
Specifying and Composing Non-Functional
Requirements in Model-based Development

Ethan K. Jackson1, Dirk Seifert2 and Markus Dahlweid2

Thomas Santen2, Nikolaj Bjørner1, and Wolfram Schulte1

1Microsoft Research,
One Microsoft Way, Redmond, WA

2European Microsoft Innovation Center,
Aachen, Germany

{ejackson,dseifert,mdahlwei,tsanten,nbjorner,schulte}@microsoft.com

Abstract. Non-functional requirements encompass important design con-
cerns such as schedulability, security, and communication constraints. In
model-based development they non-locally impact admissible platform-
mappings and design spaces. In this paper we present a novel and for-
mal approach for specifying non-functional requirements as constraint-
systems over the space of models. Our approach, based on structured
logic programming, allows interacting requirements to be specified in-
dependently from each other and composed together. Correct-by- con-
struction operators eliminate some composition mistakes. Our approach
is implemented in our formal modeling tool FORMULA, which can ana-
lyze the impacts of interacting non-functional requirements on platform
mappings and design spaces.

1 Introduction

Model-based development (MBD) is a specification-driven approach to engineer-
ing complex software systems. It relies on design artifacts called models, which
are specifications interpreted against a fixed and formalized context. MBD re-
quires the precise description of the modeling context before any models are
built. A canonical example from embedded systems demonstrates this idea:

Component X produces an output event every 10 ms.

This specification is dangerous, because the concepts of component, event, and
time are not elaborated. In order to apply MBD, the engineer must pick a con-
text that gives precision to these concepts. These contexts go by many different
names including: domain [1], platform [2], modeling language [3], and model of
communication and computation(MoCC) [4]. We arbitrarily use the term do-
main in this paper. Domains are essential to the modeling process, because they
provide the key assumptions about computation, communication, and time pro-
gression that enable pre-implementation analysis of software models.

There is a downside to the MBD approach. Engineers must occasionally
define their own domains, resulting in the following complications:

– The engineer may not possess the skill-sets to formalize domain assumptions.
For example, assumptions about time and concurrency are notoriously diffi-
cult to specify [5].

– Tools may not exist that are capable of analyzing models in the domain.
– System requirements may change, necessitating changes to the domain, its

models, and associated tool-flow [6].

We shall refer to this overarching problem as the domain specification problem.
The domain specification problem has been recognized, and motivated new re-
search into libraries of composable domains [2, 4, 7, 8]. The hope is that whenever
a new domain must be defined, it can be assembled from existing library elements
so that existing tool-flows are utilized.

In this paper we examine the domain specification problem for non-functional
requirements, which encompass important design concerns such as schedulability,
security, and communication constraints. We show that many forms of non-
functional requirements can be regarded as constraints over the space of models.
In these cases domain specification reduces to formalizing a class of constraint-
systems. Based on this observation, we have developed a novel methodology for
integrating non-functional requirements into the MBD process:

– Engineers formalize non-functional requirements using algebraic data types
and logic programming (LP). Logic programs have a precise execution se-
mantics, so domains can be understood programmatically. However, our logic
programs also have a precise interpretation as a system of first-order formu-
las, making them analyzable by existing tools. (Section 3)

– Our domains are composable via a novel set of operators acting on data types
and logic programs. Our operators are constructive; they make semantic
guarantees about composite domains. This property is crucial if composition
techniques are to be an effective means for domain specification. (Section 4)

– We provide a design pattern, called the Extend-Constrain-Merge Pattern,
by which engineers can separately specify and then compose non-functional
requirements. Our correct-by-construction operators provide formal guaran-
tees for this pattern. (Section 5)

We have implemented this work in our formal modeling tool FORMULA [9].

2 Background and Related Work

The domain specification problem has been recognized and studied from many
angles; we summarize a few. Much research has been devoted to a common
mathematical framework for the (straightforward) specification and composi-
tion of behavioral semantics. The semantic anchoring work of [7] uses abstract
state machines (ASMs) as the mathematical underpinning for domains. The au-
thors (and many others) argue that ASM-based formal methods are readily used
by engineers. The Ptolemy II system [4] uses interface automata combined with
a hierarchical composition scheme to formalize MoCCs and composition. Static

analysis is used to decide if the composite system is semantically meaningful.
Recently, the BIP framework [8] uses a Plotkin-style structural-operation seman-
tics (SOS). The domain specification problem has also been studied through
denotational lenses. Recently, the tagged-signal formalism [10], based on trace
algebras, reduces the problem to unifying various types of timelines. (We use the
term “timeline” in a general sense.)

Behavioral semantics are useful for simulation and verification (when verifi-
cation is possible), but there are other important modeling tasks. Incremental
refinement is supported in MBD by automated translation of abstract specifi-
cations (platform-independent models) into implementation-dependent specifi-
cations (platform-dependent models) [11]. This process requires domains that
express the rules by which abstract functionalities are mapped onto implemen-
tation components [12]. Metamodeling is a language-inspired approach for cap-
turing domain rules. However, many have argued that existing metamodeling
standards also lack formalization and composition operators [13]. Design-space
exploration (DE) uses these rules as constraints to evaluate possible refinement
paths [14]. Recent work in feature diagrams also takes a similar view on software
product lines [15].

In this paper we focus on specifying and composing non-functional require-
ments for use in incremental refinement and design space exploration tasks. We
avoid metamodeling standards to express domains, and instead develop a formal
specification language using logic programming. Formally, our logic programs re-
duce to constraint-systems definable by first-order formulas over term algebras
with restricted arithmetic constraints [16]. Domain composition is viewed as a
composition of constraint-systems; we provide novel composition operators that
make semantic guarantees about the composite domains. Automated theorem
proving is supported by reduction to the state-of-the-art SMT (SAT modulo
theories) solver Z3 [17]. Thus, we make a trade-off between expressiveness and
analyzability, which is similar to trade-off made by Alloy [18]. Our techniques
are implemented in the tool FORMULA [9]. For the remainder of this paper we
show how these techniques can be applied to non-functional requirements.

3 Non-functional Requirements As Constraint Systems

A common method of incremental refinement in MBD, called platform mapping,
relies on the following design artifacts [12, 19]:

1. A platform domain (P domain) characterizing the space of implementation
architectures at some level of abstraction.

2. A platform-independent domain (PI domain) characterizing the space of
implementation-independent architectures at some level of abstraction.

3. A platform model (P model) of the target implementation architecture, which
is a member of the platform domain.

4. A platform-independent model (PI model or just PIM) of the desired software
architecture, which is a member of the PI domain.

The platform and platform-independent domains provide the necessary formal
contexts for the two models. A platform mapping assigns elements from the PIM
onto the platform model, thereby witnessing how the PIM is implemented.

Example 1. We now present a concrete example motivated by crucial abstrac-
tions found in safety-critical systems [20, 21]. A platform model contains a (het-
erogeneous) set of processors connected by point-to-point communication buses,
for which the maximum communication delay is known. A set of known software
functions can be executed on a processor with known worst-case execution times
(WCETs). (For simplicity, we assume WCETs can be summed.) Intuitively, the
platform domain is the set of all such models.

A platform-independent model consists of a set of software components con-
nected together by communication channels. Each software component utilizes
a set of functions. Component cj executes all of its functions nj times every T
units of time. The platform-independent domain is the set of all such models. A
platform mapping assigns each component to a processor so that on processor
pi: ∑

cj∈pi

nj

∑
fk∈cj

wcet(fk, pi)

 ≤ T (1)

where cj is a component mapped onto pi. Also, fk is a function used by cj and
wcet(fk, pi) is the WCET of function fk on pi. (We ignore communication jitter
and connectivity for the moment.) �

Equation 1 embodies an important non-functional requirement: schedulabil-
ity. This requirement affects incremental refinement by reducing the total num-
ber of legal platform mappings from the PI domain to the P domain. Turning this
around, we can define a composite domain Dmapping whose models can be de-
composed into a platform model, a component model, and a function from com-
ponents to processors satisfying Equation 1. If a model belongs to the Dmapping

domain, then it is a valid architecture satisfying the schedulability requirement.
Conversely, enumerating models from Dmapping yields a subset of valid refine-
ments.

This example illustrates that many non-functional requirements can be re-
garded as constraint-systems. However, three enabling technologies are required
to apply this observation for modeling: (1) A technology for specifying domains
as constraint-systems. (2) Composition operators that guarantee some relation-
ships between conforming models. (3) Modeling finding procedures that enumer-
ate domain models.

3.1 Specifying Domains

The previous example shows that domains contain data structures for represent-
ing models. We use free constructors as a simple, yet flexible, formalization of
data structures. An n-ary free constructor is a partial function f that takes n

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

15.
16.
17.
18.
19.

21.
22.
23.

/// Platform-independent domain

domain Component {

/// Data structures

[multiplicity(1,*)]

Cmp : (id: Basic).

[relation]

Cnn : (from: Cmp, to: Cmp).

[multiplicity(1,1)]

Period : (time: PosInteger).

[function]

Freq : (cmp: Cmp, freq: PosInteger).

[relation(cmp)]

Uses : (cmp: Cmp, func: String).

/// Some additional constraints

bad_Cnn1 :? cn is Cnn, fail cm is Cmp,

 cn.from.id = cm.id.

bad_Cnn2 :? cn is Cnn, fail cm is Cmp,

 cn.to.id = cm.id.

atleast :? cm is Cmp.

/// conforms query

conforms :? atleast & !bad_Cnn1 &

 !bad_Cnn2.

}

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

/// Platform domain

domain Platform {

[multiplicity(1,*)]

Prc : (id: Basic).

[relation(from,to)]

Cnn : (from: Prc, to: Prc,

 delay: PosInteger).

[multiplicity(1,*)]

Func : (id: String).

[cartesian(from,to)]

Wcet : (func: Func, proc: Prc,

 wcet : PosInteger).

}

Fig. 1. Specifying the PI and P domains with formula.

arguments t1, t2, . . . , tn and returns a new data instance t if all arguments are
correctly-typed: t = f(t1, t2, . . . , tn). Two instances of data t and t′ are equal if
and only if: (1) Both t and t′ are the same constant (e.g. t = t′ = 1), (2) Or t and
t′ were constructed by the same free constructor f applied to the same list of
arguments. In our framework a model is a finite set of data instances constructed
by free constructors. A model M is a member of a domain D if its data elements
were built from constructors of D and M satisfies the constraints of D.

Lines 2-23 in Figure 1 contain the specification for the platform-independent
domain written in our formula language. Line 2 declares the PI domain with
the name Component. Line 5 declares a free constructor called Cmp, which is
used to construct instances of components. The single argument to Cmp is an
identifier of type Basic, i.e. the argument can be a string or numeric constant.
Line 7 introduces another constructor Cnn for constructing connections between
components. In this case, both arguments to Cnn must be instances of Cmp. The
other constructors are:

– Period for declaring the amount of time T it takes for all components to
complete all their computations.

– Frequency for assigning the number of times nj a particular component must
repeat its computation within T units of time.

– Uses gives the String names of software functions used by component cj .

A model of the Component domain is a set of data instances built using these
constructors, which also satisfies the domain constraints. For example:

M =

Period(10), Cmp(1), Cmp(2),

Cnn(Cmp(1), Cmp(2)),
F req(Cmp(1), 1), F req(Cmp(2), 2)

Uses(Cmp(1), ‘‘TempSensor’’), Uses(Cmp(2), ‘‘FFT’’)

 . (2)

This model has two components that complete computations every 10 time units.
Component 1 executes the TempSensor function once every 10 units and connects
to component 2. Component 2 uses the FFT function twice every 10 units.

Logic Programming. Domain constraints are specified with logic program-
ming. In the interest of space, we provide an informal discussion of logic pro-
grams. Please see [16] for a formal presentation. Intuitively, our logic programs
are pattern matching (i.e. unification) procedures that search the data contained
by models. The results of these searches are used to decide if a model belongs
to the domain. A logic program has just two forms of statements: queries and
rules.

(Query) query-name :? pattern-expression.
(Rule) f(t1,t2,. . .,tn) :- pattern-expression.

A query is effectively a boolean variable whose value is true if the pattern is
matched at least once; otherwise it takes the value false. A rule instantiates a
new data element using free constructor f every time its pattern is satisfied.
This new data does not change the input model, but it can be observed by other
queries/rules allowing interactions between statements of the program. Pattern
expressions are formed from four basic constructs:

(Pos) x is f (Neg) fail x is f

(Constr) x1 { = | 6= } x2 (Arith) c {= | 6= | ≤ | ≥}
∑

i

∏
j

xi,j

A positive (Pos) expression searches the model for a data instance t of type f ;
if it succeeds then x is bound to t: x = t. A variable appearing in a positive
expression is called a positive variable. A constraint (Constr) expression tests if
two data instances are equal; xi∈{1,2} must be a variable or a data instance. An
arithmetic (Arith) expression compares sums-of-products to a numeric constant
c; every xi,j must either be a constant or variable capable of taking a numeric
value. A negative (Neg) expression checks that there is no data instance of type
f satisfying all the constraints on x. Negative expressions do not create bindings.

A pattern expression is a list of basic constructs, and is satisfied for all positive
variable bindings that cause every construct to be satisfied. For example, lines
15-16 in Figure 1 search for connections (Cnn) with missing starting-points:

bad Cnn1 :? cn is Cnn, fail cm is Cmp, cn.from.id = cm.id.

This query is satisfied if the variable cn can be bound to a connection such
that the starting-point of the connection does not exist. It is equivalent to the
following first-order statement:

bad Cnn1⇔ ∃x, y, z x = Cmp(z) ∧ Cnn(x, y) ∈M∧
(¬∃w Cmp(w) ∈M ∧ w = z). (3)

Similarly, lines 17-18 find connections with missing end-point. Line 19 checks
that at least one component exists in the model.

Model Conformance. Every domain provides a special query called conforms
for characterizing the models belonging to that domain. A model M belongs to
a domain D if the conforms query of D evaluates to true for M . The conforms
query is unique to our approach and enables composition of domains. It can
be defined with a pattern expression, or, for convenience, it may be a boolean
combination of existing queries. For example:

conforms :? atleast & !bad Cnn1 & !bad Cnn2.

accepts any model with at least one component (line 19), and where the bad Cnn1
and bad Cnn2 queries evaluate to false.

A typical domain will introduce many queries which validate the correctness
of model data. In order to reduce the specification burden, the free constructors
can be annotated to indicate common usage patterns. For example, line 6 anno-
tates the Cnn constructor with the [relation] annotation. This causes the implicit
introduction of the queries in lines 15-18 and implicitly conjuncts their negations
onto the conforms query. Here are several common usage patterns that can be
directly translated into logic programming: (Each pattern has two forms.)

– [relation], [relation(c1,c2,. . .,cm)]: (1) Every argument of every f data-instance
must exist in M . (2) Every argument of the ci component of every f data-
instance must exist in M . (The set of numeric and string constants exist by
default.)

– [cartesian], [cartesian(c1,c2,. . .,cm)]: (1) The constructor f is an n-ary rela-
tion, and if t1, . . . , tn are in M and f can be applied to this list, then there
is an instance t = f(t1, . . . , tn) in M . (2) The projection of all f instances
onto the components (c1,c2,. . .,cm) is cartesian.

– [function], [function(c1,c2)]: (1) The constructor f is a binary relation and
the projection of f onto its first component is cartesian. (2) f is an n≥2-ary
constructor and the projection of f onto components (c1,c2) is a function.

– [multiplicity(kmin, kmax)], [multiplicity(kmin, *)]: (1) There are between kmin

and kmax (inclusive) unique instances of f in M . (2) There are at least kmin

unique instances of f in M .

Lines 25-36 of Figure 1 characterize the platform domain using annotations
to implicitly define many queries, including the conforms query. Briefly, Prc con-
structs processors in the platform. Cnn connects processors and specifies the

maximum communication delay. Func declares software functions that execute
on processors. Wcet defines the worst-case execution time of a function f on pro-
cessor p. In summary, we have shown that platform-independent and platform
domains can be specified using algebraic data types, logic programming, and the
conforms query. This provides a declarative pattern-matching style for formal-
izing domains as constraint-systems over first-order logic (with the theories of
term algebras and arithmetic).

4 Composing Domains

Next, we wish to specify Dmapping, which formalizes a non-functional require-
ment in terms of the PI and P domains. Following the previous example, it
is tempting to declare a composite domain Dmapping that lexically imports the
Component and Platform domains. In fact, lexical importation is the primary
means of composition in UML, a standard language for MBD [19]. However,
this approach may introduce errors since lexical importation makes no semantic
guarantees about the resulting constraint systems.

This problem already appears in our simple example: Combining the two
specifications leads to a conflict because both specifications declare the Cnn con-
structor, but with different types (lines 7 and 29). Actually, such a conflict is
the best-case scenario, because it draws attention to the problem. Consider the
alternative where both domains compatibly define Cnn. Then, the two logic pro-
grams can non-locally interact through shared data. This interaction may yield
an unexpected constraint system that does not represent the intended compo-
sition. Non-local interaction is not just a property of our framework, but arises
whenever specifications can arbitrarily share concepts. Again, UML exhibits this
same problem [13].

The Product Construction. In our approach we do not eliminate non-local
interactions, but provide correct-by-construction operators for controlling in-
teractions. First, we introduce some terminology. Let models(D) denote all
finite sets of data instances satisfying the conforms query of D. Two sets of
models M1 and M2 are isomorphic, written M1

∼= M2, if there exists a bi-
jection ϕ : M1 → M2. We extend isomorphism to domains: Da

∼= Db if
models(Da) ∼= models(Db). The first step towards controlling interaction is the
construction of the product domain D×[a, b], which has the property:

models(D×[a, b]) ∼= models(Da)×models(Db). (4)

When context is clear, we write D× for the product of Da and Db. The con-
straint system D× eliminates all interactions between domains, which serves
as an ideal starting point for controlled composition. Another way to under-
stand the product is through projections πa : models(D×) → models(Da) and

πb : models(D×)→ models(Db). Then, the models satisfy:(
M× ∈ models(D×)

)
⇔
(
πa(M×) ∈ models(Da) ∧ πb(M×) ∈ models(Db)

)
(5)

We provide two operators for constructing the product domain: The pseudo-
product (denoted ‘∗’) and the renaming operator (denoted ‘as’). The pseudo-
product lexically imports all definitions from Da and Db into a composite domain
named (Da ∗Db). Inside the composite domain each query q of Da is renamed
to Da.q and each query q′ in Db is renamed to Db.q

′. Then, the conforms query
of the composite becomes:

conforms :? Da.conforms & Db.conforms.

This construction is precisely the product domain if a certain condition holds.
Given a free constructor f in domain D, let JfK be the set of all data instances
that can be constructed by f , then:

T (D) =
⋃

f∈D

JfK. (6)

Lemma 1. Given domains Da and Db such that T (Da) ∩ T (Db) = ∅ then:

D×[a, b] ∼= (Da ∗Db). (7)

Proof Sketch. Define projection operators:

πa(M) 7→
(
M ∩ T (Da)

)
, πb(M) 7→

(
M ∩ T (Db)

)
. (8)

Verify that projections satisfy Equation 5. �
This observation explains that if two specifications are disjoint, then their

product can be easily formed. However, in our example the specifications are not
disjoint (due to Cnn), so (Component * Platform) is not the product. In this case,
the renaming operator ‘as’ is to used establish disjointness. Let D′ = D as X,
then D′ contains all definitions of D, except that every declaration/use of a
function symbol f is replaced with the declaration/use X.f . Every query q is
renamed to X.q, and the conforms query of D′ is conforms :? X.conforms.

Lemma 2. Given domains Da and Db. Let D′ = Da as X and D′′ = Db as Y
for X 6= Y . Then, T (D′) ∩ T (D′′) = ∅.
Proof Sketch. Assume there exists an element t ∈ T (D′) ∩ T (D′′), then there
must exist free constructors f ′ ∈ D′ and f ′′ ∈ D′′ such that:

f ′(t1, t2, . . . , tn) = t = f ′′(s1, s2, . . . , sm). (9)

However, since f ′ and f ′′ are free constructors, it must be that f ′ and f ′′ are
the same free constructor in order for Equation (9) to hold. This contradicts
that D′ and D′′ have disjoint free constructors due to the renaming operations:
D′ = Da as X and D′′ = Db as Y . �

Theorem 1. Let (Di)i∈I be a finite collection of domains indexed by I. Let
rename : I → V be an injective function onto some vocabulary of names V.
Then:

(Di1 as rename(i1)) ∗ (Di2 as rename(i2)) ∗ . . . ∗ (Din as rename(in)) ∼=
D×[i1, i2, . . . , in].

(10)

Proof Sketch. The ∗ operator is associative, because lexical importation and
boolean conjunction are associative. (The order in which domain definitions
are imported is semantically irrelevant in formula.) Therefore, by pairwise
disjointness of free constructors and repeated application of lemmas (1) and (2)
the overall product is constructed. �

Thus, our constructive composition operators provide semantics guarantees
about the composite constraint system.

Extending and Restricting. Returning to our example, we can safely con-
struct the product domain (Component as C * Platform as P). However, this
system still lacks the platform-mapping machinery. The next problem is to ex-
tend the product with new data without disturbing existing properties. We call
domain Da an extension of Db, written Da ≥ Db if:

∃D′, D′ ∼= Da ∧models(D′) ⊇ models(Db). (11)

Conversely, Db is a restriction of Da. These properties formalize set-theoretic
containment up to isomorphism. Again, we provide the operators extends and
restricts for constructively building domains with property 11. Briefly, both op-
erators lexically import definitions and rename queries. The conforms query of
an extended domain is the disjunction of all locally defined conformances with
imported conformances. On the other hand, a restricted domain is a conjunction
of all local conformances with imported conformances; restricted domains can-
not introduce new free constructors. Finally, syntactic analysis of constituent
logic programs ensures that logic programs do not communicate information
that non-locally effects conformance. (This check only uses unification, so it is
efficient.)

Theorem 2. Let (Da extends Db) be a domain Da extending Db, which satisfies
all syntactic checks of the extends operator. Then Da ≥ Db. Let (Da restricts Db)
be a domain Da restricting Db, which satisfies all syntactic checks of the restricts
operator. Then Da ≤ Db.

Figure 2 shows the final formula specification for the schedulability re-
quirement. Lines 37-42 specify the Mapping domain, which extends the product
(Component as C * Platform as P) with a platform-mapping function from compo-
nents (C.cmp) to processors (P.prc). Notice that neither Cmp nor Prc are qualified
with the renaming prefixes “C.” and “P.” (Line 40). In this case qualification is
unnecessary, because formula can deduce the prefixes. (This is not the case for

37.

39.
40.
41.
42.

44.

46.
47.
48.
49.
50.
51.
52.
53.
54.

56.
57.
58.
59.
60.
61.
62.
63.

domain Mapping extends (Component as C * Platform as P) {

 /// Adds mapping to product

 [function]

 Map : (cmp: Cmp, proc: Prc).

}

domain Scheduling restricts (Mapping) {

 /// Derived constructor not used in models

 cwcet : (cmp: Cmp, wcet: Natural).

 cwcet(c, 0) :- c is Cmp, fail u is Uses, u.cmp = c.

 cwcet(c, t) :- c is Cmp,

 bagof{z | u is Uses, m is Map,

 f is Freq, w is Wcet,

 u.cmp = c, u.func = w.func.id,

 m.cmp = c, m.proc = w.proc,

 f.cmp = c,

 z = w.wcet*f.freq

 }(times), sum{tp | times}(t).

 unsched(p) :- p is Prc, per is Period,

 bagof{w.wcet | m is Map, w is cwcet,

 m.proc = p, m.cmp = w.cmp,

 }(wcets), sum{tp | wcets}(t), t > per.time.

 isMapped :? m is Map.

 isSched :? fail un is unsched.

 conforms :? isMapped & isSched.

}

Fig. 2. Extending and restricting domains. (Con’t from 1.)

Cnn.) This feature helps to minimize the impact of renaming on the complexity
of the specification.

The Scheduling domain restricts Mapping by eliminating unschedulable ar-
chitectures. Line 44 introduces a derived constructor cwcet, which only stores
temporary information during execution of the logic program. Derived construc-
tors always start with a lowercase letter and never appear in models, so they
can be added to restricted domains. (Also, derived constructors need not be
explicitly declared.) The rules at lines 46 and 47-54 calculate the total WCET
for components and store this as cwcet data. Line 46 deduces that components
using no functions have WCETs of zero. The other rule employs two special con-
structs (common in logic programming) bagof and sum to find the total WCET
of components using one or more functions:

bagof { var | pattern-expression }(derived-constructor)

The bagof operator finds all matches to pattern-expression. A data instance
derived-constructor(s, n) is constructed for each unique binding var = s. The

second argument n is the number of times that var took the binding s over all
matches. In this rule the pattern expression determines how the component c
has been mapped onto the platform, and then adds w.wcet*f.freq to the bag for
each function u.func used by c. In other words, a function that executes f.freq
times per interval and takes w.wcet time per execution contributes w.wcet*f.freq
time units to the WCET of the component. Next, the sum operator sums the
values in a bag (multiset) and binds the result to a variable. Thus, t (line 54) is
the total WCET of component c.

Finally, lines 56-59 sum the worst-case executions of all components assigned
to processor p. If this sum is greater than the specified period of the system,
then the system is unschedulable. The conforms query requires no unschedulable
processors and requires the platform-mappings to be present. Implicitly, the con-
forms query is conjuncted with Mapping.conforms which, in turn, has C.conforms
and P.conforms as conjuncts. In conclusion, the schedulability requirement has
been formalized in a compact step-wise fashion with semantic guarantees at each
step. Using techniques described in [9], the platform-mapping problem can be
automatically solved and valid mappings can be enumerated. For our schedula-
bility example, these tasks amount to solving an NP-hard problem [20], further
illustrating the importance of properly formalizing non-functional requirements.

5 Composing Many Non-functional Requirements

Realistic software systems exhibit multiple competing non-functional require-
ments (design concerns). This complicates the job of the modeler, who must
formalize each requirement and the interactions between requirements. For ex-
ample, suppose we want a new security requirement:

Example 2. Every component has a security level, which is a non-negative inte-
ger. A platform-mapping assigns components to processors, such that all com-
ponents on processor p have the same security level. �

The security requirement interacts with schedulability in complex ways; it
may be impossible to simultaneously satisfy security and schedulability in a par-
ticular architecture. This is an instance of a more general problem: Engineers
need better mechanisms for separately specifying and then composing compet-
ing non-functional requirements [5]. We present such a design pattern, called the
Extend-Constrain-Merge Pattern, for separate specification and then composi-
tion (Figure 3). We now describe the key steps of the pattern.

Step 0: Foundations. In the zeroth step of the pattern, the modeler char-
acterizes the basic notions of “component” and “platform”. These serve as the
foundations for later steps. The process begins by defining a minimally-complex
abstraction level for components. We call this domain Componentmin; it con-
tains the minimum data/constraints needed to represent high-level architectures
as sets of components. All later non-functional requirements must be reconciled

Componentmin

* Mappingmin

(extends)

Platformmax

Step 0. Foundations

Componentmin

*

Platformmax

(extends)
CRi

Step 1. Extend

Componentmin

*

Platformmax

(extends)
CRi

(restricts)

Step 2. Constrain

*
MRi

Componentmin

*

Platformmax

(extends)
CRi

CRj

(restricts)

*

Step 3. Merge

*
MRi

MRj

*
MRi,Rj

Fig. 3. Steps of the Extend-Constrain-Merge Pattern.

against these elements. Second, a maximally-detailed abstraction of the platform
is defined. By maximally-detailed we mean as much detail as possible should be
formalized while remaining at the desired abstraction level. (For example, the
cycle-accurate behaviors of software functions are below our abstraction level,
but WCETs are not.) Early maximization of platform detail provides a com-
mon language with which to formalize non-functional requirements as the need
arises. Third, a domain Mappingmin extends the product of Componentmin with
Platformmax:

Mappingmin extends (Componentmin as C * Platformmax as P) {. . .}.

Mappingmin captures the minimum data/constraints needed to construct platform-
mappings given maximum platform detail. The remaining three steps are re-
peated on a per-requirement basis.

Step 1: Extend. To add a new requirement R, begin by defining a component
domain CR extending Componentmin:

CR extends (Componentmin) {. . .}.

CR contains all additional data/constraints needed to describe this requirement
(e.g. “components have security levels”). Encapsulating these elements in CR

isolates potential specification errors.

Step: 2 Constrain. Next, define a mapping domain MR of the following form:

MR restricts (CR as R * Mappingmin as M) {. . .}.

Note that R should be a unique renaming prefix, and the renaming prefix M
should be fixed for all MR. MR constrains the legal platform-mappings in the
following way: Given a model belonging to CR, then MR should remove all map-
pings from Mappingmin that cannot implement the system described by the
model. Since Mappingmin contains Platformmax, MR can examine all the details
of the platform in order to make this decision. However, MR does not have access
to data used by other requirements, thereby enforcing a separation of concerns.

Step 3: Merge. The constructions in steps 1-2 guarantee that requirements are
formalized separately. In this step separately defined components are composed
together to formalize their interaction. The interactions between requirements
R1, R2, . . ., Rn are captured by their pseudo-product:

(MR1 * MR2 * . . . * MRn).

This pseudo-product represents the set of all platform mappings that simultane-
ously satisfy competing requirements. Formally, composition is understood with
the following theorem:

Theorem 3. Given a collection of separately specified requirements (CRi ,MRi)i∈I ,
define a collection of projection operators.

πRi : models(MRi)→ models(Mappingmin). (12)

and

πinteract : models(MR1 ∗MR2 ∗ . . . ∗MRn)→ models(Mappingmin). (13)

then: ⋂
i∈I

img πRi = img πinteract. (14)

In other words every legal model of the pseudo-product contains a platform-
mapping such that all requirements agree on the correctness of this mapping.
This is accomplished without any a priori mixing of requirements.

Visualizing the Composition. Figure 4 shows a visualization of Theorem 3.
The rectangular region labeled models(Mappingmin) contains all possible plat-
form mappings from every possible component model to every possible platform
model. Each non-functional requirement Ri identifies some subset of compo-
nents/platforms/mappings capable of satisfying the requirement. This subset is
obtained by a projection function πRi

that takes every legal platform mapping
under the extended language of MRi

and forgets these extensions, thereby re-
turning a valid combination in the language of Mappingmin. In order for some

img πR1 img πR2

img πR1 ∩ img πR2

models(MR1) models(MR2)

models(MR1 ∗MR2)

img πinteract

models(Mappingmin)

Fig. 4. Visualizing the composition of separately specified non-functional requirements.

architecture to simultaneously satisfy multiple non-functional requirements, it
must be in the intersection of these projections. The figure illustrates the inter-
section of two such non-functional requirements by the darkly-shaded region.

However, finding the elements of this intersection from the specifications MR1

and MR2 is a non-trivial task. The extend-constrain-merge pattern solves this
problem by constructing a new specification (MR1 ∗MR2) where the projection
onto models(Mappingmin) is exactly the intersection of the independently speci-
fied non-functional requirements. This projection operator is labeled πinteract in
the figure. By using the right composition mechanisms it is possible to correctly
compose and reason over constraint systems in order to find architectures that
simultaneously satisfy many non-functional requirements.

Applying The Pattern. Figure 5 shows the extend-constrain-merge pattern
applied to the previous examples. Assume Platformmax is the domain given in
lines 25-36 of Figure 1. Componentmin consists of only components and con-
nections (lines 1-6). Essentially, it is just a set of finite, labeled, and directed
graphs. All later non-functional requirements must use this notation for com-
ponents. The Mappingmin domain (lines 7-24) formalizes the mapping problem
given a component model with minimum detail and a platform model with max-
imum detail. Mappingmin discards mappings that do not respect connectivity of
components. Lines 13-18 calculate the transitive closure1 of a component model

1 In logic programming transitive closure is an example of a recursive program. We
do not allow true recursion in formula, so the user must bound the depth of the
recursion with respect to the size of the input model.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

domain Cmp_min {

 [multiplicity(1,*)]

 Cmp : (id: Basic).

 [relation]

 Cnn : (from: Cmp, to: Cmp).

}

domain Mapping_min extends

 (Cmp_min as C * Plat_max as P) {

 [function]

 Map : (cmp: Cmp, proc: Prc).

 cpath : (from: Cmp, to: Cmp).

 ppath : (from: Prc, to: Prc).

 cpath (cn.from, cn.to) :- cn is C.Cnn.

 ppath (cn.from, cn.to) :- cn is P.Cnn.

 cpath (a.from, b.to) :- a is C.Cnn,

 b is C.Cnn, a.to = b.from.

 ppath (a.from, b.to) :- a is P.Cnn,

 b is P.Cnn, a.to = b.from.

 disconnected :? ma is Map, mb is Map,

 cp is cpath, cp.from = ma.cmp,

 cp.to = mb.cmp, fail pp is ppath,

 pp.from = ma.proc, pp.to = mb.proc.

 conforms :? !disconnected.

}

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

domain Cmp_Sched extends (Cmp_min) {

 [multiplicity(1,1)]

 Period : (time: PosInteger).

 [function]

 Freq : (cmp: Cmp, freq: PosInteger).

 [relation(cmp)]

 Uses : (cmp: Cmp, func: String).

}

domain Cmp_Sec extends (Cmp_min) {

 [function]

 SecLevel : (cmp: Cmp, lvl: PosInteger).

}

domain Map_Sec restricts

 (Cmp_Sec as S * Mapping_Min as M) {

 missing1 :? c1 is S.Cmp,

 fail c2 is M.Cmp, c2.id = c1.id.

 missing2 :? c2 is M.Cmp,

 fail c1 is S.Cmp, c1.id = c2.id.

 violation :?

 s1 is SecLevel, s2 is SecLevel,

 m1 is Map, m2 is Map,

 s1.cmp.id = m1.cmp.id,

 s2.cmp.id = m2.cmp.id,

 s1.lvl != s2.lvl, m1.proc = m2.proc.

 conforms :? !missing1 & !missing2 &

 !violation.

}

Fig. 5. Using the Extend-Constrain-Merge Pattern to specify multiple requirements.

and platform model. A mapping is correct if every pair of reachable components
is mapped to a pair of reachable processors (lines 19-23).

Next, the scheduling requirement is refactored so that timing-specific con-
structs are isolated to the Cmp Sched domain (lines 27-34). Meanwhile, the
Cmp Sec domain introduces the security level (SecLevel) concept (lines 35-38).
Both domains extend Componentmin, thereby inheriting the components-as-
graphs notation. Finally, the Map Sec domain throws out systems that map
components with different security levels to the same processor (lines 39-52).
The Scheduling domain (Figure 2) can be similarly refactored into Map Sched,
though we omit this in the interest of space. Finally, platform-mappings satisfy-
ing both requirements are described by (Map Sched * Map Sec).

6 Conclusions and Future Work

In conclusion, we showed that non-functional requirements can be regarded as
constraint systems over the space of platform-mappings. This space is an exten-
sion of the product of the platform-independent domain and platform domain.
We described several correct-by-construction composition operators for building
non-functional requirements out of smaller constraint systems. Finally, we pre-
sented the extend-constrain-merge pattern as a concrete method for applying
our techniques.

The techniques are implemented in the formula language, which uses logic
programming as the basis for a specification language. formula specifications
are translated into state-of-the SMT solvers for evaluation and construction of
platform-mappings. We believe that logic programming serves as a reasonable
specification language for non-functional requirements, since it is an interme-
diary between fully operational program-like specifications and fully relational
algebraic specifications.

Currently we are exploring the scalability of this technique by developing
formula specifications for realistic non-functional constraints. For example, we
have developed component models and encoded schedulability requirements for
the Timing Definition Language (TDL) [22], which is used for hard real-time
embedded systems. We are also studying how security requirements expressed
by high-level authorization languages, e.g. DKAL [23] or SecPAL [24], may be
reflected as constraints systems on platform mappings. Finally, we are proto-
typing code synthesis tools that generate candidate implementations from the
results of design-space exploration.

References

1. Jackson, M., Zave, P.: Domain descriptions. Proceedings of IEEE International
Symposium Requirements Engineering (RE) (Jan 1993) 56–64

2. Pinto, A., Bonivento, A., Sangiovanni-Vincentelli, A.L., Passerone, R., Sgroi, M.:
System level design paradigms: Platform-based design and communication synthe-
sis. ACM Trans. Design Autom. Electr. Syst. 11(3) (2006) 537–563

3. Karsai, G., Sztipanovits, J., Lédeczi, Á., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (2003) 145–164

4. Lee, E.A., Xiong, Y.: A behavioral type system and its application in Ptolemy II.
Formal Asp. Comput. 16(3) (2004) 210–237

5. Henzinger, T.A., Sifakis, J.: The Embedded Systems Design Challenge. In: Pro-
ceedings of the International Symposium on Formal Methods (FM). (2006) 1–15

6. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model
evolution. J. Vis. Lang. Comput. 15(3-4) (2004) 291–307

7. Chen, K., Sztipanovits, J., Neema, S.: Compositional specification of behavioral
semantics. In: Proceedings of Design, Automation and Test in Europe Conference
(DATE). (2007) 906–911

8. Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based
Systems. In: Proceedings of the International Conference on Concurrency Theory
(CONCUR). (2008) 508–522

9. Jackson, E., Schulte, W., Sztipanovits, J.: The Power of Rich Syntax for Model-
based Development . Technical Report MSR-TR-2008-86, Microsoft Research
(June 2008)

10. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.:
Composing heterogeneous reactive systems. ACM Trans. Embedded Comput. Syst.
7(4) (2008)

11. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In:
Workshop on Generative Techniques in the Context of Model-Driven Architecture
(OOPSLA). (2003) 1–17

12. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: An Integrated Electronic System Design Environ-
ment. IEEE Computer 36(4) (2003) 45–52

13. Weisemöller, I., Schürr, A.: Formal Definition of MOF 2.0 Metamodel Components
and Composition. In: Proceedings of the Model Driven Engineering Languages and
Systems. (2008) 386–400

14. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-Based Design-Space
Exploration and Model Synthesis. In: Proceedings of the International Conference
on Embedded Software (EMOFT). (2003) 290–305

15. Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again.
In: Proceedings of the International Conference on Software Product Lines (SPLC).
(2007) 23–34

16. Dantsin, E., Voronkov, A.: Expressive Power and Data Complexity of Query Lan-
guages for Trees and Lists. In: Proceedings of the Symposium on Principles of
Database Systems (PODS). (2000) 157–165

17. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). (2008) 337–340

18. Jackson, D.: Alloy: A New Technology for Software Modelling. In: Proceedings of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. (2002) 20

19. Object Management Group: Mda guide version 1.0.1. Technical report (2003)
20. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for

embedded programming. Proceedings of the IEEE 91(1) (2003) 84–99
21. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the IEEE

91(1) (2003) 112–126
22. Pree, W., Templ, J.: Modeling with the Timing Definition Language (TDL).

In: Workshop on Model-Driven Development of Reliable Automotive Services
(ASWSD). (2006) 133–144

23. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.
In: 21st IEEE Computer Security Foundations Symposium (CSF). (2008) 149–162

24. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and Semantics of a Decentralized
Authorization Language. In: 20th IEEE Computer Security Foundations Sympo-
sium. (2007) 3–15

