

MultiCore eMIPS

Zhimin Chen, Richard Neil Pittman, Alessandro Forin

Microsoft Research

August 2009

Technical Report

MSR-TR-2009-113

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

MultiCore eMIPS

Zhimin Chen, Richard Neil Pittman, Alessandro Forin

Microsoft Research

ABSTRACT
In this work, we propose a combined multi-core

architecture with the capability for instruction set extension

(ISE). We show that while both multi-core and ISE exploit

parallelism, they do so differently. For this reason multiple

cores and ISE could be combined to obtain greater

performance improvement than the sum of the two alone.

To evaluate this, we implement a dual core microprocessor

on a FPGA using an extensible soft-core, eMIPS and

mapped the Floyd-Warshall all points shortest path

algorithm to this system. Overall, the combined technique

yielded performance 3.25x faster and 1.73x faster than

parallel or ISE techniques alone.

1. Introduction
The advancement of microprocessor performance based on

increasing clock frequencies into the higher gigahertz range

has come to an end. Modern technology and

manufacturing processes cannot overcome the stability and

thermal issues at these higher frequencies. New fabrication

processes however have made it possible to make denser

logic at the same or reduced cost. The availability of

additional computing resources has made parallel execution

on multiple functional blocks or processing units a

promising new vector for microprocessor advancement.

These parallel execution blocks have taken the form of

additional general purpose processor cores, application

coprocessors and instruction set extensions. These

additional processing units can perform tasks in parallel

increasing throughput and performance and in some cases

more efficiently than the general purpose microprocessor

cores they support. Additionally, these processing units

can be specialized to perform functions not previously

available to general purpose microprocessors.

Combined with their respective programming models and

APIs, these new architecture exploit different types of

parallelism that exists within user applications with varying

levels of success. As these different architecture features

for improving performance by exploiting parallelism

emerge, we should recognize that these techniques are not

mutually exclusive. These techniques could be combined

without one detracting from another and in some cases the

combination can be more than the sum of its parts.

This is the case we make for extensible instruction set

multi-core microprocessors. In this work, we present the

design of a extensible instruction set multi-core

microprocessor based on previous work done with the

extensible MIPS RISC microprocessor, eMIPS [7]. Then

we will demonstrate how better performance can be

achieved combining extensible processor cores into a single

microprocessor than either multiple cores or instruction

extension alone.

2. Multi-Core versus Instruction Set

Extension (ISE)
The multi-core revolution occurred in the convergence of

two important circumstances. First, hardware engineers

have pushed the frequency and thermal capabilities of

modern circuit technology. Second, improvements in

fabrication processes have significantly reduced the sizes of

transistors that make these circuits, making it possible to

pack orders of magnitude more logic density into the same

die.

Microprocessor developers can now manufacture more of

their existing architectures smaller and more cheaply with

these new processes. However, since they could not find a

way to clock them any faster they could not continue the

aggressive progress in processing power from generation to

generation to which they had become accustomed. The

solution that emerged was to pack more these smaller,

cheaper cores into a single microprocessor chip.

Multi-core microprocessors are now becoming ubiquitous

in all types of computing. Sony, Toshiba and IBM

produced their well-known CELL processor which contains

a single Power Processor Element and eight Synergistic

Processor Elements [1]. NVIDIA's multi-core graphics

processor units (GPUs), e.g. 128-core GeForce 8800,

provide another example of multi-cores in graphics

applications [2]. General purpose processor providers,

Intel and AMD, have their own multi-core architectures

represented by the Xeon [3] and Opteron [4] respectively.

The ideal maximum improvement in performance a multi-

core microprocessor provides over a single core is directly

proportional to the number of cores used to perform the

same task. In other words, a microprocessor with X cores

should be at most X times faster than a microprocessor with

a single similar core. However, software developers

continue to have difficulty taking full advantage of the

computing power modern multi-core microprocessors

provide. This shortcoming is represented in Amdahl's Law,

which states that there exists a limit to the performance

improvement provided by multi-core microprocessor on

applications where only a portion can be parallelized. In

addition, the degree of parallelism within these portions of

the application is a factor [5].

If the application can only be partitioned into two, the most

improvement a multi-core implementation can expect on a

multi-core system with more than two cores is 2x assuming

this is true for the entire application. If this is true for only

half the application this performance improvement further

degrades to 1.34x. These approximations do not account

for the effects of other factors including cache architectures

and memory speeds. They do not account for overheads

for partitioning and synchronization required in multi-core

systems either.

Instruction set extension has gained popularity in the

embedded space where microprocessors with reduced or

minimal capabilities are augmented with specialized

instructions for a particular application to conserve area,

power and cost with relative minimal impact on

performance. These specialized static microprocessors are

the predecessor of a new trend, configurable computing

where dynamically extensible microprocessor can

configure specialized hardware to augment capabilities and

application performance at runtime.

Our own eMIPS microprocessor is an example of a

dynamically extensible processor [7]. Figure 1 provides a

high level block diagram of the eMIPS extensible

microprocessor. There are several commercial examples of

statically extensible or custom microprocessors such as the

Tensilica Xtensa [19] , the MIPS Pro Series [20] and the

ARC 6000 Series [21].

Rather than partitioning out large task to be carried out in

parallel like multi-core, instruction set extension augments

the capabilities of a single core by making highly repeated

and common task more efficient. In some cases this is

done by taking advantage of low level parallelism in the

operations or data of the application's execution. Like the

multi-cores, the instruction set extension performance is

bounded by Amdahl's Law [5]. The performance

improvement provided by an instruction extension is

derived by the proportion of execution time the instruction

extension is in use times the speed up using the instruction

extension over using the general purpose hardware.

Therefore, if an instruction set extension can perform a task

2x faster than the general purpose hardware but the task

only makes up half the execution time, the overall speed up

is only 1.34x like the multi-core.

However, unlike the multi-core scenario, the use of

dynamic instruction set extensions to accelerate application

performance requires a level of hardware knowledge that

most software developers simply do not possess. In the

past tools for assisting software developers with this have

been difficult to use and variable in their effectiveness.

This has improved in recent years but they still have much

further to go before the average software developer will

consider them. Despite this, the demonstration of some

computational and data intensive applications attaining

orders of 1000x speed up using instruction set extension

and dedicated hardware keeps interest alive.

Given an application where at least half can be partitioned

between two processing cores. Lets propose that both

partitions of this code contain tasks that can be optimized

using instruction set extensions to increase performance of

those task like the previous paragraphs. By combining

these techniques on this part of the application, the overall

performance could theoretically approach 1.6x. Then, if

we could use instruction set extension on the part of the

application that could not be partitioned, the application

could come closer the 2x speed up you would expect from

a dual core system.

3. MultiCore eMIPS Research Platform
We used the Berkeley Emulation Engine (BEE3) developed

in cooperation with Microsoft Research and UC Berkeley

for implementing the MultiCore eMIPS system. The BEE3

includes four Virtex 5 FPGAs (xc5vlx110t-2ff1136). Each

FPGA has two channels of 8 GB of DDR2 memory for a

total of 16 GB per FPGA and 64 GB for the entire system.

Each FPGA also has a serial line and Ethernet. The FPGAs

of the BEE3 are linked in a ring configuration to allow for

high speed communication between them.

Development of the MultiCore eMIPS can be configured

into two different ways: Single FPGA shared memory

configuration and the Multi-FPGA message passing

Writeback
Memory

Access

Execute

(ALU)

Instruction

Decode

Instruction

Fetch

Coprocessor0

(Exception

Handler)

Memory

(MMU,

Cache, Main

Memory)

Registers

Reconfigurable

Instruction

Decode 1

Reconfigurable Execution Block 1

Reconfigurable

Instruction

Decode 2

Reconfigurable Execution Block 2

Inter Pipeline Traffic

eMIPS

Data Path

Figure 1. eMIPS architecture [7].

configuration. The following sections describe the design

of these configurations in greater detail.

3.1 Single FPGA Shared Memory
The original eMIPS microprocessor from which this work

is derived utilizes a memory mapped IO system for

interfacing to memory and peripheral devices. This method

is carried over into this phase of the multi-core

development. In order to maximize flexibility within the

system, we classified peripherals into two classes: local

memory peripherals (LMP) and shared memory peripherals

(SMP).

Figure 2 represents a organization of the single FPGA

shared memory system with two cores. Given the size of

the FPGA, resource requirements of the cores and

supporting hardware interfaces we decided to include two

cores to leave enough room to make implementation easier

and add features later.

3.1.1 Local Peripherals
Local Peripherals are connected directly to the memory

interface of their host core. Each core in the eMIPS

MultiCore system has its own set of local peripherals and

cannot access the local peripherals of any other core. For

this reason the address spaces of these local peripherals can

overlap. Local peripherals of each core can be assigned to

the same address space and each core will only access their

own. The set of local peripherals includes a local block

ram and timer.

The local block ram is a memory that is fast and close to its

host core. It provides the core with a memory space that it

can use for performing local task without competing with

other cores for the memory resource. The typical

configuration is 32-bit wide, one cycle access time, and 64

kB bytes total. The local timer is used for local scheduling

task. The host core can use either a free running counter or

down counter to trigger interrupts or keep track of elapsed

time. The timer uses a 10 MHZ clock which makes

converting ticks from the timers to real time very easy.

3.1.2 Shared peripherals and the Bridge
The shared peripherals are those that can be used by either

core in the single FPGA system. These peripherals either

have a global effect that is used for synchronization or

communication between the cores, or controls a singly

instantiated, shared physical resource. These peripherals

were designed for use with the original eMIPS

microprocessors and thus interface to the local memory bus

of one core. In order to allow two cores to share this

peripheral, bridges were implemented for each peripheral to

connect them to the local memory bus of each core. The

bridge implements the local bus protocol using three ports:

one to each core and one to the peripheral. Memory

commands enter through the core ports and are either

routed to the peripheral port or held waiting depending on

the free/busy state of the bridge.

In order to add and remove peripherals in an easy modular

fashion, address decoding is performed distributed within

the peripherals themselves. Each peripheral connects to the

address bus of the memory interface. The peripherals

evaluate the address on the address bus to determine if it is

within range assigned to this peripheral. If so it

acknowledges the request and performs the read or write

transaction. Based on which peripheral acknowledges the

request the memory interface routes data from the

peripheral to the core or vice versa.

In order to design the bridge, an issue with the address

decoding had to be solved. The problem is that the bridge

does not include this address decoding logic and does not

know the address range for the peripheral it is connected to.

In order to maximize model reuse, we chose to implement

the bridge as a series of multiplexor controlled by a state

machine. The state machine implements a round-robin

protocol for connecting the two core ports to the one

peripheral port on each bridge.

The state machine contains six states including idle,

listening and active for each core. Figure 3 provides a flow

chart of the bridge state machine. States S00, S01 and S02

are mirror states to S10, S11 and S12 respectively. States

S0x act on Core 0 and states S1x act on Core 1.

eMIPS

CORE0

eMIPS

CORE1

MRU

BR

DDR2 RAM

SMP

BR

Message
Box

Extension0 Extension1

LMP LMP

Block

RAM

Block

RAM

Figure 2. Structure of the Single FPGA shared

Memory system.

States Sx0 are idle states. During these states, the shared

peripheral connected to the bridge is not connected to either

core and the local bus connecting the peripheral to the

bridge is inactive. While in states Sx0, the bridge waits for

a memory request from the cores. If the state machine is in

state S00, it gives preference to Core 0 and in state S10 to

Core 1. When the bridge gets a request it transitions states

to one of the states Sx1: state S01 for a request from Core

0 and state S11 for Core 1.

States Sx1 are the listening states. During these states, the

bridge has received a memory request from one of the

cores. In state S01 Core 0 is active and in state S11 Core 1

is active. The bridge routes the address of the memory

request from the active core to the peripheral and waits for

the peripheral to respond. If the address is within the

peripheral‟s range it will send an acknowledgement. The

bridge routes this acknowledgement to the active core and

transitions to states Sx2: S02 for Core 0 and S12 for Core

1. If the peripheral does not respond within seven cycles or

another peripheral responds, the bridge transitions to the

Sx0 state of the core opposite of the active core: S10 for

Core 0 and S00 for Core 1.

States Sx2 are the active states. During these states the

bridge has received a memory request from a core and the

peripheral has acknowledged it. In state S01 Core 0 is

active and in state S11 Core 1 is active. In these states the

data busses in and out of the peripheral are routed between

the active core and the peripheral through the bridge. The

bridge waits for the peripheral to signal the transaction is

complete before disconnecting the core from peripheral and

returning to the idle state opposite to the active core: S10

for Core 0 and S00 for Core 1.

Peripherals included in the shared peripherals include the

DDR2 memory, serial line, Ethernet, global timer, shared

block ram, interrupt controller, message boxes and

processor id registers. Some of these peripherals provide

essential functions for the multi-core system and will be

discussed in more detail. The DDR2 memory, serial line

and Ethernet are physical resources and must be shared by

the cores.

3.1.3 Contention Resolution for Shared Memory and

the Memory Reservation Unit (MRU)
In a single FPGA system, the cores share access to the

memory resources including the shared block ram and the

DDR2. In this situation it is possible for one core to

modify the memory being accessed by another. Software

can be written to avoid this situation but a hardware

mechanism is still required to prevent collision. The MIPS

ISA provides support for atomic read modify write that can

be used for this purpose. This mechanism is realized via

the instructions LoadLink (LL) and StoreConditional (SC).

LoadLink is a 32-bit word load that reads data from a given

address into a general purpose register inside the MIPS

core. In addition to reading the data, Loadlink reserves that

address for that core. The reservation remains valid until

another LoadLink is issued for another address or a store

occurs on that address that is not a store conditional for that

core.

StoreConditional is a 32-bit word store that writes the

contents of a general purpose register to a given address.

What makes this different from a normal store is that the

store only happens if the address being written to has a

valid reservation from a previous LoadLink. If the

reservation is still valid, the store completes and a one is

written into the general purpose register the data had come

from. Otherwise the data is not written and the general

purpose register is given the value of zero.

The value of the register after the StoreConditional

communicates to software whether the store occurred or

whether a collision has occurred. In this way, it is possible

for a MIPS core to support lock free atomic read modify

write across threads, processes, and cores on shared

memory. This mechanism is implemented in the memory

reservation unit (MRU).

The memory reservation works using physical memory

addresses instead of virtual memory addresses. For this

reason, in the original eMIPS implementation the MRU

was placed in the memory data path after the memory

management unit (MMU) but before the local memory bus

to evaluate the reservation status as early as possible.

However, to support two cores, it was necessary to move

this element after the local memory bus and before the

peripherals, as seen in Figure 2.

S01

S00 S10

S11

S12S02

Figure 3. State Machine for the Distributed Shared

Peripheral Bridges.

The MRU receives memory transaction request from both

cores in parallel and evaluates them against any address

stored in the reservation with a valid flag. MRU passes

loads through to the local memory bus regardless.

LoadLink instructions are passed through but the MRU

updates the reservation and sets the valid flag. The MRU

passes stores through but if the address matches the address

in the reservation, the MRU clears the valid flag. If the

MRU gets a StoreConditional instruction it evaluates the

reservation address and the valid flag. If the address

matches and the valid flag is set, the store goes through and

the MRU notifies the core of the success. If the address

does not match or the valid flag is clear the store does not

go through and the MRU similarly notifies the core of the

failure.

The MRU includes only one reservation for the two cores

in the single FPGA system. Therefore, it is possible for the

two cores to get into livelock condition if they repeatedly

attempt an atomic read modify write at the same time that

interleaves the LoadLink and StoreConditional instructions.

Software mechanisms such as random delays on a failed

StoreConditional are possible solutions to this situation.

3.1.4 Other Synchronization Mechanisms
The single FPGA multi-core system supports several

mechanisms for core synchronization. It is necessary for

the cores working on related problems to communicate in

order to deal with data and control dependencies. In order

to facilitate this communication, the single FPGA system

includes the shared message boxes.

Each core in the single FPGA system has its own message

box within the shared address space. In order to coordinate

and synchronize, cores can send messages to each other

using these messages boxes. The current implementation

of the messages box includes a 32-bit register accessible

through memory mapped IO where cores can write user

specified command codes within their applications.

Additional space could be added for more complex

commands and communications.

With these message boxes, we implement a simple barrier

synchronization function for the two cores. At certain

points in the application execution, the barrier function is

called to force the core to wait on the other core. Inside the

barrier function the core spins polling its message box. It is

waiting for the other core to write the go message into its

message box. Example code for these functions is provided

in Figure 4.

In some cases, polling the shared message box would not

be preferred because of the additional traffic on the shared

peripheral. Instead the barrier could be modified spin on a

global Boolean variable in the cores local memory. The

state of this variable can be changed in an interrupt service

routine triggered by an interrupt from the other core.

The shared interrupt controller allows the software

developer to route interrupts from peripheral devices to one

or both cores. The interrupt controller also allows each

core to send interrupts to the other. In this way the barrier

functions could be modified to have the active core write

the go command to the idle cores message box and then

trigger an interrupt to that core through the interrupt

controller. The idle core stop spinning in the barrier

function to service the interrupt. Since it is a neighbor core

interrupt, the interrupt service routine will read the message

box. If it sees the go command, it changes the state of the

barrier Boolean variable and the idle core will exit the

barrier function.

System Reset

Primary
Core?

Configure System
(e.g. Assign Core IDs)

Core ID
Valid?

Get Core ID

Parallel Applications

N

Y

Y

N

CORE0 CORE1

Figure 5. Dual core boot up and initialization process.

/* barrier function for core 0 */

1. void barrier(void){

2. volatile UINT32 * mb0 = MBADDR0;

3. volatile UINT32 * mb1 = MBADDR1;

4. *mb0 = 0x5555aaaa;

5. while(*mb1 != 0x5555aaaa);

6. *mb1 = 0x0;

7. }

/* barrier function for core 1 */

1. void barrier(void){

2. volatile UINT32 * mb0 = MBADDR0;

3. volatile UINT32 * mb1 = MBADDR1;

4. *mb1 = 0x5555aaaa;

5. while(*mb0 != 0x5555aaaa);

6. *mb0 = 0x0;

7. }

Figure 4. Barrier synchronization functions.

3.1.5 Initialization
When the microprocessor system starts up for the first time

or reboots, it is necessary for the system to initialize itself

and prepare to run application code. In the first eMIPS

version this was done by running a short program stored in

the on-chip block ram at the reset vector. With multiple

cores however, this becomes a little more complicated. A

flow chart of the initialization sequence is given in Figure

5.

To configure the peripherals, we read and write the

configuration registers available to us through the memory

mapped IO. If we naively allowed both cores to share the

same start up code and had both start configuring the

peripherals same time. This would result in these reads and

writes occurring twice and in different orders. Some of

these reads and writes have side effects that would result in

invalid configurations if documented initialization is not

performed correctly.

Since we cannot have both cores executing initialization

code at the same time, we designate Core 0 to be the master

core in the system and the only active core at system reset.

This is accomplished using the processor id registers. Only

the master core, Core 0, has a valid processor id and can

start running. All other cores, such as Core 1, do not have

valid processor ids and are considered inactive.

When the system comes out of reset, Core 0 has a valid

processor id and Core 1 does not. Both Cores start fetching

instructions from their reset vectors which point to their

local block rams. Contained within the block ram is the

processor initialization code. Both cores run this local

initialization until they reach a processor id check. The

check forces the processor to spin checking its processor id

register until reads a valid processor id. Since only Core 0

has one, it is the only core that gets past this check and does

not spin.

While Core 1 spins, Core 0 proceeds to initialize the system

including initializing the memory system and the serial

line. Then the Core 0 either activates Core 1 by writing a

valid processor id to its register or it can put the core to

sleep. At this time, the system enters the application code.

Only Core 0 can write to the processor id registers of the

cores on its system.

3.2 Multi-FPGA Message Passing
The single FPGA system currently contains two processing

cores in a largely self contained system. This same design

could be configured to all four of the FPGAs of the BEE3

and they could communicate over the Ethernet in cluster

like configuration.

However, since the FPGAs on the BEE3 are linked using

the ring, it is possible to link them into a more tightly

coupled system of eight processing cores. To achieve this,

the original dual core design is expanded to include a

message passing router on the BEE3 ring as presented in

Figure 6. These four pairs of cores will be more decoupled

with their own memory than the pairs on the same FPGA

that share memory. There are three considerations when

setting up this system:

1) How to guarantee the low level signal stability

transferring data on the ring?

2) How to route data from one processor core to

another?

3) How to initialize the system across multiple

FPGAs and cores?

The following sections will discuss these issues and present

the solutions we developed to deal with them.

3.2.1 BEE3 Ring
The BEE3 ring connects the four FPGAs using point to

point wired connections between a pair of neighbor

FPGAs. Figure 7 shows how the ring connects the FPGAs

on the BEE3 system. Each connection between a pair of

FPGAs includes 72 bidirectional data lines and five

bidirectional strobes. On top of this we constructed two

36-bit rings, 32-bit data and 4-bit parity, with some control

signals each going in opposite directions. In this way, each

ring is unidirectional which simplifies the design and

implementation but maintains two way communication

between each pair of FPGAs

There are two concerns that must be addressed in order to

reliably use the ring for inter-chip communication. First,

the trace delays of the wires that make up the ring

connections are not guaranteed to be of the same length,

eMIPS

Core 0

eMIPS

Core 1

MRU

LMP LMP
BR Shared

Message
RouterDDR2 RAM

SMP

RINGs

RINGs

Figure 6. Structure of Single FPGA with Multi-

FPGA Message Passing.

which skews signals across different wires. Even if the

traces are very close, minor variations in e.g. temperature

can have significant impact in how fast a signal propagates

through one wire versus another. The second issue, is that

we cannot know or guarantee that the clocks of any pair of

FPGAs on the BEE3 are in any way aligned.

It is possible to align the trace delays of the data lines

between the FPGAs, using the configurable input delays of

the FPGA's configurable I/O pins. This would require a

complex calibration procedure each time the system is

reset, and recalibration could be required during system

operation due to changes in temperature. The costs in

engineering effort and FPGA logic resources to make it

work correctly were considered too high. Given the short

time frame for this work, and high speed communication

between FPGAs is not the focus of this work, this approach

was not taken.

If the frequency at which the data lines switch on the ring is

sufficiently low the small difference in propagation delay

become negligible compared to the overall time the data is

valid. We developed and tested the communication frame

work using a relatively low 50 MHz clock, and we

achieved complete reliable communication between the

FPGAs, under saturated conditions. We tested the ring

using a 100 MHz clock as well, but the testing rig we

designed was not able to saturate the ring at this frequency.

At a frequency of 50 MHz, we were able to maintain a

bandwidth roughly 1.6 Gb/s, versus 1 Gb/s for Ethernet due

to the wider data width over a direct point to point

connection. For this reason, we proceeded with the 50

MHz implementation.

We still have to deal with the lack of clock alignment

between the FPGAs. The send and receive pins on each

FPGA are implemented using FIFOs with independent read

and write clocks. In addition to this, we used two of the

five strobe lines in the ring to transmit the clock of the

transmitter to the receiver. The transmitter fills the

transmitter FIFO using its internal logic clock, at 100 MHz.

The transmitter sends data from its transmit FIFO using its

50 MHz ring clock. This clock is sent over one of the

strobe lines to the receiver and is used as the write clock

input of the receiver FIFO. The receiving FPGA then reads

the contents of the FIFO using its own clock, at 100 MHz.

In this way the clock used to receive the data is aligned to

the data, but does not need to be aligned with the receiver's

main clock.

3.2.2 Message Packets and Routers
The messages the FPGAs send to each other on the ring are

organized into packets. Each packet has four parts: lead

in, header, payload, and lead out.

The lead in and lead out are patterns of bits appended to the

beginning and end of the packet by the transmitter and

stripped off by the receiver. The purpose of these is to

communicate between the transmitter and the receiver what

is the beginning and end of the packet currently in

transmission. The transmitter first sends the lead in before

sending the packet from the FPGA cores and sends the lead

out after the last word of the packet. The receiver listens

for the lead in on its ring inputs to activate its capturing and

forwarding logic and listens for the lead out to reset it.

Immediately following the lead in is the packet header.

The packet header is a single 32-bit word that contains four

fields: 8-bit destination, 8-bit source, 6-bit control and 10-

bit size. The destination and source fields contain the

processor ids of the destination and source cores for the

packet. The destination field is used by the routers to

deliver the packet to the correct FPGA and core. The

source is simply for record keeping so the core receiving

the packet can know where it came from. The control field

contains information about the packet including the

direction on the ring it is travelling, whether it is a data or

command packet and the count of hops the packet has

already made. The direction control tells the transmitter

FPGA 0

FPGA 3

FPGA 1

FPGA 2

R
IN

G
_

U
P

_
E

R
IN

G
_

U
P

_
W

RING_UP_S

RING_DOWN_N

RING_DOWN_S

RING_UP_N

R
IN

G
_

D
O

W
N

_
W

R
IN

G
_

D
O

W
N

_
E

CLOCK

DATA

FULL

FULL

DATA

CLOCK

Figure 7. BEE3 Ring.

MBus2FIFO

C
FI

FO

D
FI

FO

C
FI

FO

D
FI

FO

Router_Controller

C
FI

FO

D
FI

FO

RING_Communicator

Mbus_P0 Mbus_P1

RINGRING

Figure 8. Message Packet Router.

which ring output to send the packet on. When the hop

count reaches four without reaching its destination the

receiver drops the packet as dead or undeliverable. This

case will only happen if the value in the destination field

does not correspond to an assigned processor id. Most

packets sent on the ring are data packets. A small number

of command packets are used to configure the

communication on the ring at initialization. With the size

field, the ring's transmitters and receivers can support

packets up to a kilobyte in size.

The message packet router implemented on each FPGA has

multiple levels as depicted in Figure 8. There is local

routing between cores on the same FPGA without

involving the ring. If the destination is outside the local

FPGA it is dispatched appropriately on the ring.

Using a DMA interface, the source core writes the header

to the command FIFO and the data to a data FIFO. The

high level router control pulls the head off the command

FIFO and evaluates the destination of the message packet.

If the destination processor id is within the same FPGA as

the source, the header and data are forwarded to the

receiving command and data FIFOs of the destination core.

Similarly a DMA operation transfers the header and data to

memory before interrupting the receiving core.

If the packet is bound for another FPGA, it arrives at the

transmitter where the direction control bit determines the

ring transmit FIFO the packet is written to. The transmitter

first sends the lead in, then the header, data and finally the

lead out. When the packet is received by the neighbor

FIFO the destination processor id is evaluated against the

processors ids of the cores on that FPGA. If it is a match

for any of them, the packet is stripped of the lead in and

lead out as it is forwarded to the appropriate core by the

high level router control. However, if this is not the

destination FPGA for the packet, the hop count is

incremented before forwarding the packet to the next

FPGA in the ring through this FPGA's transmitter. If the

hop count manages to get to four without being delivered, it

is dropped.

3.2.3 Multi-FPGA Initialization
As was discussed in section 3.1.5, the task of system

initialization at start up and reset can be complicated by the

addition of additional processing cores that can access

peripheral hardware devices and that share software. This

scenario is further complicated by having multiple cores

residing on different physical FPGAs with their own

clocks, configuration registers, memories and hardware

peripherals. To handle this we extend the model we

previously used for the multiple cores on a single FPGA.

Similarly to the single FPGA case we use the processor ids

to control the flow of the initialization sequence. In the

Multi-FPGA system there is one master core for the whole

system that will coordinate the others, like the single FPGA

system. In addition, each FPGA will have a primary core

of its own. In the case of the FPGA with the master core,

the master core is the primary core. Figure 9 provides a

flow chart of the boot up and initialization sequence for the

larger multiple FPGA system.

Here the most significant bit of the processor id is used to

designate the processor id as valid or invalid. If the most

significant bit of the processor id is set, it is considered

invalid. The least significant bit of the processor id

distinguishes the primary core of a single FPGA from the

other cores in the same FPGA. This bit of the processor id

is read only to the master core like the rest of the processor

id is read only to the other cores. If the least significant bit

of the processor id is clear, this is the primary core.

Otherwise it is one of the secondary cores on the FPGA.

The master core for the system is initialized with the

processor id of zero (0x0), making it both a valid and

System Reset

Primary Core?

Configure Local FPGA

Resources

Master Core?

Configure Multi-FPGA System

(e.g. Assign Core IDs)

Get Core ID

Core ID Valid?

Parallel Application

N

N

N

Y

Y

Y

Figure 9. Multi-Core boot up and initialization across

multiple FPGAs.

primary core. The other primary cores are initialized with

the processor id 0x80 and other cores are initialized to

0x81.

First, each core checks its processor id to determine if it is a

primary core. If so, it initializes the local resources of that

FPGA including the memory. Other resources can be

initialized here as well or left for the application software to

configure. At this point all cores check if they are the

master core. Since Core 0 on FPGA 0 is the only master

core, it proceeds to configure the serial line for console

communication and any other initialization required for the

primary core and FPGA that was not already done. The

serial lines and Ethernet resources of the other non-master

FPGA can be made usable by the application software if

necessary. Meanwhile, the other cores spin polling their

processor ids to see when they become valid.

To activate a core, the master core must change processor

id that the core is initialized to a unique valid one. In the

single FPGA shared memory implementation this was

easily done through memory mapped IO with master core

writing the processor id to the register. However, with

multiple cores on different FPGAs that do not all share the

same memory subsystem as the master core, this is not

sufficient. Using the message passing capabilities of the

ring the master core begins activating the other cores in the

system.

As stated in section 3.2.2, there are two types of message

packets used in the eMIPS MultiCore system: data and

command packets. The master core makes use of these

command packets to assign processor ids and activate other

cores in the system. Control logic is included in the ring

message packet router to update the processor id of a core

when a command packet for assigning a processor id

arrives.

Using the message passing infrastructure for configuring

the system seems like the obvious solution. However, the

message routing utilizes the processor ids to route the

message to the intended core. So, how do we send a packet

to a core to assign its processor id if it does not already

have one? The solution is in the processor id assignment

protocol implemented with the command packets.

The command packet for assigning a processor id is a

single word header with no data payload. The source

processor id field contains the processor id of the master

core, 0x0. This is required for the command packet

because only the master core can assign processor ids. The

destination field of the header contains the new processor

id to be assigned to the core. The command bit in the

control flags is set and the direction bit is arbitrary. The

size field is set to 0x0.

The protocol establishes that any core that does not have a

valid processor id will receive this packet and the router

control logic will assign the core the processor id in the

destination field. After the processor id is assigned, the

master core and any other core may send data packets to

the core for synchronization or communication purposes.

There are no hardware mechanisms to prevent duplicate

processor ids. It is the responsibility of the application

software to assign and account for the processor ids in use.

Consequently, software could choose to realize other, more

complex schemes that do not assume the master is chosen

by hardware.

3.3 Multi-Core Software
The current implementation of the eMIPS MultiCore

system does not have any operating system support. The

base ISA of the eMIPS MultiCore system is the MIPS

R3000 ISA and to our knowledge there is no publicly

available operating system for supporting multiple cores on

a MIPS.

For this reason, we are limited to testing the system using

custom test applications. We have written shared memory

test programs to test the hardware features of the single

FPGA and Multi-FPGA systems. This includes tests of the

shared memory peripheral bridges, message boxes,

processor ids, interrupts, synchronization, initialization and

message routing.

Based on these tests using the barrier functions for

synchronization we developed two test applications for the

single FPGA system including a parallel Montgomery

Multiplication and parallel Floyd-Warshall Algorithm. A

case study using the Floyd-Warshall Algorithm to analyze

the benefits and trade-offs of multi-core, ISE and the

combination of the two is present in section 4.

At this time, the hardware support for the Multi-FPGA

message passing has been completed, however software for

using the message passing in an application is still required.

As a result, all performance data collected and presented in

this work reflect the single FPGA system using shared

memory and barrier synchronization.

4. A Case Study on the Floyd-Warshall

Algorithm
The Floyd-Warshall Algorithm (FW) is a popular algorithm

that solves the all pairs shortest path for a directed weighted

graph with no negative cycles. The Floyd-Warshall

Algorithm is an example of dynamic programming using an

NxN matrix to represent the graph where N is the number

of vertices in the graph. In order to evaluate our extensible

multi-core system we implement four versions of this

algorithm and gather performance data on each. We

implemented a sequential version as our base line, a dual

core version to run on our single FPGA multi-core system,

an instruction set extension version using a hardware

accelerator and dual core version also using a pair of

hardware accelerators (one in each core).

A pseudo-code description of the FW is presented in Figure

10. Both the dual core and the ISE versions of our

implementation exploit the parallelism within the inner

loop of the three deep for loop in lines 12 through 16. In

this way, the FW differs from our hypothetical application

described in section 2. The part of the FW that is targeted

by both the dual core and ISE occupies over 95% of the

application execution for sufficiently large graphs and

approaching near 100% as the size of the graph grows. The

remaining 5% or less is required for the initialization of the

NxN matrix representation of the graph. Since we have

very little going on except the computation we are

interested in accelerating, the effects of the optimizations

are more pronounced. This makes the FW a good

candidate for evaluation of our strategy to use both

techniques.

4.1 Sequential Version (Baseline)
Since both the dual core and ISE techniques attempt to

exploit parallelism within a computational task to improve

performance it is important to have a fair point from which

to compare the two. For this reason, we implement a

sequential version of the FW to run on a single base core

with no hardware optimizations to assess the amount of

work required to solve this shortest path problem for a

given graph size, in our case thirty vertices.

FW finds the shortest path between all N vertices in a

weighted, directed graph. In the first part of the algorithm

given in Figure 10 (from Line 1 to Line 8), the dist and

pred matrixes are initialized with the edge weights of the

direct connections between all vertices and the destination

vertex number, respectively. If no connection is found

between two vertices, the values infinity and null are used.

The second part of the algorithm is a 3-level nested loop. It

iteratively updates dist and pred with shortest path weights

and the next vertex in the shortest path using N
3

comparisons. In detail, the basic operation within this part

of the algorithm is to update the dist and pred matrixes for

N times. Each time, the algorithm chooses a pivot row and

a pivot column in dist (as shown in Figure 11). For each

element of the matrix dist[i][j], the program compares it

with the sum of dist[i][k] and dist[k][j] which reside in the

pivot column and pivot row. If the current dist[i][j] is

larger than this sum, dist[i][j] is updated. Accordingly, k is

stored to pred[i][j]. Looking at this algorithm, we can see

that the pivot row and pivot column remains the same

during each set of N*N matrix updates.

4.2 Dual Core Version
To investigate the performance benefits of partitioning an

application across two processing cores, we apply a parallel

programming scheme to the FW. The dominant

computation within this application is the inner loop of the

1. for i = 1 to N

2. for j = 1 to N

3. if there is an edge from i to j

4. dist[i][j] = length(i,j)

5. pred[i][j] = j

6. else

7. dist[i][j] = INFINITY

8. pred[i][j] = NULL

9.

10. for k = 1 to N

11. for i = 1 to N

12. for j = 1 to N

13. dist2 = dist[i][k] + dist[k][j]

14. If(dist[i][j] > dist2)

15. dist[i][j] = dist2

16. pred[i][j] = k

Figure 10. Floyd-Warshall Algorithm.

i=k

j=k

i=j

pivot row

p
iv

o
t

co
lu

m
n

dist[i][j]

dist[k][j]

dist[i][k]

Figure 11. Sequential Floyd-Warshall Algorithm.

// If core ID matches CORE0

1. for k = 1 to N

2. for i = 1 to N

3. for j = 1 to i-1

4. dist2 = dist[i][k] + dist[k][j]

5. if(dist[i][j] > dist2)

6. dist[i][j] = dist2

7. pred[i][j] = k

8. barrier();

// If core ID matches CORE1

9. for k = 1 to N

10. for i = 1 to N

11. for j = i+1 to N

12. dist2 = dist[i][k] + dist[k][j]

13. if(dist[i][j] > dist2)

14. dist[i][j] = dist2

15. pred[i][j] = k

16. barrier();

Figure 12. Parallelized Floyd-Warshall Algorithm.

second half of the algorithm presented in Figure 10 (from

Line 10 to Line 16). For this reason we focus our efforts at

parallelizing the FW in this part of the algorithm.

In order to design an effective parallel programming

scheme for the FW, we must identify a way to partition the

work load of the algorithm in two parts as equally as

possible. In addition, we need to minimize data

dependencies between the two parts. Then we need to

assign these parts to the two available cores.

After careful consideration of the FW we designed the

following parallel programming scheme. Since the matrix

elements where i=j are always 0, there is no need to handle

them. As shown in the previous sections, in order to

evaluate each element dist[i][j] and pred[i][j] requires

current element, dist[i][j], and a element on the pivot

column and pivot row, dist[i][k] and dist[k][j] respectively.

The k
th

 pivot column and pivot row are not updated during

k
th

 iteration of the outer loop. Therefore each element in

the NxN matrix can be evaluated independently, for each

k
th

 iteration. Given these observations we partition the FW

along the i=j diagonal.

The pseudo-code description of the second half of the FW

using this parallel programming scheme is given in Figure

12. When comparing this to the second half of the pseudo-

code previously in Figure 10, attention should be given to

the boundary conditions of the inner loop: Line 12 in

Figure 10 and Lines 3 and 11 in Figure 12. These

boundary conditions exclude the i=j diagonal itself and

partitions the matrix along this line between the two cores.

This produces two triangular regions of the NxN matrix

that can be processed in parallel as presented in Figure 13:

one with i<j and the other with i>j.

For each iteration through the matrix, CORE0 updates first

triangle (i<j) and CORE1 handles the other (i>j). When

each core finished processing its own triangle , it enters the

barrier function presented in Section 3.1.4. The barrier

function synchronizes the two cores at the end of each outer

loop where the pivot column and row selections are

updated. Both cores must remain synchronized to the same

iteration of the outer loop because the (k+1)
th

 iteration of

each loop requires the k
th

 iteration in both cores to be

complete and updated matrix data available.

To map the parallelized FW to our dual-core platform, we

store the parallelized FW program instructions in the local

BlockRAM memories of each core. This eliminates all

memory conflicts due to instructions fetching, and

optimizes instruction fetch time, effectively caching the

whole program in high speed memory. The matrixes dist

and pred are stored in the shared DDR2 SDRAM.

This parallel programming implementation has three major

positive features:

1) The numbers of elements that need processing are the

same for the two eMIPS cores. In total, each eMIPS

core needs to process N*N*(N-1)/2 elements.

2) The two eMIPS cores are loosely coupled. To update

one element, we only need the element itself and

another two elements in the pair of pivot row k and

pivot column k. The eMIPS cores only need to be

synchronized at the end of each iteration of these

loops indexed by k. In total, the number of

synchronizations is N.

3) As for the control synchronization cost, we consider it

very small because between two successive barrier

synchronizations, each core should process one

triangle (N*(N-1)/2 elements). Assuming every

element has a similar probability to be updated, the

task loads for the two cores between two

synchronizations should be similar.

Based on the above analysis of the high level software

implementation, it appears that the proposed parallel

programming scheme is very symmetric and loosely

coupled between the two cores. Therefore, a nearly linear

speedup (close to 2) should be expected from the dual-core

system using this algorithm.

4.3 ISE Hardware Accelerated Version
The eMIPS microprocessor core is a dynamically

extensible microprocessor. As such, it has the capability to

dynamically reconfigure a portion of its logic to support

ISE. These ISE can be used to improve the performance of

applications as well. We implement an ISE for the FW

using the design flow described in [7] [24] [33].

By inspecting the pseudo-code representation of the

algorithm in Figure 10, we can reduce the whole algorithm

to a repetition of the following steps: load, add, compare,

i=k

j=k

i=j

pivot row
p

iv
o

t
co

lu
m

n

triangle for CORE1

triangle for CORE0

Figure 13. Parallel Floyd-Warshall Algorithm.

conditional branch, store, compare, and conditional branch.

These steps are encapsulated in the inner loop of the second

half of the algorithm (from Line 12 to Line 16). This

observation is borne out by the profiling results that

identified this loop to be the most executed basic block of

the FW. This basic block is referred to as the hot block.

The MIPS assembly representation of this hot block

identified by profiling the application in simulation is given

in Figure 14. The hot block contains fourteen instructions

that will be combined into a single instruction requiring

multiple clock cycles, but in total less than the fourteen

cycles required by the original code block.

An ISE in eMIPS is implemented as an additional

processing data path tightly coupled with the MIPS data

path. We use a Finite State Machine (FSM) to control the

execution of the ISE. In the beginning, we used one state

for each instruction in Figure 14. After that, optimization

was performed to process several instructions without data

dependencies in one state. Figure 15 illustrates all the

states that the FSM goes through. Every level represents

one state. Circles in each state represent the assembly

instructions handled in that state. States with white circles

cost one clock cycle while those with shaded circles cost

multiple clock cycles. In detail, this processing procedure

consists of 5 steps.

1) Activation. Decode instruction to determine if it is

an Extension instruction. If instruction activates

the Extension, it petitions the data path to

execution.

2) Request inputs. Copy input registers from general

purpose register file to local registers.

3) Processing instructions. FSM performs the

semantic functions of the instructions in the basic

block in parallel where possible.

4) Write Back. All registers that have changed state

during execution are written back to the general

purpose register file.

5) Resume Pipeline. The Extension writes to the

pipeline stage it is returning to, in this case WB.

The Extension removes the stall and the pipeline

resumes normal execution. The Extension

instruction is committed in the WB stage.

The Extension watches the instruction decode path of the

data path. It evaluates each instruction as it returns from

memory to determine if it is an Extension instruction. If it

is, the Extension petitions the data path for permission to

execute. If permission is granted, the Extension signals the

pipeline to stall while it is executes and updates the PC in

IF to the address of the instruction immediately following

the hot block.

The Extension fetches six registers from the general

purpose register file: a1, a3, t0, t1, t2 and t3, The registers

a3, t2 and a1 are pointers to the values dist[i][k], dist[k][j]

and dist[i][j] in the NxN matrix respectively. The register

t1 is a pointer to pred[i][j]. The registers t0 and t3 are the

loop counters j and k respectively.

The Extension is implemented using a FSM that executes

the functional semantic of the instructions in hot block in

parallel as much as data and control dependencies will

allow. First, the FSM performs three loads to fetch data

from the NxN matrix in memory. The eMIPS Extension

1. 05c4: lw a0,0(a3)

2. 05c8: lw v1,0(t2)

3. 05cc: lw v0,0(a1)

4. 05d0: addiu t0,t0,1

5. 05d4: addu a0,a0,v1

6. 05d8: sltu v0,a0,v0

7. 05dc: beqz v0,05ec

8. 05e0: addiu a3,a3,4

9. 05e4: sw a0,0(a1)

10. 05e8: sw t3,0(t1)

11. 05ec: li v0,30

12. 05f0: addiu a1,a1,4

13. 05f4: bne t0,v0,5c4

14. 05f8: addiu t1,t1,4

Load dist[i][k], dist[k][j],
and dist[i][j] from DDR2.

Compare dist[i][j] and
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index, jump
back if boundary has not
been met.

Figure 14. Hot Block for Sequential Floyd-Warhall

Algorithm in MIPS Assembly.

load
registers

lw a0,0,(a3)

lw v1,0,(t2)

lw v0,0,(a1)

addiu t0,t0,1 addu a0,a0,v1

sltu v0,a0,v0

addiu a3,a3,4

beqz v0,ffff05ec

sw a0,0,(a1)

sw t3,0,(t1)

li v0,30 addiu a1,a1,4 addiu t1,t1,4

bne
t0,v0,ffff05c4

writeback
registers

Figure 15. ISE for Sequential Floyd-Warshall.

only has one memory port and these require several cycles

to perform. For this reason these loads are executed

sequentially. These loads can also result in a TLB Miss.

Mechanisms for mitigating interrupts and exceptions in

Extension execution are described in [7]. Next, the FSM

performs three additions. Since these additions have no

data or control dependency between them they can be

executed in parallel. These instructions add dist[i][k] (a0)

and dist[k][j] (v1), increment j (t0) and the dist[i][k] pointer

(a3) respectively. Then the FSM compares the sum (a0) of

dist[i][k] and dist[k][j] to dist[i][j] (v0) and branches if it is

greater. If the branch is not taken, the sum (a0) is stored to

the location of dist[i][j] (a1) and pred[i][j] (t1) is updated

with the value of k (t3). Then, a constant for the boundary

condition is loaded, thirty, and the pointers for dist[i][j] and

pred[i][j] are incremented. The counter j (t0) is compared

with the boundary condition and if it is less, the FSM

updates the PC to the address of the Extension Instruction

to loop back on itself. Otherwise, the PC remains the

address of the instruction that immediately follows the hot

block as it was set during activation. Finally, the FSM

writes all registers that have changed state back to the

general purpose register file including a0, a1, a3, t0, t1, v0,

and v1.

The Extension pipeline synchronization logic reads the

state of the FSM when it is complete and writes the PC of

the Extension instruction and all pipeline state information

to the WB pipeline stage of the data path. The Extension

releases the stall on the data path, and the data path resumes

execution normally as the Extension instruction commits in

WB. If the Extension instruction loops back on itself, the

PC is that of the Extension instruction. The Extension

instruction will be fetched again and the process will repeat

until the boundary conditions are met.

Compared with pure software execution, our ISE solution

wins on three aspects. First, there is no instruction fetch

operation. Second, different instructions without data

dependencies are processed in parallel. Finally,

intermediate register values are not written back to the

register file during the intermediate stages. Only the final

value of the register at the end of the execution is written

back.

Our way to exploit parallelism with ISE is very straight

forward. Several other methods or techniques can be used

to obtain better solutions. For example, we can integrate a

self-loop technique that would allow all the operations to

stay in the ISE until the loop ends [33]. This would save

operations to load and write back general purpose registers

after each iteration. Looping within the hardware extension

also saves synchronization overhead required to activate

the extension hardware, stall the processor, release the

pipeline and activate the extension again. Also, from a

circuit designer‟s perspective, operations can be

decomposed and regrouped to achieve a more efficient data

path, especially to memory. However, as our goal is to

show that multi-core processors and ISE complement each

other, it does not matter how efficient the ISE is per se.

4.4 Dual Core ISE Hardware Accelerated

Version
We implemented a version of the FW that incorporates

both multi-core and ISE techniques. We started with the

dual core implementation described in Section 4.2. Then

we applied the same design flow for the eMIPS Extensions

used in Section 4.3 [7].

Like the sequential version (Figure 10), in the dual core

;; Hot block assembly for eMIPS CORE0

1. 0660: lw v0,0(t1)

2. 0664: lw a0,0(a0)

3. 0668: lw v1,0(a1)

4. 066c: addu a0,a0,v0

5. 0670: sltu v1,a0,v1

6. 0674: lui v0,0x8008

7. 0678: beqz v1,688

8. 067c: addu v0,t0,v0

9. 0680: sw a0,0(a1)

10. 0684: sw s0,0(v0)

11. 0688: sll v0,a3,0x1

12. 068c: sll a0,a3,0x5

13. 0690: subu a0,a0,v0

14. 0694: addu v0,a2,s1

15. 0698: lui v1,0x8010

16. 069c: addu a1,a0,s0

17. 06a0: sll v0,v0,0x2

18. 06a4: addu a0,a0,a2

19. 06a8: sll a1,a1,0x2

20. 06ac: sll t0,a0,0x2

21. 06b0: addu t1,v0,v1

22. 06b4: slt v0,a2,a3

23. 06b8: addu a0,a1,v1

24. 06bc: addiu a2,a2,1

25. 06c0: bnez v0,660

26. 06c4: addu a1,t0,v1

;; Hot block assembly for eMIPS CORE1

1. 03cc: lw a0,0(a3)

2. 03d0: lw v0,0(t1)

3. 03d4: lw v1,0(a1)

4. 03d8: addiu a2,a2,1

5. 03dc: addu a0,a0,v0

6. 03e0: sltu v1,a0,v1

7. 03e4: lui v0,0xfff8

8. 03e8: slti t2,a2,30

9. 03ec: addiu a3,a3,4

10. 03f0: beqz v1,400

11. 03f4: addu v0,a1,v0

12. 03f8: sw a0,0(a1)

13. 03fc: sw s1,0(v0)

14. 0400: bnez t2,3cc

15. 0404: addiu a1,a1,4

Load dist[i][k], dist[k][j],
and dist[i][j] from DDR2.

Compare dist[i][j] and
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index, jump
back if boundary has not
been met.

Load dist[i][k], dist[k][j],
and dist[i][j] from DDR2.

Compare dist[i][j] and
dist[i][k] + dist[k][j].

Update dist and pred
matrixes with new values.

Increase loop index,
compare with the boundary.

Jump back if boundary
has not been met.

Figure 16. Hot Blocks for Parallel Floyd-Warshall in

MIPS Assembly.

version (Figure 12) most of the application execution

occurs within the inner loop of the second half of the

application comparing new and old distances and updating

the matrix if the new distance is better. Except in the case

of the dual core version we have two instances of this loop

now acting on different parts of the matrix in parallel. This

means that we will have potentially two different hot

blocks, one for each core. Since both versions of the inner

loop are performing the same task on both cores, we would

expect them to be similar. However, the difference in the

boundary conditions of the two versions results in

significant differences as the compiler attempts to optimize

the code at the machine level.

The difference is reflected in the profiling results of the

dual core implementation of the FW. The assembly

representation of the hot blocks for CORE0 and CORE1

are given in Figure 16. We observe that while the

dominant function of these basic blocks is the same

operation of load, add, compare, conditional store and

branch, CORE0 has significantly more instructions than

CORE1 and both are longer than the sequential version.

Both the Extensions based on these hot blocks function

similarly to the one implemented for the sequential version.

After the Extension is activated by the Extension

Instruction, the input registers are fetched from the general

purpose register file. The register assignments differ

between the sequential and these parallel versions of the

hot block but they represent the same symbols of the

pointers to dist[i][k], dist[k][j], dist[i][j], and pred[i][j] and

loop counters j and k. Both Extensions add dist[i][k] and

dist[k][j] and compare it to dist[i][j]. If the sum is less,

dist[i][j] is updated with the sum and pred[i][j] is updated

with the value of k. Finally, the Extension cleans up state

by writing registers back to the general purpose register file

and resuming pipeline execution.

In both cases, changes to the inner loop boundary

conditions given in Figure 12 (Line 3 and Line 11) resulted

in additional instructions for calculating the more complex

boundaries. After careful inspection of the assembly of

both hot blocks we find that the boundary conditions that

partitioned the NxN matrix into two triangular pieces

changed how the compiler traversed through the addresses

of the matrix elements through the pointers.

In the hot blocks, pointers to dist[i][k], dist[k][j], dist[i][j],

and pred[i][j] are given as inputs. In the sequential version

(Figure 10) each of these is incremented by four except for

dist[i][k] which is constant in this scope. In the dual core

(Figure 12) version the simple increment by four is

replaced in the CORE0 by a set of shifts and adds to

constant base for each pointer. The hot block for CORE1

still increments by four for most of the pointers except for

the pred[i][j] which is derived by adding the pointer to

dist[i][j] to a constant.

Load
Registers

read memory

addu a0,a0,v0 lui v0,0x8008

sltu v1,a0,v1

addiu v0,t0,v0

beqz v0,ffff0688

write memory

sll v0,a3,1 sll a0,a3,5 lui v1,8010

writeback
registers

subu a0,a0,v0 addu v0,a2,s1

addu a1,a0,s0 sll v0,v0,2 addu a0,a0,a2

sll a1,a1,2 ssl t0,a0,2 addu t1,v0,v1 slt v0,a2,a3

addu a0,a1,v1 addiu a2,a2,1 addu a1,t0,v1

bnez
v0,ffff0660

(a)

Load
Registers

read memory

addiu a2,a2,1 addu a0,a0,v0

write memory

writeback
registers

bnez
t2,ffff03cc

sltu v1,a0,v1 addu v0,a1,v0 slti t2,a2,1e addiu a3,a3,4

beqz
v1,ffff0400

addiu a1,a1,4

(b)

Figure 17. ISEs for Parallel Floyd-Warshall: (a) ISE

for CORE0 and (b) ISE for CORE1.

These low level compiler 'optimizations' increases the

number of instructions of the hot blocks by twelve and one

for CORE0 and CORE1 respectively. The workload of the

CORE0 is significantly increased over that of CORE1 and

they are not as balanced as they initially appeared from the

high level software representation. A flow chart of the

FSMs for each of the parallel ISEs is given in Figure 17.

They operate similarly to Figure 15 and their discussion is

therefore omitted for brevity.

5. Discussion
In the previous section, we presented the design strategies

and resulting implementations for four versions of the FW,

three with different performance enhancing techniques.

The last implementation combined the multi-core and ISE

techniques of the other two. Both these techniques

accelerate application performance by exploiting

parallelism. However, each exploits different types of

parallelism and in different ways. These techniques are not

mutually exclusive where one provides all the benefits

while the other adds little. To understand the synergy of

these techniques it is important to discuss where the

advantages of each are found. We illustrate this through

our example of the FW and show how the combination of

these techniques provides opportunities not available to

either alone.

5.1 A System Perspective
From a system perspective, multi-core based parallel

programming and ISE are two orthogonal methods that do

not contradict each other. As we hope to have proven in

this paper, their acceleration contributions can be added up

to achieve higher performance. Moreover, although both of

these methods deliver acceleration by exploiting

parallelism, they are at different levels of granularity. This

means that there is no concern that one of them handles all

the parallelism while the other has nothing left to do.

In general, there are 4 levels of parallelism [28]: Instruction

Level Parallelism (ILP), Data Level Parallelism (DLP),

Task Level Parallelism (TLP), and Process and Thread

Level Parallelism (PTLP). We observe that the types of

parallelism suitable for ISE and multi-core vary along the

parameters of granularity and observability. Multi-core

based parallel programming works well when parallelism is

coarse grained and has high observability. By comparison,

ISE works well when parallelism is fine grained and

observability is low because it resides underneath the

software implementation. Figure 18 illustrates the overall

picture of different levels of parallelism.

ILP has the lowest level of granularity. It is achieved by

operating several different instructions in the same clock

cycle. A critical feature of ILP is that it is not visible in the

source code. Therefore, ILP is out of the programmers‟

control. We already showed that this „out of control‟

characteristic also brings practical problems to the higher-

level parallelism in Section 4.4. ISE is the perfect solution

to exploit ILP. Also, ISE brings low-level control back to

developers. We can use it to solve the practical problems

we encounter.

DLP means that several different data elements can be

processed in parallel. This level of parallelism is suitable to

be exploited by ISE. For example, we can unroll the inner

most loop of FW and process several matrix elements in

parallel with the ISE.

TLP is achieved by processing several different blocks of

codes, e.g. loops, in parallel. Parallelism at this level is too

high to be exploited by ISE. Instead, multi-core becomes a

more suitable solution. Consider the parallel FW case. We

divide the middle loop in Figure 10 into 2 parallel smaller

loops in Figure 12 and assign them to different eMIPS

cores. In this way, we process two instances of a loop at

the same time using two cores.

PTLP is even higher than TLP. It is the most prevalent

parallelism we can see in parallel computing systems. Here,

multi-core is the best solution.

5.2 A Multi-Core Perspective
By adding different hardware instruction set extensions to

different eMIPS cores, we gradually change the

homogeneous multi-core system into a heterogeneous one.

The heterogeneous system gives developers more options

and control for task partitioning among different cores. As

a result, it is less likely to see some cores finish their jobs

earlier and sit idle waiting for the others. This makes it

easier to achieve balanced task partitioning, and therefore,

it increases the efficiency of the multi-core system.

While the above benefit from ISE to multi-core is easy to

see, there are also other benefits that are more subtle. In the

rest of this section, we propose our solution based on ISE to

remedy the assembly level imbalance problem mentioned

in Section 4.4.

Process &Thread Level
Parallelism

Task Level Parallelism

Data Level Parallelism

Instruction Level Parallelism

multi-core

rISE

G
ra
n
u
la
ri
ty

O
b
se
rv
a
b
il
it
y

High Low

Low High

Figure 18. Different Levels of Parallelism.

As discussed in Section 4.2, the task loads assigned to

different eMIPS cores appear quite balanced. However, in

Section 4.4 when we compile the program for each core

with GCC (O2), we obtained the assembly codes for the

dual-core system, shown in Figure 16. Although the C

programs for the sequential FW and both CORE0‟s and

CORE1‟s parallel FW all look very similar, the resulting

assembly code shows significant differences. Specifically,

by only changing the bottom or upper limit of the inner

most loop‟s index, we find large differences in the

assembly code. The number of instructions in CORE0‟s

parallel FW implementation is much larger than that of the

sequential FW. This means that although the number of

iterations are reduced for each core in the dual-core system,

the length of every iteration for CORE0 is increased. Thus,

the overall acceleration will not be very high.

The increased complexity of CORE0‟s parallel FW is

caused by the changes to the inner loop boundary

conditions used to partition the NxN matrix into two

triangle pieces. As discussed in Section 4.4, this changes

the way the compiler updated the pointers to the matrix

elements processed by the loop. This is because of the

inefficiency of compilers when compiling irregular nested

loops (the innermost loop‟s boundary is changing). This

problem is usually out of the programmers‟ control.

In order to balance the task partitioning of different eMIPS

cores, we accelerate the operations in CORE0 and CORE1

with ISEs, which are illustrated in Figure 17. The ISE for

CORE0 only has 3 more states than CORE1‟s ISE. This

means that the difference in execution time is only 3 clock

cycles between the two cores. Compared with the previous

difference (11 instructions), the task loads are much more

balanced. In such a way, developers regain control over

low-level issues again. This grants developers more power

to achieve balanced multi-core systems. Similarly, for other

applications that cannot be partitioned in a balanced way in

the C program, ISE can also be used to re-balance the

execution times of the various parts.

5.3 An ISE Perspective
Due to the low-level features of the ISE, it is difficult to

achieve a global optimum in terms of speed and area cost,

if we only look at one single ISE. Fortunately, high-level

parallel programming on multi-core systems gives us a

global view of an application. Thus, it helps to guide the

design of ISE to a global optimum.

In Section 5.2, we showed an example where ISE could be

used to benefit multi-core systems. With the same example,

we can also find that the multi-core system makes ISE

more efficient. As we mentioned, the difference between

the two ISEs is 3 clock cycles. This means that CORE1 still

has a lighter task load. In such a case, we can lower the

speed requirement for CORE1. Our solution is to add 2

additional states to CORE1‟s ISE and reduce the number of

instructions performed in one state. Figure 19 shows the

improved operation procedure. Consequently, the

difference in the number of states in CORE0 and CORE1 is

reduced to 1. The overall performance remains the same.

However, CORE1‟s ISE takes less area. Previously, there

were at most four operations processed in parallel in one

clock cycle. The hardware resources needed to accomplish

that are two comparators and two adders. After the

optimization, the ISE only requires at most one comparison

and one addition in each state. The hardware resources

needed are reduced to one comparator and one adder.

Experimental results in the next section will show that it

takes approximately 6% less area. If the reused resources

were more complicated, for example multipliers, or

consisted of more computational elements, the area

reduction would be higher.

The above analysis tells us that parallel programming on

multi-core gives developers a high-level view of a problem.

Therefore, they can discover more globally efficient ISE

implementations solutions that are locally sub-optimal in

one dimension, but more efficient in another dimension.

Load
Registers

read memory

addiu a2,a2,1

addu a0,a0,v0

write memory

writeback
registers

bnez
t2,ffff03cc

sltu v1,a0,v1

addu v0,a1,v0 slti t2,a2,1e

addiu a3,a3,4

beqz
v1,ffff0400

addiu a1,a1,4

Figure 19. More Efficient ISE for CORE1.

6. Experimental Results
In order to demonstrate our analysis in the last section, we

tested four versions of Floyd-Warshall algorithm: Seq,

SeqExt, Para, and ParaExt. The relationships between

these different versions is summarized in Table 1.

Table 1. Summary of Different Versions of FW

 Sequential Parallel

No

extension
Seq Para

With

extensions
SeqExt ParaExt

Seq is our baseline implementation of Figure 10. It is a

single threaded program that sequentially updates each

entry in the matrix. Para is our dual core implementation

splitting the matrix diagonally allowing each core to update

half the matrix (Figure 12).

We profiled both of these programs and identified that the

basic block with the highest execution frequency is the

most inner loop of the algorithm. The profile revealed that

the assembly code of the three versions of the innermost

loop were similar but not exactly the same. This required us

to implement three different extension designs.

The SeqExt version implements Seq accelerated by the

extension hardware (shown in Section 4.3). The extension

instruction is inserted into Seq‟s binary using our patching

tool. Similarly, ParaExt is Para implemented with two

different extensions loaded into each of the two eMIPS

cores (the combined method discussed in Section 4.4 and

5). The binaries of each core are also patched with the

appropriate extension instructions.

The experiments were performed on a Virtex 5

(xc5vlx110t-2ff1136) FPGA, where our dual-core eMIPS

design including peripheral and memory support were

implemented. For each experiment, the algorithms were run

on one or both cores with the instructions stored in the local

BlockRAM of the host core and the graph matrix data is

stored in the DDR2 RAM shared by both cores. The

algorithms were applied to a random weighted directed

graph of 30 vertices. Measurements were taken using the

local timer, running at 10 MHz.

Table 2, presents the execution time for all versions.

Table 2. Execution Time of Different Versions of FW

 Seq SeqExt Para ParaExt

Execution

Time (ms)
25.85916 12.10826 22.72854 7.00032

To compare the acceleration of the various techniques, the

speed ups are presented in Table 3. We can see that parallel

programming without extensions only gives us a speedup

of 1.138. Also, we find that the hardware instruction set

extension in SeqExt gives a 2.136 speedup over the version

Seq. After combining parallel programming and ISE

together, we find ParaExt has a speedup of 3.7 over Seq

and 1.73 over SeqExt.

Table 3. Speedup of Different Versions of FW

 Seq Para SeqExt

Seq 1 -- --

Para 1.138 1 --

SeqExt 2.136 1.88 1

ParaExt 3.7 3.25 1.73

Table 4. Area Cost of the Original ISE and the more

efficient ISE for CORE1 in ParaExt

 #adders #comparators #registers #LUTs

Original 11 2 676 1148

Improved 10 2 677 1080

We also implemented the more efficient ISE for the

ParaExt version of CORE1 as shown in Figure 19.

Experimental results show that ParaExt‟s execution time

with the more efficient ISE is 7.0178ms. The performance

is maintained. After synthesis using Xilinx ISE 10.1, the

area costs of the original ISE and the improved ISE are

different. The resource requirements of the two

implementations are listed in

Table 4. The numbers of adders and comparators are

obtained from the „Advanced HDL Synthesis Report‟. The

numbers of registers and LUTs are obtained from the

„Device utilization summary‟.

7. Analysis
The acceleration of Para over Seq was only 1.138. The

efficiency per core is only 0.57 – surely not satisfying. This

shows that although the task partitioning in Para divides in

half the number of matrix elements that each core processes

by 2, the overall performance does not improve much

because CORE0 in the Para version executes almost twice

the number of instructions as in the Seq version for every

matrix element (Figure 16). We experimentally rule out the

possibility that this lukewarm performance was mainly due

to memory contentions: that is, when both cores attempt to

access the shared memory at the same time, one core will

be delayed until the other finishes. From the RTL

simulation, we noticed that most memory access operations

from the two cores were interleaved. Even when the

contention happened, the delay of one core was small

compared to the overall memory latency. This observation

shows that memory contentions did not reduce Para‟s

performance by a large extent. From another perspective, in

contrast with Para, two cores in ParaExt need to finish the

same sets of memory access operations within a much

shorter time. Thus, ParaExt has a more severe memory

contention problem than Para. But this did not result in a

low speedup of ParaExt over SeqExt (1.73). Therefore, for

the second time, we have shown that memory contentions

are not the major problem for the Para version in this case.

More importantly, the speedup of ParaExt over SeqExt is

1.73. This indicates that, after adding ISEs, the dual-core

system‟s efficiency per core increases from 0.57 to 0.87.

This improvement comes from the more balanced

execution time between the two cores. Since the gap in the

work load between the two cores is significant reduced

using the ISEs, CORE1 no longer has to wait large amounts

of time between iterations for CORE0 to complete its

section of the matrix. Therefore, we demonstrate that ISEs

increase multi-core systems‟ efficiency by balancing the

execution time of different cores.

According to the area costs in

Table 4, the more efficient ISE uses one fewer adder than

the original ISE. Accordingly, the more efficient ISE takes

68 fewer LUTs. The synthesis tool did not reuse the

comparator. The reason for this is that compared to the cost

of reusing a comparator (e.g. multiplexers), this

optimization is not worthwhile. We also notice that one

more register is needed by the more efficient ISE. The

detailed synthesis report shows that two more registers are

used for two additional states (speed1 encoding). However,

the original ISE has one more register that is duplicated.

Thus, the improved ISE costs one more register. Overall,

the more efficient ISE reduces the LUT cost by 6% while

maintaining the same performance. Therefore, it appears

that multi-core techniques can also be used to make ISE

more efficient.

The speedups of Para and SeqExt over Seq are 1.138, and

2.136 respectively. After combining multi-core processors

and ISEs together, we obtain a speedup of 3.7 from

ParaExt. The acceleration is higher than either one used in

isolation. Moreover, the speedup of ParaExt is even higher

than the product of Para and SeqExt alone

(3.7>1.138*2.136). This demonstrates the higher efficiency

obtained by the combined method. This shows that, by

exploiting different levels of parallelism, multi-core

processors and ISEs add their accelerations together and

realize a high-performance system in an efficient way.

Note that a number of research efforts have investigated

high-performance FW implementations on FPGAs [29]

[30] and GPUs [31] [32]. We do not compare our case

study with them. This paper proposes a highly flexible

architecture, not a specific dedicated design. The

performance of the new architecture depends on the

performance of the specific multi-core processors and the

ISEs. Considering the case study only uses two soft eMIPS

cores with two unoptimized ISEs, it is not fair to compare it

with the previous optimized designs. What the case study

really shows is that the combination of multi-core parallel

programming and ISEs produces overall better performance

with higher efficiency than solutions based on only one of

the two.

8. Conclusion
In this paper, we proposed multi-core processors combined

with reconfigurable instruction set extensions as a high

performance architecture. Both analysis and experimental

results show that these two acceleration methods not only

exploit different levels of parallelism, but also benefit each

other. Therefore, we consider the combination as a

promising solution for high performance systems.

REFERENCES
[1] T. M. Pinkston and J. Shin, Trends Toward On-Chip

Networked Microsystems, Int’l J. High Performance

Computing and Networking, vol. 3, no. 1, Dec. 2005,

pp. 3-18.

[2] NVIDIA, NVIDIA GeForce 8800 GPU Architecture

Overview,

http://www.nvidia.com/object/IO_37100.html.

[3] Intel, Intel Xeon Processor 5500 Series,

http://download.intel.com/products/processor/xeon/dc5

5kprodbrief.pdf.

[4] AMD, Six-Core AMD Opteron Processor Product

Brief, http://www.amd.com/us/products/server/six-

core-opteron/pages/six-core-opteron-product-

brief.aspx.

[5] G. M. Amdahl, Validity of the single-processor

approach to achieving large scale computing

capabilities. In AFIPS Conerence Proceedings, vol. 30

(Atlantic City. N.J., Apr. 18-20). AFIPS Press, Reston,

Va., 1967, pp. 483-485.

[6] H. Lu, A. Forin, The Design and Implementation of

P2V, An Architecture for Zero-Overhead Online

Verification of Software Programs, MSR-TR-2007-99,

Microsoft Research, WA, Aug. 2007.

[7] R. N. Pittman, N. L. Lynch, A. Forin, eMIPS, A

Dynamically Extensible Processor, MSR-TR-2006-

143, Microsoft Research, WA, Oct. 2006.

[8] U. Bondhuqula, A. Devulapalli, J. Fernando, P.

Wyckoff, P. Sadayappan, Parallel FPGA-based all-

pairs shortest-paths in a directed graph, Parallel and

Distributed Processing Symposium, 2006, IPDPS

2006, pp. 25-29, April 2006.

[9] K. Öner, L.A. Barroso, S. Iman, J. Jeong, K.

Ramamurthy, and M. Dubois, “The Design of RPM:

An FPGA-based Multiprocessor Emulator,”

http://www.nvidia.com/object/IO_37100.html
http://download.intel.com/products/processor/xeon/dc55kprodbrief.pdf
http://download.intel.com/products/processor/xeon/dc55kprodbrief.pdf
http://www.amd.com/us/products/server/six-core-opteron/pages/six-core-opteron-product-brief.aspx
http://www.amd.com/us/products/server/six-core-opteron/pages/six-core-opteron-product-brief.aspx
http://www.amd.com/us/products/server/six-core-opteron/pages/six-core-opteron-product-brief.aspx

International Symposium on Field-Programmable Gate

Arrays (FPGA95), pp. 60-66, 1995.

[10] J.D. Davis, S.E. Richardson, C. Charitsis, and K.

Olukotun, “A Chip Prototying Substrate: The Flexible

Architecture for Simulation and Testing (FAST),”

ACM SIGARCH Computer Architecture News, Vol.

33, No. 4, pp. 34-43, 2005.

[11] J. Wawrzynek, D. Patterson, M. Oskin, Shih-Lien Lu,

C. Kozyrakis, J.C. Hoe, D. Chiou, and K. Asanović,

“RAMP: Research Accelerator for Multiple

Processors,” IEEE Micro, Vol. 27, No. 2, pp.46-57,

2007.

[12] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C.

Kozyrakis, and K. Olukotun, “ATLAS: A Chip-

Multiprocessor with Transactional Memory Support,”

Design, Automation and Test in Europe (DATE2007),

pp. 3-8, 2007.

[13] C. Chang, J. Wawrzynek, and R.W. Brodersen,

“BEE2: A High-End Reconfigurable Computing

System,” IEEE Design & Test, vol. 22, no. 2, pp. 114-

125, 2005.

[14] D. Lee, “OpenSPARC – A Scalable Chip Multi-

Threading Design,” International Conference on VLSI

Design, (VLSID2008), pp. 16-16, 2008.

[15] BEE3: http://research.microsoft.com/projects/BEE3/

[16] D. Vahia and P. Hartke, “OpenSPARC T1 on Xilinx

FPGAs – Updates,” 2007, DOI=

http://ramp.eecs.berkeley.edu/Publications/OpenSparc

%20%286-14-2007%29.pdf

[17] F. Campi, M. Toma, A. Lodi, A. Cappelli, R.

Canegallo, and R. Guerrieri, “A VLIW Processor With

Reconfigurable Instruction Set for Embedded

Applications,” IEEE Journal of Solid-State Circuits,

Vol. 38, No. 11, pp. 1876-1886, 2003.

[18] M. Epalza, P. Ienne, and D. Mlynek, “Adding Limited

Reconfigurability to Superscalar Processors,” Parallel

Architecture and Compilation Techniques (

 PACT2004), pp. 53-62, 2004.

[19] Tensilica, Inc. “Xtensa 7 Product Brief,”

http://www.tensilica.com/uploads/pdf/xtensa_7.pdf.

[20] MIPS Technologies, Inc. “Pro Series Processor Cores,”

Application Notes,

http://www.mips.com/media/files/Pro%5FSeries.pdf.

[21] ARC, Inc. “ARC 600 Configurable Core Family,”

http://www.arc.com/evaluations/15_ARC_600_Family

.pdf.

[22] Stretch Inc. “S6000 Family”, Product Brief,

http://www.stretchinc.com/_files/S6000.pdf.

[23] K. Atasu, G. Dűndar, and C. Özturan, “An Integer

Linear Programming Approach for Identifying

Instruction-Set Extensions,” International conference

on Hardware/Software Codesign and System

Synthesis, pp. 172-177, 2005.

[24] K. Meier and A. Forin, “MIPS-to-Verilog, Hardware

Compilation for the eMIPS Processors” Microsoft

Research Technical Report MSR-TR-2007-128, 2007,

http://research.microsoft.com/en-us/projects/emips/tr-

2007-128.pdf.

[25] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-

specific Instruction Generation for Configurable

Processor Architectures,” International Symposium on

Field Programmable Gate Arrays (FPGA2004), pp.

183-189, 2004.

[26] R.N. Pittman, N.L. Lynch, and A. Forin, “eMIPS, A

Dynamically Extensible Processor,” Microsoft

Research Technical Report MSR-TR-2006-143, 2006,

http://research.microsoft.com/en-

us/projects/emips/emipsreport1.pdf.

[27] R.W. Floyd, “Algorithm 97: Shortest Path,”

Communications of the ACM, vol. 5, page 345, 1962.

[28] S.A. Ostadzadeh and K. Bertels, “Parallelism

Utilization in Embedded Reconfigurable Computing

Systems: A Survey of Recent Trends,” The Journal of

VLSI Signal Processing, Vol. 28, No. 1-2, pp 7-27,

Springer, 2004.

[29] U. Bondhuqula, A. Devulapalli, J. Fernando, P.

Wyckoff, P. Sadayappan, “Parallel FPGA-based all-

pairs shortest-paths in a directed graph,” Parallel and

Distributed Processing Symposium (IPDPS 2006), pp.

25-29, 2006.

[30] E.I. Milovanvić, I.Ž. Milovanović, M.P. Bekakos, I.N.

Tselepis, “Computing All-Pairs Shortest Paths on A

Linear Systolic Array and Hardware Realization o a

Reprogrammable FPGA Platform,” The Journal of

Supercomputing, Vol. 40, No. 1, pp. 49-66, 2007.

[31] S. Sengupta, M. Harris, Y. Zhang, J.D. Owens, “Scan

Primitives for GPU Computing,” 22nd ACM

SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pp. 97-106, 2007.

[32] G.J. Katz and J.T. Kider Jr, “All-Pairs Shortest-Paths

for Larger Graphs on the GPU,” 23rd ACM

SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pp. 47-55, 2008.

[33] Sekar, A., Forin, A. Automatic Generation of

Interrupt-Aware Hardware Accelerators with the M2V

Compiler., MSR-TR-2008-110, Microsoft Research,

WA, August 2008.

http://research.microsoft.com/projects/BEE3/
http://ramp.eecs.berkeley.edu/Publications/OpenSparc%20%286-14-2007%29.pdf
http://ramp.eecs.berkeley.edu/Publications/OpenSparc%20%286-14-2007%29.pdf
http://www.tensilica.com/uploads/pdf/xtensa_7.pdf
http://www.mips.com/media/files/Pro_Series.pdf
http://www.arc.com/evaluations/15_ARC_600_Family.pdf
http://www.arc.com/evaluations/15_ARC_600_Family.pdf
http://www.stretchinc.com/_files/S6000.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2007-128.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2007-128.pdf
http://research.microsoft.com/en-us/projects/emips/emipsreport1.pdf
http://research.microsoft.com/en-us/projects/emips/emipsreport1.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-110.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-110.pdf
http://research.microsoft.com/en-us/projects/emips/tr-2008-110.pdf

