
FINE GRANULARITY SCALABILITY ENCRYPTION OF MPEG-4 FGS BITSTREAMS

Bin B. Zhu', Yang Yang2, Chang Wen Chen3, Shipeng Li'
'Microsoft Research Asia, Beijing 100080, China

2Dept. of Elec. Eng. & Info Sci., Univ. of Sci. & Technol. of China, Hefei, Anhui 230027, China
3Dept. of Elec. and Computer Eng., Florida Inst. of Technology, Melbourne, Florida 32901, USA

ltbinzhu,spli} dmicrosoft.com, 3cchen(!fit. edu

ABSTRACT
In this paper, we present an encryption scheme for MPEG-4

FGS which provides the same or a little coarser granularity of

scalability after encryption. The scheme encrypts compressed
data of each video packet or block independently. Initialization
vectors are generated with a method to minimize the overhead.
The scalability provided in an encrypted codestream using this
scheme enables intermediate nodes to truncate an encrypted
bitstream at near R-D optimality directly without decryption,
which enhances system security. The scheme has virtually
negligible overhead, and produces encrypted codestream with
virtually the same error resilience performance as the
unencrypted case. These features are very desirable in many

applications.

1. INTRODUCTION
MPEG-4 has recently adopted a streaming video profile

[1][2] which provides Fine Granularity Scalability (FGS) so that
a single codestream can be easily truncated near rate-distortion
(RD)-optimally to fit a wide variety of applications. MPEG-4
FGS compresses a video sequence into a base layer and an

enhancement layer. The base layer is a non-scalable coding of
the sequence at the lower bound of a bitrate range. The
enhancement layer encodes the residue between the original
sequence and the reconstructed based layer in a scalable manner

to offer a wide range of bitrates within a single codestream.
Temporal scalability is also supported. The coding efficiency of
MPEG-4 FGS has been improved substantially with recent
progress such as the scheme proposed in [3].

For many applications, video content encoded with MPEG-4
FGS needs to be protected against unauthorized consumption.
MPEG-4 has recently adopted a Digital Rights Management
(DRM) framework, eXtensions to the Intellectual Property
Management and Protection (IPMP-X) [4] for MPEG-4
codestreams. Encryption is typically used in such a DRM
system. A very challenging requirement in the design of scalable
codestream encryption is that the functionalities such as FGS
should not be impaired after encryption. For example, an MPEG-
4 FGS codestream can be easily truncated to fit varying
transmission bandwidths or display characteristics of a variety of
devices. An encrypted MPEG-4 FGS codestream should preserve
the original fine or at least maintain coarser granularity
scalability such that an intermediate node in the content delivery
path can still perform necessary truncation near R-D optimally
on the encrypted codestream without decryption. This would
enhance the end-to-end system security since many intermediate
nodes may need to truncate an encryption codestream throughout
its life. Scalable encryption with FGS enables these nodes to
perform the required processing without sharing the secrets. It

also improves error resilience when an encrypted scalable
codestream is transmitted over a lossy or error-prone network
since scalable encryption offers better synchronization and
segmentation which reduce error expansion.

Many encryption schemes for FGS scalable codestreams such
as JPEG 2000 and MPEG-4 FGS have been proposed [5]-[15].
Most of these schemes are reviewed in [16]. One scheme called
SMLFE [9][10] encrypts video data in each Video Packet (VP)
with the C&S encryption [18] for MPEG-4 FGS. The scalable
granularity is reduced to a VP-level after encryption. Any
ciphertext bit error in a VP renders the whole decrypted VP
unusable, thanks to the dependency on the whole ciphertext for
the C&S encryption. This scheme may not fit some applications
which require truncation at a level smaller than a VP or better
error resilience is required. In this paper, we propose an
encryption scheme for MPEG-4 FGS to address these issues yet
maintaining virtually negligible overhead. This scheme has two
operational modes: VP Encryption (VPE) and Block Encryption
(BE) modes. In the VPE mode, compressed data in each VP is
independently encrypted without emulating the VP delimiters or
increasing size. In the BE mode, compressed enhancement data
of each 8 by 8 block or macroblock (MB) is independently
encrypted bitplane-wise from the Most Significant Bit (MSB) to
the Least Significant Bit (LSB). The ciphertext is partitioned and
allocated to each video packet, with stuffing bits possibly
inserted to avoid delimiter emulation. The former method
enables truncation at a VP or trailing VP level, and the latter
method preserves the full scalability of a scalable bitstream. Both
have an error resilience performance virtually the same as the
unencrypted codestream. The base layer which does not provide
any scalability is always encrypted with VPE mode. The scheme
is applicable to other scalable coding such as the one in [3].

This paper is organized as follows: MPEG-4 FGS and a
syntax compliant encryption are briefly described in Section 2.
The detail of our proposed scheme is described in Section 3, with
discussions on its performance in Section 4. Experimental results
are reported in Section 5 and we conclude the paper in Section 6.

2. PRELIMINARIES

2.1. MPEG-4 FGS
In MPEG-4, a Video Object Plane (VOP) is an instance at a

given time of Video Object (VO), an entity in the codestream
that can be accessed and manipulated. MPEG-4 FGS encodes a
video sequence into two layers: a base layer which is encoded
with a non-scalable coder to provide the lowest quality and
bitrate for a scalable codestream, and a scalable enhancement
layer which offers enhancement to the base layer. More
precisely, the difference between the original VOP and the
reconstructed VOP from the base layer is encoded bitplane-wise



from MSB to LSB. Each bitplane of a block's DCT coefficients
is zigzag-ordered, converted to (RUN, EOP) symbols, and coded
with variable-length coding to produce enhancement layer
codestream, where RUN is the number of consecutive zeros
before a nonzero value and EOP indicates if there is any non-
zero value left on the current bitplane for the block. For FGS
Temporal scalability (FGST) which does not have corresponding
base layer VOPs, the bitplane coding is applied to the entire DCT
coefficients of the VOP. MPEG-4 FGS provides very fine grain
scalability to allow near RD-optimal bitrate truncation in a large
range of bitrates. Auxiliary side information such as RD-data can
be used to help such truncations to fit different application
scenarios [3].

MPEG-4 FGS groups video data into Video Packets (VPs).
Each VP is delimited by unique resynchronization markers to
stop error propagation to other VPs. Necessary information is
inserted after a resynchronization marker to enable resuming
decoding. For the enhancement layer, both the bitplane start
marker, fgs bp start code, and the resynchronization marker
fgs resync marker are used as VP delimiters. fgs bp start code
has 32 bits, starting with 23 binary zeros followed by OxA and
five bits to indicate which bit-plane the data belongs to. The
marker fgs resync_marker is 22 binary zeros followed by a
binary one. The number of the first MB is inserted after each
fgs resync marker. VP boundary is aligned with that of an MB.
If a bit error occurs in a compressed bitplane data, the bitplane
data of the current and subsequent blocks cannot be correctly
decoded, and will be dumped. The lower bitplane data of those
affected blocks are also dumped since the sign bits inserted in the
undecodable bitplane data are lost which causes misalignment
and wrong decoding of lower bitplanes. The nominal size of VP
is determined at encoding time for targeted application scenarios.
Smaller VP is used when the targeted application environment is
error-prone such as transmission over wireless channels.

In practical applications, both layers are typically protected
unequally against transmission imperfection. The base layer is
usually well protected against bit errors or packet loss. The
enhancement layer, on the other hand, is lightly or not protected.

2.2. Ciphertext Switch Encryption (CSE)
CSE is a syntax compliant encryption that would generate

syntax-compliant ciphertext for any syntax-compliant plaintext.
The ciphertext has the same size as the plaintext. CSE is divided
into two stages. A conventional stream cipher is applied to
plaintext in the first stage. A post-processing on the resulting
ciphertext is followed to remove any syntax-offensive
substreams. Details of CSE can be found in [17].

3. FGS SCALABLE ENCRYPTION SCHEME
To enable FGS truncation of a protected bitstream,

encryption should be applied independently to small groups of
data. Data grouping for MPEG-4 FGS encryption should reflect
underlying encoded bitstream's error propagation characteristics
to avoid further error expansion incurred by encryption. From the
characteristics of MPEG-4 FGS described in last section, we
choose VP or MB as the basic element for independent
encryption. Our encryption scheme has therefore two operational
modes: Video Packet Encryption (VPE) and Block Encryption
(BE) modes.

3.1. Video Packet Encryption (VPE) Mode

Encryption in this mode is similar to SMLFE [9][10] that
compressed video data in each VP is independently encrypted.
VP headers and MB numbers are not encrypted. A syntax-
compliant encryption scheme such as the Ciphertext Switching
Encryption (CSE) [17] is used so that ciphertext would never
emulate the VP delimiters. For MPEG-4 FGS enhancement layer,
ciphertext does not contain any byte-aligned 22 consecutive
binary zeros. VPE is also used in our scheme to encrypt base
layer which does not provide any scalability.

This scheme offers several advantages over SMLFE. The
overhead to identify VP delimiter emulation is avoided and
truncation of trailing data in an encrypted VP is allowed in this
scheme. SMLFE has to treat each VP as an atomic unit and no
truncation is allowed to break a VP. The proposed scheme also
has better error resilience than SMLFE. When an error occurs in
ciphertext, all the blocks in the VP that the error occurs is
garbled in SMLFE while only the current and subsequent blocks
in the VP are garbled in the current scheme.

3.2. Block Encryption (BE) Mode
The scheme in this mode encrypts the compressed

enhancement bitstream of each block independently from MSB
to LSB with a conventional block cipher or stream cipher. The
resulting ciphertext is then partitioned into smaller groups and
allocated to each bitplane which is then packed into VPs. If a
stream cipher such as RC4 [19] or SEAL [19] is used, then the
grouping boundary is at the end of each bitplane of the block. In
other words, the Contribution of a Block to a Bitplane (CBB) in
this case contains the same number of bits as the unencrypted
case.

Once a VP has all the CBBs from contributing blocks, the
scheme checks encrypted data for VP delimiter emulation. If it
finds a byte-aligned substream of 21 binary zeros, a binary one is
inserted at the end of the substream. The proposed mechanism
avoids emulation of the enhancement layer VP delimiters
fgs bp start code andfgs resync_marker in the encrypted video
data within a VP. At decryption side, the inserted bits are
removed before decryption is applied. To do so, the encrypted
data in a VP is scanned, if a byte-aligned substream of 21 binary
zeros is found, then the following bit is dropped. This delimiter
avoidance mechanism is more efficient than the delimiter
emulation identification mechanism used in SMLFE [9][10].

Decryption in BE mode is executed along with checking
Variable Length Codes (VLCs) for the end of a block. Once the
end of a block is found, the decryption of the next block is used
to decrypt the remaining data in a VP until end of the block is
found. This process continues until all the encrypted data in a VP
is decrypted to corresponding individual blocks. This process is
possible since a stream cipher is used in the BE mode that there
is a bit-to-bit correspondence between a ciphertext and its
plaintext.

The block in the BE mode can be either a block of 8 by 8 or
a macroblock (MB), depending on the granularity of scalability
the encrypted codestream needs to support. In typical
applications, MB is fine enough.

3.3. Initialization Vector (IV) Generation
An Initialization Vector (IV) is generated for each

independent encryption in our scheme. Different IVs are used for
encryption of different blocks or VPs. This avoids the cases



when the same random sequence generated by a stream cipher is
applied to repetitively encrypt different blocks or VPs, or a

stream cipher produces the same initial or whole output for two
blocks or VPs when they have the same initial or whole data to
be encrypted. This method is less efficient than the C&S
encryption [18] used in SMLFE which achieves the same goal by
applying a reversible bilinear "hash" function to the data to be
encrypted to generate a data-dependent partial key which is
combined with the content encryption key to encrypt the data.
The gain in our case is a causal encryption1 that encryption of
subsequent data does not affect already encrypted data. This
enables truncation of trailing ciphertext and there is only forward
error expansion (i.e., an error affects only the current and
subsequent decrypted data of a block or VP).

Each 8 by 8 block or MB can be uniquely identified by the
block's index and color component for each VOP. In MPEG-4
FGS, the number of the first MB is inserted right after each
fgs resync marker. The MB after fgs_bp start-code is always
the first MB. The last five bits infgs_bp start-code is used to
identify the bitplane. Therefore the bitplane ID in
fgs bp start code and the number of the first MB in a VP can be
used to uniquely identify a VP in a VOP. The unique identifier
can be used to generate the IV used to encrypt a VP or block so

that the IV for each independent encryption in our scheme is not
inserted into the codestream which would otherwise cause a large
overhead as in the scheme proposed in [6].

The actual IV generation mechanism depends on the format
the codestream uses. If the codestream contains persistent
presentation time or other attributes unique for each VOP, which
is invariant throughout the life of the codestream, even when
some VOPs are lost, then this unique VOP identification attribute
is used to generate IVs for the VOP. More specifically, a random
IV is inserted into a codestream as a global IV. This global IV is
hashed together with the unique VOP identification attribute,
layer ID (i.e., base layer or enhancement layer), and the unique
VP or block identifier to generate the IV used to encrypt the VP
or the block in base and enhancement layers.

If such a persistent VOP identifier does not exist, then an

independent random IV (called VOP IV) is inserted for each
VOP. This VOP IV is inserted to the base VOP for FGS VOP
and FGST VOP itself otherwise. The VP or block identifier is
combined with the layer ID which is used to identify base or

enhancement layer, copy-expanded to the length of IV, and then
is XORed with the VOP IV the VP or block belongs to. The
result is used as IV or seed for a stream cipher to encrypt the VP
or block. In case of block ciphers used for encryption, the
XORing result is encrypted with the block cipher, and the output
is used as the IV to encrypt the VP or block.

4. PERFORMANCE AND DISCUSSION
Our scheme has virtually negligible overhead. If there exists

a persistent VOP identifier in the format that a codestream is
packed into, then the overhead is a single IV for the whole
codestream in the VPE mode. In the BE mode, there exists
additional overhead from stuffing bits that may be inserted into

an encrypted bitstream to avoid emulation of the VP delimiters.
Stuffing bit insertion occurs very rarely. The probability is

roughly about 1/221 If such a persistent VOP identifier does
not exist, a VOP IV is inserted to each VOP. This overhead is
960 bps if the frame rate is 30 frames per second. This translates
into 0.048% if an MPEG-4 FGS codestream is compressed at 2.0
Mbps. Even if the codestream is truncated to 100 Kbps, this
overhead is only 0.96%.

When an error occurs in ciphertext, decryption of
subsequent data of the block or VP that the error occurs is
affected (if the rare case of minor backward expansion is ignored
when CSE is used). This behavior is the same as the unencrypted
case. Therefore our scheme has virtually the same error

resilience performance as the corresponding unencrypted
codestream.

The VPE mode provides VP-level or trailing VP data
truncation in an encrypted codestream. The BE mode enables
block-level truncation. Auxiliary side information such as RD-
data can be used for such level truncations. This is the same as

the unencrypted case as described in [3]. Therefore the BE mode
provides the same scalability as the unencrypted codestream. An
encrypted codestream in the BE mode can be truncated near

optimally directly without decryption.
The two modes in our scheme are designed for different

applications. In addition to the difference in granularity of
scalability, VPE mode allows separation of encryption or

decryption process from encoding or decoding process, and can

be used with in situ encryption. PE mode is more complex and is
coupled with encoding/decoding process.

5. EXPERIMENTAL RESULTS
We have implemented the proposed scheme based on the

MPEG-4 reference software [21] and Crypto++ library [22]. For
all the standard QCIF video sequences we tested, the base layer
was coded at 30 frames per second with a nominal bitrate 90
kbps, while the enhancement layer was around 2.1 Mbps. All the
experimental results were conducted on a DELL Precision 330
PC with P4 CPU of 1.40 GHz and 512 MB of RAM. CSE with
RC4 was used in the VPE mode. RC4 was used in the BE mode.
An IV is used as a partial key for each independent encryption.

The encryption speed for the VPE mode was tested. In this
mode, encryption is applied directly to the output buffer without
much of other processing overhead. The experimental results are

shown in Figure 1. Note that CSE has the same speed for
encryption and decryption. When the nominal VP size was set at
400 bits, the processing speed of CSE with RC4 was around 7.70
MBps. The encryption speed increases with the VP size. CSE
adds negligible processing overhead to the underlying stream
cipher RC4. A separate experiment showed that setting up a key
in RC4 was very slow. It took substantial percentage of the
overall processing time at a small VP size. A larger VP size
reduces the number of VPs, i.e., the number of setting-up RC4's
keys, and improves the CSE's processing speed. Other stream
ciphers with more efficient key setup can also improve CSE's
processing performance.

1 CSE may affect already encrypted data when an illegal symbol
occurs in ciphertext. Such an occurrence is very unlikely. If it
does occur, backward error expansion is usually confined within
the last encrypted symbol.



2-4I

2-2

2

1-6

1 4

12

0-8

0-6

1.0

*100 200 300 400 500 600
Plainte)d Len th (bvtes)

Figure 1: Encryption speed in the VPE mode for various VP
data lengths where CSE is used with SEAL.

We have also tested the overhead for the case that a 32-bit
IV used for encryption was inserted for each frame. The
overhead is virtually due to this IV insertion at 960 bps. The
overhead due to insertion of stuffing bits to avoid emulation of
the VP delimiters in the BE mode was difficult to be observed.

Error resilience was also tested informally for CSE with
RC4 in the VPE mode and RC4 in the BE mode. In this
experiment, error bits were randomly generated. The bits in both
encrypted and unencrypted codestreams corresponding to those
error bits were flipped. The two reconstructed sequences were

shown side by side. We did not observe any difference in visual
quality.

6. CONCLUSION
We presented an encryption scheme with two operational

modes for MPEG-4 FGS and similar scalable coding schemes. In
the Video Packet Encryption (VPE) mode, compressed data in
each VP is independently encrypted by ciphertext switching
encryption which produces ciphertext without emulation of the
VP delimiters. In the Block Encryption (BE) mode, compressed
enhancement data of each 8 by 8 block or macroblock is
independently encrypted bitplane-wise from the most significant
bit to the least significant bit. The result is partitioned and
allocated to each video packet, with stuffing bits possibly
inserted to avoid delimiter emulation. VPE enables truncation at
VP or trailing VP, while PE preserves the full scalability of the
encrypted codestream. Both modes have virtually the same error

resilience performance as the unencrypted case, and introduce
virtually negligible overhead. The presented scheme can be
applied in a variety of applications.

REFERENCES
[1] Coding ofAudio- Visual Objects, Part-2 Visual, Amendment

4: Streaming Video Profile, ISO/IEC 14496-2/FPDAM4,
July 2000.

[2] W. Li, "Overview of Fine Granularity Scalability in MPEG-
4 Video Standard," IEEE Trans. on Circuits and Systems for
Video Technol., vol. 11, no. 3, pp. 301-317, March 2001.

[3] F. Wu, H. Sun, G. Shen, S. Li, Y.-Q. Zhang, B. Lin, and M.-
C. Lee, "SMART: An Efficient, Scalable, and Robust
Streaming Video System," EURASIP J. Appl. Signal Proc.
2004:2, pp. 192-206, 2004.

[4] Information Technology- Coding ofAudio- Visual Object-
Part 13: Intellectual Property Management and Protection
(IPMP) Extensions, ISO/IEC JTC1/SC29/WG11 14496-
13:2004(E), 2004.

[5] R. Grosbois, P. Gerbelot, and T. Ebrahimi, "Authentication
and Access Control in the JPEG 2000 Compressed
Domain," Proc. SPIE 46th Annual Meeting, Appl. ofDigital
Image Proc. XXIV, San Diego, California, 2001.

[6] S. J. Wee and J. G. Apostolopoulos, "Secure Scalable
Streaming Enabling Transcoding Without Decryption,"
IEEE Int. Conf Image Proc., Thessaloniki, Greece, vol. 1,
pp. 437-440, Oct. 2001.

[7] M. Wu and Y. Mao, "Communication-friendly Encryption
of Multimedia," IEEE Workshop on Multimedia Signal
Processing, pp. 292-295, Dec., 2002.

[8] H. H. Yu, "Scalable Encryption for Multimedia Content
Access Control," IEEE Int. Conf on Acoustics, Speech, and
Signal Proc., vol. 2, pp. 11-417-420, April 6-10, 2003.

[9] C. Yuan, B. B. Zhu, M. Su, X. Wang, S. Li, and Y. Zhong,
"Layered Access Control for MPEG-4 FGS Video," IEEE
Int. Conf Image Processing, Barcelona, Spain, Sept. 2003,
vol. 1, pp. 517 - 520.

[10] B. B. Zhu, C. Yuan, Y. Wang, S. Li, "Scalable Protection
for MPEG-4 Fine Granularity Scalability," IEEE Trans. on
Multimedia, vol. 7, no. 2, pp. 222-233, April 2005.

[11] H. Wu and D. Ma, "Efficient and Secure Encryption
Schemes for JPEG2000," IEEE Int. Conf on Acoustics,
Speech, and Signal Processing, 2004 (ICASSP '04), vol. 5,
pp. V869 872, May 2004.

[12] Y. Wu and R. H. Deng, "Compliant Encryption of
JPEG2000 Codestreams," IEEE. Int. Conf on Image
Processing 2004 (ICIP'04), Singapore, Oct. 2004.

[13] B. B. Zhu, Y. Yang, and S. Li, "JPEG 2000 Encryption
Enabling Fine Granularity Scalability without Decryption,"
to appear in ISCAS 2005.

[14] B. B. Zhu, M. Feng, and S. Li, "A Framework of Scalable
Layered Access Control for Multimedia," to appear in IEEE
Int. Symp. Circuits and Systems 2005.

[15] B. B. Zhu, Y. Yang, and S. Li, "JPEG 2000 Syntax-
Compliant Encryption Preserving Full Scalability," to
appear in IEEE Int. Conf Image Processing 2005.

[16] B. B. Zhu, M. D. Swanson, and S. Li, "Encryption and
Authentication for Scalable Multimedia: Current State of
the Art and Challenges," SPIE Conf Internet Multimedia
Management Systems V, Philadelphia PA, Oct. 2004.

[17] B. B. Zhu, Y. Yang, and S. Li, "Ciphertext Switching
Encryption," submitted for publication.

[18] M. H. Jakubowski and R. Venkatesan, "The Chain & Sum
Primitive and Its Applications to MACs and Stream
Ciphers," EUROCRYPT'98, pp. 281 - 293, 1998.

[19] B. Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd ed., John Wiley & Sons, Inc.
1996.

[20] Federal Information Processing Standards (FIPS)
Publication 197, Advanced Encryption Standard (AES),
Nov. 2001.

[21] Information Technology - CodingofAudio-Visual Object -

Part: Refereenmce Sofware, ISO/IEC
JTC1/SC29/WG11/N4711, March, 2002.

[22] Crypto++, http: www.eskimo.com/weidai/cryptlib.html.


