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ABSTRACT 

Perfect reconstruction (PR) filter banks have found nu- 
merous applications, and have received much attention in 
the literature. For linear filter banks, necessary and suf- 
ficient conditions for PR have been established for most 
practical situations. Recently, nonlinear filter banks have 
been proposed for image coding applications. These filters 
are generally simple, and produce better results than linear 
filters of same complexity. Nevertheless, the lack of general 
PR conditions limits these filters to  cases where one of the 
filters is the identity. In this paper, we present a framework 
that allows, for the first time, the design of PR nonlinear 
filter banks including (non-trivial) filters on all channels. 
Although the framework does not include all nonlinear PR 
filter banks, it does include all previously published nonlin- 
ear filter banks, as well as all linear ones. This framework 
suggest new possibilities for the design of nonlinear PR filter 
banks. 

1. INTRODUCTION 

Perfect reconstruction filter banks (PRFBs) have found im- 
portant applications in signal compression and analysis. In 
particular, critically decimated PRFBs play an important 
role in these applications, and have been extensively stud- 
ied [l]. Most previous research concentrated on linear filter 
banks. In fact, for linear filter banks, necessary and suffi- 
cient conditions for perfect reconstruction (PR) have been 
established for most practical situations. Many techniques 
are also available for designing such systems. These results 
are based on analysis tools like z-transform, frequency do- 
main analysis (Fourier transforms) , and Shannon sampling 

tems has hampered the development of perfect reconstruc- 
tion nonlinear filter banks (PRNFBs), and early work on 
PRNFBs was restricted to non-critically decimated cases 
[2, 3, 41. More recently, a better understanding of issues 
related to critical morphological sampling [5, 61 has allowed 
the introduction of critically decimated PRNFBs [7, 81. As 
a general rule, these PRNFBs are less complex and produce 

theory The lack of corresponding tools for nonlinear sys- 
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better results than their linear counterparts. Nevertheless, 
in all previous critically decimated PRNFBs, the signal in 
one of the channels was produced by simply subsampling 
the original signal [7, 8, 9, lo]. 

In this paper we introduce a framework that allows, for 
the first time, the design of nonlinear filter banks including 
(non-trivial) filters on all channels. Although the frame- 
work may seem restricted at first sight, it does include all 

In Section 2 we explain why we focus on a certain class 
of nonlinear systems. These systems can be characteked 
as a composition of certain elementary stqges, which are 
presented in Section 3. Section 4 shows some examples 
of PRNFBs based on the cascade of these stages. Section 
5 discusses the generality of the proposed framework, and 
Section 6 presents the main conclusions. 

. linear PRFBs as a particular case. 

2. RESTRICTING THE CLASS OF 
NONLINEAR SYSTEMS 

The development of interesting results for linear systems is 
heavily dependent on the restriction that was put on them 
(namely, requiring them to be linear). Although we would 
like to relax the requirement of linearity, we still find it nec- 
essary to put some sort of restriction on the system in order 
to produce useful results. If we allow the nonlinear systems 
to be completely general, even some basic concepts can be 
affected. For example, observe that the meaning of “crat- 
acal decamataon” may change if we consider the following 
nonlinear system: 
Example 1 G w e n  a sagnal (possably sampled at the  Nyquzst 
rate) x[n], produce a (four tames lower sampling rate) sag- 
nul y[n] by anterlacang the  (decamal) dagats of f o u r  sam-  
ples of z[n]. For example, suppose x[4] = 0.22222, x [ 5 ]  = 
0 34567, x[6]  = 0 99999, and x[7] = 0.18181. T h e n  we have 
y [ l ]  = 0.23912498259126982791. Perfect reconstructzon of 
x[n] f r o m  the (undastorted) samples of y[n] i s  clearly possa- 
ble by j u s t  anverting the  process. 

In this example, we reduced the total sampling rate of 
a signal by a factor of four, and could still perfectly recon- 
struct the signal Nevertheless, nothing was gained with 
the sampling rate reduction, since y would have to be rep- 
resented at a four times higher precision. It is easy to note 
the kind of trouble this can bring to a completely general 
framework for critically decimated nonlinear systems. 
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Figure 1: A polyphase two-channel nonlinear filter bank. 

To avoid this kind of misleading transformation, we re- 
strict our study to a class of filters that can be implemented 
as a cascade of certain elementary stages, which we describe 
in next section. 

It is worthwhile to mention that this cascade of elemen- 
tary stages is able to implement any critically decimated 
linear PRFB [ll], as well as all the recently published criti- 
cally decimated PRNFBs [7, 8, 91. Moreover, it also allows 
for filtering both channels, in contrast to the previously 
published approaches for PRNFBs [7, 8, 91. 

3. T H E  ELEMENTARY STAGES 

Figure 1 depicts a polyphase implementation of a two-channel 
filter bank. It can be shown that most linear filter banks can 
be implemented in this form [l]. Although a PRNFB can- 
not in general be represented in polyphase form, we restrict 
our study to a subclass of PRNFBs which can be repre- 
sented as a cascade of simplified polyphase stages (called 
elementary stages). 

Restricting our notation to the two-channel filter bank 
depicted in Figure 1, we denote the two polyphase compo- 
nents of a signal x by xo and X I ,  i.e., zo[n] = z[2n], and 
q[n] = z[2n-1]. The polyphase components of the trans- 
formed signal (also called subbands in linear PRFB) are yo 
and y1, and can be expressed as: 

YO = f o o ( x o ) + f o l ( x 1 ) ,  and (1) 
y1 = flO(X0) + f l l ( X l ) ,  (2) 

where foe(.), fo l ( . ) ,  f lo ( . ) ,  and f l l ( . )  are the (possibly non- 
linear) polyphase analysis filters. The reconstructed signals 
Et0 and 2 1  can be expressed as: 

Et0 = gOo(Y0) + gol(Yl), and (3) 
Et1 = SlO(Y0) + g11(y1), (4) 

where goo(.), go1(.), glo(.), and g11(.) are the (possibly non- 
linear) polyphase synthesis filters. 

The PR condition for this system can be obtained by 
substituting equations (1) and (2) in (3) and (4), and re- 
quiring Et = x, yielding: 

x o  = goo(foo(xo) + fOl(X1)) + gol(flO(x0) + f l l ( X l ) ) ,  (5) 
xi = gio(foo(xo) + foi(x1)) + gii(fio(x0) + fii(x1)). (6) 

Using the above PR conditions, we now introduce the three 
classes of "elementary" stages that we have considered. 
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Figure 2: The three types of elementary stages. 

Type I: (Hierarchical DPCM - like) A type I structure is 
one where foe(.) = f l l ( . )  = I, (i.e., the identity transfor- 
mation), and either f10(.) = 0 or fo l ( . )  := 0. The other 
one can be any causal transformation (or any transforma- 
tion that can be made causal by introducing a finite de- 
lay). Then PR can be obtained by making g01(.) = - fo l ( . ) ,  
gio(.) = -fro(.), and goo(.) = g i i ( . )  = 1. 

Type 11: (DPCM - like) A type 11 structure is one where 
f lo( . )  = fo l ( . )  = 0, and both foe(.) and f l l ( . )  are invertible 
functions. In this case, PR can be obtained by making 
go1(.) = g d . )  = 0, goo(.) = f&,'(.), and g11(.) = ffi'(.). 
Type 111: (channel swapping) A type I11 structure is one 
where f lo( . )  = fol(.) = I ,  and foe(.) = f i l ( . )  = 0. In this 
case, PR can be obtained by making go1(.) = glo(.) = I, 
and goo(.) = gi i ( . )  = 0. 
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Figure 3: Using the cascade to reduce aliasing effects: (a) original; (b)(c) lower and upper bands, as in [ lo] ;  (d) re-filtered 
lower band; (e) linear with same window size; (f) linear with bigger filter. (note that (b) through (f) have been interpolated 
for plotting) 

We note that if we restrict the functions fi(.) to be 
linear, and use the usual matrix notation, a Type I stage 
corresponds to  a triangular matrix with all ones in the di- 
agonal, a Type I1 stage corresponds to a diagonal matrix, 
and a Type I11 stage corresponds to  a permutation matrix. 

4. CASCADE AND RECURSION OF 
ELEMENTARY STAGES 

Since each elementary stage allows PR, it is clear that if a 
series of stages is cascaded, the composed system still allows 
PR. The following simple example shows how different types 
of elementary systems can be cascaded to produce PRNFBs 
that include operators on both channels. (as opposed to the 
single-channel filtering proposed in [7, 8, 9, 101) 

Example 2 Given  a signal x such that z[n] > 0,  V n  E N ,  
consider the following cascade of elementary stages: 
stage 1: foo(z)  = f l l ( x )  = 2, f o l ( z )  = 0, flo(z) = x2. 
stage 2: f o o ( s )  = fil(z) = x, f o l ( z )  = -Eog(z),  and, 
f l O ( Z )  = 0. 
stage 3: foo(z)=x,  h ( z ) = & ,  and, f o l ( x ) = f i o ( x ) = O .  
Now,  sance each of these stages as anvertible, so is  the com- 
posed (cascade) system.  T h e  composed f i l ter will be: 

yob1  = zo[nl - log((xo[nl)2 + z1[nl), (7) 

Y l b l  = J ( 2 1 [ n ] ) 2  + zo[n] (8) 

T h e  inverse sy s t em can  be easily computed by applying the 
inverse filter of each stage in the reverse order, and will be: 

zo[nl = yob1 + 2 log(Y l [n l ) ,  (9) 
z1bI = (y1[nD2 - (yo[nI + 210g(Yl[n1))2.  ( 1 0 )  

PRNFBs have been successfully applied to  image and 
video coding [7, 8, 10, 121. The PRNFBs used in all these 
works is based on a hierarchical cascade of a type I stage. 
In other words, at each level, one of the subsignals is ob- 
tained by simply subsampling the original signal. Although 
this has produced good coding results, this simple subsam- 
pling may introduce patterns not present in the original 

signal. This is particularly true when subsampling images 
with strong regular patterns or texture. A typical exam- 
ple is the image “Barbara”. We selected a section of the 
decomposition of that image where this effect is most pro- 
nounced. Figure 3-a shows the original image at that level, 
while Figure 3-b shows the subsampled version, as used in 
[7, 8, 101. Although the extraneous pattern that appears 
in the subsampled image does not affect the coding, it can 
limit the use of the lower resolution images for some appli- 
cations (e.g., scaling). Until now, the simple subsampling 
was a condition to guarantee PR, and nothing could be done 
to reduce those patterns. 

In next example, we show that we can use a cascade 
of elementary stages to reduce those patterns, while still 
preserving the PR property. 

Example 3 In this  example,  the signal is  a 2-D signal in a 
rectangular grid, and the 2:l subsampling maps  the original 
signal i n to  two quincunx subsignals (see [9]). T h e  f irst  stage 
is  the same  as described in [9], i.e., a type I structure,  where 
flo(.) zs a 4-point med ian  f i l ter,  and f o l ( . )  = 0. T h e  second 
stage is  also a type I structure,  but wi th  f l o  = 0 and fox as 
a 4-point median  followed by a 0.5 constant gain.  

The objective of the second stage is to reduce the alias- 
ing effects due to  the non-filtering of the yo at the first 
stage. Figures 3-b and 3-c show the two subsignals after 
the first stage. Figure 3-d shows the result of the lower 
band after the second filtering stage. Note the reduction 
in the extraneous frequency when compared to Figure 3- 
b. Remember that the information in Figures 3-d and 3-c 
together is sufficient to perfectly reconstruct the signal. 

It should also be pointed out that aliasing cancelation is 
a much easier task on linear PRFB, where we can make use 
of frequency domain analysis to design the filter. Figures 3-e 
and 3-f show the result of using linear filters. In 3-e the filter 
uses the same window size as the nonlinear filter, and it can 
be seen that similar results are obtained. Nevertheless, the 
compression performance of linear PRFB is usually worse 
for similar complexity. 

It is also possible to  apply a new PRNFB to one (or 
more) of the channels, e.g., to  produce a multiresolution 
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6. CONCLUSIONS 

Figure 4: A hierarchical nonlinear decomposition. 

decomposition similar to that used in wavelet decomposi- 
tion. Figure 4 shows an example of applying the system 
described in Example 3 in a hierarchical fashion. 

Finally, we would like to mention that the problem of de- 
signing PRNFB is far from solved. Although the proposed 
framework opens important new possibilities, the lack of 
a frequency domain and other design tools still limits the 
complexity of nonlinear filters that can be designed. We 
are currently investigating the use of adaptive morphologi- 
cal filters 1131 for this purpose. 

5. HOW GENERAL IS THE FRAMEWORK? 

The elementary stages we have considered are quite simple. 
It is also clear that many PRNFBs do not fit into the frame- 
work, i.e., cannot be decomposed into elementary stages 
(e.g., the system described in Example 1). This might give 
the impression that the framework is overly restricted. Nev- 
ertheless, we note that any linear PRFB can be decomposed 
into elementary stages. 

To decompose a linear PRFB into elementary stages, 
we first find the polyphase representation of the system. 
A single-stage polyphase representation always exists for a 
linear system (the same is not true for nonlinear systems). 
The system can then be represented by the corresponding 
polyphase matrix A, such that y = Ax, and the PR con- 
dition is equivalent to requiring that A be non-singular. 
But if A is non-singular, then it can be decomposed into a 
diagonal matrix (its Smith-McMillan form) by a series of el- 
ementary row/column operations. Each of these operations 
correspond to type I or type I11 elementary stages, and the 
diagonal matrix corresponds to a type I1 stage. Therefore, 
any linear PRFB can be decomposed into a cascade of ele- 
mentary stages. 

In this paper we present a sufficient condition for perfect 
reconstruction in nonlinear critically decimated filter banks. 
Although it is not a necessary condition, it is general enough 
to include all linear perfect reconstruction filter banks, as 
well as all previously publisheld nonlinear filter banks. 

The framework presented in this paper opens new possi- 
bilities for the analysis and design of nonlinear filter banks. 
This should find important application in filter design for 
traditional applications, like image coding atnd signal analy- 
sis. Besides, including nonlinear transformations in PRFBs 
may open new areas. For example, motion compensation 
(a nonlinear technique) can be included in the same frame- 
work as the linear transforms usually used for transforming 
the residual. An early application of this is reported in [12]. 

Finally, it should be mentioned that better techniques 
are still needed for nonlinear filter design. We hope the 
framework presented in this pcaper will encourage their de- 
velopment. 
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