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ily destroyed. Our technique uses visual masking 
to maximize the energy in the pattern, thereby in- 
creasing pattern robustness and the gauging range 
of distortion. 

2. SPATIAL AND FREQUENCY 

Spatial or frequency domain masking effects are 
used to shape the pseudo noise sequence to max- 
imize the signature energy while maintaining the 
signature perceptually invisible. Visual masking 
refers to the psychophysical phenomena that a sig- 
nal raises the perceptual thresholds of other signals 
around it. The masking values are obtained by the 
threshold visual masking models that were used in 
high quality, low bit rate image coding [3]. 

In the frequency domain, a grating signal raises 
the perceptual thresholds of other gratings whose 
frequencies are close to the masking frequency [4]. 
If the masking frequency is fm, and the masking 
contrast is h, the contrast threshold at f due to 
the masker fm is modeled as 

DOMAIN MASKING 

c(f7 fm) = Q(f> - Ma3417 [ w f m ) c m l a I ,  (1) 

where ~ ( f )  is the detection threshold at frequency 
f. Since we use discrete cosine transform (DCT) 
to transform an image into frequency domain, the 
detection threshold ~ ( f )  is corrected by multi- 
plying the detection threshold obtained in psy- 
chophysics with a factor given by Nil1 [5]. The 
contrast threshold c(f) at frequency f is obtained 
by a summation rule 

c(f) = [ ~(f,fm)’]~’’, (2) 
fm E S ( f )  

where the set S ( f )  is a range of frequencies at 
the neighborhood of f. If the contrast error at 
frequency f is less than c(f), the model predicts 
that the error is perceptually invisible. 

Similar masking effect exists around an edge in 
spatial domain. The model of spatial masking is 
a modified model from the threshold vision model 
proposed by Girod [SI. In the model, the pro- 
cessing channel is linearized under the assump- 
tion that the perceptual error at threshold vision 
is small. The perceptual threshold at each pixel 
is found reversely from the last stage to the first 
stage. For details, readers are referred to [3]. 

3. EMBEDDING SIGNATURE DESIGN 
A signature embedded in an image can be gen- 
erated either in the spatial domain or frequency 
domain. It is obtained by multiplying a pseudo 
noise sequence by the visual masking values ob- 
tained from either spatial masking model or fre- 
quency masking model. The operations are almost 

the same in both domains. We shall discuss the 
frequency domain design method in detail. 

To design a signature in the frequency domain, 
we transform an image into the DCT domain first. 
Let P(i, j )  denote the value of frequency bin (i, j ) .  
Then we use the frequency masking values M ( i , j )  
at each frequency bin (i,j). Let r ( i , j )  be the noise 
value generated by a pseudo noise generator which 
generates uniformly distributed white noise in the 
range of (0,l). The frequency value P(i , j )  of the 
image’ is modified to Ps(i,j) which is given by: 

+3gn(P(i, j ) ) T ( i ,  AI, (3) 

where 1.1 rounds towards 0, and sgn(z) is sign of 
z, defined as: 

(4) 

It is easy to check that the error introduced by 
the above operation is smaller than the perceptual 
threshold, i.e., lPs(i,j) - P(i,j)l 5 M( i , j ) .  Thus 
the signature is perceptually invisible. 

4. EXTRACTING SIGNATURE AND 

We assume that an intended receiver knows that a 
signature pattern is embedded in the received im- 
age. If not, we can use a similarity measure similar 
to that we use for image watermarking 111 to de- 
termine first if a given signature is embedded in 
the received image or not. To check the authen- 
tication and distortion of the received image, an 
intended receiver must be provided with the pri- 
vate key to regenerate the pseudo noise sequence 
embedded in the image. Since the pseudo noise 
is like white noise, a receiver without the key is 
unable to decode the embedded signatures. 

The receiver uses the provided key to regenerate 
the pseudo noise sequence ~ ( i , j ) .  We use the DCT 
to transform the received image into frequency do- 
main with value Pi(i,j) at frequency bin ( i , j ) .  
Assume the masking value estimated from Pi(i,j) 
is M’(i,j).  The error at ( i , j )  is estimated by the 
following equation: 

CALCULATING DISTORTION 

pi 1 
C? = P,’-M’.{~~~(P,’)T+ L- - (T - - )~~~(P , ’ ) J } ,  

M’ 2 
( 5 )  

where all the values are at the same frequency bin 

If IP(i,j)l < M ( i , j )  and ~ ( i , j )  is small, a small 
error can change the sign of sgn(P,’(i,j)) which 
may result in large estimation error in Eq. 5. To 
avoid such a problem, when both P and T are 
small, T is multiplied by a factor to raise it to just 

(4j). 
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same as those for the frequency do- 
ach except that the results should be 

rounded to integers. 

To illustrate the performance of 
proach, we have used both fre 
domain design methods to design signatures to the 
256 by 256 gray-scale (8-bit) image Lena shown in 
Fig. 1. The image with the embedded 
pattern using the frequency domain ap 
shown in Fig. 2. When we tested both ima 
a Sun Sparc 5 monitor, we could not tell any 
ference between the two images. 

above 0.5. The intended receiver can correct this 
situation if the error is not too large. 

To estimate the performance of the error esti- 
mation, we assume that Pi(i,j) = Ps( i , j )+e( i , j )  
where e ( i , j )  is the error produced by some lossy 
operations on the image. We have the following 
theorem: 

Theorem 1 Assume that the error e ( i , j )  is small 
(i.e., le(i,j)l < VI, and that for small errors 
the masking model produces the same masking val- 
ues from the original and distorted images (i.e., 
M’(i,j) = M(i,.j)), then 

i?( i , j )  = e ( i , j ) .  

In other words, the error estimation given by the 
proposed method is accurate under the above con- 
ditions. 

Proof. First we note that under the assumptions 
of the theorem, sgn(P,‘) = sgn(Ps) = sgn(P). 
Substitution of P,’ = Ps + e to Eq. 5 yields 

i? = Ps + e - s,gn(P)rM- 

+ Ps - s!gn(P)rM l/2sgn(P)M + e 
M 1. 

From Eq. 3, Ps -- sgn(P)rM = [fiJM, the above 
equation can be simplified as 

P P 
M d = LMJM+e-ML--] 

(7) - - e, 

where we have used the fact that )l /2sgn(P)M + 
el < M ,  and 1.J = x for an integer x. 0 

There are three factors which affect the accuracy 
of the estimated errors. The first is the robustness 
of the visual masking model. To accurately esti- 
mate errors, the masking model should give mask- 
ing values based on the received image as close as 
possible to the actual masking values. The second 
factor is the errors incurred by some operations on 
the image. If the error at a frequency bin is larger 
than half of the masking value at that frequency 
bin, the estimated error is wrong. The third factor 
is that small errors result from inverse DCT and 
rounding to integers in the range from 0 to 255 for 
an 8 bit image. 

The estimated error at each frequency bin can 
be used to find local or global distortions. A sim- 
ple global distortion measurement is employed in 
this paper which is a weighted error at each fre- 
quency bin according to the masking values. More 
accurate distortion measurement can also be built 
from the estimated error at each frequency bin. 

The same procedure can be applied to the spa- 
tial domain approach which uses the spatial do- 
main masking model. The expressions are almost 

Figure 1. The original ~ ~ 6 ~ ~ ~ 6  
Lena. 

Figure 2. image with embedded s i g ~ a ~ ~ r ~  ~ a t t ~ ~ ~ .  

We have applied JPEG and white noise to t 
images and used the proposed method to test its 
integrity and calculate the distortion of th 
sulting image. The es mated error for the J 
processed image at di 
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w .  

U. 

ay: 
P: 0 

11. 

(1. 

Fig. 3. The estimated error for the image with 
added white noise is shown in Fig. 4. The solid 
curves in both figures are the measured distortion 
given by the receiver while the dashed lines are for 
the ideal results if the original image is also known. 
Both figures were obtained &om the fkequency de- 
sign approach. We note here that quality 100% 
for JPEG is in fact lossless coding. 

As we can see from Figs. 3 and 4, the proposed 
method gives accurate results when the errors in- 
troduced to the image are small. The accufacy is 
reduced when the distortion grows larger. When 
there is no distortion, the measured distortion is 
small, but not 0. This is due to small errors intrc- 
duced by the masking model as well as the inverse 
DCT and rounding off to integers in [O, 2551. From 
the results, we conclude that the frequency mask- 
ing model is quite robust. 

We have also used the spatial domain approach 
to design signatures. Due to the fact that the 
spatial masking model is sensitive to the noise 
introduced by the signature pattern, the results 
were not as good as those from the frequency do- 
main approach. It results in errors relatively large 
even though the image has no distortion. With 
JPEG corrupted images, the result is shown by the 
solid curve in Fig 5, together with the ideal results 
(dashed curve). These results are normalized with 
respect to the distortion produced by JPEG com- 
pression at 0.95 quality. The results fits the ideal 
results reasonably well for small distortion. 

c. 
L. 1 -.. 

x. 
*. 

-. 
-. 

a- 

Figure 3. Distortion for JPEG processed image (freq. 
domain, see text) 

6. CONCLUSION 
In this paper, we have proposed a robust method 
to check the integrity of an image and to calcu- 
late the distortion if the image has incurred some 
lossy operations. It gauges image distortion accu- 
rately when the distortion is small. It also readily 
identifies large image distortion. 
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