
Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2007, Article ID 56365, 13 pages
doi:10.1155/2007/56365

Research Article
Efficient and Syntax-Compliant JPEG 2000 Encryption
Preserving Original Fine Granularity of Scalability

Yang Yang,1 Bin B. Zhu,2 Shipeng Li,2 and Nenghai Yu1

1 Department of Electrical Engineering and Information Science, University of Science and Technology of China,
Hefei, Anhui 230027, China

2 Microsoft Research Asia, Beijing 100080, China

Correspondence should be addressed to Bin B. Zhu, binzhu@microsoft.com

Received 29 June 2007; Revised 29 October 2007; Accepted 23 November 2007

Recommended by E. Magli

A novel syntax-compliant encryption primitive and an efficient syntax-compliant JPEG 2000 encryption scheme are presented in
this paper. The syntax-compliant encryption primitive takes, as input, syntax-compliant plaintext and produces syntax-compliant
ciphertext. It is faster than all the other syntax-compliant encryption primitives we know. Our JPEG 2000 encryption scheme en-
crypts independently either each codeblock segment (normal mode) or each intersection of a codeblock segment and a codeblock
contribution to a packet (in situ mode). Truncation-invariant parameters uniquely identifying each independently encrypted data
block are combined with a global initialization vector to generate on the fly an initialization vector (IV) used to encrypt the
data block. These IVs can be correctly regenerated even when the encrypted codestream is truncated. Encrypted codestreams are
syntax-compliant. The original granularity of scalability is fully preserved after encryption so that an encrypted codestream can be
truncated to adapt to different representations without decryption. Our JPEG 2000 encryption scheme is fast, error-resilient, and
has negligible file-size overhead.

Copyright © 2007 Yang Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

JPEG 2000 [1, 2] is the state-of-the-art international stan-
dard for still-image compression. A key improvement over
its predecessor JPEG is that JPEG 2000 provides highly flex-
ible fine granularity scalability, enabling progressive trans-
mission or refinement by quality, resolution, component, or
spatial locality. This scalability makes it possible to directly
truncate a single JPEG 2000 codestream into a large varia-
tion of “downscaled” yet valid and near rate-distortion-(RD-
) optimal JPEG 2000 codestreams. As a comparison, to get
a downscaled representation of a JPEG-compressed image,
transcoding is needed: the codestream is first decoded, pro-
cessed, and then re-encoded. The resulting codestream is
no longer RD-optimal in general. This “encode once decode
many ways” feature is very useful in many applications. For
example, a single JPEG 2000 codestream can be stored on a
downloading server for users with different display devices
and network bandwidths to download from. A user with PC
and high-speed bandwidth can download the original, high-
resolution codestream. Another user with a mobile phone

and slow network can download a version of properly re-
duced resolution.

In response to the growing need for protection of copy-
righted images, Part 8 of the JPEG 2000 standard, commonly
known as the secure JPEG 2000 or JPSEC [3], defines a stan-
dardized framework that different image protection tools can
be applied to provide a number of security services such as
confidentiality, integrity verification, source authentication.
An overview of JPSEC can be found in [4].

Confidentiality is achieved through encryption. Besides
typical security considerations, encryption of scalable multi-
media such as JPEG 2000 compressed images has some ad-
ditional requirements [5, 6]. One requirement is that an en-
crypted codestream should preserve the scalability of the un-
encrypted codestream as much as possible. With this fea-
ture, an encrypted codestream can be truncated directly by
any party, possibly untrusted, without decryption to fit into
a specific application. Another requirement is that an en-
crypted codestream should still be compliant to the syntax
of the underlying format. Such an encrypted codestream can
be correctly processed and decoded by encryption-unaware

mailto:binzhu@microsoft.com


2 EURASIP Journal on Information Security

tools. For JPEG 2000, it means that a JPSEC encrypted code-
stream can be correctly decoded by an image viewer con-
formed only to Part 1, the core coding system, although the
resulting display is likely garbled. Without syntax compli-
ance, an old image viewer may not be able to process a JPSEC
encrypted codestream or may even get crashed.

Early encryption schemes did not take into considera-
tion either scalability or syntax compliance. Dang and Chau
[7] proposed to apply the Data Encryption Standard (DES)
[8] to encrypt the payload of each packet after packaging
the codestream generated by the embedded zero-tree wavelet
compression with the asynchronous transfer mode. The re-
sult is not syntax-compliant. Scalability is also lost after en-
cryption. Later encryption schemes tried to preserve certain
levels of scalability after encryption. Grosbois et al. [9] pro-
posed two encryption schemes for JPEG 2000 to allow ac-
cesses to resolutions or layers without decryption, but the
two access types cannot be supported with a single encrypted
codestream. Another drawback is that the seed used to en-
crypt a codeblock is inserted after the codeblock’s termi-
nation marker in order to be syntax-compliant. The seed
may be lost during transmission or scheme-unaware trun-
cation, resulting in an entire undecryptable codeblock. Wee
and Apostolopoulos [10] proposed a secure scalable stream-
ing (SSS) scheme which groups JPEG 2000 packets into SSS
packets, and the payload of each SSS packet is independently
encrypted with a block cipher in the cipher-block chain-
ing (CBC) mode. The initialization vector (IV) used in en-
crypting the payload of a packet is inserted into the plain-
text packet header. A major disadvantage of this scheme is
that the scalability granularity is raised to the progressive SSS
packet level. To reduce the encryption overhead introduced
by inserted IVs in SSS packet headers, an SSS packet typically
contains quite a few JPEG 2000 packets, resulting in a very
coarse granularity of scalability after encryption.

Recent encryption schemes for JPEG 2000 ensure syn-
tax compliance after encryption in addition to preserving
scalability. This means an encrypted codestream is still a
valid JPEG 2000 codestream that an encryption-unaware
standard-compliant decoder can still decode, although the
rendered result may be unintelligible. For JPEG 2000, syntax-
compliant encryption requires that the ciphertext do not em-
ulate any JPEG 2000 markers. In JPEG 2000, a bitstream
produced by arithmetic coding does not contain any byte-
aligned value between 0xFF90 and 0xFFFF, and a code-block
contribution to a packet (CCP) cannot end with a byte 0xFF.
Syntax-compliant encryption must ensure that the cipher-
text does not contain any of those prohibited patterns. Wu
and Ma [11] proposed a packet-level syntax-compliant en-
cryption scheme which generates a pseudorandom sequence
with bytes of value 0xFF discarded, and then encrypts each
byte of the payload in a packet whose value is not 0xFF and
whose preceding byte is not 0xFF by adding it with the cor-
responding byte from the pseudorandom sequence modulo
0xFF. As a result, the ciphertext will never contain a byte
0xFF, and thus is syntax-compliant. Wu and Deng [12] pro-
posed to encrypt each code-block contribution to a packet
(CCP) with a modular addition or a block cipher repeatedly
until the ciphertext is syntax-compliant. Watanabe et al. [13]

proposed another syntax-compliant encryption algorithm.
The payload in each packet is divided equally into blocks.
A single byte is selected from each block by a pseudoran-
dom generator, and is checked for encryption. If the byte
is below 0xF0, its lower half is selected; otherwise this byte
is skipped. All selected half bytes are collected into a buffer,
encrypted with a conventional cipher, and put back to the
original locations. The resulting payload does not contain a
byte 0xFF, and is therefore syntax-compliant. Recently, Fang
and Sun [14] proposed a compliant encryption primitive to
encrypt CCPs for JPEG 2000. In their primitive, plaintext
and keystream are added bytewise modulo 0x100, 0x90, or
0x70, depending on the context and a running parameter.
This compliant encryption primitive is designed for arith-
metic coding pass bitstreams. It does not work directly for
raw pass bitstreams where the arithmetic coder is bypassed
(see Section 2 for details).

In [15], we have proposed a codeblock-based scheme
which encrypts each codeblock independently. The scheme
produces a small, about 1.0%, file-size overhead, and is not
syntax-compliant. The scheme is further improved and made
syntax-compliant. A short version of the improved scheme is
published in a conference paper [16]. In this paper, we ex-
tend our conference paper [16] to a full paper with detailed
description of a novel syntax-compliant encryption prim-
itive and an efficient syntax-compliant encryption scheme
for JPEG 2000 as well as more experimental results. Our
syntax-compliant encryption primitive described briefly in
[16] is called the Ciphertext Switching Encryption (CSE).
CSE works for a general specification of syntax such as JPEG
2000 arithmetic coding pass bitstream syntax and raw pass
bitstream syntax as well as MPEG-4 FGS syntax [17]. It gen-
erates syntax-compliant ciphertext of the same size as the
plaintext, decryptable without any additional information
except the decryption key. As we will see in Section 5, CSE is
the fastest among all the existing syntax-compliant encryp-
tion primitives for JPEG 2000. The JPEG 2000 encryption
scheme described in this paper is an improved version of that
reported in the conference paper [16]. Our JPEG 2000 en-
cryption scheme applies CSE to encrypt independently each
codeword segment (normal mode) or each intersection of a
codeword segment and a CCP (in situ mode). The scheme
is syntax-compliant and preserves the original fine granular-
ity of scalability of JPEG 2000. The scheme has two opera-
tion modes. In the first mode (i.e., the normal mode), each
codeword segment is independently encrypted with CSE. In
the second mode (i.e., the in site mode), the intersection of
a codeword segment with a CCP is independently encrypted
with CSE. An initialization vector (IV) is used for each inde-
pendent encryption. A single global IV is inserted into the
main header of JPEG 2000 codestream. The IV associated
with an independent encryption is generated on the fly from
the global IV and the unique index to the data block to be
encrypted, resulting in a negligible file-size overhead. These
indices are invariant when an encrypted codestream is trun-
cated. As a result, a truncated codestream can still be cor-
rectly decrypted.

The rest of this paper is organized as follows. In Section 2,
JPEG 2000 is briefly described, including selected details



Yang Yang et al. 3

Adaptive binary
arithmetic coder

Uniform
deadzone
quantizer

Pre-
processing

Bitstream
formation

Source
image

JPEG 2000
image

DWT

Core encoder

Figure 1: JPEG 2000 encoding process.

about JPEG 2000 and JPSEC. The ciphertext switching en-
cryption primitive is described in Section 3, and our syntax-
compliant JPEG 2000 encryption scheme is presented in
Section 4. Experimental results are given and discussed in
Section 5. We conclude the paper with Section 6.

2. INTRODUCTION TO JPEG 2000 AND JPSEC

JPEG 2000 is an image compression standard based on the
discrete wavelet transform (DWT) and arithmetic coding.
JPEG 2000 encoding can be roughly divided into 3 phases,
preprocessing, encoding, and bitstream formation, as shown
in Figure 1.

In the first phase, image pixels are preprocessed before
sent into the core encoder. A source image is partitioned
into nonoverlapping rectangular pixel blocks of arbitrary yet
equal (except for those on the boundaries) sizes, known as
tiles. A tile is the basic JPEG 2000 coding unit—each of them
is encoded independently. Dividing image spatially into tiles
reduces coding memory requirement and enables any part in
the final codestream to be accessed and processed indepen-
dently. An optional multicomponent transform is performed
on each tile to decorrelate RGB color components into YCbCr

or YUV components. Each color component is fed into the
core encoder.

In the core encoder, an L-level DWT is applied to each
color component of a tile to obtain L + 1 different resolu-
tion levels ranging from level 0 to level L, with the lowest
frequency subband referred to as resolution level 0. Each res-
olution level contains three subbands except the resolution
level 0 which contains only one subband. Resolution level 0
is referred to as resolution 0 of the tile-component. The tile-
component at resolution l > 0 is the collection of the com-
ponent at resolution l − 1 and the three subbands at resolu-
tion level l. The original tile-component is at resolution L. In
the lossy encoding mode, all subband coefficients are then
passed into a uniform dead-zone quantizer to reduce the
data precision. Finally indices of the quantized coefficients
of each subband are passed into the embedded block cod-
ing with optimized truncation (EBCOT) arithmetic entropy
encoder, where each subband is divided into small rectangu-
lar blocks, called codeblocks, and each codeblock is indepen-
dently encoded in a bitplane manner from the most signifi-
cant to the least significant. Each bitplane is encoded in three
sub-bitplane passes with the provision of truncating the bit-
stream at the end of each coding pass. The raw bits emitted

from a coding pass are encoded with a context-adaptive bi-
nary arithmetic coder, namely, the binary MQ-coder, unless
the lazy coding mode is used. In the lazy mode, the MQ-
coder is entirely bypassed and the raw bits are emitted for
certain coding passes. Details of the EBCOT arithmetic en-
coder can be found in [18].

A codeword produced by the above encoding process
ends with codeword termination, which is essentially equiv-
alent to stopping and restarting the encoder without neces-
sarily resetting the states of its probability contexts. The stan-
dard requires that three specific termination patterns be sup-
ported [1, 2]. The default is to generate a single codeword
segment for the entire codeblock, that is, terminating at the
end of the last bitplane encoding of the codeblock. The sec-
ond is to terminate at the end of every sub-bitplane coding
pass so that the bitstream generated from each coding pass
forms a codeword segment. The states of the probability con-
texts of the arithmetic encoder can be reset at the end of each
coding pass to enable independent decoding of the bitstream
of each coding pass. The last termination method is for the
lazy coding mode that the boundary between the arithmetic
coding passes and the raw passes must be terminated.

In the last phase, the outputs from encoding individual
codeblocks are packed into a JPEG 2000 codestream whose
structure is shown in Figure 2. A JPEG 2000 codestream
starts with a main header, comprised of markers and marker
segments, to provide the image parameters and coding pa-
rameters that can apply to every tile and tile-component. A
marker segment is a marker and the associated set of param-
eters, used to indicate characteristics of the image. A tile-part
header is inserted at the beginning of each tile-part code-
stream to provide the tile-part coding parameters. Six types
of markers are defined in the JPEG 2000 standard Part 1 [1].
Each marker is two bytes long: the first byte is always 0xFF,
and the second may have any value between 0x01 and 0xFE.
An arithmetic codeword segment does not contain any byte-
aligned value between 0xFF90 and 0xFFFF. A byte of 0xFF
followed by any byte of value larger that 0x8F is recognized
as a legitimate termination marker. A JPEG 2000 standard-
compliant arithmetic decoder stops reading bytes when it en-
counters a termination marker, and all the data in a segment
after the termination marker are therefore ignored. In a raw
segment when arithmetic coding bypass is enabled, if a byte-
aligned value is 0xFF, a single zero bit is stuffed into the most
significant bit of the next byte. As a result, a byte of value
0xFF is never followed by a bit of 1 in a raw segment.

The bitstream of each codeblock is distributed across one
or more layers in the codestream. Each layer consists of con-
secutive bitplane coding passes from each codeblock in a tile.
A decoder is able to decode codeblock contributions con-
tained in each layer successively so that the image quality
improves progressively. JPEG 2000 also introduces a spatial-
frequency construct called precinct, which is a collection of
spatially contiguous codeblocks from all subbands at a par-
ticular resolution level. For a given tile, the data from a spe-
cific layer, a specific component, a specific resolution, and
a specific precinct appears in the codestream as a continu-
ous, byte-aligned segment referred to as a packet. The length
of the data from each code block contribution to a packet



4 EURASIP Journal on Information Security

Image

Tile

Precinct

Codeblock

H

H

H

Codestream

Tile

Packet

Codeblock bitstream

Figure 2: The structure of a JPEG 2000 image codestream.

(Px ,Py)

(0, 0)

ax bx

ay

by

Canvas

Image

TyTx

Figure 3: Canvas coordinates and tile partition in the high resolu-
tion grid.

(CCP) is indicated in the header of a packet. In the case of a
CCP containing multiple codeword segments, the length of
each codeword segment is indicated in the packet header. A
CCP in JPEG 2000 never terminates in a byte of value 0xFF.
The packets in a JPEG 2000 codestream can be arranged in
different ways, called progression orders. The interleaving of
the packets can progress along the four axes: layer, compo-
nent, resolution, and precinct. Five progression orders are
supported by JPEG 2000.

Errors may occur during transmission and storage. For
example, random and burst bit errors may occur in wireless
communications due to wireless characteristics, and pack-
ets may be lost in Internet communications due to traffic
congestion. Arithmetic encoding in JPEG 2000 is a variable
length coding which is susceptible to error propagation: a

single bit of error in the compressed data may corrupt the
decoding of the remaining bits, resulting in much more sig-
nificant distortion in the decoded image. To confine error
propagation and improve the quality of the decoded images
under error-prone environments, JPEG 2000 provides error
resilience bitstream syntax and tools [1]. The error resilience
tools are defined on both the entropy encoding level and the
packet level. On the former level, arithmetic encoding of the
quantized coefficients is performed independently for each
codeblock. As a result, bit errors are contained within the
codeblocks where errors occur. In addition, termination of
the arithmetic encoder and reset of the contexts are allowed
after every coding pass. This enables the arithmetic decoder
to continue decoding the coding passes after the coding pass
containing errors. In the optional lazy mode, certain coding
passes are not encoded by the arithmetic coder, and there-
fore are not susceptible to error propagation. A segmenta-
tion symbol can be encoded at the end of each bitplane to
detect decoding errors. Correct decoding of this symbol con-
firms the correctness of the decoding of the corresponding
bitplane. On the packet level, a resynchronization marker
start-of-packet (SOP) together with a sequence number can
be placed in front of every packet in a tile, allowing spatial
partition and resynchronization of the codestream. Packets
in a JPEG 2000 codestream can also be organized in the short
packet format in which the packet headers are packed into ei-
ther the main header or the tile-part header.

In JPEG 2000, an image is referenced from a canvas co-
ordinate system [1, 2, 19]. As shown in Figure 3, the up-
per left-hand corner of the canvas is always located at the
origin (0, 0) of the coordinate system. The right and lower
boundaries of the canvas coincide with those of the image.
An image is bounded by its upper left-hand corner of coor-
dinates (ax, ay), and its bottom right-hand corner of coordi-
nates (bx, by). All tiles have exactly the same size Tx × Ty at
the high resolution grid. Tiles on the boundaries may par-
tially overlap with the image. Tiles are indexed incrementally
from the first row to the last row and from the left to the right,
starting from 0. Let (Px,Py) be the coordinates of the top left
corner of the first tile on the high resolution grid. The JPEG
2000 standard mandates that

(1) Px, Py ≥ 0;

(2) Px ≤ ax and Py ≤ ay ;

(3) Px + Tx > ax and Py + Ty > ay .

Once the coordinates of the first tile is known, the co-
ordinates of the remaining tiles can be derived. The coordi-
nates of precincts are similarly defined. In addition, the co-
ordinates of lower resolution grids can also be derived.

JPSEC introduces two new marker segments. One is SEC
(of value 0xFF94) in the main header used to carry overall
information about the security tools and parameters applied
to the image. The other is INSEC (of value 0xFF95) in the
bitstream to provide information of localized security tools
and parameters.

Further details about JPEG 2000 and JPSEC can be found
in [1–4, 19, 20].



Yang Yang et al. 5

3. CIPHERTEXT SWITCHING ENCRYPTION

In this section, we present our novel syntax-compliant en-
cryption scheme, the ciphertext switching encryption (CSE),
which is used to encrypt JPEG 2000 codestreams syntax-
compliantly. Like the iterative encryption scheme proposed
by Wu and Deng [12], CSE can be applied to ensure cipher-
text compliant to a general specification of syntax, such as
JPEG 2000’s arithmetic coding pass bitstream syntax and raw
pass bitstream syntax presented in this paper and MPEG-4
FGS syntax presented in [17]. On the contrary, the syntax-
compliant encryption schemes described in [11, 13, 14] are
applied only for a specific syntax, that is, the JPEG 2000’s
arithmetic coding pass bitstream syntax.

CSE works with a stream cipher. Postprocessing opera-
tions are added to a conventional stream cipher encryption
to ensure syntax compliance. More specifically, illegal bit-
strings in the intermediary ciphertext generated by the con-
ventional stream cipher are replaced by the corresponding
bitstrings from the plaintext to force the ciphertext syntax-
compliant. A bitstring is defined in this paper as a minimum
number of consecutive bits starting at the boundary of a byte
(i.e., byte-aligned) that are checked for compliance. In JPEG
2000, an arithmetic codeword segment does not allow any
two consecutive bytes of value between 0xFF90 and 0xFFFF.
To check syntax compliance against this requirement, a bit-
string is two consecutive bytes. A raw segment, on the other
hand, does not allow a byte 0xFF followed by a bit 1. A bit-
string in this case is a byte plus the following bit, 9 bits in
total. JPEG 2000 does not allow ao CCP ending with a byte
0xFF. A bitstring in this case is therefore one byte. The ef-
fective result after postprocessing is that some ciphertext bits
are “switched” back to the plaintext bits. The tricky part in
switching operations is to ensure that the decryptor can lo-
cate the switched bitstrings and correctly decrypt the cipher-
text without any additional information other than the ci-
phertext and the decryption key. Our experimental results to
be reported in Section 5 will show that only a very small per-
centage of ciphertext bits are required to switch back to the
plaintext bits.

In describing CSE, an uppercase letter without subscript
indicates a string of bytes, and a lowercase letter with a sub-
script index indicates the byte specified by the index in the
string denoted by the corresponding uppercase letter. An
uppercase letter with a subscript index indicates a bitstring
or the remaining bits if there are not enough bits to con-
struct a bitstring, starting at the byte specified by the in-
dex. Note that the ending index of a bitstring is not indi-
cated in this representation since different syntaxes may have
different numbers of bits in a bitstring, and a bitstring may
end with a partial byte, although it always starts at a byte
boundary. For example, an internal bitstring in the JPEG
2000 raw segment syntax consists of one byte plus the follow-
ing bit, that is, 9 bits in total. Let M = m0‖m1‖ · · · ‖mn−1

be a syntax-compliant plaintext of n bytes, where mi de-
notes one plaintext byte and ‖means concatenation. Let C =
c0‖c1‖ · · · ‖cn−1 be the corresponding syntax-compliant ci-
phertext of exactly the same length as the plaintext, where ci

denotes one ciphertext byte. CSE works as follows.

(1) Generate a keystream S = s0‖s1‖ · · · ‖sn−1 of n bytes.
(2) Let R = r0‖r1‖ · · · ‖rn−1. Calculate R =M ⊕ S, that is,

ri = mi ⊕ si, 0 ≤ i < n, where “⊕” is the bitwise XOR
operation.

(3) Initialize the current byte index currIdx to 0: currIdx
= 0, and index lastModIdx of the rightmost switched
bitstring to −1: lastModIdx = −1.

(4) Run currIdx from the current byte to the last byte n−1
to search for illegal bitstrings in R. If an illegal bitstring
is found at currIdx, go to step (5). Otherwise, go to step
(9).

(5) Replace the illegal bitstring RcurrIdx = rcurrIdx‖ · · ·
starting at currIdx with the corresponding plaintext
bitstring McurrIdx = mcurrIdx‖ · · · , RcurrIdx ←McurrIdx.
Set the index justModIdx of the first byte of the just
switched bitstring RjustModIdx to be currIdx: justModIdx
= currIdx.

(6) Check the decrypted bitstrings backward as follows:

(i) for backIdx = justModIdx−1 : −1 : lastModIdx+1
with the bitstring RbackIdx overlapping with the
bitstring RjustModIdx;

(ii) set DbackIdx = RbackIdx ⊕ SbackIdx, and switch the
bits in DbackIdx back to those in M if those bits
were switched previously and their locations do
not overlap with any bits in RjustModIdx;

(iii) if DbackIdx is an illegal bitstring, replace all the
bits from RbackIdx to RjustModIdx with the corre-
sponding plaintext bits: ri ← mi, backIdx ≤ i <
justModIdx, set justModIdx = backIdx, and go
back to step 6(i).

(7) Check the ciphertext backward as follows:

(i) for backIdx = justModIdx −1 :−1 : lastModIdx+1
with the bitstring RbackIdx overlapping with the
bitstring RjustModIdx;

(ii) if RbackIdx is an illegal bitstring, replace all the
bits from RbackIdx to RjustModIdx with the corre-
sponding plaintext bits: ri ← mi, backIdx ≤ i <
justModIdx, set justModIdx = backIdx, and go
back to step 7(i).

(8) If no bitstring is replaced in both steps (6) and (7), set
lastModIdx = currIdx and currIdx = currIdx + 1, and go
back to step (4). Otherwise, go back to step (6).

(9) Output R as the syntax-compliant ciphertext C : C =
R.

The CSE encryption operations are shown in Figure 4.
Like conventional XOR-based string ciphers, CSE decryption
is identical to CSE encryption. Therefore, the operations de-
scribed above and shown in Figure 4 are applied in both CSE
encryption and decryption. The first two steps in CSE en-
cryption are operations of a conventional stream cipher en-
cryption. The remaining steps are the postprocessing steps
to switch ciphertext bits back to the corresponding plain-
text bits when necessary to ensure syntax compliance. The
tricky part is to ensure that process can be reversed to re-
cover the plaintext without any additional information other



6 EURASIP Journal on Information Security

than the ciphertext. Once an illegal bitstring is found in the
intermediary ciphertext R and switched with the plaintext
bitstring in step (5), backward checking is applied in both
steps (6) and (7) to ensure that preceding ciphertext bit-
strings are still syntax-compliant and the just switched bit-
string can be located in decryption. In step (6), the preced-
ing ciphertext bitstrings are decrypted and checked to make
sure that the just switched bitstring can be correctly identi-
fied and switched, and no spurious switching would occur
during the decryption process. This decryption is done by
XORing the intermediary ciphertext with the keystream, and
then switching the bits that have been switched during the
previous encryption operations except those bits with loca-
tions overlapping with the just switched bitstring. Switching
a bitstring may make preceding ciphertext bitstrings illegal.
Step (7) checks preceding ciphertext bitstrings to ensure that
they are syntax-compliant. Switching operations may be ap-
plied when needed. In both steps (6) and (7), only the bit-
strings overlapping with the just switched bitstring need to
be checked since other preceding bitstrings are not affected
by the bitstring just switched. steps (6) and (7) are iteratively
applied until there is no more switching in both steps. Step
(8) checks this condition. If no switching occurs in both steps
(6) and (7), it goes back to step (4) to check the remaining
bytes.

To facilitate understanding of CSE, an example of CSE
encryption is given here. Suppose that n = 8 and the plain-
text is M = m0‖m1‖ · · · ‖m7 = 0x 00 11 FF 66 FF 66 99 22,
which is compliant with JPEG 2000 syntax. Let the keystream
be S = s0‖s1‖ · · · ‖s7 = 0x 33 44 66 99 99 99 00 55. The
intermediary ciphertext after step (2) is R = M ⊕ S =
0x 33 55 99 FF 66 FF 99 77. In step (4), the first illegal bitstring
is found at currIdx = 5 : R5 = 0x FF 99 ≥ 0x FF 90. In step (5),
the illegal bitstring R5 is switched to the plaintext bitstring:
R5 = M5 = 0x 66 99. Backward checking is then conducted
in steps (6) and (7). In step 6(ii), a preceding bitstring D4 is
decrypted to be illegal: D4 = 0x FF FF. Step 6(iii) switches
R4 back to the plaintext bitstring: R4 = M4 = 0x FF 66.
In the subsequent backward checking of ciphertext, the ci-
phertext bitstring R3 = 0x FF FF is no longer legal. Step
7(ii) switches the bitstring to the corresponding bitstring:
R3 = M3 = 0x 66 FF. In step (8), since switching has oc-
curred in both steps (6) and (7), CSE goes back to step (6)
to check backward the decrypted bitstrings again starting
from D2. In step 6(ii), D2 = 0x 99 66 ⊕ 0x 66 99 = 0x FF FF
is calculated. No bits in the bitstring need to be switched.
This decrypted bitstring D2 = 0x FF FF is illegal. In step
6(iii), R2 is therefore switched to the plaintext bitstring:
R2 = M2 = 0x FF 66, resulting in the intermediary cipher-
text as R = 0x 33 55 FF 66 FF 66 99 77. No more switching
occurs when steps (6) and (7) are applied. In step (8), CSE
sets lastModIdx = 5 and currIdx = 6, and goes back to step
(4) to continue processing the remaining bytes. No more il-
legal bitstrings are found. The final ciphertext is therefore:
C = 0x 33 55 FF 66 FF 66 99 77, which is syntax compliant.
The same procedure can be applied to the ciphertext C to
recover the plaintext. Interested readers can apply the pro-
cedure to C to confirm that the decrypted plaintext is in-
deed identical to original plaintext. More details of CSE can

be found from a C++ implementation available online [21].
That implementation is for easy understanding. A faster C++
implementation of CSE for JPEG 2000 was used in our exper-
iments reported in Section 5.

Theoretical analysis of CSE’s security is complex and out
of the scope of this paper. Only a discussion is given here. Like
other syntax-compliant encryption schemes such as those re-
ported in [11, 13, 14], CSE does not meet indistinguisha-
bility under a chosen-plaintext attack (IND-CPA) security
[22]. For an IND-CPA security encryption scheme, an ad-
versary cannot tell which of two chosen messages with the
same length is encrypted, that is, the ciphertext does not leak
any information about any chosen plaintext. For the schemes
reported in [11, 13, 14] as well as CSE, different operations
are applied to a group of data, depending on its context in
plaintext and/or ciphertext domain, resulting in possibly dif-
ferent distributions which can be used to tell which chosen
message is encrypted. Fortunately, IND-CPA security is not
normally necessary in practical multimedia encryption. In
CSE, the intermediary ciphertext after the first two steps, that
is, encryption by a conventional stream cipher, is random if
the stream cipher is secure. This implies that the locations
of switched bitstrings are random and cannot be predicted
even if the plaintext is known. Under known plaintext at-
tacks, there is a possibility that an adversary may identify
the switched bitstrings by comparing the plaintext and ci-
phertext and exploiting the fact that a switched bitstring has
a higher probability than a random bitstring to match that
in the plaintext, but the adversary would not be able to de-
duce the encryption key if the underlying stream cipher is
secure. From the experimental results reported in Section 5,
for plaintext of 5000 bytes, about 16 bytes, that is, 0.32%
of the ciphertext is switched to the plaintext. Each sequence
of switched bits is about 2 bytes long. Since encryption is
applied to compressed bitstreams in our applications, and
compression removes most redundancy in a multimedia sig-
nal, CSE leaks very little information about the encrypted
content. Even if an adversary could successfully identify the
switched bitstrings, he could only gain some information
about the restrictions on the neighboring bitstrings overlap-
ping the switched bitstrings, without being able to deduce
the neighboring plaintext bytes or other nonswitched plain-
text bytes, or the encryption key. In conclusion, CSE is suffi-
ciently secure for the targeted applications.

4. SYNTAX-COMPLIANT JPEG 2000
ENCRYPTION SCHEME

4.1. Overview of our scheme

The main goal in the design of our JPEG 200 encryption
scheme is to ensure that the encrypted codestream is syntax-
compliant and preserves the original granularity of scalabil-
ity of JPEG 2000. Encryption may lower the compression ef-
ficiency or add additional data or markers to a codestream
for correct decryption. It may also deteriorate the perceptual
quality of the rendered image more than that without en-
cryption when error or loss of data occurs, due to additional
error propagation attributed to encryption. An additional



Yang Yang et al. 7

Replacement
in backward

checking?

Backward
checking and
replacement

Keystream
generator

XOR

Keystream S

Input M (n bytes) R

Yes

No

Rk =Mk

No

No

YesYes
For k = 0 to n− 1,

is Rk legal?

Key, (IV)

k >= n?
Output

k = k + 1

Figure 4: The operations of the ciphertext switching encryption primitive.

goal in our design is to minimize the perceptual degrada-
tion attributed to encryption’s error propagation as well as
the file-size overhead.

To ensure syntax-compliant, our scheme applies CSE to
encrypt only the compressed data in each packet while leaves
the main, tile-part, and packet headers untouched. Since
the encryption process is applied after the compression pro-
cess, the compression efficiency is not affected. To minimize
the perceptual degradation attributed to encryption’s error
propagation, the data affected by the error propagation at-
tributed to encryption should overlap as much as possible
with the data affected by the error propagation attributed to
the JPEG 2000 compression. In other words, the boundary of
independent encryption should coincide with the termina-
tion of the arithmetic coding for error resilience. Recall that
in JPEG 2000, each codeblock is independently encoded in a
bitplane manner from the most significant to the least signif-
icant, and there are three termination patterns for encoding
a codeblock. The arithmetic decoding terminates at the end
of an arithmetic codeword segment. When a bit error occurs,
arithmetic decoding of the remaining bits in the same code-
word segment will be incorrect, but decoding of the com-
pressed data in other codeword segments is not affected. (For
the subsequent codeword segments of the same codeblock,
the states of the probability contexts of the arithmetic en-
coder should be reset at the end of a codeword segment to
enable independent decoding of the compressed data in these
subsequent codeword segments.) As a result, encrypting each
codeword segment independently would minimize the per-
ceptual degradation attributed to encryption’s error propa-
gation. This is exactly what we have adopted in our scheme.
As discussed in detail in Section 4.4, such encryption also
preserves the finest granularity of scalability of a JPEG 2000
codestream, enabling the most flexible truncation of an en-
crypted JPEG 2000 codestream without decryption.

Each independent encryption requires some encryp-
tion parameters such as an initialization vector (IV) in our

scheme. Insertion of IVs into an encrypted codestream
would increase the file-size overhead. To reduce the adverse
impact on the file-size, we need to generate those IVs on the
fly so that we do not need to store them in an encrypted code-
stream. A major challenge to achieve this goal is that gener-
ation of IVs has to be invariant when a codestream is trun-
cated in an arbitrary yet allowed manner. Otherwise wrong
IVs may be generated when truncation of an encrypted code-
stream occurs. In our design, a set of truncation-invariant
parameters uniquely identifying a codeword segment is used
to generate the IV used to encrypt the codeword segment.

An alternative approach is to encrypt the intersection of
a CCP and a codeword segment independently so that each
CCP can be encrypted or decrypted in situ, a desirable fea-
ture when the encryption or decryption process interleaves
with the encoding or decoding process. The two approaches
are taken as two operation modes in our JPEG 2000 encryp-
tion scheme. They are referred to as the normal mode and
the in situ mode, respectively, in this paper.

4.2. Generation of truncation-invariant IVs

A distinct IV is generated on the fly for each independent
encryption. A global IV is inserted into the SEC maker seg-
ment in the main header of an encrypted JPEG 2000 code-
stream. This global IV is combined with the unique identi-
fier of each independently encrypted data block to generate
the IV to encrypt the data block. In the normal encryption
mode, each codeword segment is independently encrypted.
In the in situ mode, each intersection of a CCP and a code-
word segment is independently encrypted. In both modes,
we need to uniquely identify each codeblock. The codeblock
identifier used to generate the IVs should be available from
the JPEG 2000 codestream so that we do not need to store
in the encrypted codestream, and also must be invariant un-
der allowed truncations to a JPEG 2000 codestream so that
the same IVs will be regenerated even when an encrypted



8 EURASIP Journal on Information Security

(0, 0)

(P
′
x ,P

′
y)

(Px ,Py)

(a
′
x , a

′
y) (ax , ay)

TyTx

A

0

1

2

3

4

5

0 1 2 3 4 5

Figure 5: The extended JPEG 2000 canvas coordinates. Solid line
rectangles represent the canvas, the image area, and the tiling grid.
Dashed line rectangles represent the padded tiles.

codestream undergoes an arbitrary yet allowed truncation.
To identify a codeblock, we need to identify the tile that the
codeblock belongs to. Unfortunately, the tile index used in
a JPEG 2000 codestream to identify a tile is not truncation-
invariant. When some tiles are truncated from a JPEG 2000
codestream, such as truncating a JPEG 2000 codestream to
crop the image from aspect ratio 16 : 9 to 4 : 3, the sur-
viving tiles are reindexed starting from 0, resulting in indices
inconsistent with the original ones. We exploit in our scheme
the property that the canvas coordinates are invariant un-
der allowed truncations to define a unique and truncation-
invariant identifier for a tile.

To achieve this goal, the image and its tiles are extended
upwards and leftwards by padding towards the origin a mul-
tiple number of tiles. More precisely, the extended image is
first initialized to be the original image: (a′x, a′y) = (ax, ay)
and (P′x,P′y) = (Px,Py). Then the following iterative moves
are applied to extend the image: in each move, the coordi-
nates (a′x, a′y) of top left corner of the extended image and
the coordinates (P′x,P′y) of the top left corner of the extended
first tile are reduced by subtracting Tx and the Ty in x- and
y-directions, respectively, where Tx × Ty is the size of a tile
at the high resolution grid, until the following conditions are
satisfied:

(1) P′x,P′y ≥ 0 and a′x, a′y ≥ 0;
(2) P′x < Tx, P′y < Ty , and P′x + T′x > a

′
x, P′y + T′y > a

′
y ;

(3) P′x ≤ a′x, P′y ≤ a′y .

Figure 5 shows an example of the actual image and its tiles
(solid lines) as well as the extended image and the extended
tiles (dotted lines).

After the above extension of the image and its tiles, each
tile is indexed, with both the actual and the extended (or
virtual) tiles counted, starting from 0 along both x- and y-
directions, from top to bottom and from left to right. These
indices are also shown in Figure 5. Such a tile coordinate sys-
tem is used in our scheme to identify each tile uniquely for
an image. For example, tile “A” shown in Figure 5 is uniquely
identified by its coordinates (3, 2), that is, its index along the
x-direction is 3, and along y-direction is 2. It is easy to check

that the resulting indices of a tile in the proposed tile index-
ing system do not change even if an arbitrary combination of
tiles are cropped from a JPEG 2000 codestream. Therefore,
they are invariant for allowed truncations to a JPEG 2000
codestream.

A precinct can also be uniquely identified by the can-
vas coordinates of their top left-hand corners, which are
truncation-invariant. With these truncation-invariant tile
and precinct identifiers, a codeblock can be uniquely iden-
tified by the tile, component, resolution level, precinct, and
the subband it belongs to, and the coordinates of codeblock’s
top left-hand corner on the canvas grid. Such a codeblock
identifier is truncation-invariant.

The IV for each independent encryption is generated as
follows. In the normal encryption mode, the global IV, the
unique codeblock identifier defined above, and the index of
the first coding-pass in a codeword segment are concatenated
and hashed, truncated if necessary, to generate the IV used
to encrypt the codeword segment. In the in situ mode, the
global IV, the unique codeblock identifier defined above, and
the index of the first coding-pass in an intersection of a code-
word segment and a CCP are concatenated and hashed, trun-
cated if necessary, to generate the IV used to encrypt the in-
tersection. Apparently, the IVs generated in this way do not
change when an encrypted codestream is truncated. In typ-
ical cases, the concatenation of a codeblock identifier and a
coding pass index can be fit into the length of an IV. In this
case, the concatenation is XORed with the global IV in gen-
erating the IV, and no hashing operation is needed.

In our scheme, a single global IV in the SEC header is the
only information needed to be added to an encrypted JPEG
2000 codestream. Since encryption is applied after compres-
sion and the ciphertext has the same length as the plaintext
with CSE, we can expect that the file-size overhead of our
scheme is negligible. This is confirmed by our experiments
reported in Section 5.

4.3. Encryption, partition, and CSE’s file-size overhead

With the IVs generated by the method described in
Section 4.2, each codeword segment or intersection of
a codeword segment and a CCP is encrypted syntax-
compliantly with CSE in the normal or the in situ mode.
Note that the output has the same length as the input for
CSE. In JPEG 2000, a codeword segment contains a num-
ber of complete coding passes, that is, a coding pass will not
split into two codeword segments. By using the coding pass
length calculation algorithm given in Annex D of the JPEG
2000 standard Part 1, no coding pass will ever be considered
as terminating with an byte 0xFF [1]. A CCP does not end
with a byte 0xFF either. As a result, no matter which encryp-
tion mode is used, the ciphertext will not end with a byte
0xFF in our scheme.

In JPEG 2000, each CCP contains either none or a num-
ber of coding passes of a codeblock. Recall that there are three
termination patterns in JPEG 2000. When the arithmetic
coding terminates at the end of each coding pass, there is no
difference between the two encryption modes for our scheme
since each coding pass forms a codeword segment. For the



Yang Yang et al. 9

other two termination patterns, the two modes may operate
differently. If a CCP contains multiple codeword segments,
the two modes still operate in the same way: each codeword
segment is encrypted independently. When a CCP contains a
single codeword, such as when the default termination pat-
tern is used, the two encryption modes operate differently.
The in situ mode encrypts the CCP independently in this
case, while an encrypted codeword segment may split into
two or more CCPs in the normal mode encryption. Although
a coding pass will not end with a byte 0xFF, a nonending cod-
ing pass in a codeword segment may end with 0xFF after CSE
encryption. In addition, some ciphertext bits are switched
with the corresponding plaintext bits in CSE. As a result, a
partition method is needed to distribute the ciphertext from
an encrypted codeword segment into different packets such
that each CCP of the codeblock terminates at a right position
so that decryption can be executed correctly even if the code-
word is truncated at the boundary of a CCP. This requires
that a sequence of switched bits could not be split into two
CCPs. They have to stay in a single CCP. It also implies that
CCP cannot end with a byte 0xFF for an encrypted bitstream
either.

Since CSE is basically an XOR-based stream cipher with
some ciphertext bits switched with the corresponding plain-
text bits when needed, each byte in the ciphertext corre-
sponds to the byte at the same position in the plaintext.
Our partition method for an encrypted codeword segment
is based on the original partition method used in JPEG 2000.
When the original partition method is applied to the plain-
text, if a corresponding partition position in the ciphertext
does not end with a byte 0xFF or in the middle of a se-
quence of switched bits, then the partition position is also
applied to the ciphertext, resulting in no file-size overhead
for this partition position. Otherwise, the partition position
is moved to the following byte or bytes such that the cur-
rent CCP does not end with a byte 0xFF and a sequence of
switched bits is not split into two CCPs, resulting in file-size
overhead since when truncated at the boundary of the cur-
rent CCP, the encrypted codestream contains more bytes (the
additional bytes are dropped in decompression if truncated
at the current CCP) than the case without encryption for the
same rendered image.

A sequence of switched bits is typically two bytes long for
CSE encryption of an arithmetic codeword, as indicated by
the experiments in Section 5. This means that when adjust-
ment to a partition position is needed, the CCP boundary is
typically moved to the next byte, resulting in one byte over-
head for the CCP. Since the chance that an encrypted CCP
ends with a byte of value 0xFF or in the middle of switched
bits is slim, the incurred file-size overhead for CSE is almost
negligible. The CSE encryption in the normal mode does not
incur any file-size overhead under other cases. As a compar-
ison, the CSE encryption in the in situ mode does not incur
any file-size overhead.

In the in situ encryption mode, each CCP can be read
into a buffer, partitioned into codeword segments if it con-
tains more than one codeword segment, and then CSE is ap-
plied to each codeword segment or the CCP. The encryption
result, which has exactly the same length as the CCP, is then

placed back to the original position. The process does not
affect other data. Therefore, the encryption and decryption
in this mode can be applied in situ to the CCP buffer. As a
comparison, in the normal mode, the size of a CCP may be
changed, for example, when the CCP of ciphertext ends with
a byte 0xFF or in the middle of a sequence of switched bits,
resulting in a modified packet header and packet size. The in
situ property might be desirable in some applications.

4.4. Scalability and error resilience

Our JPEG 2000 encryption scheme produces an encrypted,
syntax-compliant codestream, and preserves the original
granularity of scalability. It is obvious that the original gran-
ularity of the five types of scalabilities in JPEG 2000, that is,
tile, component, resolution, precinct, and layer, is fully pre-
served in an encrypted codestream with our scheme. An en-
crypted codestream can also be truncated to the smaller level
of a codeword segment and a CCP, the same level as sup-
ported by JPEG 2000.

In addition to the scalability to allow truncations, a JPEG
2000 codestream can be repackaged by splitting or combin-
ing packets. A CCP may contain multiple codeword seg-
ments. A packet containing CCPs with multiple codeword
segments can be split into multiple packets since the size
for each codeword segment can be derived from the packet
header. After encryption with our scheme, such a packet can
still be split into multiple packages without decryption since
our scheme encrypts independently each codeword segment
or each intersection of a codeword segment and a CCP. When
our scheme runs in the normal mode, combining two or
more packets into one packet is still allowed after encryption
since each codeword segment is independently encrypted.
This is not true when our scheme runs in the in situ mode
since the ciphertext in a CCP appended to another CCP after
combining will not be correctly decrypted: a wrong IV is used
in decryption. Therefore, the original repackaging capability
is preserved when our JPEG 2000 encryption scheme runs
in the normal mode but only package splitting is preserved
when in the in situ mode.

The syntax-compliance and preservation of the origi-
nal granularity of scalability allow an encryption-unaware
processor to process, for example, to truncate an encrypted
codestream in the same way as a nonencrypted codestream
without decryption. There is no need to use any decryption
secrets in the process. As a result, the processor does not need
to be trusted.

As a comparison, Dang and Chau encryption scheme [7],
Wu and Ma scheme [11], and Watanabe’s scheme [13] raise
the granularity of scalability to the packet level, and Wu and
Deng scheme [12] and Fang and Sun scheme [14] to the CCP
level, resulting in a granularity of scalability coarser than that
offered by JPEG 2000 after encryption. Note that a CCP may
contain multiple codeword segments. Our scheme has finer
granularity of scalability than those JPEG 2000 encryption
schemes.

When a bit error occurs in a codeword segment of a code-
block, the erroneous coding pass containing the error bit and
all subsequent coding passes in the same codeword segment



10 EURASIP Journal on Information Security

are rendered undecodable. In our scheme, each codeword
segment or each intersection of a codeword segment and
a CCP is encrypted independently, and a syntax-compliant
stream cipher is used as the encryption primitive. If the bit
error removes or generates spurious ciphertext switching in-
cidences, our encryption does incur error propagation: the
error expands to the whole sequence of switched bits, typ-
ically 2 bytes. Fortunately, switching occurs infrequently, as
shown from the experimental results reported in Section 5.
As a result, our encryption scheme has a very small if not
negligible adverse impact on the perceptual quality when er-
ror or loss of data occurs, which is confirmed by our exper-
iments also reported in Section 5. In other words, our en-
cryption scheme is error-resilient. This has been confirmed
by our experiments reported in Section 5.

As a comparison, a bit error may cause a wrong selec-
tion of bytes to be encrypted in Watanabe’s scheme [13], re-
sulting in wrong decryption of a whole packet. A bit error
may cause a wrong iteration of decryption in Wu and Deng
scheme [12], resulting in wrong decryption of a whole CCP.
These schemes have worse error resilience performance than
ours. In Wu and Ma scheme [11], a bit error affects the byte
where the error bit resides and possibly the next byte too.
Similarly, a bit error affects locally for Fang and Sun scheme
[14]. If a CCP contains multiple codeword segments and if
the error bit is close to the boundary of two codeword seg-
ments and the error expansion due to encryption extends to
the neighboring codeword segment, then the two schemes
reported in [11, 14] have worse error resilience performance
than ours. Otherwise, they have a similar error resilience per-
formance as ours.

5. EXPERIMENTAL RESULTS

Our JPEG 2000 encryption scheme has been implemented
on top of the open source JPEG 2000 C implementation
JasPer [23] with the public domain C++ cryptographic li-
brary Crypto++ [24]. SEAL [25] was used as the stream ci-
pher in CSE in our experiments. The default setting of JasPer
was used in JPEG 2000 encoding unless stated otherwise. In
the CSE experiments, that is, the experiments for Figures 6–
8, the JPEG 2000 arithmetic codeword segment syntax was
used, that is, any two consecutive bytes cannot be in the range
from 0xFF90 to 0xFFFF, and the ending byte cannot be 0xFF.

Figure 6 shows the average number of bits for each dis-
joint sequence of switched bits, and Figure 7 shows the av-
erage number of disjoint sequences of switched bits for dif-
ferent lengths of plaintext with random syntax-compliant
plaintexts as input to CSE. The average was over 15 000 runs.
From Figures 6 and 7, we can see that ciphertext switching
occurs about 8 times on the average for a plaintext of 5000
bytes and about 16 bits are switched back to the plaintext bits
for each occurrence. That implies that there about 0.32% of
the ciphertext bits is switched to the plaintext. Wu and Ma
scheme [11] has more unencrypted bits than CSE on the av-
erage, and the locations of unencrypted bits are known. On
the contrary, the locations of unencrypted bits in CSE are
unknown and hard to locate if the JPEG 2000 bitstream is

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

Le
n

gt
h

pe
r

re
pl

ac
ed

se
gm

en
t

(b
it

s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Plaintext length (bytes)

Average
±STD

Figure 6: Average number of bits for each disjoint sequence of
switched bits for JPEG 2000 arithmetic codeword segment syntax.

0

2

4

6

8

10

12

N
u

m
be

r
of

re
pl

ac
ed

se
gm

en
ts

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Plaintext length (bytes)

Average
±STD

Figure 7: Average number of disjoint sequences of switched bits for
different lengths of plaintext.

unknown. For both Wu and Deng scheme [12] and Fang and
Sun scheme [14], all the plaintext bits are encrypted.

Since XOR operation is faster than modular addition or
subtraction, and ciphertext switching occurs infrequently, we
would expect that CSE is faster than other syntax-compliant
encryption schemes. To confirm this, encryption and de-
cryption speeds of CSE and other syntax-compliant encryp-
tion schemes were tested on a Dell OptiPlex GX280 PC with
a 3.2 GHz Intel Pentium 4 CPU and 1 GB of RAM running
Windows XP Professional Edition with SP2. Random syntax-
compliant plaintexts of different lengths were used in the
tests. Figure 8 shows the speeds averaged over 15 000 runs.
Since encryption and decryption are identical for CSE, there



Yang Yang et al. 11

0

0.5

1

1.5

2

2.5
×108

A
ve

ra
ge

ru
n

sp
ee

d
(b

yt
es

/s
)

0 500 1000 1500 2000 2500 3000 3500 4000

Plaintext length (bytes)

1

2

3

4

5

6

7

Figure 8: Encryption and decryption speeds averaged over 10 000
runs. (1) CSE. (2 and 3) Decryption and encryption of Fang and
Sun scheme [14]. (4 and 5) Encryption and decryption of Wu and
Ma scheme [11]. (6 and 7) Encryption and decryption of Wu and
Deng scheme (using modular addition and subtraction) [12].

Figure 9: Syntax-compliant encryption that preserves full scalabil-
ity of JPEG 2000.

is only a single speed curve for CSE in Figure 8. As shown
in the figure, CSE is indeed faster than other schemes, espe-
cially when the plaintext length is larger than 500 bytes. The
low speeds for small plaintext lengths are mainly due to the
time spent on resetting IVs for SEAL, which accounts for a
majority of the encryption time.

In Figure 9, we show that the original JPEG 2000 com-
pressed image “Lena” is encrypted with the full scalabil-
ity preserved. With our syntax-compliant encryption algo-
rithm, the encrypted codestream can still be displayed by
an encryption-unaware JPEG 2000 image viewer. The en-
crypted codestream is then truncated to lower resolutions.
These truncated codestreams are still syntax-compliant and
can be displayed by an encryption-unaware JPEG 2000 im-
age viewer. They are then decrypted to recover the lower-
resolution images.

Table 1: Speed overhead of our JPEG 2000 encryption scheme in
the normal mode over Jasper’s compression for different settings of
layers and resolutions.

Resolutions

Layers (%) 5 4 3 2

10 0.7569 0.8959 1.213 1.033

8 0.3796 0.4411 0.5645 0.6193

6 0.2180 0.6315 0.5261 0.8368

4 0.5994 0.5778 1.214 0.6066

2 0.4190 0.4227 0.6189 0.6098

(a)

(b)

Figure 10: Rendered images for unencrypted (a) and encrypted (b)
“Lena” for bit error rates of 0.00005, 0.0001, 0.001, and 0.01.

We have tested the file-size overhead of our encryption
scheme. For all the testing images, our scheme has always 11
bytes more than the original JPEG 2000 compressed code-
stream, no matter how large the codestream is. These 11 ad-
ditional bytes are in fact the SEC header we added to a code-
stream encrypted with our scheme. We conclude that our
scheme has negligible file-size overhead.

We have also tested the speed overhead of our encryp-
tion in the normal mode over Jasper’s compression with the
standard color image “Mandrill” of size 512 × 512 on a Dell
Inspiron 640 m laptop with a 1.6 GHz Intel CPU and 1.50 GB
memory running Windows XP Professional SP2. A compres-
sion rate of 0.1 BPP was used. Our timing consists of the
in-memory encoding and encryption part, with disk I/O ex-
cluded. The speed overhead for different settings of layers
and resolutions are shown in Table 1. The maximum over-
head is about 1.2%. We conclude that our JPEG 2000 encryp-
tion scheme has a negligible impact on the encoding speed.

To test error resilience of our encryption scheme, we
have performed a blind perceptual test in which two ren-
dered images were displayed side by side. One image was
unencrypted and the other one was the corresponding en-
crypted image. Which image was encrypted was unknown to
the viewers. No error resilience syntax or tools were used in
JPEG 2000 encoding in our tests. Data bits were randomly
selected and flipped at the same positions (if the added SEC
header in the encrypted codestream was ignored) in both
encrypted and unencrypted codestreams to simulate trans-
mission bit errors. Eight standard test images were used in



12 EURASIP Journal on Information Security

Table 2: Blind perceptual test for error resilience.

Test image Original better (%) Encrypted better (%)

Barbara 63 57

Cameraman 52 68

House 62 58

Lake 54 66

Lena 55 65

Mandrill 63 57

Peppers 62 58

Walkbridge 53 67

Figure 11: Cropping an encrypted JPEG 2000 image from aspect
ratio 16 : 9 to 4 : 3 (e.g., 1280× 720 to 792× 594).

the blind perceptual test. Four bit error rates, that is, 0.01,
0.001, 0.0001, and 0.00005, were used. The rendered images
for both encrypted and unencrypted “Lena” are shown in
Figure 10 for the four bit error rates. Thirty volunteers, half
with expertise in image processing and the other half does
not, were asked to choose the one perceptually better from
the two images displayed side by side. The testing result is
summarized in Table 2. The difference is statistically insignif-
icant. We conclude that our encryption does not degrade the
perceptual quality as compared with the unencrypted case,
and therefore our encryption scheme is error-resilient.

Figure 11 shows an encrypted JPEG 2000 image of aspect
ratio 16 : 9 adapted to 4 : 3 by truncating some boundary
tiles. Such aspect ratio adaption is widely used when DVD
movie is displayed on a traditional TV. The original image
size is 1280×720, the tile size is 396×234, the tile grid origin
on the coordinate canvas is (0, 0), and the image origin is at
(152, 234). With the above carefully chosen parameters, the
encoded JPEG 2000 image has four tiles at the center, form-
ing an area of aspect ratio 4 : 3. Adaptation from aspect ratio
16 : 9 to 4 : 3 is simply to truncate all the tiles except the four
tiles at the center.

6. CONCLUSION

We have presented a novel syntax-compliant encryption
primitive and an efficient syntax-compliant JPEG 2000 en-
cryption scheme. The syntax-compliant encryption primi-
tive, that is, the ciphertext switching encryption (CSE), pro-
duces syntax-compliant ciphertext with exactly the same
length as the input. It is faster than all the other syntax-

compliant encryption primitives. Our JPEG 2000 encryption
scheme has two encryption modes. In the normal mode, each
codeblock segment is independently encrypted. In the in situ
mode, each intersection of a codeword segment and a code-
block contribution to a packet (CCP) is independently en-
crypted. A set of truncation-invariant parameters is used to
uniquely identify each independently encrypted data block.
These parameters are combined with a global initialization
vector (IV) to generate on the fly the IV used to encrypt the
data block these parameters refer to. A codestream encrypted
with our scheme is syntax-compliant. The original granular-
ity of scalability is fully preserved after encryption so that an
encrypted codestream can be truncated to adapt to different
representations without decryption. Our JPEG 2000 encryp-
tion scheme is fast, error-resilient, and has negligible file-size
overhead.

REFERENCES

[1] ISO/IEC, “Information Technology—JPEG 2000 Image Cod-
ing System, Part 1: Core Coding System,” ISO/IEC 15444-
1:2000 (ISO/IEC JTC/SC 29/WG 1 N1646R), March 2000.

[2] ISO/IEC, “JPEG2000 verification model 8.5 (technical de-
scription),” ISO/IEC JTC 1/SC 29/WG 1 N1878, September
2000.

[3] ISO/IEC, “JPSEC commission draft 2.0,” ISO/IEC/JTC
1/SC29/WG 1, N3397, 2004.

[4] F. Dufaux, S. Wee, J. Apostolopoulos, and T. Ebrahimi, “JPSEC
for secure imaging in JPEG 2000,” in Applications of Digital
Image Processing XXVII, vol. 5558 of Proceedings of SPIE, pp.
319–330, Denver, Colo, USA, August 2004.

[5] B. B. Zhu, M. D. Swanson, and S. Li, “Encryption and au-
thentication for scalable multimedia: current state of the art
and challenges,” in Internet Multimedia Management Systems
V, vol. 5601 of Proceedings of SPIE, pp. 157–170, Philadelphia,
Pa, USA, October 2004.

[6] B. B. Zhu, “Multimedia encryption,” in Multimedia Security
Technologies for Digital Rights Management, W. Zeng, H. Yu,
and C.-Y. Lin, Eds., chapter 4, pp. 75–109, Elsevier, London,
UK, 2006.

[7] P. P. Dang and P. M. Chau, “Image encryption for secure Inter-
net multimedia applications,” IEEE Transactions on Consumer
Electronics, vol. 46, no. 3, pp. 395–403, 2000.

[8] National Bureau of Standards, “Data Encryption Standard,”
NBS FIPS Pub. 46, January 1977.

[9] R. Grosbois, P. Gerbelot, and T. Ebrahimi, “Authentication and
access control in the JPEG 2000 compressed domain,” in Ap-
plications of Digital Image Processing XXIV, vol. 4472 of Pro-
ceedings of SPIE, pp. 95–104, San Diego, Calif, USA, July 2001.

[10] S. Wee and J. Apostolopoulos, “Secure scalable streaming and
secure transcoding with JPEG-2000,” in Proceedings of IEEE In-
ternational Conference on Image Processing (ICIP ’03), vol. 1,
pp. 205–208, Barcelona, Spain, September 2003.

[11] H. Wu and D. Ma, “Efficient and secure encryption schemes
for JPEG2000,” in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP ’04), vol. 5,
pp. 869–872, Montreal, Quebec, Canada, May 2004.

[12] Y. Wu and R. H. Deng, “Compliant encryption of JPEG2000
codestreams,” in Proceedings of the International Conference on
Image Processing (ICIP ’04), vol. 5, pp. 3439–3442, Singapore,
October 2004.



Yang Yang et al. 13

[13] O. Watanabe, A. Nakazaki, and H. Kiya, “A scalable encryp-
tion method allowing backward compatibility with JPEG2000
images,” in Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS ’05), vol. 6, pp. 6324–6327, Kobe,
Japan, May 2005.

[14] J. Fang and J. Sun, “Compliant encryption scheme for JPEG
2000 image code streams,” Journal of Electronic Imaging,
vol. 15, no. 4, Article ID 043013, 4 pages, 2006.

[15] B. B. Zhu, Y. Yang, and S. Li, “JPEG 2000 encryption enabling
fine granularity scalability without decryption,” in Proceed-
ings of IEEE International Symposium on Circuits and Systems
(ISCAS ’05), vol. 6, pp. 6304–6307, Kobe, Japan, May 2005.

[16] B. B. Zhu, Y. Yang, and S. Li, “JPEG 2000 syntax-compliant
encryption preserving full scalability,” in Proceedings of IEEE
International Conference on Image Processing (ICIP ’05), vol. 3,
pp. 636–639, Genova, Italy, September 2005.

[17] B. B. Zhu, Y. Yang, C. W. Chen, and S. Li, “Fine granular-
ity scalability encryption of MPEG-4 FGS bitstreams,” in Pro-
ceedings of 7th IEEE Workshop on Multimedia Signal Processing
(MMSP ’05), pp. 1–4, Shanghai, China, October 2005.

[18] D. S. Taubman, “High performance scalable image compres-
sion with EBCOT,” in Proceedings of International Conference
on Image Processing (ICIP ’99), vol. 3, pp. 344–348, Kobe,
Japan, October 1999.

[19] D. S. Taubman, JPEG2000 Image Compression: Fundamen-
tals, Standards and Practice, Kluwer Academic, Dordrecht, The
Netherlands, 2001.

[20] T. Acharya and P. S. Tsai, JPEG2000 Standard for Image Com-
pression: Concepts, Algorithms and VLSI Architectures, John
Wiley & Sons, New York, NY, USA, 2005.

[21] A C++ implementation of the Ciphertext Switching Encryp-
tion (CSE), http://research.microsoft.com/∼binzhu/codes/
CSE/.

[22] M. Bellare and P. Rogaway, “Introduction to Modern Cryp-
tography,” chapter 4, Symmetric Encryption, http://www.cse
.ucsd.edu/∼mihir/cse207/classnotes.html.

[23] JasPer, http://www.ece.uvic.ca/∼mdadams/jasper/.
[24] Crypto++, http://www.eskimo.com/∼weidai/cryptlib.html.
[25] B. Schneier, Applied Cryptography: Protocols, Algorithms, and

Source Code in C, John Wiley & Sons, New York, NY, USA,
2nd edition, 1996.

http://research.microsoft.com/~binzhu/codes/CSE/
http://research.microsoft.com/~binzhu/codes/CSE/
http://www.cse.ucsd.edu/~mihir/cse207/classnotes.html
http://www.cse.ucsd.edu/~mihir/cse207/classnotes.html
http://www.ece.uvic.ca/~mdadams/jasper/
http://www.eskimo.com/~weidai/cryptlib.html

	INTRODUCTION
	INTRODUCTION TO JPEG 2000 AND JPSEC
	CIPHERTEXT SWITCHING ENCRYPTION
	SYNTAX-COMPLIANT JPEG 2000 ENCRYPTION SCHEME
	Overview of our scheme
	Generation of truncation-invariant IVs
	Encryption, partition, and CSE's file-size overhead
	Scalability and error resilience

	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES

