExt 

Seq 1 -- -- 

Para 1.138 1 -- 

SeqExt 2.136 1.88 1 

ParaExt 3.7 3.25 1.73 

 

Table 4.  Area Cost of the Original ISE and the more 

efficient ISE for CORE1 in ParaExt 

 #adders #comparators #registers #LUTs 

Original 11 2 676 1148 

Improved 10 2 677 1080 

We also implemented the more efficient ISE for the 

ParaExt version of CORE1 as shown in Figure 19. 

Experimental results show that ParaExt‟s execution time 

with the more efficient ISE is 7.0178ms. The performance 

is maintained. After synthesis using Xilinx ISE 10.1, the 

area costs of the original ISE and the improved ISE are 

different. The resource requirements of the two 

implementations are listed in  

Table 4. The numbers of adders and comparators are 

obtained from the „Advanced HDL Synthesis Report‟. The 

numbers of registers and LUTs are obtained from the 

„Device utilization summary‟.   

 

7. Analysis 
The acceleration of Para over Seq was only 1.138. The 

efficiency per core is only 0.57 – surely not satisfying. This 

shows that although the task partitioning in Para divides in 

half the number of matrix elements that each core processes 

by 2, the overall performance does not improve much 

because CORE0 in the Para version executes almost twice 

the number of instructions as in the Seq version for every 

matrix element (Figure 16). We experimentally rule out the 

possibility that this lukewarm performance was mainly due 

to memory contentions: that is, when both cores attempt to 

access the shared memory at the same time, one core will 

be delayed until the other finishes. From the RTL 

simulation, we noticed that most memory access operations 

from the two cores were interleaved. Even when the 

contention happened, the delay of one core was small 

compared to the overall memory latency. This observation 

shows that memory contentions did not reduce Para‟s 

performance by a large extent. From another perspective, in 



contrast with Para, two cores in ParaExt need to finish the 

same sets of memory access operations within a much 

shorter time. Thus, ParaExt has a more severe memory 

contention problem than Para. But this did not result in a 

low speedup of ParaExt over SeqExt (1.73). Therefore, for 

the second time, we have shown that memory contentions 

are not the major problem for the Para version in this case.  

More importantly, the speedup of ParaExt over SeqExt is 

1.73. This indicates that, after adding ISEs, the dual-core 

system‟s efficiency per core increases from 0.57 to 0.87. 

This improvement comes from the more balanced 

execution time between the two cores. Since the gap in the 

work load between the two cores is significant reduced 

using the ISEs, CORE1 no longer has to wait large amounts 

of time between iterations for CORE0 to complete its 

section of the matrix.  Therefore, we demonstrate that ISEs 

increase multi-core systems‟ efficiency by balancing the 

execution time of different cores. 

According to the area costs in  

Table 4, the more efficient ISE uses one fewer adder than 

the original ISE. Accordingly, the more efficient ISE takes 

68 fewer LUTs. The synthesis tool did not reuse the 

comparator. The reason for this is that compared to the cost 

of reusing a comparator (e.g. multiplexers), this 

optimization is not worthwhile. We also notice that one 

more register is needed by the more efficient ISE. The 

detailed synthesis report shows that two more registers are 

used for two additional states (speed1 encoding). However, 

the original ISE has one more register that is duplicated. 

Thus, the improved ISE costs one more register. Overall, 

the more efficient ISE reduces the LUT cost by 6% while 

maintaining the same performance. Therefore, it appears 

that multi-core techniques can also be used to make ISE 

more efficient. 

The speedups of Para and SeqExt over Seq are 1.138, and 

2.136 respectively. After combining multi-core processors 

and ISEs together, we obtain a speedup of 3.7 from 

ParaExt. The acceleration is higher than either one used in 

isolation. Moreover, the speedup of ParaExt is even higher 

than the product of Para and SeqExt alone 

(3.7>1.138*2.136). This demonstrates the higher efficiency 

obtained by the combined method. This shows that, by 

exploiting different levels of parallelism, multi-core 

processors and ISEs add their accelerations together and 

realize a high-performance system in an efficient way. 

Note that a number of research efforts have investigated 

high-performance FW implementations on FPGAs [29] 

[30] and GPUs [31] [32]. We do not compare our case 

study with them. This paper proposes a highly flexible 

architecture, not a specific dedicated design. The 

performance of the new architecture depends on the 

performance of the specific multi-core processors and the 

ISEs. Considering the case study only uses two soft eMIPS 

cores with two unoptimized ISEs, it is not fair to compare it 

with the previous optimized designs. What the case study 

really shows is that the combination of multi-core parallel 

programming and ISEs produces overall better performance 

with higher efficiency than solutions based on only one of 

the two. 

 

8. Conclusion 
In this paper, we proposed multi-core processors combined 

with reconfigurable instruction set extensions as a high 

performance architecture. Both analysis and experimental 

results show that these two acceleration methods not only 

exploit different levels of parallelism, but also benefit each 

other. Therefore, we consider the combination as a 

promising solution for high performance systems. 
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