
Transition from Centralized to Decentralized Version Control
Systems: A Case Study on Reasons, Barriers, and Outcomes

Kıvanç Muşlu
University of Washington

Seattle, WA, USA

kivanc@cs.washington.edu

Christian Bird, Nachiappan Nagappan
Microsoft Research
Redmond, WA, USA

{cbird, nachin}@microsoft.com

Jacek Czerwonka
Microsoft

Redmond, WA, USA

jacekcz@microsoft.com

ABSTRACT
In recent years, software development has started to transition from

centralized version control systems (CVCSs) to decentralized ver-

sion control systems (DVCSs). Although CVCSs and DVCSs have

been studied extensively, there has been little research on the tran-

sition across these systems.

This paper investigates the transition process, from the developer’s

view, in a large company. The paper captures the transition reasons,

barriers, and outcomes through 10 developer interviews, and inves-

tigates these findings through a survey, participated by 70 develop-

ers. The paper identifies that the majority of the developers need to

work incrementally and offline, and manage multiple contexts effi-

ciently. DVCSs fulfill these developer needs; however the transi-

tion comes with a cost depending on the previous development

workflow. The paper discusses the transition reasons, barriers and

outcomes, and provides recommendations for teams planning such

a transition. The paper shows that lightweight branches, and local

and incremental commits were the main reasons for developers

wanting to move to a DVCS. Further, the paper identifies the main

problems with the transition process as: steep DVCS learning

curve; incomplete DVCS integration with the rest of the develop-

ment workflow; and DVCS scaling issues.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – version control

General Terms

Measurement, Human Factors.

Keywords

Version control system, DVCS, CVCS, distributed, centralized,

productivity, barriers, empirical, transition.

1. INTRODUCTION
Version control systems (VCSs) help developers to implement and

maintain large systems by letting them collaborate and work on the

same project at the same time. A centralized VCS (CVCS) keeps

all development history in a central server whereas a decentralized

VCS (DVCS) keeps the development history on each development

machine locally. Historically, DVCSs came later than CVCSs, try-

ing to address the limitations of CVCSs, such as enabling light-

weight branching, local VCS operations, and easier collaboration

between developers [1].

Although CVCSs and DVCSs have been available for quite a while,

to the best of our knowledge, there is little research on why devel-

opers transition from a CVCS to a DVCS. For a developer, who is

already proficient with a CVCS, transitioning to an unknown

DVCS would require considerable effort, which would only make

sense if the benefits of using the DVCS would eventually outweigh

this transition effort. Barr et al. [2] investigated how the transition

affects the project branching structure and the way the developers

use branches in open-source software (OSS). de Alwis and Sillito

[1] investigated the transition process, challenges, and anticipated

benefits for four OSS. To our best knowledge, there is no study that

investigates the transition process from the developer’s view in a

large commercial company. This paper aims to understand transi-

tion reasons, barriers, and outcomes from a qualitative perspective

to expand the scientific knowledge for the whole transition process.

To identify the transition reasons, barriers, and outcomes, this paper

uses interviews of 10 developers who transitioned from a CVCS to

a DVCS within the same project. The paper also investigates and

quantifies the findings through a comprehensive survey, partici-

pated by 70 developers. The paper identified that, at Microsoft,

DVCSs are preferred for some simple but key operations, such as

incremental workflow through small and local commits, and effi-

cient context switching through lightweight branches. This raises

the question whether all DVCS features – and specifically being

distributed – are essential for large, commercial companies. Section

7 discusses this question in-depth.

The paper makes the following contributions:

 A novel, qualitative study with professional developers

who transitioned from a CVCS to a DVCS within the same

project (Section 3),

 Identification of the key concepts for transition reasons,

barriers, and outcomes through 10 semi-structured devel-

oper interviews, and quantification of these findings

through a comprehensive survey, participated by 70 devel-

opers (Sections 4, 5, and 6),

 In-depth discussion of the DVCS features that are favored

by the developers to understand whether these features are

essential to DVCSs. This discussion concludes with guide-

lines to people who consider transitioning (Section 7).

The reminder of the paper is organized as follows: Section 2 defines

VCS terminology. Section 3 explains the methodology. Sections 4,

5, and 6 explain transition reasons, barriers, and outcomes, respec-

tively. Section 7 discusses some of our finding in-depth and pro-

vides guidance to people who consider transitioning. Section 8 dis-

cusses threats to validity in the findings. Section 9 puts the paper in

the context of the related work. Section 10 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ICSE’14, May 31–June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2756-5/14/05…$15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568284

670

2. DEFINITIONS
This section defines VCS terminology used throughout the paper.

A version control system (VCS) is a tool that helps the developers

manage the source code and the development history of a product with

the following core functionality: (1) backing up the source code seam-

lessly, and (2) letting multiple developers collaborate efficiently.

A repository is the combination of the source code and metadata –

including all previous versions – stored in a VCS. To work on the

source code, the developer checks-out a version of the history from

a repository to a local workspace. The developer makes changes to

the workspace and checks-in these changes to the VCS to make the

changes accessible to other developers. During a check-in, the de-

veloper’s changes might conflict with changes checked-in by other

developers. All VCSs provide a textual merge algorithm that finds

the closest common ancestor for conflicting changes and shows the

conflicts as a 3-way diff. A VCS branch is a systematic way to

provide isolation by diverging from the development history at a

specific point. By default, the development in a VCS starts in a

branch called ‘trunk’. Later, the developers can create other

branches from existing branches. 1

A centralized VCS (CVCS) (e.g., CVS [3], SVN [4]) is a VCS that

stores the development history in a central server. Most CVCSs

only store one snapshot (typically the latest) of the repository lo-

cally at any given time. Consequently, CVCSs scale well regardless

of the development history. However, VCS operations that need

access to history that is not available locally, such as merge, must

execute on the server.

A distributed VCS (DVCS) (e.g., Mercurial [5], Git [6]) is a VCS

that stores the whole development history as a local repository. A

commit is a check-in to this local repository, which is not accessible

to other developers, by default. DVCSs execute most VCS opera-

tions – except synchronization with another repository – locally.

A bridge is some tooling between a CVCS and a DVCS that lets the

developers use the DVCS, but stores the history in the CVCS. The

bridge offers bidirectional synchronization between the CVCS and

the DVCS. Figure 2 depicts the architectural diagram of a bridged

VCS (BVCS), which consists of one CVCS, one DVCS, and a

bridge implementation. This paper uses the terms bridge and BVCS

interchangeably. The rest of the paper does not distinguish between

1 The paper uses the terms check-in and check-out instead of commit and

clone, which have different meaning for DVCSs and CVCSs.

a BVCS and a DVCS since a developer uses only DVCS operations

in both. The term ‘B/DVCS’ stands for BVCS or DVCS. The term

‘transition’ stands for the transition from a CVCS to a B/DVCS.

3. METHODOLOGY
To understand the transition reasons, barriers, and outcomes, we

conducted 10 semi-structured developer interviews and a survey

participated by 70 developers. This section explains the methodol-

ogy for the interviews, and the survey. The results are presented in

Sections 4, 5, and 6. The results are based on our interviews only;

we used the survey to quantify and generalize these results. We

only report the survey results for the whole developer population

since two-tailed heteroscedastic Student’s t-test (based on factors

such as age and experience) showed no statistical significance be-

tween sub-populations with p > 0.05.

For the interviews, we selected developers who transitioned within

the same project, as they have a better chance to compare a CVCS

to a B/DVCS. We sent a preliminary questionnaire to two internal

B/DVCS mailing lists to find candidates. Depending on the ques-

tionnaire results, we sent individual e-mails to recruit developers.

Each developer went through a semi-structured interview (as de-

scribed in [7]) where the interviewer had several questions that tried

to capture the developer’s familiarity and workflow patterns with

different VCSs, and the transition reasons, barriers, and outcomes.

The questions were general to prevent introducing bias. For exam-

ple, instead of asking whether the developer likes lightweight

DVCS branches, we asked which DVCS aspects the developers

likes and dislikes. The developers were encouraged to talk in detail

for any question, or any part of the transition that the questions did

not cover. Each interview lasted about an hour and was recorded.

After the last interview was completed, we coded the recordings.

For each coded interview, we generated 25 to 55 cards containing

the key points. At the end, we printed a total of 378 cards. We sorted

these cards to categorize the responses for thematic similarity (as

illustrated in LaToza et al.’s study [8]). These themes that emerged

during the sort were not chosen beforehand. Finally, we went over

each theme and categorized the cards in that theme into sub-themes.

Figure 1 shows the cards – with themes and sub-themes written on

yellow stickers.

Figure 1: Card sorting. Yellow stickers represent a (sub) theme.

Figure 2: The architectural diagram for Git-P4. The developers

on the left use Git. They synchronize with either the main Git

repository (Git logo at the top left) or their peer’s private Git

repositories (small Git logos at the bottom left). The developers

on the right use Perforce and only interact with the main Per-

force repository. Git-P4 synchronizes the main Git and Per-

force repositories in both directions.

671

We designed a survey to quantify our findings from the interviews.

Kitchenham and Pfleeger [9] discuss the design and construction of

personal opinion surveys using the following steps: searching the

relevant literature; construct an instrument; evaluate the instrument;

document the instrument. In our survey, as suggested by Kitchen-

ham and Pfleeger, we use formal notations, limit our respondents’

responses to numerical, Yes/No type, Likert-scale, and short free

form answers. Respondents were anonymous. We followed Kitch-

enham and Pfleeger’s advice [9] on the need to understand whether

the respondents had enough knowledge to answer the questions in

an appropriate manner. For this, we restricted the people invited to

participate in the survey to people who had registered in the

B/DVCS mailing lists. Additionally, even if the developers had

never used a CVCS or a B/DVCS, they could skip the related parts

of the survey and still be included in the drawing2, ensuring that no

one felt compelled to take the survey for the chance to win the gift.

We piloted our survey within researchers before making it available

to 150 candidate developers in Microsoft. 70 developer took and

completed the survey. 57 participants (81%) and all participants

used a B/DVCS and a CVCS at Microsoft, respectively. 47 partici-

pants (82%) continue using a B/DVCS. Table 1 summarizes the re-

maining demographical properties for the survey participants.

4. TRANSITION REASONS
This section focuses on the following four main transition reasons:

the ability to (1) work offline, (2) work incrementally, (3) context

switch efficiently, and (4) do exploratory coding efficiently. Figure

3 summarizes the related survey results.

(i) The ability to work offline: All developers we interviewed fo-

cus on the importance of being able to work offline. The majority

of the survey participants (56% vs. 34%) agree with this observa-

tion. Some CVCSs require the developer to be connected to the

server before editing a file for the first time, which makes it more

difficult to work offline. The manual workarounds are tedious. For

example, the developer could ignore this requirement, start editing

2 Survey respondents could e-mail us separately outside of their

survey responses to enter a drawing for four $10 rewards.

the file and attempt to check-in changes when s/he is connected to

the server in the future. At this point, the CVCS would attempt to

replay developer’s actions. If any step fails due to other check-ins,

developer’s check-in fails. Moreover, developers cannot work eas-

ily when the central server is down or having bandwidth problems.

The developers believe that with a B/DVCS they can work offline.

When using a B/DVCS, the developers need to interact with the

central server only when they need to check-in their changes to or

check-out new changes from the server.

(ii) The ability to work incrementally: In our interviews, all de-

velopers except one focus on the importance of incremental and fre-

quent commits. 97% of the survey participants support this observa-

tion by favoring small, frequent commits to one large check-in.

CVCSs do not support commits. The moment a developer checks-in

to the server, the changes are accessible to everyone. Some develop-

ment practices suggest that the developers should check-in complete

and working code, which makes it more difficult for the developers

to create checkpoints for their current work. These checkpoints are

useful for understanding how a recent code has evolved in time and

returning back to a previous version quickly.

Microsoft products use continuous integration: checked-in changes

go through ‘quality gates’ where they are built and tested. Before

checking-in, most developers also go through a simplified quality

gate, called Check-in Wizard, which builds and tests the modified

components locally to get an early assessment of software quality.

One execution of the Check-in Wizard can occasionally take a long

time, which discourages the developers to do frequent check-ins.

The survey participants have mixed feelings (46% agree vs. 28%

disagree) on whether the quality gates affect the development work-

flow negatively or not. Nonetheless, the developers believe that

DVCSs would let them work incrementally and go through the

Check-in Wizard less frequently via commits.

(iii) The ability to context switch efficiently: All developers we

interviewed focus on the fact that CVCSs make it very difficult to

work on multiple tasks simultaneously. Working on multiple tasks,

such as developing a new feature or fixing a bug, is common for

the developers. Figure 4 summarizes the most popular CVCS tech-

niques for context switching. Top two of these techniques is to

check-out the code multiple times on different file system locations

(multiple enlistments) and create a delta for each different change

and manually manage these deltas (patches). Checking-out the code

multiple times increase the storage space needed for development

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CVCS workflow is non-optimal as I have to be online.
CVCS workflow is non-optimal as quality gates are too slow.
CVCS workflow is non-optimal as context switching is hard.
I prefer frequent and small check-ins to one large check-in.

At Microsoft, creating a branch is an organizational decision.
I would prefer using VCS branches for context switching.

Strongly Agree Agree Neutral Disagree Strongly Disagree N/A

Figure 3: Survey results related to transition reasons (colored). The second and last questions are answered by 36 and 54 qualifying

developers. More than 50% of the developers agree that they cannot work efficiently with the current CVCSs at Microsoft because

they have to be online and cannot context switch easily. Most developers prefer to work with small, incremental commits and use

VCS branches for context switching. 81% of the developers agree that creating and deleting branches is an organizational decision

at Microsoft. Finally, the developers have mixed feelings (46% agree vs. 28% disagree) on whether quality gates affect their devel-

opment workflow negatively.

Table 1: Survey demographics

Demographic Property Average Value

Development experience 11.0 years

Experience at Microsoft 6.2 years

Experience with CVCSs at Microsoft 5.9 years

Experience with DVCSs at Microsoft 1.5 years

672

linearly. More importantly, each time the developer checks-out new

changes from the server, every code location needs to be rebuilt

even if their contents are mostly the same. When using patches, the

developer needs to create and manually maintain these patches.

One developer mentions:

I use other tools, beside [VCS], to save bits and pieces of

my work. Using one of these [tools], I can take a snapshot

of [my changes] … I try naming [the snapshot] meaning-

fully, e.g., bugid_1, bugid_2, but I don't do a good job.

76% of the survey participants agree that CVCSs they use do not

provide efficient ways to context switch. The fact that all of the

survey participants, except one, do not use private branches as a

standalone technique was surprising for us. However, at Microsoft,

the branches for a product is often an organizational decision. 81%

of the survey participants agree with this observation. All check-ins

need to go through quality gates, which means that all branches

need infrastructure support, such as build and test labs. Therefore,

it is not easy for a developer to create and delete private branches

as s/he sees fit. On the other hand, with DVCSs, a developer could

create a private branch, do changes, check-in locally, merge her/his

branch to one of the organizational branches, and check-in the

changes on the organizational branch. For other developers, and for

the central server, it is as if the private branch never existed. There-

fore, the developers believe that they can context switch efficiently

using DVCS branches.

(iv) The ability to do exploratory coding efficiently: Half of the

developers we interviewed, mentioned that CVCSs limit their abil-

ity to do exploratory coding. Exploratory coding is when develop-

ers pursue a new feature/prototype development to explore its fea-

sibility without complete knowledge of its ability to be successful

or not. Exploratory coding can be seen as a task that requires a new

context, however differs from the usual context switches in two as-

pects: (1) exploratory coding might take a long time before it be-

comes a prototype that can be checked-in, and (2) some exploratory

coding never makes to the product. Therefore, exploratory coding

might be viewed as a longer and potentially disposable context

switch. With strict and pre-defined branches, the developer has to

manually manage any exploratory coding, which makes it more dif-

ficult and not worthwhile. The developers believe that DVCS

branches will let them do exploratory coding efficiently.

This section identified four important CVCS drawbacks. We dis-

cuss how a DVCS can remove these drawbacks in Section 6.1.

5. TRANSITION BARRIERS
This section focuses on three major problems faced by the devel-

opers during the transition. Section 5.1 discusses the steep DVCS

learning curve, Section 5.2 discusses incomplete DVCS integration

with the rest of the development workflow, and Section 5.3 dis-

cusses the DVCS scaling issues with huge products with long his-

tories. These barriers can be viewed as downsides of DVCSs since

workarounds require developer effort (learning curve and incom-

plete integration) and changes in the development workflow (scal-

ing issues). Figure 5 summarizes the survey results.

5.1 Learning Curve
Most DVCSs have higher learning curves compared to CVCSs be-

cause of three reasons: (1) the centralized model – where all devel-

opment goes through a central repository – is easier conceptually,

(2) DVCSs have advanced concepts, such as rebasing [10] and trans-

planting [11], which have no CVCS correspondence, and (3) the

conflicting terminology between CVCSs and DVCSs. 58% of the

survey participants agree that DVCSs have higher learning curve.

(i) Centralized vs. decentralized model: In CVCSs, the develop-

ers interacts with one central repository. All developers synchro-

nize through this central repository. On the other hand, in DVCSs,

developers have local repositories. The developers commits their

changes to their local repositories first, and then check-in to a glob-

ally accessible repository. The content of the global repository can

be different than the content of the developers’ local repositories,

which can be different than the content of the developers’ work-

spaces. Although not frequently used in big projects [2], the devel-

opers can directly synchronize through another developer’s local

repository. With increased number of repositories and multiplied

possibilities for sharing code, DVCSs are harder to reason about.

(ii) Advanced DVCS concepts: CVCSs do not let developers mod-

ify the development history easily. Once a change is checked-in to

the central server, it is remembered indefinitely. DVCSs give more

control to the developers in terms of history management. How-

ever, with great power, comes great responsibility: a developer can

modify the development history in an irrevocable way using ad-

vanced DVCS commands. A developer mentions:

[DVCSs are] so open ended … If people do whatever they

want, [they] can irrevocably lose data.

(iii) Conflicting terminology: Another difficultly in learning a

DVCS – for a developer who already knows a CVCS – is the con-

flicting terminology. DVCSs have some commands that have the

same name as a CVCS command, but have a different meaning. For

example, in CVCSs when a developer commits, her/his changes are

checked-in to the central repository. However, in DVCSs, when a

developer commits, her/his changes are only stored in her/his pri-

vate local repository. Unless the developer shares her/his local re-

pository with other developers, these changes are not accessible un-

til the developer pushes them to a globally accessible repository.

Learning curve due to conflicting terminology is bidirectional; the

developers who learn a DVCS first might also experience similar

problems. For the same example, the developer who switches from

a DVCS to a CVCS, would be surprised that her/his changes are

accessible to other developers when s/he commits.

In addition to the higher DVCS learning curve, three developers we

interviewed mentioned that the BVCS increases the learning curve

since the developers need to understand how the bridge interacts

with both VCSs and learn bridge-specific commands.

The transition process requires the developers to change their per-

ception of how VCSs work, learn a new VCS, and potentially learn

a bridge tooling. A part of DVCS learning curve is non-essential

since any new technology has some learning curve. Three develop-

ers we interviewed mentioned that the Internet contains tremendous

Figure 4: CVCS techniques that are used for context switching

(colored). Most of the ‘other’ techniques boil down to careful

management of multiple changes manually.

673

amount of documentation for the popular DVCSs, which might mit-

igate the learning curve. One developer notes:

Another thing I like about [DVCSs] is there is so much

documentation available online.

5.2 Incomplete Integration
The developers might not fully appreciate the B/DVCS features due

to two major reasons: (1) incomplete bridge implementation, and

(2) missing tooling around the B/DVCSs. This section focuses on

the bridges (BVCSs) between DVCSs and the CVCSs in Microsoft,

and discusses these problems in detail. Although 61% of the survey

participants do not think that B/DVCSs are missing important fea-

tures, the participants have mixed feelings (41% agree, 46% disa-

gree) on whether B/DVCSs are integrated well with the rest of the

development workflow.

(i) Incomplete bridge implementation: Some BVCSs at Mi-

crosoft do not support all features available in the surrounding

VCSs they bridge. A developer states:

[DVCS] and [CVCS] have power individually, however

these powers are not exposed by [the BVCS].

A particular BVCS uses the same file system location as a DVCS

and a CVCS repository at the same time, which causes interaction

problems between VCSs. A developer mentions:

[BVCS] looked like something between two worlds. Some

tools would [detect] a [CVCS repository] in the work-

space, sometimes [DVCS] operations would not work.

(ii) Missing tooling around B/DVCS: For developers in large

companies, the code involves in additional steps before it is shipped

in a product. For example, the developers run tests and do code re-

views before the code is shipped. These steps may require addi-

tional tooling, such as VCS integration with code reviews.

CVCSs at Microsoft are integrated very tightly and seamlessly with

the whole development process – from implementation to shipping.

There are teams whose main responsibility is to create and maintain

CVCS integration tools. When a developer uses a CVCS, all stages

of the development workflow just works. However, the same is not

true for some BVCSs, yet. Some BVCSs are maintained only by a

sub-team and are integrated to the particular development flow of

that sub-team, which may be different from the other teams. If a

developer from another team wants to use this BVCS, s/he sacri-

fices existing tooling for the rest of the development workflow, and

needs to do these steps manually. For example, some BVCSs are

not integrated with the Check-in Wizard. For some teams, it is re-

quired to commit the code through the Check-in Wizard, which

means that the developers who use such BVCSs cannot check-in

their changes directly. These developers create a patch for the

changes, apply this patch to and check-in from another CVCS re-

pository. In other words, the development is done on BVCS, how-

ever the code is checked-in through CVCS. A developer mentions:

I cannot use [BVCS] to check-in changes to [the CVCS],

because we use Check-in Wizard, and [BVCS] does not

support it. I create [a patch] and apply it on a [CVCS]

repository to check-in.

Using existing mature open-source BVCSs do not solve the tooling

problem. These BVCSs have no knowledge of the development

workflows and additional tools used by Microsoft.

Tool immaturity is non-essential to DVCSs since any new technol-

ogy will lack tool support for an existing development workflow.

Still, we believe that BVCSs will be useful only when the BVCS is

integrated with the rest of the development workflow as well as

they are integrated with the CVCS and DVCS they bridge. All de-

velopers we interviewed felt that the BVCSs in Microsoft were

missing important features and external tool support, which makes

it too early to suggest for a team wise adoption.

5.3 Scaling
At Microsoft, there are large codebases that have been developed

for more than a decade. DVCSs check-out the complete history –

all source code and every change that has been happened – to every

development machine by default. For a product that is tens of GBs

in size and has been developed for many years, using a DVCS can

cause scaling problems. This section focuses on three main causes

of the scaling problems: (1) checked-in, large binaries, (2) compo-

site products, and (3) long development history. Only 39% of the

survey participants agree that their product scales to B/DVCSs by

default whereas the agreement increases to 62% after an initial

setup (see Figure 5).

(i) Checked-in large binaries: One of the major causes of the scal-

ing problem is the large binaries checked-in to the VCS. Ten survey

participants believe that DVCS scaling can be achieved if the bi-

nary dependencies were not checked-in to the VCS. VCSs only rec-

ord the difference with respect to the latest version in the history.

For text files, the overhead of recording this difference is very low.

On the contrary, VCSs record all versions of a binary file. Deleting

the previous versions does not solve the problem since the VCS has

0% 20% 40% 60% 80% 100%

B/DVCSs have high learning curve.
B/DVCSs are missing important features.

B/DVCSs are integrated well with the dev. workflow.
B/DVCSs scale to our product by default.

After an initial setup, B/DVCSs scale to our product.
B/DVCSs let me work offline.

B/DVCSs let me work incrementally with local commits.
B/DVCSs let me context switch efficiently with branches.

Strongly Agree Agree Neutral Disagree Strongly Disagree N/A

Figure 5: Survey results related to transition barriers and outcomes (colored). These questions were answered by 57 participants,

who have used a B/DVCS at Microsoft. 58% of the participants note the learning curve with B/DVCSs. 61% of the participants do

not believe that B/DVCSs are missing important features. Participants have mixed feelings (46% agree, 41% disagree) on whether

B/DVCSs are not integrated well with the rest of the development workflow. Only 39% of the participants agree that their product

scales to B/DVCSs by default whereas the agreement increases to 62% if the participants are permitted to do an initial setup. More

than 95% of the participants agree that B/DVCSs let them work more efficiently using local commits and lightweight branches.

674

to keep the previous versions just in case a developer needs to ac-

cess some previous version. DVCSs check-out the whole develop-

ment history, which causes scaling issues for binary files. On the

other hand, CVCSs check-out the latest version and therefore do
not experience similar scaling issues.

At Microsoft, developers mainly check-in binaries to the repository

so that external dependencies required to build and test the product

– from the compiler to the external libraries – are available, when a

developer checks-out the repository. This workflow is convenient

for the developers as they can start working immediately without

any product-specific setup. A developer confirms this observation,
but questions whether the binaries really belong in the VCS:

At Microsoft, the entire tool chain [is] in the repository.

This is very useful because [the developer] has all de-

pendencies. However, I wonder if [those dependencies]

really belong to the [repository]? It may be better to con-
figure and version the dependency without checking it in.

(ii) Composite products: Another cause for DVCS scaling prob-

lem is large composite products. Seven survey participants agree

that composite products affect DVCS scaling negatively. Some Mi-

crosoft products contains multiple sub-products. For example, Mi-

crosoft Office contains Microsoft Word, Excel, PowerPoint, and

OneNote in all versions. Storing all these products inside one re-

pository makes it easier to share code and dependencies between

these products. On the downside, the repository contains the devel-

opment history for four products instead of one, which causes a

scaling problem when DVCSs check-out the whole history. CVCSs

do not suffer from the same overhead as whole history is stored on
the server only, which scales better than development machines.

(iii) Long development history: The final scaling problem is due

to the long development history for the products. Four survey par-

ticipants believe that scaling can be achieved by limiting the local

history checked-out from the repository. Some Microsoft products

are developed longer than a decade. It is very rare that a developer

needs the history from a decade ago to understand or resolve a prob-

lem. Most of the time, the developers use very recent history,

maybe from a milestone back. DVCSs check-out the whole devel-

opment history by default, which increases the initial check-out

time. In general, developers seem to start experiencing scaling is-

sues when the repository is larger than a few GBs and has a history

longer than several years. Considering that this is a one-time cost,

the developers generally tolerate it as long as the process completes

overnight. A developer states:

In my case [the initial check-out] was ten hours with one

interruption and that was okay for me.

Since DVCSs check-out and maintain the complete development

history, the problems described in this section are essential to

DVCSs. Figure 6 shows that 53 (88%) survey participants believe

that DVCS scaling can be achieved for Microsoft products by solv-

ing some of these issues. Section 7.2 will discuss alternative work-

flows and advanced DVCS operations that help with mitigation.

6. TRANSITION OUTCOMES
This section discusses the transition outcomes. Section 6.1 revisits

the transition expectations and problems with CVCSs, and dis-

cusses how DVCSs meet these expectations. Section 6.2 discusses

the transition’s effect on developers’ perception for productivity.

For the survey (Figure 5), we asked the developers to limit their

answer only to their experience at Microsoft.

6.1 Reality Meets Expectations
This section revisits the transition expectations described in Section 4 and

discusses which DVCS features are used to meet these expectations.

(i) Ability to work offline: DVCSs check-out the whole history,

which makes it possible to execute all operations, except synchro-

nization with another repository, offline. The developers can check-

point their work with commits, create a private local branch for an-

other task, or learn who modified some file recently. Figure 5 shows

that 95% of the survey participants agree that B/DVCSs let them

work offline.

(ii) Incremental workflow: Figure 5 shows that 97% of the survey

participants agree that using B/DVCSs let them work incrementally

though commits. Commits act as checkpoints; the developer can

revert back to a recent version if some change causes a problem.

The ability to create checkpoints makes debugging easier. For ex-

ample, a developer states:

Frequent[ly], you want to see your recent [changes] …

With [DVCS], It is likely that I had several commits in the

morning and I can go back to see what is broken.

Incremental workflow with frequent commits raises a debate on

whether the developers should check-in these commits directly or

transform these commits into a few larger and logical commits first,

and check-in these logical commits. Most DVCSs provide ad-

vanced history manipulation commands, such as rebasing [10], to

squash multiple commits into one. One developer states:

I use rebase often. I think the history is a code deliverable.

Although the developers change the history to replace many small

commits with one larger, logical commit, some developers we inter-

viewed felt that changing history is wrong. One alternative approach

would abstract the visualization of the development history rather

then re-write it. Another developer agrees with this observation:

Rebasing should not be used for making [the history]

more readable. The VCS should know about the deltas, the
[readability] is just a representation problem.

(iii) Fast and easy context switches: Figure 5 shows that 98% of

the survey participants agree that lightweight branches in B/DVCSs

let them context switch efficiently. Unlike most CVCSs, DVCS

branches record deltas with respect to an ancestor in the history. So,

switching to a branch brn requires the DVCS to check-out the an-

cestor of brn and apply the deltas. When the developer completes

the task, s/he can merge brn to dev, a globally accessible devel-

Figure 6: Major reasons for DVCS scaling issues for Microsoft

products (colored). ‘No issues’ represents the case where DVCS

scales by default. The survey also had options ‘Other reasons’

and ‘Impossible to scale’ which are selected by 4 and 0 partici-

pants, respectively.

675

opment branch and check-in the changes from dev. For other de-

velopers, brn has negligible overhead and does not matter; it is as

if the developer worked on dev the whole time.

All developers we interviewed, except one, confirmed that DVCS

branches provide fast and easy context switching in large products

at Microsoft. One developer points the following quirk:

Benefit of using multiple branches were detrimental be-

cause of the long build times between branch switching.

This developer points out the following problem: when a developer

switches to a branch, the code changes and needs to be rebuilt. For

incremental builds, assuming that the difference between two

branches is small, this is not an issue. However, if the build is not

incremental and a full build requires several minutes, then the de-

veloper cannot switch branches very frequently. In such cases, hav-

ing one repository for each task and manually managing these re-

positories might be more efficient.

(iv) Fast and easy exploratory coding: Similar to context switch-

ing, the developers can do exploratory coding efficiently using

DVCS branches. When the developer has an idea, s/he creates a

private branch, exp, and commits a few changes. Then, the devel-

oper switches back to other branches to work on other issues and

forgets exp. If the work in exp becomes important in the future,

the developer switches back to exp, merges it with the trunk, and

continues the implementation from where s/he left. DVCS branches

encourage the developers to try out difficult and complex tasks that

might not ship immediately without the fear of failure. A developer

confirms this observation:

Logistics of doing [exploratory coding] was effortless. I

create a branch … I can make changes without worrying.

A B/DVCS can improve a developer’s workflow with local history

and lightweight branching. However, these advantages will be use-

ful only if the developer’s project scales to the B/DVCS and the

developer can use the existing external tools in her/his workflow.

If the obstacles overweigh the benefits, it is less likely that the de-

veloper will be willing to change her/his current workflow. The sur-

vey shows that out of 59 participants who transitioned, 12 of them

are no longer using a B/DVCS. The most popular reasons for re-

turning to CVCSs are: (1) limited integration with the rest of the

development workflow, (2) scaling issues, and (3) the fact that the

rest of the team uses a CVCS.

Being offline and working on a private branch could diverge the

developer from the trunk and cause severe conflicts when the de-

veloper merges these changes into the trunk. In our interviews, only

one developer raised this concern. Microsoft developers synchro-

nize with each other frequently, which might mitigate the severity

of future merge conflicts. We leave in-depth investigation of tran-

sition’s effects on the severity of merge conflicts as future work.

6.2 Perception for Productivity
During developer interviews, we specifically asked the developers

whether their perception for the following productivity metrics

have changed after the transition: (1) code volume produced daily,

(2) implementation speed, (3) code velocity, (4) and code quality.

Figure 7 summaries the survey results.

(i) Code volume: Half of the developers we interviewed and 52%

of the survey participants felt producing more code after the transi-

tion whereas the other half felt no difference in terms of the code

volume produced daily (Our question was used as a measure to

identify developer’s perception towards code volume and had no

implications on developer productivity). The most popular expla-

nation for the increase in volume is commits in B/DVCSs. The de-

velopers could produce more code because they were able work

more (offline) and they could commit frequently without worrying

about going through quality gates each time.

(ii) Implementation speed: Six developers we interviewed and

60% of the survey participants felt faster after the transition

whereas four developers we interviewed and 13% of the survey par-

ticipants felt no difference in terms of implementation speed. The

most popular explanation for the increase in implementation speed

is using lightweight B/DVCS branches for context switching. The

developers spent less time on manually managing the context for

each task, which lets them do the same work faster.

(iii) Code velocity (transit time): Code velocity is the time that it

takes for an edit to reach to one of the main branches from the

branch it was checked into [12]. Although, the developers we inter-

viewed felt no difference, 59% of the survey participants felt that

their code velocity has increased after the transition. Most develop-

ers we interviewed made a transition to a BVCS. Therefore, once

the developers synchronize with the CVCS, their check-ins would

still go through the same integration process to reach to one of the

main branches. A developer states:

[Shipping code] is a team process, it does not change with

the VCS you use.

(iv) Code quality: All developers we interviewed, except one, felt

no difference in terms of code correctness after the transition. Sim-

ilarly, only 33% of the survey participants agreed that their code

correctness increased after the transition. Similar to code velocity,

the developers seems to believe that the code correctness depends

on personal practices and the quality gates used by the team, rather

than the VCS used during the development.

Regardless of the VCS used to store the product, using a DVCS

seems to make the developers write more code, faster without re-

ducing the quality of the code or the frequency of deployment. The

developers get more productive because the DVCSs support some

development workflows better, such as frequent and incremental

commits, and efficient context switching, which leaves the devel-

opers more time to work on the actual implementation.

7. DISCUSSION
This section discusses the findings in-depth. Section 7.1 investi-

gates whether the benefits provided by the DVCSs are essential.

Section 7.2 revisits the DVCS scaling issues and presents alterna-

tive workflows and advanced DVCS features to mitigate these is-

sues. Section 7.3 discusses the importance of a fine-grained secu-

rity model for commercial companies. Section 7.4 discusses a

B/DVCS workflow for incubation projects that can be adopted by

existing CVCS products, immediately. Section 7.5 concludes the

discussion with recommendations for the people who consider tran-

sitioning. Figure 8 presents the related survey results.

0% 20% 40% 60% 80% 100%

I implement more code.

I implement code faster.

My code velocity is faster.

My code is more correct.

S. Agree Agree Neutral Disagree S. Disagree N/A

Figure 7: Transition’s effect on developer’s perception of code

quality (colored). Half of the developers agree that, after the

transition, they implement more code faster and their code has

higher velocity. However, for code correctness, the developers

have mixed feelings (33% agree vs. 19% disagree).

676

7.1 Essential versus Non-Essential
Section 6.1 identified two DVCS features that let the developers meet

the expectations outlined in Section 4: (1) offline commits that enable

incremental workflow, and (2) lightweight branches that enable effi-

cient context switching and exploratory coding. This section inves-
tigates whether these features are essential to DVCSs or not.

(i) Offline commits: DVCSs offer offline commits easily because

each developer has access to a local, private repository, which rec-

ords all information, such as commit’s parent and branch, required

to check-in this commit to a another repository. We believe that

CVCSs could offer ad-hoc offline commits where the developers

can only commit on top of the existing checked-out versions (most

of the time only the latest version). However, we also believe that

the CVCSs are built on the philosophy where a change in the re-

pository should be accessible to other developers immediately.

Therefore, we identify incremental workflow via offline commits

as essential to DVCSs.

(ii) Lightweight branches: Most CVCSs use file-system based

heavyweight branches compared to pointer-based lightweight

DVCS branches. For example, when a new branch is created, Per-

force creates a symbolic link from each file in the new branch to

the actual files [13]. Using symbolic links is quite efficient in gen-

eral since Perforce only materializes the files that are modified in

the new branch. However, if a product has a very large number of

files, creating lots of symbolic links might take considerable

amount of time and introduce substantial overhead to the server,

where all metadata is stored. Conversely, most DVCS branches are

pointers to specific points in the development history, which makes

branch creation instant. We believe that CVCS branch creation, de-

letion, and switching would have been equivalently efficient if

CVCSs implemented pointer-based branches. Consequently, we

identify lightweight branches as non-essential to DVCSs.

7.2 Revisiting DVCS Scaling Issues
Section 5.3 explained three major causes for DVCS scaling issues

that the developers face. This section discusses alternative work-

flows and DVCS operations that can mitigate these issues.

(i) Checked-in binary dependencies: One way to resolve DVCS

scaling issues due to checked-in binary dependencies is to use a

project manager, similar to Maven [14]. With a project manager,

the developers can specify the product dependencies using a declar-

ative language. To use a project manager, Microsoft would setup

an internal server that contains and serves product dependencies.

Now, the developers can update the product specification instead

of checking-in the dependent binaries. When a developer checks-

out the product, s/he will not immediately have all the dependencies

to build and test the product. However, most project managers in-

tegrate with the build and test systems seamlessly, so the moment

the developer wants to build the product, the project manager would

download (or update) all dependencies, and then build the product.

A project manager can purge binary dependencies from the product

repository without changing the development workflow drastically.

(ii) Composite products: To resolve the composite products prob-

lem, the product needs to be re-architected, which requires consid-

erable work. DVCSs encourage the developers to store each prod-

uct – even each module – in a separate repository and share code

between these repositories. For example, Git provides Submodules

[15]: a systematic way to create a dependency to a particular point

in another Git repository’s history. Using code sharing between

DVCS repositories, the developers could re-architect the product so

that the common code is stored in one DVCS repository and the

top-level products are stored in other DVCS repositories. Then, the

common repository would code share with each top-level product

repositories. After this re-architecture, a developer who needs to

work on a product, checks out the complete history for that product,

which contains only one version of the common code. Decomposi-
tion solves the scaling issues due to composite products.

(iii) Long development history: DVCS scaling issues for products

with very long histories can be mitigated by checking-out the his-

tory partially. For example, Git allows shallow clones [16], where

the developer limits the number of versions checked-out by a depth.

One big disadvantage of checking-out a partial history is that the

developer might not be able to check-in her/his changes back to

another repository if the local repository cannot perform the check-

in operation due to missing history. In this case, the developer

might try to check-out more of the history and retry, which is a

manual and tedious process. Thus, checking-out the history par-

tially is not ideal and we do not recommend it unless the scaling
issue becomes unbearable.

It is possible to solve most of the scaling problems by following

some DVCS workflows and using advanced DVCS operations.

However, applying these solutions takes time and lengthens the

transition period, depending on the previous development work-

flow. Therefore, we suggest the people to consider about the

changes that needs to be done for mitigating the scaling problems

and account for this cost before the transition.

7.3 Fine-grained Security in CVCS
Four developers we interviewed mentioned for large commercial

companies, it is mandatory for the VCS to provide a finer-grained

security model. Currently, DVCSs provide security only at the re-

pository level. If a developer has access to a repository, then s/he

has access to all files in that repository. Commercial software com-

panies sometimes have sensitive features in their products where

only a limited number of developer should have access to. These

features are generally stored inside an existing product repository,

where other developers have access to. CVCSs let the administra-

tors update the access rules at file-level granularity, so that the files

related to the sensitive feature are only accessible by the developers
who are working on that feature.

Providing the same finer-grained security model in a DVCS is more

difficult as DVCSs check-out the whole development history. To

provide the finer-grained security model, the DVCSs should strip a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

If supported properly, I would use a B/DVCS at Microsoft.

Advanced B/DVCS features are critical for dev. workflow.

B/DVCSs are good for incubation as sharing code is easier.

Strongly Agree Agree Neutral Disagree Strongly Disagree N/A

Figure 8: Remaining survey results (colored). 96% of the developers agree that they would prefer to use a B/DVCS at Microsoft if it

was fully supported. 80% of the developers agree that B/DVCSs are good for incubation since they make code sharing between

developers easier. Developers have mixed feelings (28% agree, 23% neutral, 46% disagree) whether advanced DVCS features are

non-critical for their workflow at Microsoft or not.

677

portion of the history – depending on the access rights of the devel-

oper – before checking out. Stripping the history, similar to check-

ing-out the history partially, might create problems with some of

the operations. Alternatively, the finer-grained security model

would also work with DVCSs if the sensitive feature could be

stored in a new repository, which would use the main product re-

pository via DVCS code sharing. Then, the repository for the sen-

sitive feature would be accessible by the developers working on
that feature only.

7.4 Incubation with B/DVCS
Four developers we interviewed suggested that a B/DVCS can be

used immediately for incubation in an existing product that uses a

CVCS. Figure 8 shows that 80% of the survey participants agree

with this suggestion. During the incubation of a new feature, sev-

eral developers work in an agile fashion to quickly prototype and

test the new feature. DVCS workflow practices, such as small and

frequent commits, and lightweight branches, work well with agile

development [17]. Using a B/DVCS helps these developer imple-

ment the prototype quickly and go through the quality gates only

once at the end, when the prototype is complete. Finally, the feature

can be integrated into the product’s CVCS repository, through
BVCS mirroring or transferring the DVCS history manually.

One particular aspect that DVCSs shine for incubation is the ability

to share code between developers’ private local repositories. While

developing a new feature in an agile fashion, most of the time, the

developer’s changes are not ready to be checked-in to a globally

accessible repository. However, the developers might need other

developers’ changes. Sharing these incomplete changes through a

globally accessible repository would pollute the development his-

tory with incomplete – and possibly non-building – versions.

Therefore, the developers prefer to synchronize with another devel-

oper’s private repository directly. Seven developers we interviewed

confirmed that DVCS’s peer-to-peer sharing works seamlessly and

efficiently for sharing non-building and incomplete changes be-

tween developers.

7.5 Recommendations
We conclude the section by providing some recommendations for

the developers, teams, and managers who consider transitioning.

Identify the product and developer needs carefully: For large

products in large companies, it is rare to use advanced DVCS oper-

ations, such as modifying a globally accessible history or trans-

planting a portion of the history from one branch to another. Almost

all developers mentioned that DVCSs provide advanced operations

and give more power to the developers compared to CVCSs, how-

ever, during the interviews, only a few developers stressed that

these advanced operations are critical for their workflow. Figure 9

summarizes the related survey results. 55 (77%) survey participants

confirmed that extending the existing CVCSs with some offline op-

erations and lightweight branches would make the transition for

their workflow at Microsoft unnecessary.

If most developers are interested in only lightweight branches,

CVCSs might be modified to provide lightweight branches. If the

developers are interested in the offline commits, then a BVCS could

be as good as a DVCS. As most of the products are already stored

in a CVCS, transitioning to a BVCS should be less expensive than

transitioning to a DVCS. If the developers want to use agile pro-

gramming for a particular feature, then using B/DVCS temporarily

for the development of this feature might be easier than a complete

transition. We would like to remind the reader that we are not sug-

gesting that the transition is inevitable or unnecessary, rather we

stress that the transition comes with a cost. Thus, we hope that the

benefits of DVCSs, alternative solutions, and the transition cost is

weighed correctly and in-depth before the transition.

Consider the tooling around VCS carefully: Section 5.2 identi-

fied incomplete bridge implementations as one of the biggest bar-

riers for the transition. Software in large companies are not limited

to programming. The development process contains external tools

for code reviews, quality controls, and packaging before a piece of

code gets shipped in a product. Considering the external tools’ in-

tegration with the new DVCS and making sure that the new DVCS

can interact with the existing tools in a similar fashion the old

CVCS did, will increase the chance of the transition by reducing

the problems faced by the developers during the transition. Figure

8 shows that 65% of the survey participants agree with this obser-

vation and would switch to a B/DVCS if there were proper support.

Transition on a team basis: When transitioning to a new tool for

an existing product, it is generally a good idea to let a few develop-

ers – early adopters – do this transition first, to ensure that the ex-

isting development workflow does not change considerably with

the new tool. Teams and managers might have the same intuition

for the transition to a DVCS where only a few developers use the

DVCS in the team whereas the rest continue to use the existing

CVCS. Although the intuition is correct, this strategy creates an un-

seen barrier for the early adopters. The developers within the same

team share code and interact with each other frequently. Being an

early adopter makes it more difficult to interact and share code with

the rest of the team. Consequently, the early adopters might per-

ceive the transition negatively. Therefore, we suggest that all de-

velopers in a team should make the transition simultaneously. A

developer confirms this observation:

While using [a BVCS], I still need to use [CVCS] because

I have to apply other developers’ [patches], which cannot

be done with [the BVCS].

8. THREATS TO VALIDITY
This section outlines the internal and external threats to validity in

the study and discusses how these threats might affect the findings

and their generalizability.

Internal validity: This study conducted a semi-structured inter-

view with the developers. The interview questions could have bi-

ased the developers to focus on some topics more than the others.

We prepared the interview questions as general as possible hoping

that the developers would focus on the parts that they cared most.

Figure 9: Survey results for the question: “Which of the follow-

ing would make the transition unnecessary for your work at

Microsoft?” (colored). ‘No change’ is the developers who are

already satisfied with CVCSs for their work at Microsoft.

678

Since the interviews were recorded, the developers might have be-

haved differently. We made the recording optional (no one de-

clined) to reduce any behavioral change. Finally, the card contents

were created from our notes and recordings, which might be sub-

jective. To reduce biasing our results in one way, non-authors

helped during card sorting.

External validity: This study summarizes the findings at Microsoft

using 80 developers (across interviews and surveys). Our findings

might not generalize outside of Microsoft. However, during the in-

terviews, we realized that the developers were focusing on the same

high-level topics and had very similar concerns and comments.

Therefore, we believe that our findings should generalize to other

developers and products at Microsoft. To mitigate the low number

of interviews, we have conducted a web survey to a larger devel-

oper audience to quantify our findings from the interviews.

This paper focuses on the developers and products at Microsoft.

The developers were selected from multiple teams and had varying

levels of familiarity with CVCSs and DVCSs. Therefore, we be-

lieve that our findings will (partially) generalize to the developers

and products in large companies similar to Microsoft. We think that

the extend of this generalization will depend on the particulars of

the team and the product. The findings might not generalize to

open-source software, start-ups, or smaller products. It is future

work to expand our study to other development settings to general-

ize the findings. We plan to use the diversity metrics introduced by

Nagappan et al. [18] to expand the results as much as possible. In

general, for empirical studies, it is necessary to build an empirical

body of knowledge [19]. Towards this end, we hope that our study

helps to contribute to this body of knowledge on VCSs.

9. RELATED WORK
To the best of our knowledge, the closest work that compares

CVCSs and DVCSs is Barr et al.’s [2] investigation on how the use

of branches and development history change after the transition of

large open-source software (OSS). They combine the interviews

with the lead developers in OSS projects with mined data from 60

OSS projects and find that the developers started using VCS

branches more frequently and effectively after the transition to

DVCS, specifically for collaborating on the same task. de Alwis

and Sillito [1] summarizes the transition challenges and anticipated

benefits for four OSS projects using the developer notes and docu-

mentation related to the transition. Our work focuses on the transi-

tion process at a large commercial company, from the developer’s

point of view and tries to identify the transition reasons, barriers,

and outcomes.

O’Sullivan [20] discusses the advantages and disadvantages of

DVCSs to help developers make an informed choice of VCS.

O’Sullivan stresses offline commits and ease of branching as some

of the DVCS advantages, and scaling issues with large binary files

as a DVCS disadvantage. Our work qualifies some of O’Sullivan’s

claims via professional developers’ experience on the transition

process. Simultaneous to our study, Brindescu et al. [21] investi-

gated how a VCS type affects the developer behavior and the de-

velopment process through a survey on 820 developers and mined

data on 132 OSS repositories. They identify offline commits and

low learning curve as the top reasons to prefer DVCSs and CVCSs,

respectively. Our work investigates the transition process with a fo-

cus on developers’ experience in a large commercial company.

VCSs, the idea to store the development history in a structured way

for future access and creating back-ups, have been used for a long

time. Rochkind proposed Source Code Control System (SCCS) as

one of the earliest VCSs [22]. Initial VCSs, including SCCS, Revi-

sion Control System [23], ClearCase [24], and Concurrent Version

System [3] versioned each file separately. Aide-de-Camp intro-

duced the change-set notion that bundles all changes into an atomic

entity [25]. Consecutive CVCSs, such as Subversion [4], including

the commercial ones, such as Perforce [26] and Team Foundation

Server [27], continued using change-set notion.

BitKeeper [28] and Bazaar [29] were two of the earliest DVCSs.

DVCSs, including Git [6] and Mercurial [5], aimed to improve the

limited branching and merging capabilities offered by CVCSs and

offer an easier development workflow for collaboration, especially

in OSS projects, where developers join to and leave from, periodi-

cally. Existing research investigated the effects of branching [30]

and merging [31] on software development. This paper investigates

the importance of the new features added by DVCSs in large com-

mercial products that have been using CVCSs for a long time.

Previous research showed that software quality can be improved by

mining software repositories and VCS history to predict files that

have higher chance of generating defects [32, 33]. This papers in-

vestigates transition reasons, barriers, and outcomes.

10. CONCLUSIONS
This paper is one of the first attempts to understand the transition

costs and benefits to a DVCS in a large company. This paper pre-

sents a study investigating such a transition based on qualitative

interviews and survey data. This paper identifies ability to work of-

fline and incrementally, and managing multiple contexts efficiently

as the major transition expectations. These expectations are satis-

fied by commits and lightweight branches, available on most

DVCSs. However, the transition comes with some barriers due to

steep DVCS learning curve, limited DVCS integration with the rest

of the development workflow, and DVCS scaling issues. An in-

depth investigation of the DVCS scaling issues identifies checked-

in binary dependencies, composite products, and long development

history as the major reasons. The paper discusses how these scaling

issues can be mitigated with alternative development workflows

and advanced DVCS commands.

We conclude this discussion by providing some guidelines for the

developers, teams, and managers who consider transitioning. We

hope that our findings and guidelines will help those people to make

a better decision, and if they decide to transition, plan for the tran-

sition better and face fewer problems. Additionally, we hope that

our findings for transition expectations and barriers will help re-

searchers to identify future research areas on VCSs that address

these problems and shape the future VCS design. In future, we plan

to perform controlled studies where a reasonably sized project is

developed concurrently using DVCS and CVCS in order to com-

pare and contrast productivity and quality metrics in a comparable

experimental scenario.

11. ACKOWLEDGEMENTS
We thank the anonymous reviewers, and Caius Brindescu and Or-

egon State SEUPL lab for their feedback on the initial submission.

We thank the developers at Microsoft for their interest, input, and

help with the study. Thomas Zimmermann helped us with the de-

sign, distribution and the analysis of the survey. Emerson Murphy-

Hill, Thomas Zimmermann, Gifford Cheung, and Thomas Debeau-

vais helped during the card sorting. Emerson Murphy-Hill provided

insight for Section 7.

12. REFERENCES

[1] B. de Alwis and J. Sillito, "Why Are Software Projects Moving

From Centralized to Decentralized Version Control Systems?,"

679

in the Workshop on Cooperative and Human Aspects on

Software Engineering, Vancouver, BC, Canada, 2009.

[2] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German and D.

Premkumar, "Cohesive and Isolated Development with

Branches," in the 15th International Conference on Fundamental

Approaches to Software Engineering, Tallinn, Estonia, 2012.

[3] D. Grune, "Concurrent Versions System, a Method for

Independent Cooperation," Vrije Universiteit, Amsterdam,

The Netherlands, 1986.

[4] B. Collins-Sussman, "The Subversion Project: Buiding a

Better CVS," Linux Journal, no. 94, p. 3, February 2002.

[5] "Mercurial," [Online]. Available: http://mercurial.selenic.com.

[Accessed 13 September 2013].

[6] "Git," [Online]. Available: http://git-scm.com. [Accessed 13

September 2013].

[7] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell

and A. Wesslén, Experimentation in Software Engineering,

Springer, 2012.

[8] T. D. LaToza, G. Venolia and R. DeLine, "Maintaining

Mental Models: A Study of Developer Work Habits," in the

28th International Conference on Software Engineering,

Shanghai, China, 2006.

[9] F. Shull, J. Singer and D. I. K. Sjøberg (Editors), Guide to

Advanced Empirical Software Engineering, 2008.

[10] "Git Branching - Rebasing," [Online]. Available: http://git-

scm.com/book/en/Git-Branching-Rebasing. [Accessed 13

September 2013].

[11] "Mercurial: Transplant Extension," [Online]. Available:

http://mercurial.selenic.com/wiki/TransplantExtension.

[Accessed 13 September 2013].

[12] C. Bird and T. Zimmermann, "Assessing the Value of

Branches with What-if Analysis," in the 20th Symposium on

the Foundations of Software Engineering, Research Triangle

Park, NC, USA, 2012.

[13] R. Cowsam, "Introduction to Branching in Perforce," [Online].

Available: http://www.vaccaperna.co.uk/scm/branching.html.

[Accessed 13 September 2013].

[14] "Maven," 2002. [Online]. Available: http://maven.apache.org.

[Accessed 13 September 2003].

[15] "Git Tools - Submodules," [Online]. Available: http://git-

scm.com/book/en/Git-Tools-Submodules. [Accessed 13

September 2013].

[16] "Git: Clone," [Online]. Available: http://git-scm.com/docs/git-

clone. [Accessed 13 September 2013].

[17] L. Milanesio, "Go Agile with Git," January 2013. [Online].

Available: https://www.open.collab.net/media/pdfs/get-

agile-with-git-part1.pdf. [Accessed 23 February 2014].

[18] M. Nagappan, T. Zimmermann and C. Bird, "Diversity in

Software Engineering Research," in the 9th Joint Meeting of

the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Saint Petersburg, Russia, 2013.

[19] V. R. Basili, F. Shull and F. Lanubile, "Building Knowledge

through Families of Experiments," Transactions on Software
Engineering, vol. 25, no. 4, pp. 456-473, 1999.

[20] B. O'Sullivan, "Making Sense of Revision-control Systems,"

Communications of ACM, pp. 56-62, September 2009.

[21] C. Brindescu, M. Codoban, S. Shmarkatiuk and D. Dig,

"How Do Centralized and Distributed Version Control

Systems Impact Software Changes?," in the 36th

International Conference on Software Engineering,
Hyderabad, India, 2014.

[22] M. J. Rochkind, "The Source Code Control System,"

Transactions on Software Engineering, vol. 1, no. 4, pp. 364-

370, December 1975.

[23] W. F. Tichy, "RCS - a System for Version Control,"

Software: Practice and Experience, vol. 15, no. 7, pp. 637-
654, July 1985.

[24] "Rational ClearCase," [Online]. Available: http://www-

03.ibm.com/software/products/us/en/clearcase. [Accessed

13 September 2013].

[25] J. Estublier (Editor), Software Configuration Management:

ICSE SCM-4 and SCM-5 Workshops Selected Papers, J.
Estublier, Ed., London, UK: Springer-Verlag, 1995.

[26] "Perforce," [Online]. Available: http://www.perforce.com.
[Accessed 13 September 2013].

[27] "Team Foundation Service," [Online]. Available:
http://tfs.visualstudio.com. [Accessed 13 September 2013].

[28] "BitKeeper," [Online]. Available: http://www.bitkeeper.com.
[Accessed 13 September 2013].

[29] "Bazaar," [Online]. Available: http://bazaar.canonical.com.

[Accessed 13 September 2013].

[30] C. Walrad and D. Strom, "The Importance of Branching

Models in SCM," Computer, vol. 35, no. 9, pp. 31-38,

September 2002.

[31] T. Mens, "A State-of-the-Art Survey on Software Merging,"

Transactions on Software Engineering, vol. 28, no. 5, pp.

449-462, May 2002.

[32] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig and B.

Murphy, "Change Bursts as Defect Predictors," in the 21st

International Symposium on Software Reliability Engineering,

San Jose, CA, USA, 2010.

[33] E. Shihab, A. Mockus, Y. Kamei, B. Adams and A. E.

Hassan, "High-Impact Defects: A Study of Breakage and

Surprise Defects," in the 7th joint meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

Szeged, Hungary, 2011.

680

