
Towards New Security Primitives

Based on Hard AI Problems

Bin B. Zhu1 and Jeff Yan2

1 Microsoft Research Asia, Beijing, China
binzhu@microsoft.com

2 School of Computing Science, Newcastle University, UK
Jeff.Yan@ncl.ac.uk

Abstract. Many security primitives are based on hard mathematical
problems. Using hard AI problems for security has emerged as an ex-
citing new paradigm (with Captcha being the most successful example).
However, this paradigm has achieved just a limited success, and has been
under-explored. In this paper, we motivate and sketch a new security
primitive based on hard AI problems.

Keywords: Captcha as gRaphical Passwords (CaRP), passwords, cross-
device authentication.

1 Thwart Password Guessing: A New Method

PassPoints [1] is a well-studied graphical password scheme, where a user clicks
on an image and the ordered sequence of her click-points is used to derive a
password.

Fig. 1. Hotspots in PassPoints (taken from [2])

PassPoints has an inherent security weakness: it is easy for an attacker to
automatically identify all salient points in an image using standard image pro-
cessing methods. Then running through random combinations of salient points
will lead to a brute force attack on passwords. To make things worse, when given

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 3–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 B.B. Zhu and J. Yan

an image, people tend to prefer some image points (e.g. eye-catching ones) over
others when creating passwords. These more popular points are ‘hot spots’ of the
image, as shown in Figure 1, and an attacker can exploit them for an effective
dictionary attack, significantly reducing the security of PassPoints [2,3].

To address the above problems, we have pondered a new approach to miti-
gating password guessing attacks.

Password guessing, on text or graphical passwords, online or offline, is typ-
ically a deterministic elimination process. Each guess reduces the remaining
search space, and a next guess has a higher chance for success. While more
and more password candidates get eliminated, the probability of a current guess
being correct increases, and this probability finally approaches 1. Naturally, a
classic defense is to increase the password space.

But, how about thwarting the deterministic elimination process? What if pre-
vious guesses do not contribute to reducing the password space, and thus a next
guess is just like starting from scratch? Is this possible?

Salient points in PassPoints harm security but help memorability, as these
points are often structural and they facilitate users to remember their click-
points. It is impractical to force users to choose non-salient points, as these will
be hard to remember. If we do not want to increase the image size to boost the
password space, the only option remaining seems to make it hard for computers
to exploit salient points. If the points a user clicks to login in a session cannot
be correlated to the points she clicks in other sessions, then it is likely that a
previous guess is not correlated with the next. One way of achieving this is the
following: a different image is used for each session, and in each of the images,
a user’s password points appear in different forms, different locations, etc. This
way, each automated guess will not reduce the password search space any more.

On the other hand, there must exist some invariant components in all the
images used in different login attempts, otherwise users cannot use anything as
passwords. We also need a password to remain the same for a user so that the
authentication server can use it to verify her.

The above two requirements are similar to that of an ideal Captcha. In par-
ticular, as an established principle in Captcha design: to defeat machine learning
attacks, each Captcha challenge should be computationally independent of the
other [4]. If a new image is used in every login attempt and there is no compu-
tationally detectable correlation among these images, then the salient points or
hotspots collected from previously used images will not help to locate the target
points in the next image. As such, an adversary cannot build a dictionary with
entries consistent for different login attempts to mount a dictionary attack.

The above thoughts have led to the concept of CaRP (Captcha as gRaphi-
cal Passwords), a new family of graphical passwords robust to online guessing
attacks. Their relationship with Captcha also indicates how to construct CaRP
schemes from various Captchas.



Towards New Security Primitives Based on Hard AI Problems 5

2 CaRP: Captcha as gRaphical Passwords

CaRP is a family of graphical password systems created with Captcha technol-
ogy. Just like PassPoints, a user clicks on a CaRP image and the sequence of her
clicks creates a password. However, each CaRP image is automatically generated
by a Captcha generator, and thus is also a Captcha challenge. Just like a session
key, a CaRP image is never reused across different sessions. Even for the same
user, a new CaRP image is needed for every login attempt. To the contrary, in
PassPoints a user always uses the same image to click her password, and many
users use the same image for their password input, which leads to successful
attacks exploiting hotspots.

Pinkas and Sander [5] introduced a protocol to protect passwords from online
dictionary attack with Captchas1. Captcha and password are separate entities
in this protocol, but are intrinsically combined in CaRP, which is both a Captcha
and a graphical password (scheme).

The notion of CaRP is simple but generic, and it can have multiple instan-
tiations. Many Captcha schemes, regardless of whether they are text based or
image recognition based, can be converted to a CaRP scheme. We provide a
number of examples as follows.

2.1 ClickText

ClickText is a CaRP scheme built on top of text Captcha. Unlike normal text
Captchas, a CaRP image should contain all the alphabet to allow a user to form
any allowed password. Figure 2 shows a ClickText image with an alphabet of
33 characters. In ClickText images, characters can be arranged randomly on
2D space. This is another major difference from traditional text Captchas in
which characters are typically ordered from left to right. Using ordinary text
Captcha is not suitable in this context, as it is hard to arrange all the characters
one dimensionally in a reasonably small space. Also, there is no order among
characters in a CaRP image whereas the order is needed for characters in a
normal Captcha image so that users can type them in. Therefore, we propose
a new problem, 2D text segmentation, as the underlying hard AI problem for
ClickText.

A ClickText password is a sequence of characters in the alphabet, e.g. ρ =
‘AB#9CD87’, which is similar to a text password. To enter a password, the user
clicks on the image the characters in her password in the order, ‘A’, ‘B’, ‘#’, ‘9’,
‘C’, ‘D’, ‘8’, and then ‘7’.

When a CaRP image is generated, each character’s location is tracked to
produce a ground truth. The authentication server relies on the ground truth to

1 In the PS protocol, a user is required to solve a Captcha challenge after entering
her valid user name and password, unless a valid browser cookie from a previous
successful login is available. If the user name and password pair is invalid, with a
probability determined by a deterministic function, the user will receive a Captcha
challenge to solve before being denied access to her account.



6 B.B. Zhu and J. Yan

Fig. 2. A ClickText image with 33 characters

identify the characters corresponding to user-clicked points. The server does not
store passwords in the clear, but their cryptographic hashes.

ClickText does not use visually-confusing characters. For example, letter ‘O’
and digit ‘0’ may cause confusion in a CaRP image, and thus one of the characters
should be excluded from the alphabet.

2.2 ClickAnimal

Captcha Zoo [6] is an image recognition scheme whose security relies on both ob-
ject segmentation and binary object classification. It uses 3D models of two sim-
ilar animals, e.g. dog and horse, to generate 2D animals with different textures,
colors, lightings and poses, and then places them on a cluttered background. A
user clicks all the horses in a challenge image to pass the test. Figure 3 shows a
sample challenge where all the horses are circled red.

Fig. 3. A challenge in Captcha Zoo with horses circled red (taken from [6])

We can turn Captcha Zoo into a CaRP scheme, by introducing additional
similar animals such as dog, horse and pig into the alphabet. In this new CaRP
which we call ClickAnimal, a password is a sequence of animal names such as
ρ = ‘Turkey, Cat,Horse,Dog, ...’. For each animal, one or more 3D models are
built. The Captcha generation process is applied to generate ClickAnimal images,



Towards New Security Primitives Based on Hard AI Problems 7

wherein 3D models are used to generate 2D animals by applying different views,
textures, colors, lightning effects, and, optionally, distortions. Different views
applied in this step generate many different 2D shapes for the same animal,
which, together with other anti-recognition mechanisms applied in this step,
makes it hard for automatic recognition to identify the generated 2D animals.
The resulting 2D animals are then arranged on a cluttered background such as
grassland. Some animals may be occluded by other animals in the image, but
their core part should not be occluded in order for humans to identify. Figure 4
shows a ClickAnimal image with an alphabet of 10 animals.

Fig. 4. A ClickAnimal image (left) and a 6 × 6 grid (right) determined by the red
turkey’s bounding rectangle

2.3 AnimalGrid

The number of similar animals is much less than the number of available text
characters. ClickAnimal has a smaller alphabet, and thus it implies a smaller
password space than ClickText does. CaRP should have a sufficiently-large ef-
fective password space to resist human guessing attacks. ClickAnimal’s password
space can be increased by combining a grid scheme as follows, leading to a new
CaRP which we call AnimalGrid.

To enter a password, a ClickAnimal image is displayed first. After an animal
is selected, an n× n grid appears, with the grid-cell size equaling the bounding
rectangle of the selected animal. All grid cells are labeled to help a user iden-
tify them. Figure 4 shows a 6 × 6 grid when the red turkey in the left image
was selected. A user can select zero to multiple grid-cells to form her pass-
word. Therefore a password is a sequence of animals interleaving with grid-cells,
e.g. ρ = ‘Dog,Grid(2), Grid(1);Cat,Horse,Grid(3)’, where Grid(1) means the
grid-cell indexed as 1, and grid-cells following an animal means that the grid
is determined by the bounding rectangle of the animal. A password must begin
with an animal.



8 B.B. Zhu and J. Yan

3 Application Scenarios

CaRP’s typical applications include the following.
E-banking. Many e-banking systems have deployed Captchas to protect

customers from automated online password attacks. For example, ICBC
(http://www.icbc.com.cn/), the largest bank in the world, requires solving
a Captcha for every login attempt. We envisage that it is faster and more con-
venient for people to use CaRP than the combined effort of entering a password
and then solving a Captcha.

Cross-device authentication. Typing passwords is cumbersome on touch devices
such as smartphones and tablets, where click/touch-based input is convenient.
CaRP can offer the same password entry experience across different types of de-
vices, including desktops, smartphones and tablets. Therefore, it is inherently a
cross-device authentication mechanism, and a single implementation can simulta-
neously serve a wide range of different devices. On the contrary, text passwords are
more friendly to desktop users, but less so to smartphone or tablet users.

Spam mitigation. CaRP can be deployed to increase a spammer’s operating
cost, and thus likely help reduce junk emails. For an email service that deploys
CaRP, human involvement is compulsory to access an account; a spam bot can-
not log into any account even if it knows the password. If CaRP is used together
with a policy of throttling the number of outgoing emails allowed per login ses-
sion, a spam bot will need regular human assistances, and each time it sends out
only a limited number of emails. All these will reduce a spammer’s productivity.

4 Security Analysis

The computational intractability of hard AI problems such as object recognition
is fundamental to the security of CaRP. Existing analyses on Captcha security
were mostly case by case or used an approximation approach. No theoretic secu-
rity model has been established yet. Segmenting similar objects (e.g. characters) is
considered as a computationally-expensive and combinatorially-hard problem [7],
which modern text Captcha schemes rely on. According to [7], the complexity of
object segmentation is exponentially dependent of the number of objects contained
in a challenge, and polynomially dependent of the size of the Captcha alphabet.
A Captcha challenge typically contains 6 to 10 characters, whereas a CaRP im-
age typically contains 30 or more characters. Therefore, ClickText is much more
secure than normal text Captcha. Furthermore, characters in a CaRP scheme are
arranged two-dimensionally, which further increases segmentation difficulty due
to an additional dimension to segment. ClickAnimal relies on both object segmen-
tation and multiple-label classification. Its security remains an open question.

As a framework of graphical passwords, CaRP does not rely on the security
of any specific Captcha scheme. If one Captcha scheme gets broken, a new and
more robust Captcha scheme may appear and be used to construct a new CaRP
scheme.

CaRP offers protection against online dictionary attacks on passwords, which
have been for long time a major security threat for various online services.

http://www.icbc.com.cn/


Towards New Security Primitives Based on Hard AI Problems 9

Defending against online dictionary attacks is a subtler problem than it might
appear. Intuitive countermeasures such as limiting the number of logon attempts
do not work, for two reasons:

– They cause denial-of-service attacks (which were exploited to lock high-
est bidders out in final minutes of eBay auctions [8]) and incurs expensive
helpdesk costs for account reactivation.

– They are vulnerable to global password attacks [5], where adversaries intend
to break into any account rather than a specific one, and thus they try each
password candidate on multiple accounts. This way, the number of guesses on
each account is made below the threshold, thus avoiding triggering account
lockout.

CaRP makes it much harder for bad guys to perform automated guess attacks.
Even when a human is involved, the attack is still expensive and slowed down.
CaRP also offers protection against relay attacks, which have been an increasing
threat to online applications protected by Captchas. In a relay attack, Captcha
challenges are relayed to humans to solve, with their answers returned.

CaRP is robust to shoulder-surfing attacks, if combined with Microsoft’s dual-
view technologies [9] that show two sets of completely different images simulta-
neously on the same LCD screen: one for private, and the other for public. When
a CaRP image is displayed as private, attackers can capture a user’s click-points
but not the private image, but these points are useless for a next login session
(where a new CaRP image will be used).

CaRP is robust to cross-site scripting attacks targeting at stealing users’
graphical passwords, although other click-based graphical passwords such as
PassPoints are vulnerable to such attacks.

However, a longitudinal evaluation is needed to establish the effective pass-
word space for each CaRP instantiation. CaRP is vulnerable if a client is com-
promised, and the image and user-clicked points can both be captured.

5 Usability

Initial user studies with several schemes proposed in Section 2 are encouraging.
Still, CaRP requires a user to handle a Captcha-like challenge each time to login.
This might have a usability impact, but it can be mitigated by serving CaRP
images of different difficulty levels, according to an account’s login history and
whether a known machine is used for login.

The optimal configuration for achieving good security and usability remains
an open question for CaRP, and further studies are needed to refine each imple-
mentation for actual deployments.

6 Summary

It is a fundamental method in computer security to create cryptographic primi-
tives based on hard mathematical problems that are computationally intractable.



10 B.B. Zhu and J. Yan

Using hard AI problems for security, initially proposed in [10], is an exciting
new paradigm. Under this new paradigm, the most notable primitive invented
is Captcha. However, the new paradigm has achieved just a limited success,
if compared with the number of cryptographic primitives based on hard math
problems and the wide applications of such primitives. We have showed that it is
indeed possible to construct new security primitives based on hard AI problems.

Like Captcha, CaRP utilizes unsolved AI problems. However, a password is
much more valuable for attackers than a free email account that Captcha typ-
ically protects. Therefore there are probably more incentives for the attackers
to hack CaRP than Captcha. That is, CaRP can attract more efforts than ordi-
nary Captcha does to the following win-win game: if the attackers succeed, they
contribute to improving AI by providing solutions to open problems. Otherwise,
our system stays secure, contributing to practical security.

Overall, CaRP appears to be a step forward in the paradigm of using hard
AI problems for security. What else can be invented this way? We expect CaRP
to inspire new inventions of AI based security primitives.

Acknowledgements. We thank Peter Ryan for very helpful discussions, and
thank Tim Barclay for proofreading our camera-ready version, which improved
the writing quality of this paper.

References

1. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: PassPoints:
design and longitudinal evaluation of a graphical password system. Int. J of HCI 63,
102–127 (2005)

2. Thorpe, J., van Oorschot, P.C.: Human-seeded attacks and exploiting hot spots in
graphical passwords. USENIX Security (2007)

3. Dirik, A.E., Memon, N., Birget, J.-C.: Modeling user choice in the PassPoints
graphical password scheme. ACM SOUPS (2007)

4. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and
design of image recognition CAPTCHAs. ACM CCS, 187–200 (2010)

5. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. ACM CCS,
161–170 (2002)

6. Lin, R., Huang, S.-Y., Bell, G.B., Lee, Y.-K.: A new Captcha interface design for
mobile devices. In: Australasian User Interface Conference (2011)

7. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building Segmentation
Based Human-Friendly Human Interaction Proofs (HIPs). In: Baird, H.S., Lopresti,
D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

8. Wolverton, T.: Hackers attack eBay accounts. ZDNet (March 26, 2002),
http://www.zdnet.co.uk/news/networking/2002/03/26/

hackers-attack-ebay-accounts-2107350/

9. Kim, S., Cao, X., Zhang, H., Tan, D.: Enabling concurrent dual views on common
LCD screens. In: Sig. CHI 2012, pp. 2175–2184 (2012)

10. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: using hard AI prob-
lems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
294–311. Springer, Heidelberg (2003)

http://www.zdnet.co.uk/news/networking/2002/03/26/hackers-attack-ebay-accounts-2107350/
http://www.zdnet.co.uk/news/networking/2002/03/26/hackers-attack-ebay-accounts-2107350/

	Towards New Security Primitives 
Based on Hard AI Problems
	1 Thwart Password Guessing: A New Method
	2 CaRP: Captcha as gRaphical Passwords
	2.1 ClickText
	2.2 ClickAnimal
	2.3 AnimalGrid

	3 Application Scenarios
	4 Security Analysis
	5 Usability
	6 Summary
	References




