
On the Revocation of U-Prove Tokens

Christian Paquin, Microsoft Research

September 2nd 2014

U-Prove tokens provide many security and privacy benefits over conventional credential technologies

such as X.509 certificates. Like any long-lived credentials, there might be a need to revoke issued U-Prove

tokens before they expire. Achieving this might seem counterintuitive: how can you revoke an identity

when users are anonymous or pseudonymous? This paper explores various revocation mechanisms

compatible with the U-Prove technology, to help system designers select the best one for their

applications. All of these mechanisms can be implemented today with the core and extensions U-Prove

C# SDKs.

© 2014 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in this

document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Some

examples are for illustration only and are fictitious. No real association is intended or inferred. This document does not provide

you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your

internal, reference purposes.

Introduction
U-Prove tokens provide many security and privacy benefits over conventional credential technologies

such as X.509 certificates.1 They allow users to minimally disclose whatever is necessary to satisfy a relying

party’s access policy, without leaking further information. In many scenarios, users can remain

pseudonymous or even anonymous, while enjoying attribute-based access to resources and services.

Like any long-lived credentials, there might be a need to revoke issued U-Prove tokens before they expire.

Indeed, a user might want to invalidate compromised or stolen tokens, or might need to be prevented

from using them while they are still valid (because, say, she lost her access rights to certain resources, or

acted maliciously). Achieving this might seem counterintuitive: how can you revoke an identity when users

are anonymous or pseudonymous? This paper explores various revocation mechanisms compatible with

the U-Prove technology, to help system designers select the best one for their applications.

Most mechanisms are facilitated by an entity called the revocation authority (RA). The revocation

authority typically maintains and distributes the revocation list; how users get added to the revocation

list is mechanism/application specific. As with the other U-Prove protocol participants, this is simply a role

that can be taken by other participants. As an example, the revocation authority might be the issuer, or a

separate entity shared by many issuers. Different issuers can share the revocation infrastructure by

encoding the same user identifier into U-Prove tokens. This can be achieved either by disclosing the

certified identifier to secondary issuers at issuance time, or by hiding it.2

The resources section at the end of the paper provides links useful to the reader, including to the U-Prove

Technology Overview, core and extensions specification, and SDKs.

Issuer-driven revocation
The first model consists of revoking user identifiers encoded into tokens by its issuer. In these

mechanisms, a user can convince verifiers at presentation time that her token is still valid by proving that

her (undisclosed) identifier does not appear on the revocation list managed by the revocation authority.

A U-Prove revocation list must be distributed to users and verifiers by the revocation authority. Just like a

X.509 Certificate Revocation List (CRL),1 the authenticity and origin of the list must be attested to prevent

attackers from changing it.3 This can be achieved in different ways, and applications must decide which

one suits their needs best. As an example, the list could be obtained from a secure endpoint identified in

the token, or it could be signed and distributed offline by the revocation authority. List format and refresh

granularity is left to the system designer, as this is application specific.

Multiple negation proofs
Using the inequality extension4 it is possible to prove that an attribute is not equal to a target value, known

or unknown to the verifier. Using this feature, we can build a powerful revocation mechanism allowing a

1 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
http://tools.ietf.org/html/rfc5280.
2 Indeed, attributes can be carried over from a token to another without disclosing their values to the issuer. See
the U-Prove extensions paper for details.
3 A revoked user could try to remove her identifier from the list to gain access to a resource, or an attacker could
add a user’s identifier to the list to prevent her from accessing the resource.
4 http://research.microsoft.com/apps/pubs/?id=219673.

http://tools.ietf.org/html/rfc5280
http://research.microsoft.com/apps/pubs/?id=219673

user to prove that her unique identifier encoded in the token does not appear on the revocation list

without disclosing it. Assuming that the revocation list contains the identifiers of all revoked users

(𝑟1, 𝑟2, … , 𝑟𝑛), then a non-revocation proof consists of proving that (𝑥 ≠ 𝑟1, 𝑥 ≠ 𝑟2, … , 𝑥 ≠ 𝑟𝑛) where 𝑥 is

the value of the identifier attribute. Figure 1 illustrates the following steps:

1) The issuer issues a token to the user, encoding her unique user identifier uid.

2) The revocation authority periodically updates and distributes the revocation list. (Alternatively,

the user and verifier can download the latest list from a secure endpoint.) Values can be added to

the list by the issuer or a set of issuers if they share user identifiers.

3) When presenting a token to a verifier, the user creates a proof that the undisclosed value uid does

not appear on the current revocation list.

Figure 1: multiple negations

This technique can be implemented using the inequality proof type in the U-Prove extensions SDK, as

illustrated in its InequalityRevocationSample sample.

The revocation proof’s computation time and size is linear to the size of the revocation list, and therefore

might be problematic for very large lists. Clever approaches have been proposed resulting in schemes that

have square root5 and logarithmic6 complexities in the size of the revocation list, and to batch the

validation of the proof.7 We present next a mechanism designed to deal with very large revocation lists.

Accumulator
Another revocation approach makes use cryptographic accumulators in which revoked values are

accumulated into a single aggregate value calculated by the revocation authority. The benefit of

accumulator-based schemes is that they allow users to create non-revocation proof in constant size and

time, once some accumulator pre-computations are made. These pre-computed values must be updated

5 A practical system for globally revoking the unlinkable pseudonyms of unknown users. Stefan Brands, Liesje
Demuynck, and Bart De Decker. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf.
6 Zero-knowledge Argument for Polynomial Evaluation with Application to Blacklists. Stephanie Bayer and Jens
Groth. http://www0.cs.ucl.ac.uk/staff/J.Groth/PolynomialZK.pdf.
7 Using, for example, techniques from Bellare, Garray, and Rabin’s “Fast batch verification for modular
exponentiation and digital signatures”. http://cseweb.ucsd.edu/~mihir/papers/batch.pdf.

3
1

Issuer

Revocation
Authority

Verifier

uid

a1

a2

2

a

a1

a2

r1
r2
r3
…

r1
r2
r3
…

≠
r1
r2
r3
…

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/PolynomialZK.pdf
http://cseweb.ucsd.edu/~mihir/papers/batch.pdf

when the revocation list changes, which makes the scheme interesting if this occurs at well-defined

intervals.

Most dynamic accumulator schemes use a type of algebraic construction called bilinear pairings.8

Although pairings are popular in recent cryptographic research, they are seldom used in practice due to

their maturity level and implementation complexity.

It is possible to build an accumulator scheme that uses a conventional finite field or elliptic curve

construction (like the ones used in DSA and ECDSA, and in U-Prove) if we accept to involve the revocation

authority during token verification. In this setting, the verifier validates the presented U-Prove tokens, but

leaves the non-revocation proof validation to the revocation authority.9

Here are the details of the scheme illustrated in Figure 2:

1) The revocation authority generates its public parameters and secret key, and makes the public

parameters available to users.

2) The user authenticates to the issuer and obtains U-Prove tokens encoding her unique identifier

uid.

3) The revocation authority periodically updates the revocation list, and the user obtains non-

revocation witnesses from the revocation authority.

4) The user presents a U-Prove token to the verifier, including a non-revocation proof (computed

using the non-revocation witnesses). The verifier validates the presentation proof.

5) The verifier sends the non-revocation proof to the revocation authority that verifies that the

undisclosed uid does not appear on the current revocation list.

Figure 2: accumulator-based revocation list

8 For an accumulator schemed designed to work with U-Prove, see Acar, Chow, and Nguyen’s “Accumulators and
U-Prove Revocation”; http://fc13.ifca.ai/proc/5-3.pdf.
9 Much like an Online Certification Status Protocol (OCSP) call when using X.509 certificates. For more details, see
RFC 6960: X.509 Internet Public Key Infrastructure - Online Certificate Status Protocol.
http://tools.ietf.org/html/rfc6960.

http://fc13.ifca.ai/proc/5-3.pdf
http://tools.ietf.org/html/rfc6960

This mechanism is available in the U-Prove extensions SDK as illustrated in the AccumulatorRevocation-

Sample sample, and is documented in details in the U-Prove Designated-Verifier Accumulator Revocation

Extension specification.10

This approach is significantly more efficient than the multiple not-proofs presented in the previous

section. Indeed, the proof generation time is constant regardless of the size of the revocation list,

compared to multiple negations approach which grows linearly with the size of the revocation list. As an

example, Figure 3 shows the proof generation time for revocation lists containing from 10 to 1,000,000

items using the C# SDK. We observed the same results for the proof verification time. The revocation

authority pays a cost to generate the accumulator and compute the user’s witnesses on demand, but this

is negligible even for very large revocation lists.

This method is the most efficient for the user. An alternative approach involves having the user calculating

her own witnesses based on the list updates published by the revocation authority, but this would involve

extra computation and storage costs for the user, and is not currently supported by the SDK.

Figure 3: Revocation proof generation time for not-proofs vs. accumulator. Test performed on a HP Z820 machine with an Intel
Xeon E5-2620 @ 2.00 GHz processor and 16GB of RAM. Execution of the Not-proofs program was stopped after the 10,000 list

size since this approach is clearly not scalable past a few hundred items.

Device-driven revocation
In many scenarios, electronic identities are protected by some trusted device, such as a smartcard. Indeed,

many countries, companies, and banks issue electronic authentication cards to their citizens, employees,

and customers, respectively. Moreover, with the mobile revolution, many identity technologies made

their way to the devices we carry in our pockets. For example, more and more credentials can be

presented directly from mobile phones using cryptographic protocols.

In such settings, it makes sense to revoke the device itself, rather than the credential(s) it carries. Device-

protected U-Prove tokens11 provide an interesting way to enforce two-factor security, while minimizing

the computations performed by the device. One revocation approach is for the revocation authority to

10 http://research.microsoft.com/apps/pubs/?id=219671
11 See the Technology Overview for more details about device-protected tokens.

0

500

1000

1500

2000

2500

3000

10 100 1000 10000 100000 1000000

Se
co

n
d

s

Revocation list size

Not proofs Accumulator

distribute a list of revoked device identifiers, and let the trusted device enforce the revocation. This is

illustrated in Figure 4:

1) The user obtains a device-protected token. The user’s device contains a unique device identifier

uid. This uid is never revealed to verifiers, otherwise this would contravene the privacy properties

of the U-Prove technology.

2) At presentation time, the user retrieves the current device revocation list (either directly from the

verifier, or from a common revocation authority).

3) The user passes the device revocation list to the device during the presentation protocol.12 If the

device sees its own identifier on the list, it refuses to collaborate with the user to present the

token. If not, then presentation continues as usual.

4) The user sends the presentation proof (including the device response) to the verifier, which is

convinced that the device, and therefore the user, is not revoked.

Figure 4: device-based revocation

Relying on a software-only second factor enhances authentication strength, but it is preferable to bind

cryptographic keys to a hardware component. One interesting choice is the use of a Trusted Platform

Module (TPM) chip. Fortunately, the TPM 2.0 specification13 allows us to implement a U-Prove Device14

therefore making it suitable to provide hardware protection of U-Prove tokens. While the TPM could not

check the revocation list directly, this could be done by trusted firmware on the device.

This approach can be implemented using the C# SDK; see the DeviceSample sample for an example on

how to use device-protected tokens.

Verifier-driven revocation
In this section, we explore revocation mechanisms driven by verifiers, allowing them to further control

access to their resources, in addition to the revocation mechanisms offered by a central revocation

authority.

12 The list can be encoded in the device message. It cannot be modified by the user in transit, otherwise the
resulting device response would be invalid and therefore the presentation would fail.
13 https://www.trustedcomputinggroup.org/resources/tpm_library_specification.
14 The TPM 2.0 TPM2_Commit and TPM2_Sign commands allow us to implement the Device’s commitment and
response computations, respectively.

2

1

Issuer Verifier
r1
r2
r3
…

a1

a2

uid

r1
r2
r3
…

a1

a2

4

3

https://www.trustedcomputinggroup.org/resources/tpm_library_specification

These mechanisms are useful to prevent repeat visits from users who acted maliciously or contravened

to the verifier’s terms of service. A group of verifiers can share their revocation information, allowing

them to federate their revocation infrastructure.

Imagine, as an example, a set of e-book providers accepting university eID cards to provide free access to

students. The university would manage its own (issuer-driven) revocation infrastructure, so an e-book

provider would be convinced that visiting users are currently registered students with valid credentials.

But on top of that, the group of e-book providers would want to make sure that students do not share

online the e-books they obtained. To this end, e-book providers would request a contextual identifier

when a user present a token. This identifier, which does not identify the user, would be embedded in the

requested e-book. If, later, this identifier is found in an online sharing website, then it could be added to

the providers’ revocation list, preventing the user from further accessing their collection. This “local”

violation would not necessarily violate the school’s policy, so it wouldn’t be sufficient to revoke the

student’s eID card (the user would still be a student at the school!), but these mechanism would protect

the providers from further abuses from the user by locally revoking her tokens.

Using token identifiers
The simplest mechanism to invalidate a particular token is to revoke its token identifier. As explained in

the U-Prove Technology Overview, the token identifier is a unique value calculated by hashing the token’s

public key and issuer signature. This unique and unpredictable value is always the same when the token

is presented, regardless of which attributes (if any) are presented to the verifier. Therefore, if a user only

has one token, this technique can effectively be used to revoke users at the verifier(s), as illustrated in

Figure 5:

1) The user obtains a token.

2) The user presents her token to the verifier, and misbehaves, prompting the verifier to add her

token identifier to its local revocation list.

3) The next time the user visits the verifier presenting the same token, verification fails because her

token identifier appears on the revocation list.

Figure 5: token identifier revocation

This mechanism can also be used by users to self-revoke their tokens. If a user’s tokens get compromised,

then she can publish to a central revocation list the token identifiers of the affected tokens, and obtain

new ones from the issuer. The verifiers, checking that revocation list, would therefore reject the

compromised tokens even if they are used anonymously.

This approach does not work if a user has more than one token that could be presented to a verifier. In

this case, the following approach could be of used instead.

1

Issuer Verifier

a1

a2

a3

a1

a2

a3

a1

a2

a3

2

3

Using scope-exclusive pseudonyms
When presenting a token, a user can present a scope-exclusive pseudonym derived from a unique

attribute value and a verifier-provided context string. The resulting pseudonym will persist across

sessions, even if different tokens are presented, as long as they encode the same identifiers. It is easy to

see that this can be used for revocation purposes, as illustrated in Figure 6:

1) The user obtains a batch of tokens, each encoding the same attributes.

2) The user presents a token and a scope-exclusive pseudonym to the verifier. The user misbehaves,

prompting the verifier to add her pseudonym to its local revocation list.

3) The next time the user visits presenting another token and the same scope-exclusive pseudonym,

verification fails because her pseudonym appears on the revocation list.

Figure 6: scope-exclusive pseudonyms as revocation identifier

Usage of the scope-exclusive pseudonym is illustrated in the SoftwareOnlySample sample of the C# SDK.

Other approaches
Different applications will prefer different revocation mechanisms. We discuss in this section alternative

approaches of interest.

Short validity period
The simplest approach is to not support revocation, but instead limit the validity period of issued tokens,

and force (non-revoked) users to periodically obtain new tokens. This is a common approach in many

authentication protocols such as Kerberos, OAuth, and SAML; where credentials are obtained on demand

and can be cached for a short amount of time (for example, a few hours). This approach is easily

implemented and incur no extra cost during token presentation time, but limits the long-term usage of

the tokens and imposes additional token issuance cost to both the issuer and the user.

Care must be taken however when encoding a validity period in a token, to avoid leaking information that

could identify the user. Indeed, a fine-grained expiration time could be used as a correlation handle

between the issuer and the verifier. Therefore, it is recommended to use neutral dates and times (for

example, rounded values identifying a day, week, or month), or using an interval proof15 to convince the

verifier that the undisclosed expiration date is “larger than” the current time. The latter feature is available

in the U-Prove Extensions SDK, as illustrated in the RangeProofSample sample.

Hybrid approach
One very interesting hybrid approach is to create a non-revocation proof service, akin to X.509’s Online

Certificate Status Protocol (OSCP).9 In OSCP, a verifier sends an identifier of the X.509 certificate to the

15 http://research.microsoft.com/apps/pubs/?id=219674.

a1

a2

a3

1

Issuer Verifier

a1

a2

a3

a1

a2

a3

2

3 a1

a2

a3

Nym

Nym

http://research.microsoft.com/apps/pubs/?id=219674

OSCP responder which in turn returns the certificate’s validity to the verifier. This relieves the verifier from

dealing with the revocation infrastructure. As a drawback, the responder learns that a specific user

(identified by her certificate identifier) has visited a specific service provider.

This approach does not translate directly into the U-Prove world because, by design, user identifiers

encoded into tokens are not disclosed to verifiers. What can be done, however, is to allow the user to

contact the revocation authority beforehand, proving that she is not revoked, and obtaining the

equivalent of a “valid” OSCP response to be presented to the verifier along with her U-Prove token.

Assuming that the token contains a user identifier, as explained in the issuer-driven revocation section,

then the user can use any of the aforementioned mechanisms to convince the revocation authority that

her identifier/token is not revoked. The simplest case is to disclose her identifier and have the revocation

authority issue a short-lived “not-revoked” token encoding the same user identifier. The span of the

validity period range is application specific, but it should be neutral enough in order to protect the user

(see discussion in the previous section).16 Then, when presenting a U-Prove token to a verifier, a user

would also present a non-revoked token, proving that the user’s undisclosed identity has recently been

validated by the revocation authority. This is illustrated in Figure 7:

1) The issuer issues a token to the user, encoding her uid.

2) The user periodically obtains a non-revoked token from the Revocation Authority, also encoding

her uid. The user must present a valid U-Prove token, proving that she is not revoked (either by

disclosing her uid, or by using one of the revocation mechanisms described in this paper).17

3) When presenting her token, the user also presents her most recent non-revoked token, proving

that the uid attributes match in both, without disclosing them.

Figure 7: hybrid approach

To achieve this, an implementer must use the equality proof available in the U-Prove extensions SDK and

as illustrated in the CollaborativeIssuanceAndEqualitySample sample, and documented in details in the

U-Prove Equality Proof Extension specification.18

16 One option would be to have all non-revoked token expire at midnight of the current day. Therefore, all such
tokens would have the same expiration date, preventing information leakage about the user.
17 The user should use different U-Prove tokens in step 2 and 3, to preserve unlinkability between the revocation
authority and the verifiers.
18 http://research.microsoft.com/apps/pubs/?id=219672.

3

1

Issuer
Revocation
Authority Verifier

uid

expuid

a1

a2 a

a1

c

a

exp
=

uid

a1

a2

2

http://research.microsoft.com/apps/pubs/?id=219672

Whitelisting
An alternate method to maintaining a list of revoked values is to maintain a list of currently valid values,

often called a whitelist. The goal is then for the user to prove that her identifier is on the whitelist, without

disclosing which value it is.

When the number of allowed identifiers is not too prohibitive, the set membership extension, available

in the U-Prove extensions SDK and documented in the U-Prove Set Membership Proof Extension

specification,19 can be used to implement this mechanism.20

Resources
The following resources are useful to learn more about the features and techniques described in this
document:

 U-Prove Technology Overview: http://research.microsoft.com/apps/pubs/default.aspx?id=166980

 U-Prove Extensions: http://research.microsoft.com/apps/pubs/default.aspx?id=226360

 U-Prove C# SDK: https://uprovecsharp.codeplex.com

 U-Prove Extensions C# SDK: http://bit.ly/uproveextensions

To learn more about the U-Prove technology, visit http://www.microsoft.com/u-prove.

19 http://research.microsoft.com/apps/pubs/?id=219675.
20 One proof per list element must be calculated, which affect both the proof size and computation time.
Cryptographic accumulators, presented earlier in this paper, can also be used to implement whitelisting
approaches for large lists.

http://research.microsoft.com/apps/pubs/default.aspx?id=166980
http://research.microsoft.com/apps/pubs/default.aspx?id=226360
https://uprovecsharp.codeplex.com/
http://bit.ly/uproveextensions
http://approjects.co.za/?big=u-prove
http://research.microsoft.com/apps/pubs/?id=219675

