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Abstract

We present in this paper an overview of the Hidden Dynamic
Model (HDM) paradigm, exemplifying parametric construction
of structure-based speech models that can be used for recog-
nition purposes. We explore a general class of the HDM that
uses recursive, autoregression functions to represent thehid-
den speech dynamics, and uses neural networks to represent the
functional relationship between the hidden and observed speech
vectors. This type of state-space formulation of the HDM is re-
viewed in terms of model construction, a parameter estimation
technique, and a decoding method. We also present some typ-
ical experimental results on the use of this type of HDMs for
phonetic recognition and for automatic vocal tract resonance
tracking. We further provide analyses on the computational
complexity (for decoding) and the parameter size of the HDM
in comparison with the HMM. Finally, we discuss several key
issues related to future exploration of the HDM paradigm.

Index Terms: hidden dynamic model, recursive form of dynam-
ics, neural network, nonlinear mapping, formant tracking,pho-
netic recognition

1. Introduction

Hidden Dynamic Model (HDM) is one major type of structure-
based statistical models designed for speech recognition,where
recursive forms of time-varying functions are used to parame-
terize the un-observed (i.e., hidden) speech dynamics and con-
sequently the observed acoustic feature sequences [2, 11, 12,
13, 14]. The HDM attempts to represent the intrinsic dynam-
ics in the human speech production system in an effort to ad-
dress some of the known weaknesses of the current hidden
Markov modeling (HMM) paradigm. Such weaknesses include
the HMM’s inability to adequately model long-span coarticu-
lation and phonological changes without resorting to a large
number of unstructured, context-dependent parameters. With
the current HMM paradigm this can only be achieved by using
copious amounts of training data and sophisticated clustering
algorithms to reliably estimate the many parameters.

The HDM encompasses a family of related modeling
paradigms, which have in common the adoption of a more struc-
tured characterization of the underlying speech production dy-
namics. The use of such a structured model results in far fewer
parameters that need to be estimated. With a properly con-
structed model structure, these models have the potential of be-
ing applied to more difficult speech recognition tasks: larger vo-
cabularies, less constrained task grammars, larger populations

of speakers, and different speaking styles. However the keyto
success is a model structure which correctly reflects both the
observed dynamics of speech and the underlying articulatory
constraints, parameters which can be uniquely determined and
reliably estimated, and efficient algorithms for recognition or
scoring.

The organisation of this paper is as follows. In Section 2 we
briefly review the different HDM modeling types from the liter-
ature. In Section 3 we present the model formulation, and train-
ing and decoding algorithms for the recursive form of the HDM.
In Section 4 we present some typical results from this model.In
Section 5 we discuss issues and limitations of the current for-
mulation and suggested future investigations. We concludethe
paper in Section 6.

2. Overview of HDM Types

All structured dynamic models attempt to capture the long-span
contextual properties of speech by imposing continuity con-
straints on hidden dynamic quantities which can be mapped
back to the observed acoustic features. That is, rather than
impose constraints directly on the high-dimensional acoustic
feature data, physiologically or phonetically motivated features
are used for constraints correlating closely with the underly-
ing speech production mechanisms from which such constraints
arise naturally. One of these features are articulatory vectors
directly related to speech production [1, 9]. Although these
features are ideal, their reliable estimation requires theavail-
ability of X-ray or MRI data of the speech production artic-
ulators for the complex mapping to the acoustic features and
this has greatly limited their use. An alternative feature set
which has enjoyed more widespread use has been the vocal-tract
resonances (VTRs) observed usually as the formants in voiced
sounds.

How the VTR dynamics are represented constitute the main dif-
ferences between the different modeling paradigms. All mod-
els assume that an utterance comprises a sequence of regions
or segments which are characterised and “controlled” by VTR
“target” values. In non-recursive implementations, the VTR dy-
namic is derived by noncausal filtering or smoothing of a se-
quence of constant target values to yield a dynamic trajectory
which includes some form of co-articulatory smoothing. The
ensuing VTR dynamic is then mapped to the observable fea-
tures either by a nonlinear mapping function (e.g., [12]), or by
an analytical function [4, 5]. Alternatively, in recursiveimple-
mentations, the VTR dynamic is modeled by a target-directed
recursive continuous-valued “state” equation. This can befor-
mulated in a state-space form allowing standard algorithmsto



be used for the parameter estimation. The observation equation
describes the mapping from the VTR dynamics to the observ-
able features, including linear mappings and mixture of linear
mappings [6, 11] and nonlinear mappings [2, 13]. In the fol-
lowing sections we discuss the recursive, state-space HDM with
nonlinear mapping which constitutes the most general form of
this paradigm.

3. State-Space HDM with Neural-Net
Mapping

In the state-space model with recursively defined hidden dy-
namics, a causal and linear first-order “state” equation is typi-
cally used to describe the VTR dynamics according to

z(k +1) = Φ
j
z(k)+ (I−Φ

j)tj +w(k), j = 1, 2, . . . , JP

(1)
wherez(k) is the low-dimensional “state” vector at discrete
time stepk, Φj andtj are the system matrix and target vector
associated with phone regimej. BothΦj andtj are a function
of time k via their dependence onj. Thew(k) is the discrete-
time state noise, modeled by an IID, zero-mean, Gaussian pro-
cess with covariance matrixQ. The observation equation in the
model is nonlinear, noisy, and static, and is described by

o(k) = h
(r)[z(k)] + v(k) (2)

where the acoustic observationo(k) consists of Mel-Cepstra or
MFCC (Mel-Frequency Cepstral Coefficients) measurements,
andv(k) is the additive observation noise modeled by an IID,
zero-mean, Gaussian process with covariance matrixR. The
multivariate nonlinear mapping,h(r)[z(k)], is implemented by
multiple switching MLP (Multi-Layer Perceptron) neural net-
works, with each MLP associated with a distinct manner (r) of
articulation of a phone.

A version of the (generalized) EM algorithm requiring an
EKF smoother for the E-step and derivation of estimates for
the M-step has been derived and analysed elsewhere and the
reader is referred to the relevant literature [2]. An alterna-
tive formulation proposed in [14] uses available VTR data
(e.g. VTR measurements derived from formant tracker soft-
ware) to independently estimate the parameters of the state
equation,Θs = {Φj , tj ,Q}, and observation equation,Θo =
{Wom, wmi,R}, where{Wom, wmi} are the MLP neural net-
work weights. For each phone regimej of interest we obtain
the VTR measurements, denoted byz̄(k), from the phonetically
transcribed utterance segments of total lengthN frames (i.e.
k = 0, 1, ..., N ) for that phone, to yield the sufficient statistics:

A ≈

N−1∑

k=0

z̄(k), B ≈

N−1∑

k=0

z̄(k + 1),

C ≈

N−1∑

k=0

z̄(k)z̄(k)′, D ≈

N−1∑

k=0

z̄(k + 1)z̄(k)′ (3)

G ≈

N−1∑

k=0

z̄(k + 1)z̄(k + 1)′. (4)

From [14] we have the following in the M-step estimation:

Φ̂ = XY
−1

, t̂ =
1

N
(I − Φ̂)−1(B − Φ̂A) (5)

whereΦ̂ is the estimate of the system matrix,t̂ is the estimate
of the target vector, and:

X = BA
′

− ND, Y = AA
′

− NC

Furthermore we also form estimates for the noise covariances:

Q̂ =
1

N

N−1∑

k=0

E[ek1e
′

k1|o, Θ], R̂ =
1

N

N−1∑

k=0

E[ek2e
′

k2|o, Θ]

(6)
where it can be shown that:

E
[
ek1e

′

k1|o, Θ
]

= G − DΦ
′

− Bt
′

− ΦD
′

+ ΦCΦ
′

+ΦAt
′

− tB
′

+ tA
′

Φ
′

+ Ntt
′

(7)

E
[
ek2e

′

k2|o, Θ
]

= [o(k) − h(z(k)] [o(k) − h(z(k)]
′

(8)

Finally the MLP weights,{Wom, wmi}, are trained using a
standard backpropagation algorithm given the MFCC observa-
tions as the desired output sequence,o(k), and the VTR mea-
surements,̄z(k), as the corresponding input sequence.

An important quantity that needs to be calculated from the state-
space model formulation is the likelihood of the observation se-
quence given the parameters,L(o|Θ). Calculation ofL(o|Θ)
is based on using a single Gaussian to approximate the distribu-
tion of the output of the nonlinear dynamic system. This results
in an expression based on the pseudo-innovation sequence and
its covariance.

4. Experimental Results

While full decoding algorithms using the HDM outlined in Sec-
tion 3 have not yet been feasible, the HDM can be used to
rescore transcriptions, especially in terms of N-best listtran-
scriptions which can be provided by an offline HMM. Results
using N-best rescoring on the phone recognition task have been
reported for earlier implementations of the HDM [2, 13], in-
cluding a variant of the HDM using mixture of linear map-
pings in place of the nonlinear, neural network mapping [11].
The results of a similar N-best rescoring are summarised by
Table 1 for the HDM described here trained on the complete
TIMIT training data (4620 utterances spoken by 326 male and
136 female speakers) and evaluated on all 1620 utterances (112
males and 56 females) from the TIMIT test data. For the
HMM, observations consisted of 39 dimensional static, delta
and delta-delta MFCC features which were used to train 3-state,
5-Gaussians/state, triphone models. For the HDM, observa-
tions consisted of 13 dimensional MFCC static features and 3-
dimensional hidden states (corresponding to the first threeVTR
components) requiring, for each phone, a 3-input, 12-hidden,
and 12-output MLP neural network, a 3-dimensional target vec-
tor, and a 3-dimensional system matrix which was assumed di-
agonal.

Table 1 summarizes a set of results we recently obtained on
the standard TIMIT phonetic recognition task, comparing HDM
with HMM systems. The results show that HDM is compara-
ble to the HMM in cases where the reference transcription is
not included in the 100-best list. However when the reference
is included there is a reduction of around 17% in the Word Er-
ror Rate (WER) compared to the HMM. This is consistent with
previously reported findings for other tasks. When the HDM



100-best 100-best+ref

Oracle 22.9 (97.9) 0.0 (0.0)
HMM 31.8 (100.0) 30.9 (97.3)
HDM 31.4 (99.9) 25.0 (81.9)

Table 1: Performance for 100-best rescoring measured by Word
Error Rate and Sentence Error Rate (italics) or the standard
TIMIT phone recognition task using HDM vs. HMM.

is exposed to the correct reference transcription the continuity
condition imposed on the VTR state implies a relatively high
likelihood score when the transcription is correct, and a signifi-
cantly improved performance in comparison to an HMM. How-
ever when the correct reference is not available any one substi-
tution, insertion or deletion error will propagate to subsequent
segments due to the continuity constraint, resulting in a much
lower likelihood and reduced ability of the HDM to discrim-
inate between transcriptions with only a few errors and those
with many more errors.

As the HDM has been predicated on its ability to model the
underlying production model through the hidden dynamics, the
work reported in [14] compared the VTR dynamics generated
by the HDM with the formant tracks generated from a standard
formant tracker software (wavesurfer). The spectrogram plot
from Figure 1 is that for one typical utterance from the TIMIT
data superimposed by formant tracks and the estimated VTR
sequences by the HDM. First, the HDM-VTR sequence (Figure
1(b)) closely follow the formant tracks (Figure 1(a)). Second,
in unvoiced regions where the formant tracker fails and pro-
duces noisy tracks, the HDM VTR sequence is smoother due to
the inherent constraint on the VTR dynamics as a consequence
of Eqn. 1. This can be demonstrated by considering only the
effect of the predictor step in the EKF recursion (Figure 1(c))
which effectively implements the dynamics imposed by Eqn. 1
without any correction due to the observations. By comparing
Figure 1(c) with Figure 1(a) it is also evident that the first-order,
target-directed state equation is a reasonable model for the VTR
dynamics given its close correspondence to the respective for-
mant tracks.

An important characteristic of the HDM which arises from the
structured modeling approach is the reduced number of param-
eters that need to be estimated compared with an HMM. For the
HMM used in the phonetic recognition experiments based on
3-state, 5-Gaussian/state, tri-phone models, 42 distinctphone
models, and 39-dimensional feature vectors subject to state ty-
ing and regression tree clustering, the number of parameters that
need to estimated are given by:

State transitions = 42 x 6 = 252
Mixture weights = 9725

Means and variances= 9728 x 39 x 2 = 758,784
TOTAL PARAMETERS = 768,761

For the HDM based on 42 distinct phone models, 3-dimensional
target and system matrix values (assuming a diagonal system
matrix), and 3x12x13 MLPs per phone model, the following
number of parameters need to be estimated:

Target and System matrix values = 42 x 3 x 2 = 252
MLP weights = 42 x (12x4 + 13x13) = 9114

TOTAL PARAMETERS = 9366
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Figure 1: Spectrogram of a TIMIT utterance superimposed with
(a) formant tracker data, and recovered VTR sequences from the
full HDM (b) and from from the “partial” HDM using only the
predictor step of the EKF recursion (c).

These results are summarised in Table 2. A remarkable attribute
of the HDM is the number of parameters that need to be esti-
mated which are only 1.2% of the total number of parameters
required to estimate a comparable HMM.

Another consequence of the structured modeling paradigm for
the HDM is the requirement for more sophisticated training
and decoding algorithms. With N-best rescoring, the HDM re-
quires one iteration of the EKF recursion, including calculation
of the Jacobian and inverse covariance matrices, whereas the
HMM requires one iteration of the Viterbi algorithm where the
model sequence is known (only the state path is unknown). An
estimate of the required number of multiplications can be ap-
proximated for both the HDM and HMM and these results are
also summarised in Table 2. Not surprisingly the computational
complexity of the HMM is a tenth of that required for the HDM.
With more efficient matrix multiplication and matrix inversion
algorithms, the computational complexity of the HDM can be
improved but the EKF recursion will still be a heavy computa-
tional burden compared with the Viterbi algorithm.

HMM HDM

Number of Parameters 768761 9366
Decoding Complexity 585 5897

Table 2: Comparison of the number of parameters and compu-
tational complexity (for decoding) between HMM and HDM.
The computational complexity is measured by the total number
of required multiplications for a fixed-length utterance.

5. Issues for Further Exploration

Although the HDM formulation represents a more structured
modeling paradigm with a much reduced number of parameters
compared to the HMM, there are several issues that need to be
further investigated to improve the efficiency and applicability
of the model.



The first issue to consider is whether a general nonlinear map-
ping (such as that represented by a neural network) between the
hidden VTR values and the MFCC observation features is nec-
essary. As indicated in [11] a mixture of linear models may be
able to provide a similar performance. More investigation is
needed to determine the most appropriate forms of the func-
tional mapping that faithfully represents the “physical” rela-
tionship between the hidden and observed vectors in the HDM.
The mapping functions explored in the past include a MLP or
RBF neural network [2, 7, 11, 12], a simple linear mapping [6],
a mixture of linear mappings [11], a fixed and parameter-free
nonlinear function [3, 4, 5], and codebook mapping constructed
from actual articulatory and acoustic data pairs [1].

If one does assume a nonlinear mapping for the observation pro-
cess then the EKF recursion may not be the best state estima-
tion algorithm to choose. Not only is the EKF computationally
expensive but it is only accurate to the first-order due to the
linearisation of the Taylor series expansion of the nonlinearity.
The Unscented Kalman Filter (UKF) [8], on the other hand, is
up to second-order or even third-order accurate in the nonlinear-
ity without any additional computations. Furthermore withthe
UKF there is no need to derive an expression for the Jacobian,
allowing more complex nonlinearities to be investigated.

A more serious problem with the HDM is the fact that an ef-
ficient decoding algorithm cannot be easily applied due to the
continuity constraint. Alternative formulations like thepath-
stack algorithm have been proposed in [10] and although much
less efficient than the Viterbi algorithm and not optimal, the
path-stack algorithm should be investigated further. Alterna-
tively, lattice search rescoring as presented in [4] can at least be
used to provide a richer set of transcriptions than N-best rescor-
ing. In the final analysis, to be competitive with or superiorto
an HMM, the HDM will need to efficiently decode an unknown
utterance without any prior knowledge of possible phone seg-
mentations.

6. Discussion and Conclusion

The HMM has been the dominant technology for acoustic mod-
eling in speech recognition, but its weaknesses arising from
a number of its inherent assumptions impede the achievement
of high performance. One prominent weakness in current
HMMs is the handicap in representing long-span temporal de-
pendency in the acoustic feature sequence of speech, reflect-
ing speech coarticulation and reduction. This inadequacy is
explicitly addressed by the HDM, a structure-based paramet-
ric model for speech dynamics, where several different imple-
mentations have appeared in the literature in the past. Thispa-
per overviews one principal implementation type of the HDM
idea, where the hidden dynamics are represented by recursive-
form, autoregressive-style, and target-directed temporal func-
tions, and the relationship between the hidden dynamic vectors
and the observed acoustic vectors are represented by a neural
network. This implementation is quite different from that of
hidden trajectory models [4, 5], where the hidden dynamics are
represented by a non-recursive form of the “filtering” function,
and the mapping from the hidden to the observed vectors is ac-
complished by a fixed nonlinear function exploiting the “physi-
cal” relationship between VTRs and cepstra.

Future advancement in HDM development will likely come
from careful exploration of the several issues discussed inSec-

tion 5, and from integration of other types of long-span model-
ing that can effectively incorporate many other sources of pho-
netic knowledge in addition to coarticulation modeling as has
been the focus in the HDM development to date.
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