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An HEVC-based Screen Content Coding Scheme
Bin Li and Jizheng Xu

Abstract—This document presents an efficient screen con-
tent coding scheme based on HEVC framework. The major
techniques in the scheme includes hash-based large-scale block
matching, dictionary mode, palette mode, adaptive color space
coding, and several improvements to intra block copy mode.
This scheme was submitted as our response to the joint Call for
Proposals (CfP) for coding of screen content issued by ISO/IEC
JCT1/SC29/WG11, i.e. MPEG and ITU-T Q6/16, i.e. VCEG.
Compared with other coding schemes in response to the joint
CfP, the proposed scheme shows clearly advantages - 1) It is the
only one that shows less encoding time compared with the HEVC
reference scheme; 2) it has the best lossless coding performance;
3) it is one of the two best performing schemes in terms of
lossy coding. Compared with HM-13.0+RExt-6.0, which is the
state-of-art screen content coding system when responding to
the joint CfP, the proposed coding scheme for screen content
achieves the average bit saving of 20.3% ∼ 26.4% for lossy
coding. The average bit saving for losslss coding is 15.5% ∼
23.7% for different coding structures.

Index Terms—High Efficiency Video Coding (HEVC), Screen
Content Coding (SCC), hash, dictionary mode, adaptive color
space coding.

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC) version 1 was
finalized in January 2013 [1]. Compared with its pre-

decessor, H.264/MPEG-4 AVC [2], HEVC doubles the com-
pression ratio when achieving similar visual quality [3]. To
meet the requirements on more applications, several extensions
to HEVC version 1, including range extensions, scalable
extensions, 3D video extensions, have also been developed [4].
Besides the above extensions, screen content coding extension
is also an extension of HEVC which is under development by
the Joint Collaborative Team on Video Coding (JCT-VC). The
Call for Proposal (CfP) of HEVC Screen Content Extension
was issued in January 2014 [5].

Screen content has several new features not previously
available in camera-captured content, including

• Sharp Content. Compared with camera-captured content,
screen content usually has with sharp edges. The sharp
edges make the transform, which works well to reduce
redundancy for camera-captured content, not suitable
for screen content. To help the encode sharp content,
transform skip [6] [7] [8] has been designed for screen
content.

• Large motion. Screen content may contain large motions.
For example, when browsing a web page, a large motion
exists when scrolling the page. Conventional motion
estimation algorithm may not be able to handle large
motion well. Thus, new motion estimation algorithms
to handle the large motions for screen content may be
required.
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• Unnatural motion. Screen content may contain unnat-
ural motions, such as fading in and fading out. The
conventional motion model, which usually only takes
translational motions into consideration, may not be able
to handle screen content well.

• Repeating patterns. Repeating patterns are also very com-
mon in screen content. For example, the screen content
may contain the same letter many times. The same letters
belong to a repeating pattern and using previous letters
to predict the current letter may be quite efficient. To
utilize the correlation among repeating patterns, Intra
Block Copy (IBC) [9] has been developed. With the help
of IBC, similar blocks can be predicted and encoded
efficiently.

The different characteristics between screen content and
camera-captured content make the encoding of screen con-
tent different from camera-captured content. To achieve high
coding efficiency for screen content, new coding tools should
be considered to explore the correlation in screen content.
Several new coding tools are developed to improve the coding
efficiency for screen content in the proposed coding scheme.

Hash-based large scale block matching is designed to handle
the repeating patterns and large motions in screen content.
Although repeating patterns are very common in screen con-
tent, it is still not easy to find a matching block in a narrow
search area. Also, the conventional motion estimation strategy
only performs motion estimation in a narrow range. When
the motion is very large, the conventional motion estimation
strategy may not be able to find a matching block, even if
there does exist an exact match block in its reference picture.
Hash-based block matching can do IBC estimation and motion
estimation in a very large range. Thus, hash-based block
matching can better utilize the correlation in screen content
and improve the coding efficiency. Furthermore, several fast
encoding algorithms according to the results from hash-based
block matching are also developed to further speed up the
encoding process.

Dictionary mode is also supported in the proposed cod-
ing scheme to help encode screen content, considering the
repeating pattern is very common in screen content. Unlike
IBC, which removes the redundancy of repeating patterns at
the block level, dictionary mode removes the redundancy of
repeating patterns at the pixel level, which could be more
flexible. A hash-based search strategy is also developed to
help the encoder quickly make decisions.

The native color space of screen-captured content is usually
RGB, as it is captured from the screen directly. Also, the
screen content may also be directly encoded in the RGB color
space. Compared with another commonly used color space
YUV, there exists stronger correlations among different color
components in the RGB color space. To solve the problem,
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the proposed coding scheme uses adaptive color space coding,
which adaptively selects from the RGB color space and the
YCoCg color space, to improve the coding efficiency of screen
content.

Several other improvements are also included in the pro-
posed coding scheme, such as palette mode and several
improvements to the IBC mode. Also fast encoding algorithms
are also developed to speed up the encoder. The experimental
results show the proposed coding scheme can improve the
coding efficiency of screen content significantly with reduced
encoding time.

The proposed coding framework has already been submitted
as a response to the joint CfP [10]. Compared with other
coding schemes in response to the joint CfP, the proposed
scheme has many clearly advantages - 1) It is the only one that
shows less encoding time compared with the HEVC reference
scheme; 2) It shows the best lossless coding performance; 3)
It is one of the two best performing schemes in terms of lossy
coding [11].

The rest of this technical report is organized as follows.
Section II overviews the proposed scheme in general. Section
III ∼ Section V describe the newly introduced coding tools
used in the CfP. Section VI introduces other modifications
and fast encoding algorithms. The experimental results are
provided in Section VII, followed by the conclusion in Section
VIII.

II. SCHEME OVERVIEW

This section briefly introduces the framework of the pro-
posed HEVC-based screen content coding scheme.

Similar to HEVC, a hybrid coding framework is used in
the proposed scheme. Fig. 1 shows the overall framework of
the proposed coding scheme. Basically, it is indeed an HEVC
coding framework plus several new designed coding modes.
Considering the characteristics of screen content, several new
coding tools are designed for intra prediction. They will be
described in details in the rest of the paper. Besides intra
coding tools designed for screen content, the motion estimation
strategy is also modified to better explorer the correlation in
screen content.

To achieve the best coding efficiency, Rate-Distortion Op-
timization (RDO) as shown in Eq. 1 [12] is applied to select
the best coding mode.

minD + λR (1)

In Eq. 1, D is the distortion, R is the bit cost, and λ is the
Lagrange multiplier, which is determined by the optimization
target.

With the help of RDO, all the possible modes, including the
coding modes existing in HEVC and the newly added coding
modes designed for screen content, are tested using Eq. 1. And
the mode with the smallest RD Cost (D + λR) is selected as
the best mode for the current Coding Unit (CU).

III. HASH BASED LARGE SCALE BLOCK MATCHING

As mentioned in Section I, screen content has different
characteristics than camera-captured content. The character-
istics of screen content, such as large motion and repeating

patterns, require the screen content coding to explore non-
local correlations to achieve good compression ratio. Thus,
conventional motion estimation and intra block copy estima-
tion, which usually perform a search in a small range, may not
work well for screen content, as only local correlations can be
explored by the conventional block search methods. Moreover,
conventional fast motion estimation methods usually assumes
the smoothness of the content, which is no longer true for
screen content. Thus, conventional fast motion estimation
algorithms are not suitable for screen content too. To utilize
non-local correlations, large-scale block matching in the whole
picture is proposed in this paper.

A straightforward full picture block matching method is full
search, which means that for every target block, an encoder
needs to compare it with all possible blocks in the whole
picture and then selects the block which best predicts the
current block. For every m×n block (m and n are the width
and height of the block respectively) in the a picture, the
encoder needs to check w × h block candidate (w and h are
the picture width and height respectively. Strictly speaking, the
number of block candidates should be (w−m+1)×(h−n+1).
But considering that usually w is much larger than m and h is
much larger than n, we just use w× h to simplify.). For each
block candidate, the encoder needs to compare m× n pixels.
Thus, the complexity of full search is about O(l ·m ·n ·w ·h),
where l is the number of blocks in the whole picture.

For example, if we want to perform a full picture search for
all the 64x64 blocks in 1080p picture, the overall operations
for full search are about 500× 64× 64× 1920× 1080 ≈ 4T .
(Actually, there are not integer number 64x64 blocks in the
1080p picture. We use the number of 500 here and in the rest
of paper to simplify the discussion.) The complexity of the
full picture search is too high for an encoder. Thus, we need
to find some methods to reduce the encoding complexity to
make the block matching practical. Sec. III-A will introduce
the two main parts of the proposed hash-based block matching.
Sec. III-B will describe some implementation details. And
Sec. III-D will provide some analysis on the extendability
of incorporating new motion models into the proposed hash-
based block matching method.

A. Hash Based Block Matching

The screen content is a characterized by noiseless, which
means that we can perform exact block matching rather than
approximate block matching. If the hash values of two inputs
are different, the two inputs are absolutely different. Thus,
we can use the hash value to check whether two blocks are
identical. According to the noiseless characteristics of screen
content, this paper proposes hash-based block matching for
screen content. There are mainly two steps in hash-based block
matching, hash table generation and block matching. They will
be introduced in III-A1 and III-A2 respectively.

1) Hash Table Generation: We choose CRC as the hash
function to generate the hash value for every block. The
CRC calculation only involves table checking and simple
shifting and bit operation. The complexity of calculating the
CRC value relates to the block size. The total complexity of
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Fig. 1: Framework of the Proposed Coding Scheme
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Fig. 2: Block Hash Value Calculation

generating all hash values of all the blocks in a picture is about
O(m · n · w · h), relating to the block size and picture size.
For example, to calculate all the hash values of 64x64 blocks
in 1080p video, about 8G operations are required.

Although 8G operations for hash table generation are much
less than 4T operations for full picture searching, we still want
to further reduce the complexity by reuse the intermediate
results. For one block, instead of calculating hash values
Hblock for the whole block, we calculate the hash values for
each row Hrow[i] first. We then group the row of hash values in
a block together to calculate a new hash value of the grouped
row of hash values. This hash value will be used as the block
hash value Hblock.

For example, Fig. 2 shows the hash value calculation
process for a 64x64 block. First the hash values of each rows
are generated, and then we group the row of hash values
together as a 1D array Hrow[0]Hrow[1]......Hrow[63]. A new
hash value will be calculated for the 1D array which will be

used as the block hash value. When we need to calculate the
hash value for the block one row below the current block
(Row[1] to Row[64]), 63 of the intermediate data can be
reused (Hrow[1] to Hrow[63]). Thus, the complexity of hash
table generation will be reduced from O(m · n · w · h) to
O(m ·w · h+ n ·w · h), where the first part is the complexity
of generating intermediate results and the second part is the
complexity of calculating the final hash values. In such a case,
only about 256M operations are required to calculate all the
hash values of 64x64 blocks in the 1080p video.

2) Block Matching: We can use the hash values to quickly
check whether the two blocks have identical content or not. A
straightforward method is that for each block, we only need to
calculate the hash value, whose complexity is about O(m ·n),
and compare the hash value with the hash values of all possible
blocks, whose complexity is about O(w·h). Taking the number
of blocks in a picture into consideration, the overall complexity
is about O(l·(m·n+w·h)). Using the same example as above,
about 1G operations are required for all the 64x64 blocks in
the 1080p video.

To further reduce the complexity of block matching step, we
re-arrange the hash table in form of an inverted index. With
the help of the inverted index, the encoder does not need to
compare the hash values block by block. Instead, it only need
to check all the blocks that have the same hash value and
select one block to predict the current block (for example,
the encoder can select the block nearest to the current block
used as prediction because it will cost fewer bits to represent
motion vectors or block vectors). In such a case, the overall
complexity for the block matching step is about

O(l · (m · n+ C)) (2)
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where m · n is the complexity of calculating the hash value
of the current block and C is the number of blocks with the
same hash value. When C is relatively small compared with
m·n, it is negligible. For example, if 16-bit hash value is used,
there are 31.6 blocks corresponding to that same hash value
on average. Compared with m · n = 1024 for 64x64 blocks,
C is negligible. In the same example as above, only about 2M
operations are required for the block matching step.

The overall complexity of the proposed hash-based block
matching method is about O(m ·w ·h+n ·w ·h+ l ·m ·n), for
both hash table generation step and block matching step. In
the example of 64x64 blocks in the 1080p video, the overall
operation is reduced from 4T (full picture search) to 258M
(hash-based block matching), which is more than 15000×
speedup. Thus, the large scale block matching is practical
with the help of hashes. Some other implementation details
are provided in the next part.

B. Other Considerations and Implementation Details

As shown in Eq. (2), the overall search complexity relates
to C. When C is not large, it is negligible. Thus, we should
avoid getting a very large value of C for some hash values.

Usually, the homogeneous region, such as a background
region, may lead to one hash value corresponding to many
blocks. For example, as shown in Fig. 3, the whole region
contains only one color. Blocks 1, 2, 3, 4 and all the blocks in
this region will have the same hash value as exactly identical
pixels values are contained in all these blocks. Thus, to avoid
very large C values, the blocks satisfying at least one of the
following conditions are not included in the hash table.

• Every row has only a single pixel value. In this case, as
shown in Fig. 4, the black box is the current block and
every row in the current block has a single pixel value.
When the block moves to the right by one pixel, as in
the red box, most likely the new block has identical pixel
values as the previous block, thus leading to identical
hash values.

• Every column has a only single pixel value. The situation
is similar to the above case.

Fig. 4: Every Row Has the Same Pixel Value

As these blocks are not included in the hash table, we
need to evaluate the impact of removing them from the hash
table. The blocks not included in the hash table are not
difficult to predict. As every row or column of the blocks
only has singular pixel values, horizontal prediction or vertical
prediction can almost predict the blocks perfectly. Removing
these blocks from hash table only benefits the block matching
step and will not harm the coding efficiency.

In our implementation, the hash tables for different block
sizes are maintained in a unified hash table. An 18-bit hash
value is used. The higher 2 bits are determined by the block
size and the lower 16 bits are determined by the CRC values.
Using only a 16-bit CRC value will not cost too much memory.
But as there are only 65536 different values within the 16-bit,
hash collision cannot be refrained. Thus, we need to further
check whether the two blocks are identical even if they have
the same hash value. A simple way to check whether two
blocks are identical is to compare the two blocks pixel by
pixel. However, this will introduce additional complexity. We
use a second 24-bit CRC value to check whether the two
blocks are identical. If both the 16-bit CRC value and the
second 24-bit CRC values are the same for two blocks, we
treat the two blocks as having identical contents (although
there is still the possibility that they have different content,
but this is very low). Please note that we only use the first
hash value (plus the block size bits) to build an inverted index
table, such that the memory cost for the table index is about
256K (18-bit).

The proposed hash-based block matching algorithm is en-
abled for both Intra BC searching and Inter motion estimation.
The hash-based block matching can work together with the
conventional Intra BC estimation process and Inter motion es-
timation process. If an exact match is found, the conventional
estimation process will be skipped. Otherwise, the normal
estimation process is also invoked to find an approximate
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match as usual, as shown in Fig. 5.

C. Fast Encoding Algorithms

Besides skipping the conventional block estimation process
if an exact match is found by hash-based block matching as
described in Sec. III, some other mode checking can also be
skipped if we are confident that we have already found a block
good enough to predict the current one. In our implementation,
if all the following conditions are satisfied, the following mode
checking process including further splitting current CU into
sub-CUs are skipped.

• An exact match is found.
• The quality of the block used for prediction is no worse

than the expected quality of the current block. The
situation is similar to the above case.

• The current CU depth is 0, as we are more confident if
we find an exact match for large blocks.

D. Further Extension

As mentioned previously, complicated motion may exists
in screen content. Thus, how to find a block to predict the
current block well is very important for screen content. Block
matching with new motion models is easy to incorporated into
the proposed hash-based block matching scheme. For example,
if we want to perform block matching considering vertical
flipping, instead of calculating the hash values of the flipped
blocks in the reference region and adding them into the hash
table (which may double the memory requirement of the hash
table), we only need to calculate the hash value of the flipped
current block and compare this hash value with the hash values
of the original blocks in the reference region. It is not difficult

to take other motion models into consideration under the hash-
based block matching framework, without significant impact
on the complexity and memory requirements.

IV. DICTIONARY MODE

Dictionary mode is supported in the proposed framework.
There have been several attempts made on the dictionary mode
[13], [14], [15]. The main work in this paper is the encoder
side decision for dictionary mode. The basic idea of dictionary
mode will be briefly described in Sec. IV-A. Sec. IV-B and
IV-C describe the encoder side decision for the dictionary
mode and fast encoding algorithms for dictionary mode.

A. Basic Idea for Dictionary Mode

In dictionary mode, 2-D pixels are converted to 1-D signals
according to a predefined scanning order. In our implementa-
tion, both horizontal scan and vertical scan are supported. The
previously reconstructed pixels are used to predict the current
CU. For every pixel, there are two modes, predict mode and
direct mode. In the predict mode, offset and matching lengths
are signaled. The offset is used to indicate the start position
to predict the current pixel. The offset can be 1-D or 2-D,
associating two types of dictionary modes supported, which
will be explained later. The matching length is used to indicate
the number of pixels sharing the same offset. In the direct
mode, the pixel values will be singled directly, without any
prediction. Two types of dictionary modes are supported in
our implementation.

The first type is normal dictionary mode, which is similar
to Lempel-Ziv coding [16], [17]. A virtual dictionary is main-
tained to stored the previously reconstructed pixels values. All
the reconstructed pixel values coded in dictionary mode will
be stored in the virtual dictionary. 1-D offset relative to the
position of the current pixel in the dictionary is signaled to
indicate the pixel used for prediction, as shown in Fig. 6. When
the current dictionary size reaches a predetermined size, some
of the oldest elements will be removed from the dictionary. To
simply the dictionary shrink operation, the removing process
is only invoked after encoding/decoding one CTU. In our
implementation, when the dictionary size is greater than or
equal to (1 << 18)+(1 << 17) after encoding/decoding one
CTU, the oldest (1 << 17) elements are removed from the
dictionary.

The second type is reconstruction based dictionary mode.
No virtual dictionary needs to be maintained in this dictionary
mode. All the previously reconstructed pixels belonging to
the same slice and tile can be used for prediction. 2-D
offset relative to the position of the current pixel in the
picture is signaled to indicate the pixel used for prediction.
Fig. 7 shows an example of an 8x8 CU using a (horizontal
scan) reconstruction based dictionary mode. The first matching
length is 3, followed by a second matching length of 17. The
relative position is kept when performing prediction.

The syntax elements in the CU coded with the dictionary
mode are generally parsed as shown in Table I. If the current
CU is coded with dictionary mode, the dictionary type flag



6

 ...  ...

Current pixelThe pixel used 
to predict

 ...

offset

dictionary

Fig. 6: Normal Dictionary Mode

Fig. 7: Reconstruction Based Dictionary Mode

(to distinguish between normal dictionary mode or recon-
struction based dictionary mode) and dictionary scan flag (to
distinguish horizontal or vertical scanning) are read from the
bitstream first. For every pixel, a dictionary pred mode flag
is read from the bitstream to distinguish whether the current
pixel uses prediction mode or direct mode. If prediction mode
is used, offset (1-D or 2-D) and the matching length are read
from the bitstream. Otherwise, the pixel value is read from the
bitstream.

For both dictionary modes, hash based searching is used on
the encoder side to speed up the encoding process, which will
be described in the following section.

B. Encoder Decision for Dictionary Mode

We use normal dictionary mode as an example to demon-
strate the encoder side decision. The encoder side decision
for reconstruction based dictionary mode is similar to that of
normal dictionary mode. The data structure used for normal
dictionary mode is organized as in Fig. 8. We maintain a hash
table to indicate the position of the first match for 1 pixel in
the dictionary. For every pixel in the dictionary, we maintain
four positions to indicate the following:

TABLE I: Parsing Process for Dictionary Mode

dictionary mode(cuSize) {
totalPixel = cuSize*cuSize
currPixel = 0
dictionary type flag
dictionary scan flag
while (currPixel < totalPixel ) {

dictionary pred mode flag
if( dictionary pred mode flag ) {

dictionary pred offset
dictionary pred length minus1
currPixel += (dictionary pred length minus1 + 1)
}
else {

dictionary direct pixel
currPixel += 1
}
}
}

 ... ...dictionary

Next position for 1 pixel match

Next position for 2 pixels match

Next position for 4 pixels match

Next position for 8 pixels match

First position for hash value 0

First position for hash value 1

First position for hash value n

 ...

Hash table for the first match

Fig. 8: Data Structure for Normal Dictionary Mode

• The next position in the dictionary with 1 pixel matching
(Table 1).

• The next position in the dictionary with 2 continuous
pixels matching (Table 2).

• The next position in the dictionary with 4 continuous
pixels matching (Table 3).

• The next position in the dictionary with 8 continuous
pixels matching (Table 4).

For every pixel, we try to find the maximum matching
length in the current position. The algorithm for the encoder
side decision of normal dictionary mode to find the maximum
matching length is shown in Algorithm 1, and some termi-
nology used for algorithm description is provided in Table II.
The basic method for finding the maximum matching length
is as follows:

• Determine the first position candidate by hash values and
the other positions from the table.

• At each position candidate, check the matching length.
• If the current matching length is greater than or equal

to the matching length of the next table, use the next
matching table for future matching.

In our implementation, Tmax is set to 1000. If the Lm

returned by Algorithm 1 is 0, it means that no matching is
found. Thus, direct mode will be used to encode the current
pixel. The hash tables will be updated after one or more pixels
have been encoded.
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TABLE II: Terminology for Normal Dictionary Search Algo-
rithm Description

Symbol Definition
Pix Pixels to be encoded.
N Number of pixels to be encoded.

Tmax Maximum number of test times for one pixel.
H Hash table to find first match.
H[i] The matching position of the i-th element in H .
D The current dictionary.
D[i] The i-th pixel in the dictionary.

D[i].N
The next matching position tables for

the i-th pixel in the dictionary.

D[i].N [j]
The next matching position for the j-th element in D[i].N .

Different j corresponds to different matching length.
Lm Maximum matching length.
Pm The position where Lm is obtained.
Lc Current matching length.
Pc The position where Lc is obtained.

Algorithm 1 Find Maximum Matching Length for Normal
Dictionary Mode

Input:
Pix, N , Tmax, H , D;

Output:
Lm, Pm;

1: M [4] = {1, 2, 4, 8}
2: Lm = 0
3: Idx = 0
4: Current test times Tc = 0
5: Hash value of the current pixel h = Hash(Pix[0])
6: Pc = H[h]
7: while Tc < Tm and Pc ≥ 0 and Lm < N do
8: Determine current matching length Lc from Pc

9: if Lc > Lm then
10: Lm = Lc

11: Pm = Pc

12: end if
13: if Idx < 3 and Lc ≥M [Idx+ 1] and

D[Pc].N [Idx+ 1] ≥ 0 then
14: Idx++
15: Pc = D[Pc].N [Idx]
16: else
17: Pc = D[Pc].N [Idx]
18: end if
19: Tc ++
20: end while

C. Early Termination for Dictionary Mode

The dictionary mode is efficient if the matching length is
large. The worst case for dictionary mode is that every pixel
should be directly coded or the matching length is only 1.
Thus, we can check that the average matching length of all
the pixels have already been coded and terminate early if the
average matching length is very small. For the pixels coded
in direct mode, the matching length is treated as 1. In our
implementation, if the following criterion is satisfied, the RDO
process for dictionary mode is terminated and dictionary mode
will not be used as the optimal mode for the current CU.

Pcoded > Tcoded && Lavg < Lthres (3)

TABLE III: Threshold for Dictionary Mode Early Termination

Tcoded Lthres

Normal Dictionary Mode 64 2
Reconstruction based Dictionary Mode 20 3

where Pcoded and Tcoded are the number of pixels that have
already been coded and the threshold for the number of pixels,
respectively. Lavg and Lthres are the average matching length
and the threshold of the matching length, respectively. In our
implementation, the value of Tcoded and Lthres are provided
in Table III.

V. ADAPTIVE COLOR SPACE CODING

Adaptive color space coding is designed for RGB coding.
For most applications, video is encoded in YCbCr format, in
which the correlation among different color components has
been removed. But for some professional video applications
(especially when the expected video quality is very high),
RGB coding is applied. It has been analyzed in [18] that
the distortion introduced by converting RGB to YCbCr, and
then converting back is not negligible. Although there have
already been several attempts to remove the redundancy among
different color components in RGB coding, such as cross-
component prediction [18], there is still correlation among
different color components for RGB coding. Thus, it is worth
considering how to further utilize the correlation among differ-
ent color components to improve coding efficiency. The overall
framework of adaptive color space coding will be introduced
in Sec. V-A. This paper will then introduce two kinds of
adaptive color space coding. The first one is color components
reordering, which will be described in Sec. V-B. The second
one is RGB to YCoCg conversion, which will be described in
Sec. V-C.

A. Framework

In our design, adaptive color space coding is only applied
to Intra coded CUs. There will be two kinds of color spaces in
the encoding/decoding process. The Main Color Space is the
color space where all the pixels will be stored in the loop.
For example, in the common test condition [19] for RGB
sequences, the Main Color Space will be GBR. The Current
Color Space is the color space that the current CU uses. The
Current Color Space may be the same or different from the
Main Color Space.

Fig. 9 shows the decoding process when adaptive color
space coding is applied. If the Current Color Space is not
the same as the Main Color Space, the surrounding pixels (at
most 4N + 1 pixels, where N is the current CU size) will
be converted from Main Color Space to Current Color Space.
The original (unconverted) surrounding pixels in Main Color
Space will also be stored, and after decoding the current CU,
they will be restored. Intra prediction and reconstruction are
performed in the Current Color Space. After the current CU
has been reconstructed (before loop filters), it will be converted
back to the Main Color Space and stored in the picture buffer.
With this design, the additional memory required to support
adaptive color space coding is only to store the 4N + 1
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Fig. 10: Clip of Robot Sequence (128x128 clip in the first
picture, starting from (576, 512) )

pixels. For HEVC, the maximum CU size is 64. Thus, only
the memory to store 257 pixel values is required to support
adaptive color space coding.

B. Color Components Reordering

Color components reordering is one kind of adaptive color
space coding in our design. In the color components reorder-
ing, besides GBR, an additional two color spaces, RGB and
BGR are supported. The reason to support color components
reordering is that all the 35 intra prediction directions could
be applied to the first component in HEVC. But for the second
and third components, only a few (5) intra prediction directions
could be used. Thus, it is straightforward to let the most
complicated color component be the first color component.

For example, Fig. 10 showns a 128x128 region in the first
picture of the Robot sequence. The clear edge exists in the B
component but not in the R and G components. Thus, in this

case, using component B as the first component is helpful in
improving coding efficiency.

In our design, color components reordering can be applied
to both lossy coding and lossless coding.

C. YCoCg Coding

YCoCg color space introduced in [20] shows good com-
pression performance. We also apply YCoCg color space in
our design. The conversions between RGB and YCoCg are
shown in Eq. (4) and (5). YCo

Cg

 =

 1/4 1/2 1/4
1/2 0 −1/2
−1/4 1/2 −1/4

RG
B

 (4)

RG
B

 =

1 1 −1
1 0 1
1 −1 −1

 YCo
Cg

 (5)

The Co and Cg obtained from Eq. (4) are not in the same
dynamic range with input. To adjust the dynamic range, Co
and Cg are further modified by adding 1 << (BitDepth−1).
For example, if 8-bit encoding is applied, Co and Cg are fur-
ther added by 128. To match with the forward transformation,
Co and Cg are subtracted by the same magnitude before being
used as the input in Eq. (5).

As a different color space is used in the encoding/decoding
process, the quantization parameter (QP) used in the YCoCg
color space should be modified according to the norm of
the inverse conversion matrix as shown in Eq. (5). One
unit distortion of Y brings about three units distortion on
RGB, according to the norm that (1)2 + (1)2 + (−1)2 = 3,
meaning the distortion of Y will be amplified by 3 times
after the inverse quantization. It is also easy to know that
the distortion of Co and Cg will be amplified 2 times and
3 times respectively after the inverse color space conversion.
We would like to let the magnitude of amplified distortion Y
have a level similar to the distortion in the unchanged color
space. It is similar to Co and Cg components. Thus, we need
to adjust the QP used in the YCoCg color space a little smaller
than that used in the RGB color space.

The relationship between QP and Qstep (Quantization step
size) for HEVC is

Qstep = 2(QP−4)/6 (6)

The quantization error for a given QP relates to Q2
Step,

Dist ∼ Q2
Step ∼ 2(QP−4)/3 (7)

where Dist is the distortion. DistRGB , DistY , DistCo, and
DistCg are used to represent the distortion of RGB, Y, Co,
and Cg, respectively.

Suppose QPRGB is the QP used in the RGB color space.
We want to derive QPY , QPCo, and QPCg , which are the QP
used for Y, Co, and Cg, respectively. We need to have

DistRGB = 3×DistY
DistRGB = 2×DistCo

DistRGB = 3×DistCg

(8)
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b p

Fig. 11: An Example of Intra BC Flipping

From Eq. (8), we can derive that,
2(QPRGB−4)/3 = 3× 2(QPY −4)/3

2(QPRGB−4)/3 = 2× 2(QPCo−4)/3

2(QPRGB−4)/3 = 3× 2(QPCg−4)/3

(9)

And finally, we can have that,
QPY = QPRGB − 3× log23 ≈ QPRGB − 5

QPCo = QPRGB − 3× log22 = QPRGB − 3

QPCg = QPRGB − 3× log23 ≈ QPRGB − 5

(10)

From Eq. 10 we can know that when YCoCg color space
is used, the QP for Y, Co, and Cg should be set to be equal
to QPRGB − 5, QPRGB − 3, and QPRGB − 5, respectively.

In our design, as we do not increase the bit depth in the
YCoCg color space, the conversion is not revisable. Thus,
YCoCg color space is only used in lossy coding.

VI. OTHER CODING TOOLS AND FAST ENCODING
ALGORITHMS

A. Modifications to Intra BC mode

This paper proposes several modifications to Intra BC mode
in the following areas:

• Intra BC skip mode. Intra BC skip mode means the
current CU uses Intra BC prediction and the partition
size is 2Nx2N. There is no residue signaled for Intra BC
skip mode.

• Intra BC merge mode. Intra BC merge mode is used
to signal the block vector. Intra BC merge mode is
only enabled for Intra BC CU with a partition size of
2Nx2N. Two merge candidates are enabled. The first
merge candidate comes from the block vector used for the
left block and the second merge candidate comes from
the block vector used for the above block.

• Intra BC flipping. Vertical flipping is enabled for the CU
using Intra BC prediction. Fig. 11 shows an example
where Intra BC flipping is very efficient.

B. Palette Mode

The palette mode described in [21], with color table sharing
[22], four-neighbor major color index prediction [23] and
transition copy mode [24] as described in [25], is used in our
response to the CfP.

C. Motion Estimation Start Point

In the motion estimation of HM-13.0+RExt-6.0 [26], one of
the MVPs (Motion Vector Predictor) will be used as the start
point of motion estimation. In this paper, for every reference
picture, the MV for the PU with the size of 2Nx2N determined
by the motion estimation process is stored on the encoder
side. When performing motion estimation for the other PU
sizes (non-2Nx2N PUs), the MV of the 2Nx2N PU using a
same reference picture is used as another candidate motion
estimation start point. The encoder compares the new motion
estimation start point candidate with the original MVP and
then selects the one leading to a smaller prediction cost as the
motion estimation start point.

D. Fast Encoding Algorithms

To further speed up the encoding process, the following
fast encoding algorithms are enabled to achieve a better trade
between the coding complexity and coding efficiency.

• Less search candidates for dictionary mode. Tmax is set
to 100 for lossy coding and 500 for lossless coding.

• Early termination based on number of different colors.
If the number of different colors of the first component
contained in one CU is less than 50 (for lossy coding, and
100 for lossless coding), we skip checking Intra BC mode
and dictionary mode. When the adaptive color space
coding introduced in Sec. V is enabled, if the number
of different colors of the first component in one CU is
less than 10 (for lossy coding and 3 for lossless coding),
skip checking the current color space. If the number of
different colors of the first component in one CU is less
than 20, we skip the RDO process for non-2Nx2N Intra
BC partitions.

• If a hash-based Intra BC match is found, we skip all the
following RDO process except checking Intra BC merge
mode.

• We relax the restrictions of the fast encoding algorithms
introduced in Sec. III-C. The last condition (CU depth is
equal to 0) is removed.

• Fast algorithm for normal intra mode checking. In the
RDO process for normal intra mode, besides MPM (Most
Probable Mode), we check (2, 2, 2, 1, 1) candidates
for (4x4, 8x8, 16x16, 32x32, 64x64) PU. The original
checking number is (8, 8, 8, 3, 3). We disable the RDOQ
(Rate-Distortion Optimized Quantization) when selecting
the best Intra prediction direction.

• We disable the RDOQ for transform skip mode.

VII. EXPERIMENTAL RESULTS

The proposed algorithms are implemented based on HM-
13.0+RExt-6.0 [26]. The HM-13.0+RExt-6.0 is used as the
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anchor for all the comparisons. It should be noted that HM-
13.0+RExt-6.0 is not the anchor used for the screen content
coding CfP [27]. [27] uses HM-12.1+RExt-5.1 as the an-
chor, but HM-13.0+RExt-6.0 improves quite a lot over HM-
12.1+RExt-5.1. Considering HM-13.0+RExt-6.0 achieves the
best coding efficiency when responding to the screen content
coding CfP, we use HM-13.0+RExt-6.0 as the anchor for all
the comparisons.

The detailed experimental conditions are described in Sec.
VII-A, followed by the experimental results in Sec. VII-B. Sec.
VII-C provides some discussions on the experimental results.
Sec. VII-D provides the results of different trade-offs between
encoding complexity and coding efficiency.

A. Test Condition

A total of 12 test sequences are used for testing. All the
sequences are in both RGB format and YUV format. The
characteristics of the test sequences are shown in Table IV.

Three coding structures are used in the tests.
• All Intra (AI). All the pictures are coded as Intra picture.
• Random Access (RA). Hierarchical-B coding structure

is applied. Random Access is supported roughly once a
second.

• Low Delay (LD). Only the first picture is coded as Intra
picture and there is no delay in the encoding.

Both lossy coding and lossless coding are tested. Fix QP
Encoding is applied for lossy coding. The QP setting for each
sequence is provided in Table IV. It should be noted that in
the screen content coding CfP, fix bitrate coding is applied as
subjective testing is performed. We only use BD-Rate as the
measurement in this paper. Thus, fix QP encoding is applied
for simple.

B. Detailed Results

We provide the testing results for every individual tool first,
including

• Hash. The experimental results of the hash-based block
matching introduced in Sec. III are provided.

• Dictionary (Dict). The experimental results of dictionary
mode introduced in Sec. IV are provided.

• Adaptive color space coding (ACS). The experimental
results of adaptive color space coding introduced in Sec.
V are provided.

Besides the experimental results of every individual tool, the
results of the whole framework of screen content coding are
also provided, including

• All. All the coding tools designed for screen content
coding are enabled.

• Fast. All the coding tools with the fast encoding algo-
rithms introduced in Sec. VI-D are enabled.

When testing the coding efficiency of the whole framework
(not individual tool testing), the QP refinement algorithm
introduced in [28] is enabled for lossy coding. The coding
efficiency is measured as Y (or G, the first component in
encoding) BD-Rate (for lossy coding) and bit saving (for
lossless coding). The experimental results for different coding

TABLE V: Experimental Results for AI, Lossy Coding

Hash Dict ACS All Fast

RGB, T, 1080p −23.3% −37.1% −7.1% −45.2% −43.2%
RGB, T, 720p −13.7% −21.5% −10.3% −32.0% −29.3%

RGB, M, 1440p −7.0% −10.6% −12.9% −24.6% −22.0%
RGB, M, 1080p −5.2% −8.5% −8.7% −18.7% −15.5%

RGB, A, 720p 0.0% 0.0% −20.2% −19.8% −19.2%
YUV, T, 1080p −22.1% −34.0% 0.0% −41.5% −39.7%
YUV, T, 720p −12.4% −16.6% 0.0% −21.4% −20.0%

YUV, M, 1440p −7.5% −10.4% 0.0% −14.8% −11.9%
YUV, M, 1080p −5.5% −8.1% 0.0% −12.3% −7.4%

YUV, A, 720p 0.0% 0.0% 0.0% −0.2% 0.7%
Average −12.1% −18.4% −5.3% −26.4% −24.1%

Encode Time[%] 104% 166% 143% 230% 138%
Decode Time[%] 94% 99% 98% 97% 101%

TABLE VI: Experimental Results for RA, Lossy Coding

Hash Dict ACS All Fast

RGB, T, 1080p −23.6% −24.0% −3.6% −37.9% −34.3%
RGB, T, 720p −13.7% −20.4% −11.1% −33.4% −31.0%

RGB, M, 1440p −3.7% −7.3% −16.4% −28.4% −26.8%
RGB, M, 1080p −5.6% −6.5% −6.8% −18.1% −16.2%

RGB, A, 720p 0.0% 0.0% −14.0% −16.7% −16.4%
YUV, T, 1080p −23.2% −21.4% 0.0% −35.3% −32.3%
YUV, T, 720p −12.7% −14.9% 0.0% −23.4% −22.1%

YUV, M, 1440p −4.8% −7.0% 0.0% −14.9% −13.2%
YUV, M, 1080p −6.5% −6.6% 0.0% −13.4% −11.1%

YUV, A, 720p 0.0% 0.1% 0.0% −4.1% −3.8%
Average −12.0% −13.8% −4.8% −25.7% −23.6%

Encode Time[%] 67% 144% 107% 89% 73%
Decode Time[%] 101% 101% 98% 102% 108%

structures are provided in Table V to Table X. Several example
R-D curves are shown in Fig. 12.

C. Discussion

From the results above, it is clear that the proposed coding
scheme for screen content coding outperforms the existing
coding scheme. The following discussions use Low Delay
lossy coding as an example. The entire framework saves about
20.3% bits on average for all the sequences. Besides the
significant bit saving, about 9% encoding time saving is also
achieved, which demonstrates that the proposed framework
improves the coding efficiency significantly while reducing
the encoding complexity. When fast encoding algorithms are
enabled, 18.6% bit saving is achieved with 22% encoding time
reduction, compared with the anchor. Among the proposed
coding tools, hash-based block matching and dictionary mode
have the most significant performance gain. The adaptive color
space coding only helps the encoding of RGB sequences,
which brings up to 12.8% bit saving for RGB, M, 1080p
sequences. The all frame works outperforms the existing
coding framework significantly.

D. Different Trade-offs Between Encoding Complexity and
Coding Efficiency

To further evaluate the coding efficiency of the proposed
coding scheme, we developed several other fast encoding
algorithms to show the performance at different trade-offs
between the encoding complexity and coding efficiency. Five
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TABLE IV: Test Sequences

Categrary Sequence Resolution FPS Frames QP for lossy coding

Text & Graphics with motion (T)

FlyingGraphics 1920x1080 (1080p) 60 600 27, 32, 37, 42
Desktop 1920x1080 (1080p) 60 600 27, 32, 37, 42
Console 1920x1080 (1080p) 60 600 27, 32, 37, 42

WebBrowsing 1280x720 (720p) 30 300 27, 32, 37, 42
Map 1280x720 (720p) 60 600 22, 27, 32, 37

Programming 1280x720 (720p) 60 600 22, 27, 32, 37
SlideShow 1280x720 (720p) 20 500 27, 32, 37, 42

Mixed content (M)

BasketballScreen 2560x1440 (1440p) 60 300 22, 27, 32, 37
MissionControlClip2 2560x1440 (1440p) 60 300 22, 27, 32, 37
MissionControlClip3 1920x1080 (1080p) 60 600 22, 27, 32, 37

SocialNetworkMap 1920x1080 (1080p) 60 300 22, 27, 32, 37
Animation (A) Robot 1280x720 (720p) 30 300 22, 27, 32, 37

TABLE VII: Experimental Results for LD, Lossy Coding

Hash Dict ACS All Fast

RGB, T, 1080p −23.1% −19.0% −2.7% −32.8% −29.2%
RGB, T, 720p −15.1% −15.9% −6.8% −27.5% −25.5%

RGB, M, 1440p −1.8% −4.4% −12.8% −20.8% −19.9%
RGB, M, 1080p −3.6% −3.2% −5.0% −12.4% −10.9%

RGB, A, 720p 0.0% 0.0% −5.5% −7.0% −6.8%
YUV, T, 1080p −22.3% −15.7% 0.0% −29.7% −26.3%

YUV, T, 720p −14.0% −10.7% 0.0% −19.8% −18.5%
YUV, M, 1440p −2.5% −4.1% 0.0% −9.8% −9.5%
YUV, M, 1080p −4.3% −3.2% 0.0% −8.1% −6.8%

YUV, A, 720p 0.0% 0.2% 0.0% −1.6% −1.6%
Average −11.5% −10.0% −3.2% −20.3% −18.6%

Encode Time[%] 74% 134% 104% 91% 78%
Decode Time[%] 99% 101% 95% 100% 107%

TABLE VIII: Experimental Results for AI, Lossless Coding

Hash Dict ACS All Fast

RGB, T, 1080p 21.2% 42.6% 0.8% 45.5% 44.1%
RGB, T, 720p 8.2% 20.3% 0.8% 21.6% 20.9%

RGB, M, 1440p 5.9% 10.3% 0.5% 12.8% 12.1%
RGB, M, 1080p 3.0% 14.1% 0.7% 15.6% 14.1%

RGB, A, 720p 0.0% 0.0% 3.3% 3.3% 3.0%
YUV, T, 1080p 22.0% 46.0% 0.0% 48.6% 47.2%

YUV, T, 720p 9.9% 21.7% 0.0% 22.4% 21.7%
YUV, M, 1440p 6.2% 10.3% 0.0% 13.0% 12.4%
YUV, M, 1080p 3.3% 11.0% 0.0% 12.4% 10.9%

YUV, A, 720p 0.0% 0.0% 0.0% 0.1% −0.1%
Average 9.9% 21.9% 0.5% 23.7% 22.8%

Encode Time[%] 111% 226% 124% 268% 164%
Decode Time[%] 95% 106% 99% 97% 101%

different bit saving− complexity points are provided in Fig.
13. They are

• Point 1: The full coding scheme described above.
• Point 2: The fast encoding solution described above.
• Point 3: Point 2 with the following modifications. Disable

AMP (Asymmetrical Motion Partition) in the RDO pro-
cess. Disable lossy search for Intra BC. Disable adaptive
color space coding. Adjust the same encoding parameters
used in the fast encoding algorithms for lossless coding.
The number of search candidates for dictionary mode is
set to 100 and if the number of different colors is more
than 50, we skip the RDO process for dictionary mode.

• Point 4: Point 3 with the following modification. For
normal intra mode, we only perform RDO on the di-
rection leading to the smallest SATD (Sum of Absolute

TABLE IX: Experimental Results for RA, Lossless Coding

Hash Dict ACS All Fast

RGB, T, 1080p 24.1% 33.7% 0.7% 40.4% 38.1%
RGB, T, 720p 8.5% 12.7% 0.6% 14.9% 14.4%

RGB, M, 1440p 1.4% 1.8% 0.2% 2.9% 2.6%
RGB, M, 1080p 1.1% 6.2% 0.3% 6.8% 6.2%

RGB, A, 720p 0.0% 0.0% 0.3% 0.3% 0.3%
YUV, T, 1080p 24.2% 36.7% 0.0% 42.8% 40.6%
YUV, T, 720p 10.1% 14.7% 0.0% 16.3% 15.9%

YUV, M, 1440p 1.5% 1.7% 0.0% 2.8% 2.6%
YUV, M, 1080p 1.2% 3.7% 0.0% 4.2% 3.6%

YUV, A, 720p 0.0% 0.0% 0.0% 0.0% 0.0%
Average 9.6% 14.5% 0.2% 17.0% 16.1%

Encode Time[%] 73% 147% 103% 94% 80%
Decode Time[%] 100% 103% 98% 100% 107%

TABLE X: Experimental Results for LB, Lossless Coding

Hash Dict ACS All Fast

RGB, T, 1080p 24.7% 30.3% 0.4% 38.5% 35.8%
RGB, T, 720p 8.5% 11.5% 0.5% 13.3% 12.8%

RGB, M, 1440p 0.8% 0.9% 0.2% 1.7% 1.4%
RGB, M, 1080p 0.6% 5.3% 0.2% 5.7% 5.2%

RGB, A, 720p 0.0% 0.0% 0.1% 0.1% 0.1%
YUV, T, 1080p 24.4% 32.9% 0.0% 40.4% 37.9%
YUV, T, 720p 10.2% 13.4% 0.0% 14.7% 14.3%

YUV, M, 1440p 0.9% 1.0% 0.0% 1.6% 1.4%
YUV, M, 1080p 0.7% 2.7% 0.0% 3.0% 2.6%

YUV, A, 720p 0.0% 0.0% 0.0% 0.0% 0.0%
Average 9.5% 12.9% 0.2% 15.5% 14.6%

Encode Time[%] 75% 140% 102% 90% 77%
Decode Time[%] 99% 102% 96% 101% 106%

Transformed Differences) cost. We only check DM for
chroma component in normal intra mode. We set the
maximum transform depth to 1.

• Point 5: Point 4 with the disabling of non-2Nx2N inter
partitions.

It should be noticed that Point 4 and Point 5 are identical for
All Intra Coding.

The figures show that different trade-offs could be achieved
by adjusting encoding parameters. Compared with the anchor,
large bit savings (more than 10%) may also be achieved even
if the encoding complexity is significantly reduced (less than
half of the original encoding time).

VIII. CONCLUSIONS

This paper has introduced a hybrid coding scheme for screen
content coding. Considering the characteristics of screen con-
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Fig. 12: Example R-D Curves

tent, new coding tools, such as hash-based large scale block
matching, dictionary mode, adaptive color space coding, etc.,
are designed. The experimental results show that the proposed
coding scheme can significantly improve the coding efficiency
for screen content while reducing complexity.
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