
  

Privacy and accountability in 
identity systems: the best of both worlds 
 

Christian Paquin, Microsoft Research 

September 11, 2013 

 

© 2013 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in this  

document, including URL and other Internet Web site references, may change without notice. You bear the ri sk of us ing i t. 

Some examples are for illustration only and are fictitious. No real association is intended or inferred. This  document does  n ot 

provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for 

your internal , reference purposes . 

 

Abstract 
Privacy and accountability are widely believed to be opposing goals in identity systems.  On one hand, 

service providers require users to be identifiable to reduce fraud; on the other, users want to limit 

tracking while minimizing the amount of information disclosed about them. As a result, debates on 

identity become a rope pulling effort with privacy proponents on one end and security ones on the 
other. We will illustrate that this opposition is in fact an illusion.  

Modern cryptography makes it possible to achieve both strong security and privacy to any degree 

desired. In this paper, we present a system allowing honest users to access online resources 

anonymously, but when a user contravenes to the terms of service  or acts fraudulently, an auditor can 

de-anonymize and then ban the misbehaving user from the system. We also describe a prototype using 

a mobile phone as a second factor of authentication implementing this system.  

This paper showcases a new ID escrow system to verifiably encrypt user pseudonyms for an auditor, and 
an efficient revocation accumulator scheme compatible with the U-Prove technology.  

  



Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 2 

Introduction 
As more services are migrated online, system designers are faced with seemingly contradicting 

requirements. On one hand, they need to provide adequate security for online transactions increasing in 

value, and simple usernames/passwords do not to provide sufficient protection anymore. On the other 

hand, privacy requirements protecting against user profiling and tracking are becoming more common 
and complex. 

Many systems prioritize one aspect over the other, and most often than not, security. However, it is now 

better understood that privacy is an as important aspect that must be considered when designing new 

systems.1 As noteworthy example, the White House published last year the National Strategy for Trusted 

Identities in Cyberspace (NSTIC)2, outlining the vision of an identity ecosystem that provides both strong 

privacy and security for consumer identities to be used online. 

Multiple technologies are being proposed in the industry to address the privacy issues; but system 

designers frequently equate privacy with classical cryptographic secrecy. Protecting privacy entails more 

than encrypting user data and attributes, it also involves reducing to the strict required minimum the 

information learned about the user’s activities and data for all parties involved in an identity transaction. 

The key is therefore to balance both sets of requirements and design systems that can provide both the 
required privacy and security protections, using the right mechanisms. 

So-called minimal disclosure technologies3 provide strong cryptographic protections across the privacy 

spectrum: from anonymity, pseudonymity, to full-identification. For example, U-Prove4 and Idemix5 are 

two predominant technologies backed by important industry players that have been widely studied in 

academia and in various research projects.6 They may work well in an ideal world, but reality is more 

complicated. First, full-anonymity is rarely needed in practice; most identity scenarios require the 

presentation of some sort of attribute (for example , “I’m pseudonym XYZ”, “I’m over-21”, “my clearance 

level is higher than SECRET”). Second, anonymity services routinely get abused, prompting critics to 

lobby for shutting them down for security reasons. As an example, TOR7 network nodes are routinely 

blocked by various organizations and systems to prevent illegal activities, therefore also precluding 

honest users from its benefits.8 Privacy services are beneficial to the internet community, but 
operational and authorized privacy services are even more useful! 

                                                                 
1 The notion of privacy by design is getting more popular and widely advocated. 
2 http://www.nist.gov/nstic/ 
3 Also called anonymous credentials. 
4 http://www.microsoft.com/u-prove 
5 http://www.zurich.ibm.com/security/idemix/ 
6 One noteworthy and currently active project, ABC4Trust, aims at architecting and implementing a common 
abstraction over U-Prove and Idemix (and any other minimal disclosure technologies), and running real-l ife pilots 
with these technologies. https://abc4trust.eu. 
7 https://www.torproject.org/ 
8 As an example, Wikipedia does not allow editing pages when using TOR, thus preventing anon ymous 
contributions. Certain sensitive topics would benefit from qualified yet anonymous authors ; our system could be 
used to prove certified qualification of an anonymous author, allowing the anonymity to be lifted by the Wikipedia 

administrators in case of abuse, and by revoking the author’s accreditation. 

http://www.nist.gov/nstic/
http://approjects.co.za/?big=u-prove
http://www.zurich.ibm.com/security/idemix/
https://abc4trust.eu/
https://www.torproject.org/


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 3 

To enhance their survival chances in the real world, privacy-protecting technologies should therefore 

offer accountability mechanisms to allow honest participants to use them, while allowing misbehaving 

ones to be identified and/or banned.  

In this paper, we present a system that extends the U-Prove technology to provide an ID escrow service 

to de-anonymize users committing fraudulent transactions and a revocation mechanism to prevent 

these users from further accessing the system. We also describe a prototype implementing this system 

that uses a mobile phone as a second factor of authentication to increase security. 

About U-Prove 
U-Prove is an innovative cryptographic technology that 

allows users to minimally disclose certified information about 

themselves when interacting with online services. U-Prove 

provides a superset of the security features of Public Key 

Infrastructure (PKI), and also provides strong privacy 

protections by offering superior user control and preventing unwanted user tracking. The U-Prove 

technology specifies cryptographic primitives that can be integrated in the leading federation protocols 
(like SAML, WS-Trust,9 OpenId, OAuth, etc.) to enhance their privacy characteristics. 

Microsoft released the U-Prove cryptographic specification under the Open Specification Promise 10 

allowing anyone to use and implement it freely, and released an open-source SDK11 implementing it. 

With the new version 1.1 (revision 2) release of the specification, it is now possible to extend the 

capabilities of the technology by defining external modules. The ID Escrow and revocation schemes we 

present later are examples of such extensions. 

Academic research in the area of privacy technologies such as U-Prove has been booming in the last few 

years.12 Many of the new schemes require more advanced mathematics and rely on newer security 

assumptions that have not been vetted in practice. Fortunately, U-Prove and the new extension 

schemes presented herein rely on conventional security assumptions (the same ones as in DSA and 

ECDSA),13 and the mathematics are simple enough to be implemented using math libraries widely 
available. 

Two-factor security 
Two-factor authentication is an important feature in many identity systems, and is now supported in 

leading consumer web properties offered by the likes of Microsoft14 Facebook15 and Google.16 Using a 

dedicated security device or a mobile phone is a good way to increase the confidence in the user 

                                                                 
9 See for example the U-Prove WS-Trust V1.0 profile. 

http://research.microsoft.com/apps/pubs/default.aspx?id=166974  
10 http://www.microsoft.com/openspecifications/en/us/programs/osp/security/default.aspx  
11 https://uprovecsharp.codeplex.com/ 
12 See for example a recent MAC-based scheme providing multi -show unlinkability and U-Prove like performance: 

http://eprint.iacr.org/2013/516. 
13 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf 
14 http://www.microsoft.com/en-us/account/default.aspx 
15 http://www.facebook.com/help/270942386330392/ 
16 https://support.google.com/accounts/topic/28786 

http://research.microsoft.com/apps/pubs/default.aspx?id=166974
http://approjects.co.za/?big=openspecifications/en/us/programs/osp/security/default.aspx
https://uprovecsharp.codeplex.com/
http://eprint.iacr.org/2013/516
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://approjects.co.za/?big=en-us/account/default.aspx
http://www.facebook.com/help/270942386330392/
https://support.google.com/accounts/topic/28786


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 4 

authentication. In most federation protocols however, the user retrieves an authentication statement 

from an identity provider using a second factor, but the retrieved “bearer” statement is presented as is 

to a relying party without being linked to the second factor. This makes the statement susceptible to 
hijacking or replay by an attacker. 

A growing number of security devices (from one-time password generators to USB keys performing 

some cryptography) are now available to act as a second factor of authentication in identity 

transactions. However, given the cost involved in deploying these devices to users, wide -scale adoption 

remains a problem. We see a tendency to migrate the schemes to a device that most users already have 

in their pockets: the mobile phone. Relying on the security of the phone network alone, however, is 

risky. Indeed, it is possible for motivated attackers to hijack a phone number to intercept challenge text 

messages and calls from the identity system.17 Therefore, it is preferable for the mobile phone to 

perform some cryptographic operations, ideally using key material protected by the device’s firmware 

or hardware. 

Minimal disclosure technologies incorporate the notion of two-factor protection. Indeed, U-Prove 

tokens can be cryptographically tied to a security device in such a way that the issued token can only be 

presented if the device collaborates with the user to answer the relying party’s cryptographic 

challenge.18 Therefore, the second factor provides end-to-end protection of the token, not only at token 

issuance, both also at presentation (which can happen long after issuance). This extra security 
protection does not contravene the privacy benefits of using U-Prove. 

Our proof of concept implements the U-Prove Device on a mobile phone. We prototyped two 

approaches to communicate with the phone: one using local communications through the phone’s Near 

Field Communication (NFC) chip, and one using remote calls through push notifications. Both 
approaches strengthen the security of a transaction. 

Here is the flow, as illustrated in Figure 1. 

1) Token issuance: The User authenticates to the Issuer and obtains U-Prove tokens encoding the 

public key of her phone (either known to the Issuer, or provided by the User). 

2) Phone invocation: When presenting the token, the User invokes the phone passing the Verifier’s 

challenge message, either through NFC (red line) or through a remote phone service (blue line).  

The phone computes its cryptographic response and returns it to the User.  

3) Token presentation: the User presents the U-Prove token to the Verifier, including the phone’s 

cryptographic response. 

                                                                 
17 See for example http://www.financialexpress.com/news/duo-arrested-for-internet-banking-fraud/1061205 
18 The C# SKD’s UProveCrypto.VirtualDevice i l lustrates how to implement a U-Prove Device. 

http://www.financialexpress.com/news/duo-arrested-for-internet-banking-fraud/1061205


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 5 

 

Figure 1: two-factor protection using a mobile phone 

If the security device is trusted by the Identity Provider (for example, a tamper-resistant smartcard 

issued by the same organization), then it can be used to enforce security policies such as validating user 

attributes, checking revocation status, or encrypting its identity for an escrow auditor. Since mobile 

phones do not provide sufficient tamper-resistance, we preferred in our prototype to enforce these 
policies using cryptographic mechanisms. 

Relying on a software-only second factor enhances authentication strength, but it is preferable to bind 

cryptographic keys to a hardware component. One interesting choice is the use of a Trusted Platform 

Module (TPM) chip. Fortunately, the TPM 2.0 specification19 allows us to implement a U-Prove Device20 
therefore making it suitable to provide hardware protection of U-Prove tokens. 

ID escrow using a verifiable encryption scheme 
Auditing is an important feature in identity systems. When something goes wrong, it is important to 

know what happened and who is responsible. It is trivial to identify misbehaving users when using 

conventional identity technologies. Indeed, most protocols enforce the use of a unique identifier (for 

example, the subject field of an X.509’s certificate, the user ID in Facebook Connect, or the Subject 

element of a SAML assertions), and when none is contained in a presented token, forensic analysis can 

infer which user presented it (by comparing, for example, the logs of the identity provider and the 

relying party to match cryptographic signatures). Minimal disclosure technologies avoid by design these 
correlation handles to prevent inescapable tracking by other protocol participants. 

How can we, in this case, discover the identity of a fraudulent user if we permit the use of these minimal 

disclosure technologies? One approach is to build an ID escrow system using a verifiable encryption 

scheme, as we discuss next. 

ID escrow systems have been extensively (and rightfully) criticized in the privacy literature,21 and indeed 

great thought must be put into the design of such a system due to the resulting reduction in privacy 

                                                                 
19 https://www.trustedcomputinggroup.org/resources/tpm_library_specification 
20 The TPM 2.0 TPM2_Commit and TPM2_Sign commands allow us to implement the Device’s commitment and 
response computations, respectively. 
21 The debate around the Clipper chip is the early ‘90s is a good example. 

https://www.trustedcomputinggroup.org/resources/tpm_library_specification


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 6 

guarantees. We argue that if accountability requirements are such that fraudulent users must be 

identified, then a carefully designed and auditable ID escrow scheme would allow honest users to 

remain anonymous (rather than relying on conventional identity systems where everyone is fully or 
easily identified by default). 

The idea behind our scheme is simple. The system sets up a trusted Auditor, an entity that will be able to 

decrypt the identity of a user under certain application-specific circumstances. Each time a user presents 

a U-Prove token she encrypts a token attribute, encoding her identifier, using the public key of the 

Auditor. This encryption is provided to the Verifier. If there is abuse, the Verifier forwards this ciphertext 
to the Auditor to have it decrypted, to learn the user’s identifier. 

One question becomes evident: how does the Verifier know that the ciphertext is a valid encryption of 

the user’s identifier, and not some junk provided by a malicious user wanting to evade the escrow 

system? To address this issue, we use a verifiable encryption scheme assuring the Verifier that the 
encryption is correct, without revealing the encrypted value. 

To prevent abuses from the Auditor, a deployment may choose to split its responsibilities among 

different groups. For example, the Auditor’s secret key could be split between a law enforcement 

agency and a civil liberties group, and be reconstituted and used only when a court order is obtained to 

lift the anonymity of a particular transaction. These safeguards are application-specific and can be put in 
place as needed. 

Various schemes have been proposed in the cryptographic literature to address this problem. In order to 

support verifiability, the underlying encryption scheme must be mathematically compatible with the 

credential scheme. ElGamal is a well-known encryption scheme that works well with the mathematics 

behind U-Prove, and it has been proposed to implement this feature; 22 extra protocol steps are needed 

however in order to prove its security. In our case fortunately, we can use a simple ElGamal encryption 

as the basis of our verifiable encryption scheme, and be assured of its security because it is tied to a U-
Prove presentation.23 

Here is an overview of the scheme illustrated in Figure 2. 

1) Auditor setup: The Auditor generates its public parameters and secret key, and makes the 

public parameters available to Users and Verifiers. 

2) Token issuance: The User authenticates to the Issuer and obtains U-Prove tokens encoding her 

unique identifier UID. 

3) Token presentation: the User presents a U-Prove token to a Verifier, including a verifiable 

encryption of a pseudonym24 for her unique identifier UID. The Verifier validates the 

presentation proof and the verifiable encryption by checking that the pseudonym maps to the 

                                                                 
22 See for example: Practical Verifiable Encryption and Decryption of Discrete Logarithms. Jan Camenisch and Victor 
Shoup. http://www.iacr.org/archive/crypto2003/27290126/27290126.pdf 
23 Using only an ElGamal encryption would provide IND-CPA security. Our scheme combined with a U-Prove 
presentation is conjectured to provide IND-CCA security.  
24 Technically, if 𝑥  is an encoding of the UID, then the user encrypts 𝑔𝑥  for a public base element 𝑔. Recovering the 
discrete log value 𝑥  from 𝑔𝑥  is hard; so as we explain later, either the Issuer remembers the (𝑥, 𝑔𝑥 ) mapping at 

issuance, or 𝑥  must be brute-forced (if the set possible values is small enough). 

http://www.iacr.org/archive/crypto2003/27290126/27290126.pdf


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 7 

undisclosed UID encoded in the presented token. The presentation transcript composed of the 

U-Prove token, presentation proof, and UID ciphertext is stored for auditing purposes. 

4) ID decryption: In case of abuse, the Verifier sends to the Auditor the presentation transcript 

along with an application-specific proof of abuse.25 The Auditor verifies the presentation 

transcript, decrypts the encrypted pseudonym and returns it to the Verifier.  

 

Figure 2: ID Escrow with verifiable encryption 

There are two ways to retrieve the UID value from a decrypted pseudonym: 

1. The Issuer could keep a mapping between UID values and expected pseudonym values at issuance 

time, and be queried by Verifiers after an escrow decryption is performed; or 
2. The pseudonym value could be brute-forced to figure out the UID value that generated it. 

The preferred option is an application choice. If an Issuer can keep the pseudonym value for each user in 

its database, and if it is accessible after the decryption, then the first option is a possibility. The second 

option doesn’t require the involvement of the Issuer, but is more time consuming. It might however be 

preferred if the list of possible user identifiers is enumerable and the auditing process is expected to 

take some time. As an example, assuming the Issuer is a driver’s license office, and that the UID is the 

license driver serial number, then it might be acceptable for a police department to spend a couple of 
days during an investigation to brute force the UID value given the returned pseudonym. 

One interesting option at this point would be to prevent the fraudulent User to present her other 
tokens; this will become possible using the revocation feature we present in the following section. 

For more details about this ID escrow scheme, see the specification available from 

http://www.microsoft.com/u-prove. 

Revocation using a designated-verifier accumulator scheme 
User revocation is a mechanism invalidating issued credentials that would otherwise be valid. A 

credential provider might revoke a credential because the user is not entitled to it anymore (for 

                                                                 
25 The terms defining what constitutes an abuse can be signed by the User as part of the encryption process, 
therefore preventing a malicious Verifier from claiming that a User abused the service terms by changing them 

after the fact. 

http://approjects.co.za/?big=u-prove


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 8 

example, has quit his job or changed role) or if a credential was comprised (for example, stolen or 
hacked). 

The most popular revocable credential is the X.509 certi ficate. Each certificate specifies a serial number 

that can be put on a Certificate Revocation List (CRL). Before accepting a certificate, relying parties must 

check that the certificate’s serial number does not appear on the current CRL, or query an Online 

Certificate Status Protocol (OCSP) responder that performs the check. This is simple enough when a 

unique value is presented with the credential, but as we already discussed, minimal disclosure 
technologies do not contain, by design, any linkable identifiers. 

Various revocation mechanisms are possible when using V1.1 U-Prove tokens. One can limit the validity 

period of the tokens to make sure the Issuer can periodically validate the user before issuing new 

tokens. For longer-lived tokens, Verifiers can make an authorization decisions based the token 

identifier26 presented from a U-Prove token, refusing to accept tokens for which the identifier has been 

revoked. For Device-protected tokens a Verifier can rely on the trusted Device (for example, a smart 

card) to reject user identifiers on the revocation list passed to the Device. 27 However, when multiple 

unlinkable software-only long-lived tokens are to be issued, which is the case in many identity scenarios, 
we need another mechanism to effectively revoke users. 

Multiple revocation schemes for minimal disclosure technologies have been proposed over the years. 

The simplest consists of performing multiple negation proofs: disclosing a token attribute is equivalent 

to proving that an attribute 𝑥 is equal to a certain value 𝑣 (𝑥 = 𝑣); it is also possible to mathematically 

prove that an attribute value is NOT equal to a value (𝑥 ≠ 𝑣). Assuming that the revocation list contains 

the identifiers of all revoked users (𝑣1 , 𝑣2,… ,𝑣𝑛), then a non-revocation proof consists of proving that 

(𝑥 ≠ 𝑣1, 𝑥 ≠ 𝑣2,… , 𝑥 ≠ 𝑣𝑛). The problem with this approach is that the proof’s computation time and 

size is linear to the size of the revocation list. Clever approaches have been proposed resulting in 
schemes that have square root28 and logarithmic29 complexities in the size of the revocation list. 

Dynamic accumulators30 use a different approach in which the revoked values are accumulated into a 

single aggregate value by a party called the Revocation Authority. The benefit of these schemes is that 

they allow users to create non-revocation proof in constant size and time, once some accumulator pre -

computations are made. These pre-computed values must be updated anytime that revocation list 

changes, which makes the scheme interesting if this happens in well -defined intervals. 

Most dynamic accumulator schemes use a type of algebraic constructions called bilinear pairings. 

Although pairings are popular in recent cryptographic research, they are not yet used in practice due to 
their maturity level and implementation complexity. 

                                                                 
26 The token identifier is a unique value defined as the hash of the token’s public key and signature. 
27 Messages passed to the Device are signed by the User and validated by the Verifier, preventing the User from 
removing her identifier from it. 
28 A practical system for globally revoking the unlinkable pseudonyms of unknown users. Stefan Brands, Liesje 

Demuynck, and Bart De Decker. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf 
29 Zero-knowledge Argument for Polynomial Evaluation with Application to Blacklists . Stephanie Bayer and Jens 
Groth. http://www0.cs.ucl.ac.uk/staff/J.Groth/PolynomialZK.pdf 
30 Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials . Jan Camenisch and 

Anna Lysyanskaya. http://www.zurich.ibm.com/security/publications/2002/camlys02.pdf 

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW472.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/PolynomialZK.pdf
http://www.zurich.ibm.com/security/publications/2002/camlys02.pdf


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 9 

In systems where the Revocation Authority and the Verifiers share a key (hence the term “designated” 

verifier), then we can design an accumulator scheme that uses a conventional finite field or elliptic curve 

construction (like the ones used in DSA and ECDSA, and in U-Prove). 

Here are the details of the scheme illustrated in Figure 3: 

1) Revocation Authority setup: The Revocation Authority generates its public parameters and 

secret key, and makes the public parameters available to Users. 

2) Token issuance: The User authenticates to the Issuer and obtains U-Prove tokens encoding her 

unique identifier UID. 

3) Revocation list management: Periodically, the Revocation Authority updates the revocation list, 

and the User obtains non-revocation witnesses from the Revocation Authority or computes 

them using the updated list values. 

4) Token presentation: The User presents a U-Prove token to the Verifier, including a non-

revocation proof (computed using the non-revocation witnesses). The Verifier validates the 

presentation proof. 

5) Revocation verification: The Verifier sends the non-revocation proof to the Revocation 

Authority that verifies that the undisclosed UID does not appear on the current revocation list. 31 

 

Figure 3: Revocation with Accumulator and Designated-Verifier 

For more details about this revocation scheme, see the specification available from 
http://www.microsoft.com/u-prove. 

Proof of concept implementation 
We implemented a proof of concept illustrating all these components working together. The scenario is 

as follows. Alice visits a Privacy Marketplace where she can purchase music, games, apps, etc. The 

Privacy Marketplace protects users’ privacy and do not track their every purchase. Instead of charging 

Alice’s credit card every time a purchase is made, Alice purchases in advance a number of anonymous 

                                                                 
31 Much like an OCSP call  when using X.509 certificates. 

http://approjects.co.za/?big=u-prove


Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 10 

tokens that can be redeemed at various merchants in exchange of an online item. Neither the 
Marketplace nor the merchants, even in collusion, can link a token issuance with a token redemption. 

To strengthen security, Alice must confirm with her mobile phone Marketplace purchases made with her 

laptop. The tokens are bound to a key stored on the phone, and the phone is needed at purchase ti me 
to answer the merchant’s cryptographic challenge. 

Each token should only be used once, and deleted afterwards. To prevent fraudulent users from hacking 

the client application and cloning tokens, the Marketplace encodes in each one the user’s account 

identifier as an attribute. When making a purchase, Alice hides her identifier, but creates a verifiable 

encryption of it for the system’s Auditor. When the Marketplace validates a token, it keeps a list of all 

presented token transcripts indexed by token identifiers.32 If there is a match between a newly received 

token and an indexed one, the Marketplace concludes that the token was presented twice, and 

therefore that the user misbehaved.33 The current and the stored transcripts are sent to the Auditor 

which decrypts the identity of the user, and returns it to the Marketplace which in turn adds it to its 

revocation list. From now on, Alice will not be able to use any of her tokens, since the revoked identifier 
is encoded in all her issued tokens. 

In this prototype, the Privacy Marketplace service implements the U-Prove Issuer and Revocation 
Authority roles, user application implements the Prover role, and the phone implements the Device role. 

Here are the steps illustrated in Figure 4. 

1) The User logs in her Marketplace account using her username/password and purchases U-Prove 

tokens encoding her UID (“alice”). The tokens are bound to the User’s phone associated with her 

account. 

2) The User periodically obtains non-revocation witnesses from the Revocation Authority. 

3) The User obtains an item from a merchant service by presenting a token, encrypting her UID for 

the Auditor, providing a non-revocation proof of her UID and a cryptographic response from her 
phone. 

4) The merchant service calls back the Marketplace for token validation. The Marketplace stores 

the presentation transcript. 

5) In case of abuse, Marketplace sends the presentation transcripts to the Auditor to learn the 
user’s UID and adds it to the revocation list. 

                                                                 
32 A cryptographic hash of the token’s public key and signature. 
33 An application should have fault-tolerant mechanisms to detect and prevent erroneous (vs. malicious) behaviors. 



Privacy and accountability in identity systems: the best of both worlds  

 

Microsoft Research  pg. 11 

 

Figure 4: Proof of concept architecture 

This prototype was implemented using a Windows RT client application for the User, a Windows Phone 

8 application for the Device, and back-end Web Services for the Marketplace and merchant services. All 

of them use the U-Prove C# SDK. We configured the Issuer to use the P-256 elliptic curve to improve 

performance and reduce communication complexity. 

Conclusion 
We described strong accountability mechanisms that can be used in conjunctions with strong privacy 

technologies, demonstrating that both security and privacy requirements can be achieved in identity 

systems. 

We encourage you to learn more about the U-Prove technology and the new capabilities by visiting 

http://www.microsoft.com/u-prove, and to incorporate these capabilities into systems you are 
designing to improve their security and privacy protections. 

Questions and feedbacks can be sent to uprove@microsoft.com. 

Acknowledgments 
This paper highlights the work of my esteemed XCG colleagues Greg Zaverucha, Lan Nguyen, and 
Melissa Chase. 

 

 

http://approjects.co.za/?big=u-prove
mailto:uprove@microsoft.com

