

JPEG 2000 SYNTAX-COMPLIANT ENCRYPTION PRESERVING FULL SCALABILITY

Bin B. Zhu1, Yang Yang2, Shipeng Li1
1Microsoft Research Asia, Beijing 100080, China

2Dept. of Elec. Eng. & Info Sci., Univ. of Sci. & Technol. of China, Hefei, Anhui 230027, China
1binzhu@ieee.org, 2wdscxsj@ustc.edu, 1spli@microsoft.com

ABSTRACT
An efficient syntax-compliant encryption scheme for JPEG

2000 and motion JPEG 2000 is proposed in this paper.
Compressed visual data is completely encrypted yet the full
scalability of the unencrypted codestream is completely
preserved to allow near RD-optimal truncations and other
manipulations securely without decryption. Compared with other
reported schemes, our scheme shows advantages on syntax
compliance, compression overhead, scalable granularity, and
error resilience. In addition to preserving the original scalability,
a JPEG 2000 codestream encrypted with our scheme has the
same error resilience capability as the unencrypted codestream.
The encrypted codestream is still syntax-compliant so that an
encryption-unaware decoder can still decode the encrypted
codestream, although the decoded visual data is completely
garbled and meaningless. Our scheme has virtually no adverse
impact on the compression efficiency.

1. INTRODUCTION
JPEG 2000 (J2K) [1] is a latest still image coding standard

which provides high compression efficiency, lossy to lossless
coding, and flexible scalability. A J2K codestream is organized
in a hierarchical structure with packets as the fundamental
building blocks. A J2K codestream provides Fine Granularity
Scalability (FGS): it can be truncated to the preset layers (i.e.
qualities), resolutions, components, tiles, etc., or to coding passes
inside a packet to fit a large variety of application scenarios. FGS
of a J2K codestream allows near Rate-Distortion (RD)-optimal
bitrate reduction for a large range of rates. Motion JPEG 2000
which encodes each video frame independently is also defined
[2].

Image protection is an important issue in many applications,
and therefore is addressed by the JPEG 2000 specifications part 8,
commonly known as JPSEC. JPSEC provides a framework that
different protection technologies can be applied to. A recent
paper [3] provides a brief review of JPSEC. This paper focuses
on encryption for JPSEC.

A particular requirement for encryption of scalable
codestreams is that an encrypted codestream should preserve as
fine as possible granularity scalability so that it can be truncated
directly by a potentially untrustworthy party without decryption.
Otherwise the system security may be sacrificed. Encryption
technologies to meet this requirement have been reviewed
recently in [4]. Among them, some are specifically designed for
JPEG 2000 encryption. Grosbois et al. [5] proposed two
encryption schemes to allow accesses to resolutions and layers,
respectively, without decryption, but the two types of accesses
cannot be supported with a single encrypted codestream. Another
drawback is that a seed used in encrypting a code-block is

inserted after the termination marker of the code-block, and may
be lost during transmissions or scheme-unaware truncations,
resulting in an undecryptable code-block. Wee et al. [6] proposed
a Secure Scalable Streaming (SSS) scheme which groups J2K
packets into SSS packets. Data except header fields in each SSS
packet is independently encrypted with a block cipher in Cipher
Block Chaining (CBC) mode. The Initialization Vector (IV) used
in encryption of each SSS packet is inserted into an unencrypted
header of the SSS packet. Scalable granularity is reduced to a
progressive SSS packet level. To reduce encryption overhead due
to IVs, the number of SSS packets is not high, resulting in very
coarse granularity scalability in an SSS encrypted codestream.
We have proposed a code-block based encryption scheme [7]
which preserves original FGS with small, about 1%, overhead on
the compression efficiency.

A desirable feature for JPEG 2000 encryption is that an
encrypted J2K codestream is J2K syntax-compliant that
encrypted data does not emulate any delimiters to avoid
erroneous parsing or synchronization, esp. under error-prone
transmissions. All the above schemes do not meet this
requirement. Wu and Ma [8] proposed a packet-level syntax-
compliant encryption scheme which encrypts each byte by
adding a pseudo-random byte modulo 0xFF. Wu and Deng [9]
proposed to encrypt each Codeblock Contribution to a Packet
(CCP) with a modular addition or a block cipher repetitively
until the ciphertext is syntax-compliant. It is unclear how these
two schemes deal with seeds or IVs, and therefore there is no
way to estimate their overheads on the compression efficiency.

In this paper, we propose a scheme based on our previous
scheme [7]. The scheme encrypts each codeword segment or
each intersection of a codeword segment with a CCP
independently with a syntax-compliant encryption primitive after
J2K compression. The IV for each independent encryption is
generated from a global IV and the unique index to the data to be
encrypted. There is no need to store each IV. This scheme shows
four major improvements over our previous scheme reported in
[7]: 1) The encrypted codestream is now J2K syntax-compliant.
2) The overhead on the compression efficiency is virtually
removed. 3) Tile-based cropping can be applied directly without
decryption. 4) The scalable granularity after encryption is finer --
as fine as the unencrypted codestream. Our scheme also shows
advantages on syntax compliance, compression overhead,
scalable granularity, and error resilience over other reported
schemes.

The rest part of this paper is organized as follows. JPEG
2000 is briefly introduced in the next section to provide a basis to
describe our proposed scheme, which is described in detail in
Section 3, along with comparison with other proposed J2K
encryption schemes. Experimental results are presented in
Section 4. We conclude our paper in Section 5.

0-7803-9134-9/05/$20.00 ©2005 IEEE

2. JPEG 2000 AND JPSEC
In J2K, an image can be partitioned into smaller rectangular

regions called tiles. Each tile is encoded independently. Data in a
tile are divided into one or more components in a color space. A
wavelet transform is applied to each tile-component to
decompose the image data into different resolution levels. The
lowest frequency subband is referred to as the resolution level 0
subband, which is also resolution 0. The image at resolution r
(r>0) consists of the data of the image at resolution (r-1) and the
subbands at resolution level r. Wavelet coefficients are quantized
by a scalar quantization to reduce precision of the coefficients
except in the case of lossless compression. Each subband is
partitioned into smaller non-overlapping rectangular blocks
called code-blocks. Each code-block is independently entropy-
encoded from the most significant bit-plane to the least
significant bit-plane to generate an embedded bitstream. Each
bit-plane is encoded within three sub-bitplane passes. In each
coding pass, the bit-plane data and the contextual information are
sent to an adaptive arithmetic encoder for encoding. By default,
arithmetic coding is terminated at the end of the last bit-plane
encoding, and a code-block’s embedded bitstream forms a single
Arithmetic Codeword Segment (ACS). J2K also allows
termination at the end of each sub-bitplane coding pass that the
bitstream from each coding pass forms an ACS. Context
probabilities can also be re-initialized at the end of each coding
pass to enable independent decoding of the bitstream from each
coding pass. The optional arithmetic coding bypass puts raw bits
into bitstream for certain coding passes. In this case, the
boundary between arithmetic coding passes and raw passes must
be terminated. Both ACS and raw codeword segment are referred
to as Codeword Segment (CS) in this paper.

A code-block’s bitstream is distributed across one or more
layers in the codestream. Each layer represents a quality
increment. A layer consists of a number of consecutive bit-plane
coding passes from each code-block in the tile, including all
subbands of all components for that tile. J2K also provides an
intermediate space-frequency structure known as a precinct. A
precinct is a collection of spatially contiguous code-blocks from
all subbands at a particular resolution level. The fundamental
building block in a J2K codestream is called a packet, which is
simply a continuous segment in the compressed codestream that
consists of a number of bit-plane coding passes from each code-
block in a precinct. Data length of each CCP is indicated in the
packer header. In the case of multiple codeword segments, the
length of each CS in a CCP is indicated in the packer header.
Each ACS or CCP does not allow byte-aligned value between
0xFF90 and 0xFFFF for any two consecutive bytes or ending
with a byte of value 0xFF. A raw codeword segment when
arithmetic coding bypass is enabled does not allow any byte-
aligned nine consecutive bits of 1 or ending with a byte of value
0xFF. J2K uses the unattainable range of two consecutive bytes
to represent unique markers to facilitate organization and parsing
of the bitstream and to improve error resilience. Each packet can
be uniquely identified by the five parameters: tile, component,
resolution level, layer, and precinct. Each code-block can be
uniquely identified by the following parameters: tile, component,
resolution level, precinct, subband, and the coordinates of the
upper left point of the code-block on the reference grid. Packets
for a tile can be ordered with different hierarchical ordering in a
J2K codestream by varying the ordering of parameters in nested

“for loops”, where each “for loop” is for one of the parameters
uniquely specifying a packet. Details on J2K can be found in
[1][10], and motion JPEG 2000 in [2].

JPSEC introduce two new marker segments. One is SEC in
the main header which is used to carry overall information about
the security tools and parameters applied to the image. The other
is INSEC placed in the bitstream to provide information of
localized security tools and parameters. Details on JPSEC are
found in [11].

3. SYNTAX-COMPLIANT ENCRYPTION FOR
JPEG 2000 AND MOTION JPEG 2000

Instead of encrypting each code-block independently as
used in our previous scheme [7], this scheme encrypts each
codeword segment independently after J2K compression. This
change has the advantage that the boundary of encryption
coincides with that of arithmetic coding, and the original
scalability and error resilience are fully preserved after
encryption. The syntax-compliant encryption primitives [12][13]
we proposed recently are used in the scheme to ensure syntax
compliance. The IV for each independent encryption is generated
from a global IV and the unique index to the data to be
encrypted. There is no need to store each IV. Therefore a major
overhead is removed. Each code-block is partitioned into CCPs
in such a way that the remaining CCPs can still be decrypted
correctly whatever CCP the bitstream terminates at. An
alternative scheme is to encrypt each intersection of a CCP with
a codeword segment independently, with the advantage that each
CCP can be encrypted in situ, a desirable feature if encryption is
applied after compression. The codeword encryption scheme will
be referred to as the normal scheme while the intersection
encryption scheme is referred to as the alternative scheme.
Details are described in the rest of this section.

3.1. Encryption and Decryption Primitives
While all the syntax-compliant encryption methods [12][13]

we recently proposed can be applied, we choose the Ciphertext
Switching Encryption (CSE) for stream cipher based encryption
and Locally Iterative Encryption (LIE) for block based
encryption in this paper. In CSE, illegal substrings are switched
back to the plaintext substrings. CSE is applied to our encryption
without any change. In LIE, plaintext is divided into blocks and
each block is encrypted iteratively until the block’s output is
compliant. Boundaries of blocks are taken care of by LIE so that
each block can be decrypted correctly. When LIE is used, a
block cipher in Cipher Block Chaining (CBC) mode is used to
encrypt full blocks, and the same block cipher in Cipher
Feedback (CFB) mode is used to encrypt the last partial block, if
applicable, with the register initialized with the ciphertext of last
full block or IV if there is no full block. In this way, LIE with a
block cipher can be applied to encrypting plaintext of any length
into ciphertext of exactly the same length. Interested readers are
referred to [12] for the detail of CSE and [13] for LIE.

3.2. IV Generation
A distinct IV is used for each independent encryption. The

index to the code-block and the first coding pass of the
encryption segment is used to generate this IV. A code-block can
be uniquely identified by tile, component, resolution level,
precinct, subband, and the coordinates of the upper left point of

the code-block on the reference grid, as we mentioned in Section
2. The coordinates of the upper right point on the reference grid
are used to identify each tile and precinct in generating an IV.
Due to invariance of these coordinates under cropping such as
from aspect ratio of 16:9 to 4:3, an encrypted J2K codestream
can be cropped by dropping some tiles and the resulting
codestream is still fully decryptable.

A global IV is inserted in the SEC at the main header for an
encrypted J2K codestream. For motion J2K, an independent
random frame IV is inserted in each frame. This global IV, the
unique code-block identifier, and the index to the first coding
pass of the encryption segment are concatenated and
cryptographically hashed, with possible truncation if necessary,
to generate a unique IV to encrypt the current encryption
segment.

In typical applications, the code-block identifier and the
coding pass index can be represented together by a single word
of length equal to IV. In this case, each individual IV can be
generated simply by XORing the global IV with the word, and
no hash operation is needed.

3.3. Syntax-Compliant JPEG 2000 Encryption
With the IV and encryption primitives, each segment after

compression can be encrypted with the syntax-compliant
primitives that the ciphertext is still syntax-compliant. On the
player side, an encrypted J2K codestream is first decrypted and
then decoded. The encryption process is straightforward if the
alternative scheme is used, or if the normal scheme is used when
each coding pass is terminated. In both cases, there is no
compression overhead (SEC in JPSEC is not considered as
overhead).

For the default case that the whole code-block is a single
codeword segment, and if the normal scheme is applied, the
ciphertext of an encrypted codeword segment may need to be
partitioned into CCPs. Each CCP must be terminated at a right
position that decryption can be executed correctly when the
bitstream is truncated at the CCP, and the CCP cannot end with a
byte of value 0xFF in either ciphertext or plaintext. This means
that the original CCP partition points obtained without
encryption may have to be modified after encryption is applied.
For example, when LIE is used in CBC mode, a CCP has to
terminate at a block boundary of the block cipher used in LIE.
When CSE is used, a switched portion cannot be split into two
consecutive CCPs. For CSE, if the last byte of the ciphertext is
not 0xFF when the original partition (i.e., the partition obtained
when encryption is not applied) is used (note that in this case the
last byte of plaintext cannot be 0xFF either), then there is no
change to the CCP boundary when encryption is applied, thus no
compression overhead. Otherwise the boundary is moved to a
following byte which is not of value 0xFF in either plaintext or
ciphertext, resulting in compression overhead.

In CSE, switched consecutive bytes are typically two bytes
long. This means that when moving is needed, CCP boundary is
typically moved to the next byte, resulting in one byte overhead
for the CCP. Since the chance that an encrypted CCP ends with a
byte of value 0xFF is about 1 in 256, the overhead for CSE is
very small, almost negligible. Due to this advantage, CSE is
recommended when the normal scheme is used with the default
arithmetic coding mode. For other cases both CSE and LIE can
be equally applied without any overhead.

3.4. Scalability and Error Resilience
In addition to the aforementioned advantage of compression

overhead, the scheme also has advantages on scalability and
error resilience over other schemes. In our scheme, the data in a
J2K codestream is fully encrypted, yet the full scalability of the
unencrypted codestream is preserved. This flexibility is very
desirable when a single codestream is used for a wide range of
applications, esp. when some applications may not be known at
encryption time. Wu and Ma’s scheme [8] encrypts packet data
in each packet. The scalable granularity is raised to packet-level
after encryption. Except for trailing truncation, it is impossible to
truncate to an arbitrarily selected CCP after encryption. Wu and
Deng’ scheme [9] encrypts each CCP, and the scalable
granularity is raised to CCP-level. This is enough for many
applications. It is not doable if an application wants to truncate at
selected coding passes after encryption when each coding pass is
terminated. Our scheme allows such fine truncations after
encryption. Compared to other syntax-noncompliant encryption
schemes such as our previous scheme reported in [7], this
scheme generates encrypted, syntax-compliant codestream. An
encryption-unaware decoder such as a decoder of an old version
is still able to decode the encrypted codestream, although the
decoded visual data is completely garbled and meaningless. Such
a decoder may not be able to decode an encrypted codestream
generated by a syntax-noncompliant encryption scheme.

 An image or frame may be cropped. A widely used
cropping in video is to convert the aspect ratio from 16:9 to 4:3.
J2K enables such cropping without touching the compressed data
by dropping tiles and adjusting some coordinates and parameters.
A J2K codestream encrypted with our scheme enables such
cropping too, thanks to the IV generation mechanism which
generates invariant IV for each encryption segment under the
cropping. Other schemes may also be able to do so if IVs are
inserted in the bitstream, resulting in a high compression
overhead. Our scheme does not have the overhead.

Errors may occur during transmission over networks. J2K
offers several error resilience tools. When an error occurs, the
current (i.e., where the error occurs) and subsequent coding
passes in the same codeword segment may not be decompressed
correctly and therefore dropped. Our scheme preserves this
property too. When an error occurs in the ciphertext, the current
and subsequent data in the codeword may not be decrypted
correctly and therefore dropped. In other words, a J2K
codestream encrypted with our scheme has exactly the same
error resilience capability as the unencrypted codestream under
all different J2K coding modes. Wu and Ma’s scheme [8] may
propagate errors to CCPs of other code-blocks. Wu and Deng’
scheme [9] may propagate errors to preceding coding passes in
the same CCP due to their global-level iterative encryption.

4. EXPERIMENTAL RESULTS
The proposed scheme has been implemented base on the

publicly available J2K implementation JasPer [14].
Cryptographic primitives are based on Crypto++ [15]. SEAL
[16] and AES [17] are used as the stream and block cipher
primitives in CSE and LIE, respectively. Due to the length
limitation, we report here only a couple of experiments. More
results will be reported later in a full paper.

Figure 1: Cropping from aspect ratio 16:9 (1280 by 720

pixels) to 4:3 (792 by 594 pixels).

Figure 1 shows an encrypted J2K image cropped from
aspect ratio of 16:9 to 4:3 directly without decryption. The
coordinates used in this experiment are the same as the example
shown in Section B.3 in [1].

Figure 2 shows encryption and decryption speeds for CSE
(top), Wu and Ma’s (left bottom two), and Wu and Deng’s (left
middle two) for typical CCP sizes. Note that CSE uses the same
procedure for both encryption and decryption. There is only a
single curve for CSE. It is clear that CSE is faster than the other
two schemes. Lower speeds at short plaintext are due to the time
spent on setting IV in SEAL. Setting IV in SEAL takes
substantial portion of the overall time when plaintext is short.

Figure 2: Encryption/decryption speeds for different syntax-

compliant encryption schemes (see the main text for
explanation).

5. CONCLUSION
We have proposed an improved encryption scheme from our

early version for JPEG 2000 and motion JPEG 2000. The scheme
produces JPEG 2000 syntax-compliant output. It offers several
advantages over the old version and other schemes proposed in
the literature. The scheme has virtually no overhead. Although
the visual data is fully encrypted after compression, the original
scalability and error resilience capability are fully preserved after
encryption. Therefore an encrypted codestream can be truncated

near RD-optimally or manipulated without decryption. The end-
to-end system security has been boosted.

REFERENCES
[1] Information Technology – JPEG 2000 Image Coding

System, Part 1: Core Coding System, ISO/IEC 15444-
1:2000 (ISO/IEC JTC/SC 29/WG 1 N1646R, March 2000).

[2] Information Technology – JPEG 2000 Image Coding
System, Part 3: Motion JPEG 2000, ISO/IEC 15444-
3:2002.

[3] F. Dufaux, S. Wee, J. Apostolopoulos and T. Ebrahimi,
“JPSEC for Secure Imaging in JPEG 2000,” SPIE Proc.
Applications of Digital Image Processing XXVII, vol. 5558,
pp. 319-330, Nov. 2004.

[4] B. B. Zhu, M. D. Swanson, and S. Li, “Encryption and
Authentication for Scalable Multimedia: Current State of
the Art and Challenges,” Proc. SPIE Internet Multimedia
Management Systems V, vol. 5601, pp. 157-170,
Philadelphia PA, Oct. 2004.

[5] R. Grosbois, P. Gerbelot, and T. Ebrahimi, “Authentication
and Access Control in the JPEG 2000 Compressed
Domain,” Proc. SPIE Appl. of Digital Image Processing
XXIV, vol. 4472, pp. 95-104, San Diego, California, Dec.
2001.

[6] S. J. Wee and J. G. Apostolopoulos, “Secure Scalable
Streaming and Secure Transcoding with JPEG-2000,” IEEE
Int. Image Processing, vol. 1, pp. I-205-208, Sept. 1, 2003.

[7] B. B. Zhu, Y. Yang, and S. Li, “JPEG 2000 Encryption
Enabling Fine Granularity Scalability without Decryption,”
IEEE Int. Symp. Circuits and Systems, Kobe, Japan, May
2005.

[8] H. Wu and D. Ma, “Efficient and Secure Encryption
Schemes for JPEG2000,” IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, 2004 (ICASSP '04), vol. 5,
pp. V869 — 872, May 2004.

[9] Y. Wu and R. H. Deng, “Compliant Encryption of
JPEG2000 Codestreams,” IEEE. Int. Conf. on Image
Processing 2004 (ICIP’04), pp. 3447-3450, Singapore, Oct.
2004.

[10] JPEG2000 Verification Model 8.5 (Technical Description),
ISO/IEC JTC 1/SC 29/WG 1 N1878, Sept. 2000.

[11] JPSEC Commission Draft 2.0, ISO/IEC/JTC 1/SC29/WG 1,
N3397, 2004.

[12] B. B. Zhu, Y. Yang, and S. Li, “Ciphertext Switching
Encryption,” submitted for publication, 2005.

[13] B. B. Zhu, Y. Yang, and S. Li, “Locally Iterative
Encryption,” submitted for publication, 2005.

[14] JasPer, http://www.ece.uvic.ca/~mdadams/jasper.
[15] Crypto++, http://www.eskimo.com/~weidai/cryptlib.html.
[16] B. Schneier, Applied Cryptography: Protocols, Algorithms,

and Source Code in C, 2nd ed., John Wiley & Sons, Inc.
1996.

[17] Federal Information Processing Standards (FIPS)
Publication 197, Advanced Encryption Standard (AES),
Nov. 2001.

