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Abstract—The ability to identify and track visually interesting
regions has many practical applications – for example, in image
and video compression, visual marketing and foveal machine
vision. Due to challenges in modeling the peculiarities of human
physiological and psychological responses, automatic detection of
fixation points is an open problem. Indeed, no objective methods
are currently capable of fully modeling the human perception
of regions of interest (ROIs). Thus, research often relies on user
studies with eye tracking systems. In this paper we propose a cost-
effective and convenient alternative, obtained by having internet
workers annotate videos with ROI coordinates. The workers use
an interactive video player with a simulated mouse-driven fovea,
which models the fall-off in resolution of the human visual system.
Since this approach is not supervised, we implement methods for
identifying inaccurate or malicious results. Using this proposal,
one can collect ROI data in an automated fashion, and at a much
lower cost than laboratory studies.

Index Terms—region of interest, foveation, point of gaze, fixa-
tion selection, human visual system, crowdsourcing, mechanical
turk.

I. INTRODUCTION

Even though the human visual system (HVS) is character-

ized by a large field of view, its resolution declines rapidly

from the point of gaze [1]. To compensate for this, the HVS

samples its environment by linking periods of fixation with

fast and sudden movements called saccades. Since vision is

suppressed during saccades [1], nearly all information comes

from the fixation points, which we call regions of interest

(ROIs).

ROI identification has many practical applications. Foveated

image and video compression can provide major improve-

ments in subjective quality by minimizing distortion on the

neighborhood of the ROIs [2]–[4] at the expense of additional

distortion at peripheral regions. ROIs can be used to measure

advertising effectiveness by tracking attention duration across

ad elements [5]. Active machine vision benefits from using

context-aware cues and incorporating some pattern-matching

capabilities of the HVS (e.g., [6]).

In applications where eye tracking hardware is not available,

saliency models can be used to predict ROIs. Objective gaze

selection methods can be broadly classified as top-down (using

the cognitive interpretation of a scene) or bottom-up (exploring

low-level features such as luminance, contrast, texture and

motion). In practice, the HVS relies on a combination of both

approaches. Nevertheless, since current state-of-the-art object

and scene identification algorithms are still very domain-

specific, most objective saliency models are bottom-up [7],

[8]. To remove the requirement for scene identification, recent

work models context-independent features with machine learn-

ing approaches, trained using annotated databases [9], [10].

However, training and validating these methods requires large

datasets which are expensive and time consuming to obtain.

Thus, objective fixation selection is still a very challenging

open problem.

In this paper, we propose a method for facilitating the

collection of subjective ROIs and high-level saliency maps.

Instead of running laboratory user studies, we outsource ROI

tracking to workers from an internet crowd. Tracking is

performed with conventional pointing devices such as mice or

trackpads, using a video player specifically designed for this

purpose. The mouse pointer is replaced by fine crosshairs,

around which the video player applies a real-time, radially

dependent blur. The level of blur increases monotonically with

the radius, simulating the HVS resolution map [11]. This

motivates users to track interesting regions with the mouse,

in order to minimize the perceived amount of blur.

The task of tracking ROIs with this video player is crowd-

sourced using Amazon Mechanical Turk. Workers are typically

non-experts drawn from a pool of hundreds of thousands of

individuals distributed around the world. Using this approach,

one can obtain ROI data with a larger and more diverse pool

than with laboratory studies, and with costs which are at least

one order of magnitude smaller. To address the workers’ lack

of supervision and uncontrolled environment, we process all

submitted scores to remove inaccurate results.

Even though crowdsourcing has become quite popular for

user studies, its full potential as a generic DSP tool is only

starting to be explored. Huang et al. [12] developed a web

game for extracting image ROIs, where players earn points

by agreeing on their choices. In contrast, we extract ROIs

for full-motion video, and do not organize the task as a game.

While games with a purpose [13] can potentially bring together

large crowds seeking online entertainment, most such games

do not become popular enough to be used as research tools.

Thus, crowdsourcing marketplaces are still a more dependable

method for recruiting workers in a scalable manner.



Carlier et al. [14] have recently proposed a method for

crowdsourcing the task of retargeting video for low-resolution

devices. They use a video player with pan and zoom controls,

which is operated by workers with no prior video editing

experience. The results are then post-processed to reframe and

stabilize each shot, ensuring spatial continuity and delivering

the retargeted video. While this method can produce results

whose quality approaches that of professionally edited video,

it requires a level of cognition and attention to detail which is

atypical for most crowd workers, who aim to deliver hundreds

of micro-tasks per day. Thus, we use a simpler ROI collection

method, suitable for producing short and simple tasks.

A related crowdsourced application is MoodSwings [15],

which was designed for identifying and tracking emotion in

music. While music is played, workers evaluate its emotional

content by moving the mouse over a Cartesian plane. Hor-

izontal displacements measure valence (happy vs. sad), and

vertical displacements measure arousal (energetic vs. calm).

While mood classification is by no means an easy task, ROI

offers additional challenges. For example, there is typically

more than one fixation point per frame, and ROIs move faster,

making them more difficult to track.

The remainder of this paper is organized as follows. Sec-

tion 2 describes our experiment design and post-processing

methods. Section 3 shows experimental estimates for accuracy

and latency, and also presents an example for ROI tracking

with full-motion video. Section 4 has our conclusions and final

comments.

II. CROWDSOURCING ROI TRACKING

A. Experiment design

Amazon Mechanical Turk (MTurk) is a service designed

for crowdsourcing large quantities of small tasks using a

web interface and an open API. Jobs are known as human

intelligence tasks (HITs), and are typically designed to be very

simple and to require little specialized training. Most HITs can

be completed in a few minutes, and workers are rewarded per

HIT using a micropayment scheme. Submitted HITs can be

rejected, in which case the worker does not get paid. Since

MTurk accepts workers from all over the world, the typical

pay is below minimum wage in the United States.

Our ROI tracking experiment relies on an interactive video

player written for the Adobe Flash platform. It is designed to

run as a browser plug-in, and is capable of streaming H.264

video. To make HITs as simple as possible, the application

used for ROI tracking features no controls other than a large

play button. Unlike a conventional video player, the user is

shown a blurred version of the clip. The mouse pointer is

replaced by thin crosshairs, and the level of blur increases

monotonically with the distance to the cursor.

Let b (x) be a 2-dimensional blur map with values between

0.0 and 1.0. This map defines the level of blur applied to each

pixel of a frame. A blur map modeling the HVS should have

values which increase with the distance to the fixation point.

To this effect, we use the exponential blur map given by

b (x) = 1 − e−max(‖x−x0‖2
−r0,0)/r0 , (1)

where x = (x1, x2) represents pixel coordinates, x0 is the

cursor position and r0 controls the radius of the region with

no blur, as well as the rate at which the blur increases with

radius.
Given a video frame f (x), let f̃ (x) be produced by filtering

f (x) with a 10 × 10 box blur. The frame shown by the ROI

video player is given by

g (x) = [1 − b (x)] f (x) + b (x) f̃ (x) . (2)

The use of an exponential blur map was inspired by the expo-

nential resolution maps used in [11], which fit psychological

experiment data. However, [11] can implement any arbitrary

level of blur by using a multiresolution pyramid of low-pass

filtered frames. With our approach, the maximum level of blur

is limited to the box blur used to produce f̃ (x). Furthermore,

the use of a single level and a box blur (as opposed to a

Gaussian blur) imply that 1−b (x) only approximates the reso-

lution map proposed in [11]. Nevertheless, our implementation

produces a convincing simulation of the HVS. Furthermore,

these approximations are required to implement our proposal

with the Flash Player, which was not designed for real-time

video processing.

We implement this functionality as follows. The blur map

b (x) is initialized programmatically using Adobe Pixel Ben-

der, which allows the description of 2D filter kernels using a C-

like language. Decoded frames f (x) are grabbed at 24 frames

per second, copied to an auxiliary buffer and filtered using a

built-in implementation of the box blur, producing f̃ (x). The
foveated image g (x) is then obtained by alpha blending f (x)
and f̃ (x), using b (x) as the alpha mask. Using this approach,

we can foveate 640x360 H.264 videos encoded at 500 kbps

using approximately 60% CPU time on a 2.5 GHz Intel Core

2 Duo T9400 processor, using Flash Player 10.1 on Windows

or Linux. In contrast, the conventional (non-foveated) video

player requires approximately 25% of the CPU time. Fig. 1

shows an example.
While 60% CPU utilization is not trivial, our experiments

have shown that less than 10% of MTurk users have experi-

enced dropped frames due to slow processors. If more than 5%

of the frames are dropped, the video player displays an error

message and notifies the worker that his computer is too slow

to participate in this experiment. To reduce the probability that

the video will stop due to buffering issues, the video player

preloads the clip until it can play it to the end without stopping,

even if the bandwidth is reduced by 33%.

The MTurk HIT creation process is automated using a

modified version of the open-source CrowdMOS tools [16]–

[18], which were originally developed by the authors to

crowdsource subjective quality user studies. Each HIT consists

of an HTML page with brief instructions, followed by the

interactive video player.
To test and develop this ROI tracking methodology, we

used trailers from action and animation movies. They are



Figure 1. Top: original video; bottom: foveated video, as produced by the
interactive video player. In the bottom frame, the mouse cursor is represented
with blue crosshairs, and coincides with the modeled fixation point. A radially
increasing blur is applied to the frame, simulating the resolution roll-off of
the human visual system.

approximately 2 minutes long, and are typically rich in diver-

sity, movement and transitions. Our studies offered a reward

of $.25/HIT. Considering the time required to work on each

HIT and buffering times, each worker gets paid approximately

$5/hour. Due to the international worker pool, this amount is

sufficient to run experiments featuring 20-40 workers in only

a few hours.

B. Result screening

Since MTurk workers are unsupervised, results must be

screened for accuracy. Workers have little incentive to submit

intentionally inaccurate results, since rejected HITs are not

rewarded, and each worker’s acceptance rate is used as a qual-

ification requirement by most MTurk requesters. Nevertheless,

our experience with CrowdMOS showed that it is not unusual

for studies featuring 20-40 workers to have 1 or 2 workers

who submit obviously inaccurate results [17]. Even though

workers can opt out of submitting their results at the end of

the video, sometimes workers submit results which are only

partially accurate (for example, because they were distracted

during part of the experiment).

In general, video clips have multiple ROIs per frame. Thus,

estimating mean cursor coordinates and discarding values with

excessive distances to the mean produces unacceptable results.

A clustering algorithm would be an obvious generalization,

and one might consider using the distance to the closest cluster

center as a quality measure. However, with the exception of

very simple scenes, ROI maps are usually better represented

as distributions (as there is no concept of cluster center). Thus,

our proposed screening method does not implement clustering.

The video player is designed to sample the cursor coordi-

nates at 24 Hz. At the end of the clip, the cursor coordinate

history and its associated timestamps are submitted to the

MTurk servers. The associated timestamps must be known

because Flash Player timers contain a significant amount

of jitter, which must be compensated for. Thus, the first

processing step consists of using linear interpolation to obtain

an approximation of what the mouse coordinates would be

with jitterless sampling at 24 Hz.

This is followed by the screening procedure, which has two

steps. The first step is designed to identify very inaccurate

HITs, which are completely discarded. The second step com-

pares each HIT with respect to the others, and decides whether

results are accurate on a frame by frame basis.

Let N be the number of workers and T be the duration of

the video. Let (xn (t) , yn (t)) be the mouse coordinates (in

pixels) for worker n at timestamp t, with 0 ≤ n < N and

0 ≤ t < T . Define the tracking error for worker n as

en =
∑

t

[

min
i6=n

‖(xn (t) , yn (t)) − (xi (t) , yi (t))‖
2

]

,

where t iterates over all collected timestamps. The first screen-

ing step consists of discarding the HITs with the 20% largest

tracking errors. From our experience, obviously bad results do

not exceed 10% of the submitted HITs.

Even though this procedure is capable of eliminating sub-

missions which are globally inaccurate, workers will always

have ROI histories with brief local inaccuracies. We first scan

over all cursor data for one worker at a time, and discard all

contiguous sections in which the cursor moved less than 2

pixels on every frame for 3 seconds or more. This addresses

common cases when workers stop moving the mouse.

Next we measure worker accuracy on a frame by frame

basis, with respect to the pool of results. Consider the cursor

position produced at timestamp t0 by worker n, with 0 ≤ t0 <

T and 0 ≤ n < N . Define

Dn (t0) =
{

‖(xn (t0) , yn (t0)) − (xi (t) , yi (t))‖
2

: |t0 − t| ≤ 0.2, 0 ≤ i < N, i 6= n
}

,

which contains the distances to the cursors from other workers,

for a 400ms window centered at t0. As we show in the

next section, this window is sufficient to model the different

reaction times from other workers. If min Dn (t0) > 50, then
we ignore the cursor data from worker n for a 1 s window

centered at t0. As we also show next, 50 pixels is well above

the typical positioning error which can be obtained with this

method. Ignoring results over a 1 s window addresses the fact

that positioning inaccuracies require some time for the worker

to detect and correct.

III. EXPERIMENTS

A. Accuracy and latency measurements

To measure worker accuracy and latency, we developed two

experiments using a variation of the video player described

above. Instead of playing an H.264 stream, it draws a red

circle with a 10 pixel radius, which the worker is asked to
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Figure 2. Worker latency detail (experiment J). —: ground truth.

0 20 40 60 80 100
0

200

400

600

timestamp (s)

x
 c

o
o
rd

in
a
te

 (
p
x
)

0 20 40 60 80 100
0

100

200

300

timestamp (s)

y
 c

o
o
rd

in
a
te

 (
p
x
)

Figure 3. Worker latency results (experiment J). —: time-aligned ground
truth, —: averaged answers.

track. The circle assumes random positions over a 3x3 grid,

which expands to fill the player area.

We designed two variations of this experiment. In experi-

ment J, the circle jumps between grid positions approximately

every 1 + r seconds, where r is a pseudorandom value drawn

uniformly between 0 and 1. In experiment T, it translates

between grid positions at uniform speed. Experiment J was

designed to estimate user latency, and experiment T was

designed to measure accuracy. Each experiment lasted 120

seconds and was completed by 20 workers. Results were

screened as prescribed in the previous section.

Fig. 2 shows a representative section of experiment J. Using

the maximum cross-correlation between mouse tracking data

and the ground truth position for the circle, we estimated the

mean tracking latency to be approximately 500 ms. In contrast,

primary saccades in humans have latencies between 100 and

150 ms [19]. Fig. 3 compares the delay-adjusted mean cursor

position and the ground truth.

Fig. 4 shows results for experiment T, comparing the ground

truth with individual answers. Since the red circle follows a

continuous path, users can predict its movement and the mean

tracking delay is only 70 ms. Mean horizontal and vertical

tracking standard deviations are σx ≈ 21 and σy ≈ 16 pixels,

respectively. Assuming the horizontal and vertical errors are

independent such that variances are additive, we have a

positioning standard deviation of σ ≈ 26 pixels. Thus, the

50 pixel threshold used in the outlier detection corresponds to

approximately twice this value. Fig. 5 compares the ground

truth with the average over all workers.
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Figure 4. Tracking accuracy results (experiment T). —: ground truth.
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Figure 5. Tracking accuracy results (experiment T). —: ground truth, —:
averaged answers.

B. ROI tracking for movie trailers

In this section we show results collected for the 2.5 minute

trailer for the movie Ice Age 3. We compare results from

40 MTurk workers with those from a laboratory experiment

with 12 volunteers using a Tobii x50 eye tracker. The MTurk

data was post-processed as prescribed in Section 2. The eye

tracking data was only processed to eliminate glitches due to

off-screen glances.

Fig. 6 shows the cursor/eye history after screening. To

facilitate the visualization, the ROI coordinate vector for

each timestamp was convolved with a 1D Gaussian kernel

with σ = 5 pixels. Detailed results for this experiment

(overlaying ROIs on top of the video) can be seen at

http://www.crowdmos.org/results/ROI/.

Like most modern animation trailers, this example combines

a generous amount of movement and many sudden transitions

between camera angles and scenes. Also, many scenes are

characterized by more than one ROI. Fig. 7 shows one frame

which would be extremely challenging to classify using an

objective method. Due to the storyline, the attention is shifted

to the female squirrel (shown on the left), despite the fact that

she occupies a relatively small portion of the frame. Whenever

the ROI was large with respect to the cursor, workers always

produced enough positioning variety to cover entire ROIs.

The eye tracker has the definite advantage of following very

fast movements, which would be difficult to reproduce using a
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Figure 6. ROI tracking history for the Ice Age 3 trailer. Top: MTurk results;
bottom: eye tracker results.

Figure 7. ROIs for the Ice Age 3 trailer, at the 84 second mark.

mouse. On the other hand, our methodology provides cleaner

data, since the decision to move the mouse to relevant regions

involves a higher degree of cognition. Thus, our proposal

tends to filter out low-level instinctive reflexes and emphasize

regions and events which the user considers to be important

given a real time scene analysis.

IV. CONCLUSION

This paper describes a method of crowdsourcing subjective

region of interest detection and tracking. It was designed

to automate the determination of high-level saliency maps,

where context and cognitive interpretation are fundamental to

produce accurate and reproducible results.

At the time of this writing, objective ROI methods are

dominated by bottom-up saliency models, which ignore cog-

nitive aspects and thus cannot fully model human perception.

By combining crowdsourcing with a screening algorithm, our

proposal offers a method of automating subjective ROI studies.

We can thus deliver top-down saliency data at costs which

are at least one order of magnitude smaller than those for

laboratory studies with eye tracking hardware. Indeed, for our

experiments, the crowdsourcing cost was approximately $6 per

hour of annotated video.

By providing a very practical means of acquiring subjective

data, we hope to facilitate the development and evaluation

of top-down models, opening new possibilities for research

in foveated video compression, visual recognition and scene

interpretation.
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