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ABSTRACT
The ability to approximately answer aggregation queries
accurately and efficiently is of great benefit for decision support
and data mining tools. In contrast to previous sampling-based
studies, we treat the problem as an optimization problem whose
goal is to minimize the error in answering queries in the given
workload. A key novelty of our approach is that we can tailor the
choice of samples to be robust even for workloads that are
“similar” but not necessarily identical to the given workload.
Finally, our techniques recognize the importance of taking into
account the variance in the data distribution in a principled
manner. We show how our solution can be implemented on a
database system, and present results of extensive experiments on
Microsoft SQL Server 2000 that demonstrate the superior quality
of our method compared to previous work.

1 INTRODUCTION
In recent years, decision support applications such as On Line
Analytical Processing (OLAP) and data mining for analyzing
large databases have become popular. A common characteristic of
these applications is that they execute aggregation queries on
large databases, which can often be expensive and resource
intensive. Therefore, the ability to obtain approximate answers to
such queries accurately and efficiently can greatly benefit the
scalability of these applications. One approach to address this
problem is to use precomputed samples of the data instead of the
complete data to answer the queries. While this approach can give
approximate answers very efficiently, it is easy to see that
identifying an appropriate precomputed sample that avoids large
errors on an arbitrary query is virtually impossible, particularly
when we take into account the fact that queries may involve
selections, GROUP BY and join. To minimize the effects of this
problem, previous studies have proposed using the workload to
guide the process of selecting samples [1,6,11]. The hope is that
by picking a sample that is tuned to the given workload, we can
ensure acceptable error at least for queries in the workload.

Despite recognizing the importance of workload information in
picking samples of the data, previous studies suffer from three
significant drawbacks. First, although the proposed solutions have

intuitive appeal, the lack of a rigorous problem formulation leads
to solutions that are difficult to evaluate theoretically. Second,
they do not attempt to formally deal with uncertainty in the
expected workload, i.e., when incoming queries are “similar” but
not identical to queries in the given workload. Third, most
previous studies ignore the variance in the data distribution of the
aggregated column(s). As the following example shows, ignoring
data variance can lead to extremely poor quality of answers for
aggregate functions such as SUM:

Example 1. Consider a relation R containing two columns
<ProductId, Revenue> and four records {<1, 10>, <2, 10>, <3,
10>, <4, 1000>}. Assume that we are allowed to use a sample S
of two records from R to answer the query Q: SELECT
SUM(Revenue) FROM R. We answer a query by running it
against S and scaling the result by a factor of two (since we are
using a 50% sample). Consider a sample S1 = {<1, 10>, <3, 10>}.
The estimated answer for Q using S1 is 40, which is a severe
underestimate of the actual answer (1030). Now consider another
sample S2 = {<1,10>, <4,1000>}. The estimated answer for Q
using S2 is 2020, which is a significant overestimate. Thus, large
variance in the aggregate column can lead to large relative errors.

In contrast to most previous sampling-based studies, in this paper,
we formulate the problem of precomputing a sample as an
optimization problem, whose goal is to pick a sample that
minimizes the error for the given workload. We show that when
the actual workload is identical to the given workload (we refer to
such a workload as fixed), we can achieve dramatically smaller
errors using a deterministic solution to the optimization problem.
Of course, such a solution is not resilient when the actual
workload happens to deviate from the given workload. We
therefore introduce a generalized model of the workload (“lifted
workload”) that makes it possible to tune the choice of the sample
so that approximate query processing using the sample is effective
not only for workloads that are identical to the given workload,
but also for workloads that are “similar” to the given workload
(i.e., queries that select regions of the data that overlap
significantly with the data accessed by the queries in the given
workload) – a more realistic scenario.

We formulate selection of the sample for such a workload as a
stratified sampling problem with the goal to minimize error in
estimation of aggregates. Our formulation makes the problem
amenable to exploiting known techniques in stratified sampling
and optimization. As a consequence, we have developed a robust
approach to the problem of approximate query processing of SPJ
queries with GROUP BY and aggregation. We have implemented
our solutions on Microsoft SQL Server 2000, addressing the
pragmatic issues that are central to an effective solution that can
be deployed in a commercial DBMS. The benefits of our
systematic approach are amply demonstrated not only by
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theoretical results, but also experimentally on synthetic as well as
on a deployed enterprise data-warehouse in our organization.

Some details of our work are omitted in this paper due to lack of
space. A complete version of the paper is available in [7]. We
begin by discussing related work in Section 2. We present an
overview of our architecture for approximate query processing in
Section 3. Our deterministic solution for the special case of a fixed
workload is presented in Section 4. We describe a model for
lifting a given workload in Section 5, and formulate the problem
of approximate query answering using stratified sampling in
Section 6. We present our solution to the optimization problem for
single-table selection queries with aggregation in Section 7, and
describe extensions necessary for a broader class of queries in
Section 8. We describe our implementation and experimental
results in Section 9, and conclude in Section 10.

2 RELATED WORK
Both [6] and [11] present a seemingly intuitive idea based on
weighted sampling. Each record in the relation R to be sampled is
tagged with a frequency – the number of queries in the workload
such that the record must be selected to answer the query. Once
tagging is done, an expected number of k records are selected in
the sample, where the probability of selecting a record t with
frequency ft is k*(ft/Σufu)). Thus, records that are accessed more
frequently have a greater chance of being included inside the
sample. However, as the following example shows, this approach
can sometimes lead to poor quality. Consider a set of k queries
{Q1, … Qk} (where k is also the size of the sample) that reference
disjoint partitions of records in R. Let a few queries reference
large partitions and most queries reference very small partitions.
Then, by the weighted sampling scheme described above, since
most records in the sample will come from the large partitions,
with high probability, there will be no records selected from many
of the small partitions. Thus, the relative error in answering most
of the queries will be large. For this example, as we show in
Sections 4 and 7, we can achieve significantly lower error. A
novelty of [11] is that it tackles the issue of maintaining and
continuously refreshing a sample of records of R after a new
query has been processed. However, the paper does not address
the issue of variance of data in the aggregate column. Finally, as
mentioned in the introduction, a shortcoming common to most
previous work is that they do not attempt to formally deal with
uncertainty in the expected workload.

The paper [6] attempted to address the problem of variance of
data in the aggregate column (see Example 1). The basic idea is
that outliers of the data (i.e., the records that contribute to high
variance in the aggregate column) are collected into a separate
index, while the remaining data is sampled using a weighted
sampling technique. Queries are answered by running them
against both the outlier index as well as the weighted sample, and
an estimated answer is composed out of both results. This method
too is easily seen to result in worse quality than our approach,
since the concept of an outlier index + a (weighted) sample can be
viewed as crude approximation of our approach using stratified
sampling, where the outliers form their own stratum that is
sampled in its entirety. The idea of separately handling outliers
has also appeared in the context of applying exploratory data
analysis methods on data cubes [3,4].

The congressional sampling paper [1] does not deal with data
variance. However, they adopt the most principled approach
among previous work. They advocate a stratified sampling
strategy called Congress that tries to simultaneously satisfy a set
of GROUP BY queries. Some key concepts of our paper (e.g., the
concept of fundamental regions that we discuss in Section 4) have
been influenced by it. However, their approach is still ad-hoc in
the sense that their scheme does not attempt to minimize the error
for any of the well-known error metrics.

There has been a large body of work on approximately answering
a query by sampling on the fly rather than exploiting a
precomputed sample. However, in general, on-the-fly sampling
can be expensive, particularly in the presence of join and GROUP
BY without extensive availability of statistics (histograms) and/or
enhancements to the database engine. Notable examples of on-
the-fly sampling techniques are [8,13]. In [13], they also identify
enhancements to the database engine needed to support
progressive refinement of the approximate answer.

In addition to sampling based methods, there have been other data
reduction based approaches to approximate query processing,
such as histograms [15,17] and wavelets [5,22,23]. As noted in
[22], a general problem with histogram-based approaches is that
they incur high storage overhead and construction cost as the
dimensionality of the data increases. In [22,23], the authors
argued the effectiveness of wavelets for handling aggregations
over (high-dimensional) OLAP cubes. More recently, [5] showed
how SQL operators can be applied directly on wavelet
coefficients to efficiently produce approximate answers. More
extensive theoretical and experimental comparisons of data
reduction based approaches and sampling based approaches are
necessary to identify their relative strengths and weaknesses.

3 ARCHITECTURE FOR
APPROXIMATE QUERY PROCESSING

3.1 Preliminaries
We present an overview of our architecture for approximate query
processing on a relational database. We consider queries with
selections, foreign-key joins and GROUP BY containing
aggregation functions such as COUNT, SUM, and AVG. We
assume that a pre-designated amount of storage space is available
for selecting samples from the database. These samples, possibly
in conjunction with other base relations, will be used for
answering the queries approximately but efficiently. The
techniques for selecting samples can be randomized (e.g., we may
sample uniformly at random) or deterministic (e.g., we may select
the best sample that minimizes the total error in the approximate
answers).

As with previous sampling-based studies [1,6,11], we have taken
the approach of exploiting the available workload (provided as an
input) to find samples that work well for queries in the given
workload. A workload W is specified as a set of pairs of queries
and their corresponding weights: i.e., W = {<Q1, w1>, … <Qq,
wq>}, where weight wi indicates the importance of query Qi in the
workload. Without loss of generality, we can assume that the
weights are normalized, i.e., Σiwi=1. In practice, such a workload
may be obtained using profiling tools available on most modern
DBMSs that for logging queries that execute on the server.



3.2 Our Architecture
Our architecture for approximate query processing is summarized
in Figure 1. The inputs are a database and a workload W. For
simplicity, we present our architecture for the case of a single
relation R. There are two components in our architecture: (1) an
offline component for selecting a sample of records from relation
R, and (2) an online component that (a) rewrites an incoming
query to use the sample (if appropriate) to answer the query
approximately and (b) reports the answer with an estimate of the
error in the answer. The novelty of this paper is in the first
component. We present a method for automatically lifting a given
workload, i.e., quantifying a generalized model of the workload.
Our motivation stems from the fact that it is unrealistic to assume
that incoming queries in the future will be identical to the given
workload W. The key to lifting the workload is the ability to
compute a probability distribution pW. of incoming queries, i.e.,
for any incoming query Q, pW(Q) is the probability of Q. The
subscript indicates that the distribution depends on W. Our
algorithm then selects a sample that is resilient enough for such a
lifted workload. We also show how we can select a sample that
minimizes the error of answering queries in the (lifted) workload.
This step is labeled “Build Samples” in the figure.

An incoming query is rewritten to run against the samples instead
of the base relation. For a multi-relation query, in addition to the
samples, we may also reference other base relations to answer the
query. As in previous work [1,6,11], we assume that each record
in the sample also contains an additional column known as the
ScaleFactor with each record1. The value of the aggregate column
of each record in the sample is first scaled up by multiplying with
the ScaleFactor, and then aggregated. We note that alternative
schemes, as in [1], are possible where the ScaleFactor column is
maintained in a separate relation than the sample. Such schemes
incur reduced update and storage overhead at the expense of

1 In general, we allow a small constant number of additional columns with
each record (e.g., see deterministic solution in Section 4).

increased run time overhead. The techniques described in this
paper are applicable independent of the specific scheme used. In
addition to the approximate answer, as we show in Section 6, we
can also report the variance (or even a confidence interval) for the
approximate answer.

3.3 Error Metrics
We define the error metrics used to determine the quality of an
approximate answer to an aggregation query. Suppose the correct
answer for a query is y while the approximate answer is y’. We
focus on relative error (defined as |y – y’|/|y|), since that is usually
a fairer measure across queries. The squared error of a query
(SE(Q)) is ((y – y’)/ y)2 . Now consider a GROUP BY query that
induces g groups in the data. Suppose the correct answer for the
ith group is yi while the approximate answer is yi’. The squared
error for the query is (1/g) Σi((yi – yi’)/ yi)

2 (this error measure for
a GROUP BY query has also been considered by [1,6]). In other
words, a GROUP BY query can be treated as g SELECT queries,
each of weight 1/g. Given a probability distribution of queries pW,
the mean squared error for the distribution (MSE(pW)) is defined
as ∑Q pW(Q)*SE(Q), where pW(Q) is the probability of query Q.
The root mean squared error (RMSE), also known as the L2 error,
is defined as the square root of MSE. Other error metrics are
possible e.g., using the L1 metric (defined as the mean error over
all queries in the workload) or L∞ metric (defined as the
maximum error over all queries). In this paper, although we
optimize for the MSE due to its long tradition in statistics, we can
easily extend our techniques to optimize for the L1 metric. In fact,
while our algorithms minimize MSE, we found that these
solutions also do very well for the L1 metric. Since most previous
work in this area report the L1 metric, our experimental
comparisons also report the L1 metric.

4 THE SPECIAL CASE OF A FIXED
WORKLOAD

In this section, we present a problem formulation and solution for
the special case of a fixed workload, i.e., when the incoming
queries are identical to the given workload. The motivation for
presenting this case is to underscore the benefit of our approach of
treating approximate query answering as an optimization problem.
In fact, as shown below, this problem formulation allows us to use
an effective deterministic scheme rather than the conventional
randomization schemes considered in previous work. For
simplicity, we describe the problem for the case of single table
selection queries containing the COUNT or SUM aggregate.

4.1 Problem Formulation

We now frame the optimization problem FIXEDSAMP for the
case of a fixed workload W. Recall that MSE(pW) (Section 3.3) is
the mean squared error for the probability distribution of queries
pW. MSE(W) is equivalent to MSE(pW) where a query Q has a
probability of occurrence of 1 if Q∈ W and 0 otherwise. As
described in Section 3.2, we need to associate additional
column(s) with each record in the sample to allow scaling the
values obtained by running the query on the sample. Observe that

Database

Problem: FIXEDSAMP
Input: R, W, k
Output: A sample of k records (with appropriate
additional columns) such that MSE(W) is minimized.

Figure 1. Architecture for Approximate Query Processing.
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the problem formulation is general in the sense that it allows both
randomized as well as deterministic solutions.

Before presenting our solution to FIXEDSAMP, we first define
the key concept of fundamental regions of a relation induced by a
workload. Fundamental regions are important because they play a
crucial role in determining an appropriate sample for the given
workload. In fact, the concept of fundamental regions is also
important in the context of our randomized sampling scheme that
appears in Section 7.

4.2 Fundamental Regions

For a given relation R and workload W, consider partitioning the
records in R into a minimum number of regions R1, R2, …, Rr

such that for any region Rj, each query in W selects either all
records in Rj or none. These regions are the fundamental regions
of R induced by W. For example, consider a relation R (with
aggregate column C) containing nine records (with C values 10,
20, …, 90), as shown in Figure 2. Let W consist of two queries,
Q1 (which selects records with C values between 10 and 50) and
Q2 (which selects records with C values between 40 and 70).
These two queries induce a partition of R into four fundamental
regions, labeled R1, … R4.

The concept of finest partitioning into groups in [1] is similar to
the concept of fundamental regions. In general the total number of
fundamental regions r depends on R and W and is upper-bounded
by min(2|W|, n) where n is the number of records in R. The
algorithmic and implementation details of how to identify
fundamental regions efficiently are discussed in Section 7.3.1.

4.3 Solution for FIXEDSAMP
We present a deterministic algorithm called FIXED for solving
FIXEDSAMP. Briefly, the algorithm has three steps. The first
step identifies all fundamental regions. The second step selects the
sample by picking exactly one record from each “important”
fundamental region. The third step assigns appropriate values to
additional columns in the sample records. We elaborate on these
steps below.

Step1 (Identify Fundamental Regions): The first step is to identify
the fundamental regions in R induced by the given workload W.
Let r be the number of fundamental regions.

After Step 1, two cases arise that need to be separately processed:
Case A (r ≤ k) and Case B (r > k).

Case A (r≤ k): For this case our algorithm selects a sample that
can answer queries without any errors. Details are as follows.

Step 2A (Pick Sample Records): We select the sample by picking
exactly one record from each fundamental region. Thus for the
example in Figure 2, we may pick the records with C values 10,
40, 60, and 80, i.e. one record from each fundamental region.

Step 3A (Assign Values to Additional Columns): The idea is that
each sample record can be used to “summarize” all records from
the corresponding fundamental region, without incurring any
error. More precisely, for a workload consisting of only COUNT
queries, we need a single additional column in the sample records
(called RegionCount), in which we store the count of the number
of records in that fundamental region. This allows us to answer a
COUNT query without any errors by running it against the
sample and simply summing up the RegionCount column of
records selected from the sample by the query. For example, if the
queries in Figure 2 were COUNT queries, the sample records
chosen in Step 2A will contain an extra RegionCount column with
values 3, 2, 2, and 2 respectively. Likewise, for a workload
consisting only of SUM queries, we need a single additional
column in the sample (called AggSum) that contains the sum of
the values in the aggregate column for records in that fundamental
region. For example, if the queries in Figure 2 were SUM queries,
the sample records chosen in Step 2A will contain an extra
AggSum column with values 60, 90, 130, and 170 respectively. If
the workload contains a mix of COUNT and SUM queries, we
need both the RegionCount and the AggSum columns. Note that if
we include both these columns, we can also answer AVG queries.

Case B (r > k): This is a more difficult case. Our algorithm
selects a sample that tries to minimize the errors in queries.

Step 2B (Pick Sample Records): Since r > k, we select k regions
and then pick one record from each of the selected regions. Our
heuristic for selecting k regions is to sort all r regions by their
importance and then select the top k. The importance of region Rj

is defined as fj*nj
2, where fj is the sum of the weights of all queries

in W that select the region, and nj is the number of records in the
region. The intuition is that fj measures the weights of the queries
that are affected by Rj while nj

2 measures the effect on the
(squared) error by not including Rj. While more complicated
measures of importance are possible, in our experiments we found
that the above heuristic does very well. We then pick exactly one
record from each selected fundamental region.

Step 3B (Assign Values to Additional Columns): Next, for the
selected sample records, we determine the values of the
RegionCount and AggSum columns. We could of course naively
do exactly what was done in Step 3A, i.e. we store in the
RegionCount and AggSum columns of each sample record the
count and sum of the records of the corresponding fundamental
region. However, note that the extra column values of a sample
record are not required to have any obvious relationship with
some characteristic of the corresponding fundamental region; all
we care is that they contain appropriate values so that the error for
the workload is minimized.

Thus, we view the problem of assigning values to the
RegionCount and AggSum columns of the k records selected in
Step 2B as the following optimization problem. We have 2*k
unknowns: {RC1, …, RCk} and {AS1, ….ASk}. MSE(W) can be
expressed as a quadratic function of these 2*k unknowns. We
minimize this function by partially differentiating with each
variable and setting each result to zero. This gives rise to 2*k
simultaneous (sparse) linear equations, which we solve using an
iterative technique (based on the Gauss-Seidel method [12]). In
our experiments, (Section 9), we see that FIXED is significantly
more accurate than all randomized schemes for the given
workload. We note that the disadvantage of this deterministic
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method is that a per-query (probabilistic) error guarantee is not
possible.

Observe that if the incoming query is not identical to a query in
the given workload (a realistic scenario), using FIXED can result
in unpredictable errors. Therefore, our goal is to incorporate a
measure of robustness in our solution by optimizing for a more
generalized model of the workload that would allow incoming
queries to be similar but not necessarily identical to the given
workload.

5 LIFTING WORKLOAD TO QUERY
DISTRIBUTIONS

As mentioned earlier, we would like our approximate query
processing scheme to not only perform well for incoming queries
that exactly match one of the queries in the given workload, but
also be resilient to the situation when an incoming query is
“similar” but not identical to queries in the workload. In this
section we tackle one aspect of the problem, i.e., defining this
notion of similarity. More formally, we show how given W, we
can define a lifted workload pW, i.e., a probability distribution of
incoming queries. Intuitively, for any query Q’ (not necessarily in
W), pW(Q’) should be related to the amount of similarity
(dissimilarity) of Q’ to the workload: high if Q’ is similar to
queries in the workload, and low otherwise. In Sections 7 and 8
we show how to leverage such a probability distribution in our
approximate query processing solution.

Our notion of similarity between queries is not concerned with
syntactic similarity of query expressions. Rather, we say that two
queries Q’ and Q are similar if the records selected by Q’ and Q
have significant overlap. We focus on the case of single-table
selection queries with aggregation containing either the SUM or
COUNT aggregate (this intuition is refined for GROUP BY and
join queries in Section 8). Let us consider the simplest case when
the workload W consists of exactly one query Q on relation R. Let
RQ be the records selected by Q. Our objective is to define the
distribution p{Q} (i.e., for pW, where W = {<Q,1.0>}). Since for
the purposes of lifting, we are only concerned with the set of
records selected by a query and not the query itself, we make a
change in notation for convenience: instead of mapping queries to
probabilities, p{Q} maps subsets of R to probabilities2. For all
R’⊆ R, p{Q}(R’) denotes the probability of occurrence of any query
that selects exactly the set of records R’.

For the moment, assume two parameters δ (½ ≤ δ ≤1) and γ (0 ≤ γ
≤ ½) have been specified. Informally, these parameters define the
degree to which the workload “influences” the query distribution.
More formally, for any given record inside (resp. outside) RQ, the
parameter δ (resp. γ) represents the probability that an incoming
query will select this record.

Given these two parameters, we can now derive p{Q}(R’) for any
R’⊆ R (i.e. the probability of occurrence of any query that exactly
selects R’). Figure 3 shows a Venn diagram of R, RQ and R’,
where n1, n2, n3, and n4 are the counts of records in the regions
indicated. Equation 1 shows the derivation of p{Q}(R’). Note that

2 This notation makes it convenient to give a single probability to the
(infinite) set of queries that only syntactically differ in their WHERE
clauses, yet select the same R’. Note that the domain of p{Q} is finite, i.e.
the power set of R.

when n2 or n4 are large (i.e., the overlap is large), p{Q}(R’) is high
(i.e. queries that select RQ are likely to occur), whereas when n1 or
n3 are large (i.e. the overlap is small), p{Q}(R’) is low (i.e. queries
that select RQ are unlikely to occur). Once p{Q} has been defined,
pW can be easily derived, as shown in Equation 2.
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Let us now discuss the problem of setting the parameters δ and γ.
As mentioned earlier, the parameters define the degree to which
the workload W influences the query distribution pW. We
elaborate on this issue by analyzing the effects of (four) different
boundary settings of these parameters.
1. δ → 1 and γ → 0: implies that incoming queries are identical

to workload queries.
2. δ → 1 and γ → ½: implies that incoming queries are

supersets of workload queries.
3. δ → ½ and γ → 0: implies that incoming queries are subsets

of workload queries.
4. δ → ½ and γ → ½: implies that incoming queries are

unrestricted.
Using the above scenarios as guidelines, it may be possible for
skilled database administrators to analyze their workload patterns,
and manually set the parameters to values that best model their
workloads. However, we also present a simple automated
approach for parameter setting. The basic idea is to split the
available workload into two sets, the training workload and the
test workload. The parameters are selected using a two-
dimensional grid search approach (based on [19]) such that the
lifted training workload (under these settings) most closely fits the
test workload. The implementation details of this method appear
in Section 9.1. The grid search approach is effective and scalable
with data size for low dimensional optimization problems such as
ours, and our experiments (Section 9) indicate the approach is
promising. We are also investigating alternative approaches such
as randomized search and gradient descent.

The above represents a simple first attempt at lifting workloads in
a rigorous manner. It is similar to kernel density estimation
techniques for estimating probability distributions from samples
[16,18]. The problem of automatically setting parameters δ and γ
is similar to the problem of bandwidth selection in kernel density
estimation. We are investigating whether known techniques for
bandwidth estimation (bootstrap, cross-validation [18]) can be
adapted in a scalable manner. Other methods for lifting a
workload need to be studied in the future, e.g., modeling the query
distribution as a mixture of Gaussians. In fact, the problem of
lifting a workload is really orthogonal to the problem of

Figure 3
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approximate query processing, and we expect it to find
applications in other areas.

In the next few sections, we develop an approximate query
processing scheme, which will attempt to minimize the MSE of
the lifted workload, i.e., for pW (which depends on W, δ and γ).

6 RATIONALE FOR STRATIFIED
SAMPLING

We now state the problem of identifying an appropriate sample as
a formal optimization problem. For simplicity, we state the
problem when the workload contains queries that reference a
single relation R. The formulation can be easily extended for
multi-table queries (see Section 8).

In the above formulation, pW is any probability distribution
function derived from the given workload W. For example, the
lifting model presented in Section 5 can be used to obtain pW. In
this section we show why uniform sampling cannot be effectively
applied to SAMP, and justify our approach of adapting stratified
sampling [10] to solve this problem. Stratified sampling is a well-
known generalization of uniform sampling where a population is
partitioned into multiple strata and samples are selected uniformly
from each stratum, with “important” strata contributing relatively
more samples.

We first observe that the error incurred by uniformly sampling a
population of numbers is proportional to the variance of the
population and inversely proportional to the sample size [10].
More precisely, consider a population, i.e. a set of numbers R =
{y1,…, yn}. Let the average be y, the sum be Y and the variance be
S2. Suppose we uniformly sample k numbers. Let the mean of the
sample be µ. The quantity µ is an unbiased estimator for y, i.e.,
E[µ] = y; the variance (i.e., squared error) in estimating y is E[(µ-
y)2] = S2/k.

Now consider the following selection query with aggregation on
relation R defined in Example 1 (Section 1). Q1 = SELECT
COUNT(*) FROM R WHERE ProductId IN (3,4). Recall that R
is the relation {<1, 10>, <2,10>, <3, 10>, <4,1000>}. We define
the population of a query Q (denoted by POPQ) on a relation R as
a set of size |R| that contains the value of the aggregated column
that is selected by Q, or 0 if the record is not selected. By this
definition, POPQ1 = {0, 0, 1, 1}. Observe that POPQ1 has a mix of
1’s and 0’s and thus has a non-zero variance. Thus, a uniform
sampling of POPQ1 would be a poor choice for this problem since
it would incur non-zero error. However, if we partition R into two
strata {<1, 10>, <2,10>} and {<3, 10>, <4,1000>}, we
effectively partition POPQ1 into two strata {0, 0} and {1, 1}. Each
stratum now has zero variance, and a stratified sampling strategy
that selects at least one sample from each stratum will estimate Q1

with zero error.

Note however, that this particular stratification may not work well
for a different COUNT query whose population has a different
distribution of 1s and 0s. For example, consider a query Q2 =
SELECT COUNT(*) FROM R WHERE ProductId IN (1,2,3).

POPQ2 = {1, 1, 1, 0} and is different from POPQ1. As can be seen
by this example, each query defines its own population of the
same relation R, and therefore the challenge is to adapt stratified
sampling so that it works well for all queries. An effective scheme
will need to stratify the relation such that the expected variance
over all queries in each stratum is small, and allocate more
samples to strata with larger expected variances.

For SUM queries, stratification is also governed by the additional
problem of variance in the aggregate column. For example,
consider query Q3 = SELECT SUM(Revenue) FROM R WHERE
ProductID IN (1,4). POPQ3 = {10, 0, 0, 1000} and therefore has
large variance.

Thus, a stratified sampling scheme partitions R into r strata
containing n1, ., nr records (where Σnj = n), with k1, …, kr records
uniformly sampled from each stratum (where Σkj = k). As
mentioned in Section 3.2, the scheme also associates a
ScaleFactor with each record in the sample. Queries are answered
by executing them on the sample instead of R. For a COUNT
query, the ScaleFactor entries of the selected records are summed,
while for a SUM(y) query the expression y*ScaleFactor is
summed. If we also wish to return an error guarantee with each
query, then instead of ScaleFactor, we have to keep track of each
nj and kj individually for each stratum.

7 SOLUTION FOR SINGLE-TABLE
SELECTION QUERIES WITH
AGGREGATION

We now present STRAT, our solution to the problem SAMP
(Section 6) for workloads consisting of single-table selection
queries with aggregation. In Section 8, we show how to extend
STRAT for aggregation queries with join, nested sub-queries, and
GROUP BY. Our solution consists of three steps. The first step,
which we refer to as stratification, is determining (a) how many
strata r to partition relation R into, and (b) the records from R that
belong to each stratum. At the end of this step we have r strata R1,
… Rr containing n1, …nr records such that Σnj = n. The second
step, called allocation, determines how to divide k (the number of
records available for the sample) into integers k1, …, kr across the
r strata such that Σkj = k. The third step, referred to as the
sampling step, uniformly samples kj records from stratum Rj to
form the final sample of k records. The sample so created is then
used at runtime to approximately answer queries. The heart of the
algorithm is in the first two steps, which are designed to minimize
the errors in approximately answering queries in the lifted
workload (pW). The third step is straightforward, and can be
accomplished with one scan of relation R. We present STRAT for
queries containing the COUNT aggregate, and then describe the
extensions necessary to deal with the more challenging SUM
aggregate. We then discuss the key implementation issues.

7.1 Solution for COUNT Aggregate

7.1.1 Stratification
It may appear that the problem of stratification of R for a given
workload W of COUNT queries is intractable since when r is not
known, there are an exponential number of ways of stratifying R.
However, the following lemma tells us that it is enough to
partition R into fundamental regions (Section 4.2) and treat each
region as a stratum. For details of the proof see [7].

Problem: SAMP
Input: R, pW (a probability distribution function specified
by W), and k
Output: A sample of k records, (with the appropriate
additional column(s)) such that the MSE(pW) is minimized.



Lemma 1: For a workload W consisting of COUNT queries, the
fundamental regions represent an optimal stratification.

7.1.2 Allocation
The key remaining challenge is how to allocate the k records
across the r fundamental regions (strata). Our main idea is to treat
this problem as an optimization problem whose goal is to
minimize the error over queries in pW. Observe that this is a
significant point of departure compared to most previous work in
this area, where this allocation step is done in an intuitive but
informal manner. We assume that k1,…, kr, are unknown variables
such that Σkj = k. We leverage the following two results to express
MSE(pW) as a function of these variables and then select values
for these variables that minimizes MSE(pW). First, using Equation
2, it is easy to see that the MSE(pW) can be expressed as a
weighted sum of the MSE of each query in the workload (as
stated by the following lemma):

Lemma 2: MSE(pW) = Σi wi MSE(p{Q})

Next, for any Q ∈ W, we express MSE(p{Q}) as a function of the
kj’s. Although obtaining a concise yet exact expression for this
function is more difficult, under large population assumptions
(i.e., when n, the number of records in R, is large), the following
lemma (one of the principal results of this paper) shows how to
obtain a succinct approximation for MSE(p{Q}). In our
experiments, we have found that this formula for MSE(p{Q}) has
yielded excellent approximation even when n is relatively small.

Lemma 3: For a COUNT query Q in W, let

=)( }{QpApproxMSE

( ) ( )
2

\

\

22

11











+

−+−

∑∑

∑∑

⊆⊆

⊆⊆

QjQj

QQj

RRR
j

RR
j

RRRj j

j

RR j

j

nn

k

n

k

n

γδ

γγδδ

Then

1
)(

)(
lim

}{

}{ =
∞→

Q

Q

n pMSE

pApproxMSE

Outline of Proof: We provide an outline of the proof for the case
where we assume each nj is large (the proof for the more general
case where we assume only n to be large appears in [7]). Let Q’
be a query randomly drawn from the distribution p{Q}. The
number of records selected by Q’ in each fundamental region
follows a binomial distribution. Since each nj is large, an
overwhelming number of queries from the distribution p{Q} will
select approximately δ*nj (resp. γ*nj) records from Rj, where Rj is
a fundamental region inside (resp. outside) RQ. Thus, MSE(p{Q})
can be approximated as the MSE of all such queries since the
contribution from the other queries is negligible. Consider the jth
term in the left summation in the numerator. It represents the
expected squared error in estimating the count of (RQ’∩Rj), i.e., in
estimating the sum of the portion of POPQ’ that corresponds to Rj

(see Section 6). This may be derived using the error formula
presented in Section 6. Similarly, the right summation in the
numerator represents the expected squared error in estimating the
count of (RQ’∩(R\RQ)). Thus the numerator represents the

expected squared error in estimating the count of RQ’. Dividing by
the denominator represents the expected relative squared error in
estimating the count of RQ’. ■

Now that we have an (approximate) formula for MSE(p{Q}), we
can express MSE(pW) as a function of the variables k1,…,kr, using
the result from the following corollary, which is obtained by
combining Lemmas 2 and 3.

Corollary 1: MSE(pW) = Σj(αj/ kj), where each αj is a function of
n1,…,nr, δ, and γ.

Intuitively, αj captures the “importance” of a region; it is
positively correlated with nj as well as the frequency of queries in
the workload that access Rj. Now that we have expressed
MSE(pW) as a function of the unknown kj’s, we are ready to
minimize it.

Lemma 4: Σj(αj/ kj) is minimized subject to Σjkj = k if kj =
k*(sqrt(αj) / Σisqrt(αi)).

Proof: We first eliminate one of the variables, say kr, by replacing
it with k – (k1+…+kr–1). If we partially differentiate Σj(αj/ kj) by
k1,…, kr–1 respectively and set each derivative to zero, this results
in r–1 equations. These equations can be easily solved to prove
the lemma. ■

Lemma 4 provides us with a closed-form and computationally
inexpensive solution to the allocation problem since αj depends
only on δ, γ and the number of tuples in each fundamental region.
The proof exploits a technique similar to other well-known
methods for minimizing functions of the form Σj(αj/ kj) that arise
in different contexts (e.g. [2,10]). Note that an admissible solution
in our case requires that each kj is an integer > 0. We discuss this
issue in Section 7.3.3. For now, we assume that STRAT
completes its allocation by dividing k into k1,…,kr according to
Lemma 4.

7.2 Solution for SUM Aggregate
We now highlight the extensions to the above solution required
for queries containing only the SUM aggregate. The key
difference arises due to the fact that for SUM, we also need to
take into account the variance of the data in the aggregated
column (see Example 1 in Section 1). The first effort to deal with
variance in data for approximate query processing was the outlier-
indexing technique presented in [6]. We use a more general and
principled approach that adapts techniques from statistics for
dealing with large variance. We note that both the stratification
and allocation steps for the SUM are sufficiently different from
COUNT, and need to be revisited.

7.2.1 Stratification
If we use the same stratification as in the COUNT case, i.e., strata
= fundamental regions, we may get poor solutions for SUM since
each stratum now may have large internal variance in the values
of the aggregate column. Therefore, we use a bucketing technique
where we further divide fundamental regions with large variance
into a set of finer regions, each of which has significantly lower
internal variance. We then treat these finer regions as the strata.
Within a new stratum the aggregate column values of records are
close to one another. We borrow from statistics literature an
approximation of the optimal Neymann Allocation technique for
minimizing variance [10], and use it to divide each fundamental
region further into h finer regions, thus generating a total of h*r



strata. This can be achieved in a single scan of the R. Although in
principle, the larger the h the lower the internal variance of the
new regions, we set the value h to 6 as suggested in [10].

7.2.2 Allocation
The structure of the allocation step is similar to COUNT, i.e., it is
expressed as an optimization problem with h*r unknowns k1, …,
kh*r. However, there is a key difference. For SUM (unlike
COUNT), the specific values of the aggregate column, as well as
the variance of values in each region influence MSE(p{Q}). Let yj

(Yj) be the average (sum) of the aggregate column values of all
records in region Rj. Since the variance within each region is
small (due to stratification), we can assume that each value within
the region can be approximated as yj. Now observe that a query
Q’ randomly drawn from the distribution p{Q} picks up an
expected δ*nj (resp. γ*nj) records from each finer region Rj that is
inside (outside) Q. Therefore, the quantity yj

2*δ(1– δ) (resp.
yj

2*γ(1– γ)) is a good approximation for the expected variance of
the portion of POPQ’ (see Section 6) that corresponds to a region
Rj inside (resp. outside) Q. We now present an approximate
formula for MSE(p{Q}) for a SUM query Q in W:
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The above formula is effective for MSE(p{Q}), except in the
following circumstance. Consider a relation R that has a mix of
positive and negative numbers, and furthermore suppose a subset
R’ exists whose SUM is close to zero (i.e. the negative values
cancel the positive values), but whose variance is large. Even
though a query Q’ that selects R’ may have a small probability of
occurrence in the lifted distribution, if not answered exactly, its
relative error can become infinite. In fact, most sampling methods
cannot handle such queries, and these queries need to be
recognized and processed separately. This situation does not arise
if, for example, the values in R are all strictly positive (or strictly
negative), or R contains positive as well as negative numbers but
does not contain subsets such as R’. We note that in our
experiments the above formula has consistently worked well.

As with COUNT, MSE(pW) for SUM is functionally of the form
Σj(αj/ kj), and αj depends on the same parameters n1, …nh*r , δ,
and γ (see Corollary 1) (although the exact value of αj is different
from COUNT). We can therefore use the same procedure for
minimization as in Lemma 4.

7.3 Pragmatic Issues

7.3.1 Identifying Fundamental Regions
During the offline process of building a sample, we use a
technique that we refer to as tagging to identify fundamental
regions in relation R for a workload W consisting of selection
queries with aggregation. Tagging (logically) associates with each
record t ∈ R an additional column called TagColumn (of type
varchar) that contains the list of queries in W that reference t. In
our implementation, rather than adding TagColumn to R, we
separate this column out into a different relation R’ for two
reasons. First, from a pragmatic standpoint, users do not want to
change the schema of their tables if avoidable. Second, we found

that it is significantly faster (3X-5X in our experiments) to update
the TagColumn in a separate relation R’. Records in R’ have a
one-to-one correspondence with records in R. This is done by
including the key column(s) of R in R’. When a query Q ∈ W is
executed, for each record in R required to answer Q, we append
the query id of Q to TagColumn of the corresponding record in
R’. When R’ is sorted by TagColumn, records belonging to the
same fundamental region appear together. We experimentally
evaluate the overhead of tagging in Section 9. We note that
techniques reported in [11] can be used to further reduce the cost
of tagging records. Also, for selection queries with aggregation,
we can also use a bit vector representation for TagColumn
(instead of varchar) where bit i is set if query Qi requires this
record to answer the query. However, this representation is not
possible for queries with GROUP BY since the tag also needs to
encode the identity of the group (see Section 8.1).

7.3.2 Handling Large Number of Fundamental
Regions

To build the expression for MSE (pW), for each query Q in W the
algorithm has to visit each fundamental region. If there are q
queries in W and r fundamental regions, the product q*r can
become quite large. We handle this potential scalability issue by
eliminating regions of low importance (defined in Section 4.3)
immediately after they have been identified. For SUM queries, we
used a similar technique, where the importance of each region is
fi*Yi

2 where Yi is the sum of the values of the aggregate column
within the region. Our experiments show that this heuristic for
pruning does not significantly affect quality.

7.3.3 Obtaining Integer Solutions
In Section 7.1.2 we presented a solution to the optimization
problem in which the kj’s (number of records allocated to region
Rj) could be fractional. In reality however, we are required to pick
an integral number of records from each region during the
sampling step. We observe that no previous work has addressed
this important issue. In general if most of the kj’s are greater than
1, then the following simple rounding scheme works adequately.
We round down each kj to kj. The leftover fractions are
accumulated, and redistributed in a greedy manner to the regions
that increase the MSE the least. We are also investigating
randomized rounding schemes (as discussed in [14]).

7.3.4 Obtaining an Unbiased Estimator
If many kj’s are < 1, then after the rounding is performed the
allocation algorithm may assign no samples to many regions.
Moreover, fundamental regions that have been pruned out for
scalability reasons will also not receive any samples. Due to both
these reasons, we may get a bias in the estimates, i.e. the expected
value of the answer may no longer be equal to the true answer.
This issue can be addressed in a systematic manner by “merging”
the fundamental regions with no allocated samples with the other
fundamental regions such that the MSE is affected as little as
possible. We omit these details due to lack of space.

7.4 Putting it All Together
Figure 4 summarizes the key steps in STRAT and analyzes their
complexity. The tagging step (Step 1) is I/O bound and dominates
the running time of STRAT in practice (see Section 9); its running
time is dependent on the number of queries in the workload. Steps
2-3 identify the fundamental regions in the relation for the given
workload W and can be accomplished in time O(n*log(n)) where



n is the size of the relation. Thus, Steps 1-3 constitute the
stratification step of STRAT. Steps 4-5 constitute the allocation
step (which is CPU bound) and runs in time O(q*h*u), where q is
the number of queries in W, u is the number of fundamental
regions remaining after pruning. Finally, Step 6 is the sampling
step that actually generates the sample(s) from the source
relations, and can be done in once scan of each source relation.

8 EXTENSIONS FOR MORE GENERAL
WORKLOADS

8.1 GROUP BY Queries
We first show how workloads containing GROUP BY queries can
be lifted (see Section 5 for how a workload containing pure
selection queries with aggregation can be lifted). Consider a
GROUP BY query Q with weight w in the workload. Let Q
partition R into g groups: G1, … Gg. Within each group Gj, let Sj

be the set of records selected. We adopt the following simple
lifting model: replace Q in the workload with g separate selection
queries with aggregation (each of weight w/g) that select S1, …,
Sg respectively, and use the techniques in Section 5 for lifting the
resultant workload. The tagging step (see Section 7.3.1) logically
treats each GROUP BY query Q as a collection of g selection
queries with aggregation, and tags the records with the group that
they belong to. During the tagging process, for GROUP BY
columns of integer data types, we append a double <c, v> in
addition to the query id to identify the group, where c is the
column id of the GROUP BY column and v is the value of that
column in record t. For non-integer data types, we treat the value
of the GROUP BY column as a string and use a string hashing
function to generate an integer value.

8.2 JOIN Queries
Our algorithm can be easily extended to a broad class of queries
involving foreign key joins over multiple relations. In particular,
we can handle workloads containing star queries, which are
widely used in the context of the decision support. A star query is
one that contains (a) one source relation and a set of dimension
relations connected via foreign-key joins (b) GROUP BY and
selections on source and/or dimension relations and (c)
aggregation over columns of the source relation. Two approaches

for handling star queries are possible, and our techniques apply to
both. One approach is to identify a sample only over the source
relation. For an incoming query, we can then join the sample over
the source relation with the dimension relations in their entirety to
compute the aggregate. This method is reasonable because
typically the source relation is large (where sampling helps),
while the dimension relations are relatively smaller. Another
approach is to identify a sample of the source relation and
precompute its join with all dimension relations (this is similar to
join synopses presented in [2]). For an incoming query, we can
avoid computing joins at runtime. For both approaches the
allocation of samples can be done by setting up MSE(pW) and
minimizing it. We note that for a given space constraint, the latter
approach achieves faster query execution time at the expense of
reduced accuracy. A detailed comparison of the two approaches is
omitted due to lack of space.

Finally, observe that the tagging step (Section 7.3.1) for both
approaches is similar to the single table query case. Of course,
only records in the source table that satisfy all selection and join
conditions in the query are tagged.

8.3 Other Extensions
Consider a workload containing a mix of COUNT and SUM
queries. We need to make sure that each term MSE(p{Q}) is set
up appropriately to reflect the type of query Q in the workload
since, as explained above, analysis for COUNT and SUM differ.
Once these expressions are set up, minimizing the resulting
MSE(pW) is straightforward. Similarly, we can handle a mix of
queries of the form SUM(x), SUM(y), SUM (<expression>) (e.g.,
SUM(x*y+z)), and other aggregates such as AVG (which is
treated as SUM/COUNT). We can also extend our techniques to
handle cases when the workload consists of aggregation queries
with nested sub-queries, as also single-table selection queries with
aggregation but where each query can potentially reference a
different relation. Details of these extensions are omitted due to
lack of space.

9 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have implemented STRAT and FIXED on Microsoft SQL
Server 2000 and conducted experiments to evaluate their
effectiveness. We compared their quality and performance with
the following previous work: (a) uniform random sampling
(USAMP) (b) weighted sampling (WSAMP) [6,11], (c) outlier
indexing combined with weighted sampling (OTLIDX) [6], and
(d) Congressional sampling (CONG) [1]. We describe the
implementation of the previous work, our experimental setup, the
results of the experiments, and draw conclusions.

9.1 Implementation
The key implementation aspects of FIXED and STRAT have been
discussed in Sections 4, 7 and 8. We now briefly describe our grid
search approach (Section 5) for automatically determining the
appropriate values of δ and γ for a workload W. We divide the
workload into two equal halves called the training and test set
respectively. We divide the two-dimensional space 0.5 ≤ δ ≤ 1, 0
≤ γ ≤ 0.5 into a grid in which each dimension is divided into a
fixed number of intervals. For each point (δ, γ) in the grid, we
compute a sample for the training set and estimate the error for
the test set. We pick the grid point with the lowest error for the

1. For each query Q ∈ W, tag records in R used to answer
query Q using the tagging algorithm described in Section
7.3.1

2. Let R1..Ru be the fundamental regions after pruning out
unimportant fundamental regions (see Section 7.3.2).

3. For SUM queries, further divide each fundamental region Rj

into h finer regions using the algorithm in Section 7.2.1.
4. For each query Q ∈ W, compute αj of each (finer) region Rj

referenced in Q, according to the formulas in Section 7.1.2
and 7.2.2. At the end of this step, we have computed an αj

for each Rj.
5. Solve the optimization problem of distributing k records to

regions using the technique in Section 7.1.2. Let kj be the
number of records allocated to region Rj.

6. Perform stratified sampling to pick kj records from region Rj

and generate a sample of R.

Figure 4. Algorithm STRAT



test set as our setting for δ and γ. Our implementation scales well
with data size since we can obtain samples for multiple grid points
in one scan of the relation.
We now briefly describe our implementation of the previous
work. For uniform sampling (USAMP), each record is accepted
with probability equal to the sampling fraction. We generate a
uniform random sample in one scan of the relation R using the
reservoir sampling technique [21]. For weighted sampling
(WSAMP) [6,11] the probability of accepting a record is
proportional to the frequency with which the record is selected by
queries in the workload. We calculate this frequency for each
record using the tagging technique described in Section 7.3.1. The
key difference is that rather than keeping track of the list of
queries that select the record, we only need a single counter (an
integer) for the TagColumn to keep track of the frequency. For the
outlier-indexing method (OTLIDX), we implemented the
technique described in [6]. The paper does not address the
following issue: for a given sample size, how many records of the
sample to allocate for the outlier index, and how many to the
weighted sample? To give OTLIDX the best possible choice of
alternative settings, we tried different strategies for partitioning
the sample for different databases and workloads – 25% for
outliers-75% for weighted sample, 50%-50% and 75%-25%. We
use the 50%-50% strategy since it performed well for most
workloads. We also implemented the Congress algorithm
described in the paper [1]. The algorithm takes as input a set G of
GROUP BY columns and builds a sample for answering queries
on any subsets of G (including ∅ ). For each subset of G, it
determines the best allocation for each of the finest groups in the
relation. The final allocation for a group is proportional to the
maximum allocation for that group over all subsets of G. Since
the algorithm for Congress that takes into account selections in
the workload is not publicly available, in our experiments we only
evaluate Congress for workloads consisting of pure GROUP BY
queries (i.e., no selections).

9.2 Experimental Setup
Hardware/OS: All experiments were run on a machine having an
x86 550 MHz processor with 256 MB RAM and an internal 18GB
hard drive running Microsoft Windows 2000.

Databases: We used the popular TPC-R benchmark [20] for our
experiments. One of the requirements of the benchmark however,
is that the data is generated from a uniform distribution. Since we
were interested in comparing the alternatives across different data
distributions, we used the publicly available program [9] for
generating TPC-R databases with differing data skew. For our
experiments we generated 100MB TPC-R databases by varying
the Zipfian [24] parameter z over values 1, 1.5, 2, 2.5, and 3. We
report a few relevant characteristics of the data in the aggregation
column used. First, the ratio of the maximum to the minimum
value in the aggregation column varied between approximately
9000 and 250000 for the different databases. Second, there is no
correlation between values in the aggregation column (picked
from the Zipfian distribution) and their frequency in the data.

Workloads: We generated several workloads over the TPC-R
schema using an automatic query generation program. The
program has the following features that can be turned on: (i)
aggregations on the fact table (lineitem), (ii) foreign-key joins
between the fact table and a dimension table (part or supplier),
(iii) grouping and (iv) selection. We experimented with three
classes of workloads containing aggregation: (a) W-SEL

(Selections, Foreign-Key Joins). (b) W-GB (Group By, Foreign-
Key Joins) (c) W-SEL-GB (Selections, Group By, Foreign-Key
Joins. Thus, e.g., W-SEL-GB-100 indicates a workload from the
W-SEL-GB class containing 100 queries. The selection conditions
were on the following columns: l_shipdate, l_orderkey, l_tax,
l_discount, p_partkey, p_size, p_retailprice, s_acctbal, s_suppkey.
As in [1], we used the grouping columns l_shipdate, l_returnflag
and l_linestatus. The aggregate column was l_extendedprice, and
the aggregation expressions used were COUNT and SUM. For
each workload, we used the first half of the workload as the
training set that was used to determine the sample, and the second
half as the test set. We controlled the degree of similarity between
the training and test set using the following two parameters: (a)
The set of columns on which conditions are allowed in the
training set and in the test set. (b) For each column on which a
selection is defined, control the range of the selection condition.

Parameters: We varied the following parameters in our
experiments: (a) Skew of the data, z (b) The sampling fraction f
was varied between: 0.1% - 10%. (c) Workload size was varied
between 25 - 800 queries. All numbers reported are the average
over multiple runs.

Error Metric: As with previous work, we report the average
relative error over all queries in the workload, i.e., L1 metric
(Section 3.3). We have found in our experiments that similar
trends also hold for the RMSE (L2) error metric (see Section 3.3).

9.3 Results
Quality vs. Sampling Fraction: We compare the quality (errors)
of the various techniques for the COUNT and SUM aggregates as
the sampling fraction is varied keeping the workload (W-SEL-
GB-100) and data skew (z=2) fixed. As we see from Figures 5 and
6, for the test set (for COUNT and SUM aggregates respectively),
the errors for STRAT are relatively low even with as little as 1%
sampling whereas errors with other methods (USAMP, WSAMP,
OTLIDX) are significantly higher. The key point to note for the
SUM aggregate is that STRAT is able to achieve better quality
than OTLIDX by taking into account the variance in the data
values in a more principled way.

Error Vs. Sampling Fraction: COUNT
Aggregate
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Next, we compare the quality of the various alternatives for the
training set itself. We see the effectiveness of our stratification
algorithm from Figure 7 (for the COUNT aggregate), where
STRAT gives errors close to 0 once the sample size exceeds the
number of fundamental regions induced by the workload. For
comparisons with CONG, we consider workloads with only
GROUP BY queries (i.e., no selection). Figure 8 shows that for
the COUNT aggregate, STRAT performs best among all methods.

Figure 5. COUNT Aggregate – Test Set



We note that CONG also does significantly better than the other
methods. The reason STRAT is more accurate than CONG is that
despite attempting to account for all groups, CONG still allocates
too many records to large groups and not enough for small
groups, whereas STRAT is able to balance the allocations better.

Error Vs. Sampling Fraction: SUM Aggregate
(W-SEL-GB-100 Test Set, z=2)
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Error Vs. Sampling Fraction: COUNT Aggregate
(W-SEL-GB-100 Training Set, z=2)
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Error Vs Sampling Fraction: COUNT Aggregate
W-GB-100 Test Set, Z=2
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Quality Vs. Overlap between Training set and Test set: We
vary the degree of overlap of the minimum and maximum values
of the range from which selection conditions are generated. The
degree of overlap is an informal measure of correlation. For
example, a degree of overlap of 0% (negative correlation) implies
that for each column in a selection condition, the range of values
from which selection conditions can be chosen for the test and
training set for each column are disjoint, whereas 100% overlap
(positive correlation) implies that the ranges are the same. From
Figure 9 we see that for small overlap, as expected STRAT (δ =
0.90, γ = 0.01) gives higher errors than other methods. However,
for moderate to large overlaps, STRAT is significantly better.

Error vs. Overlap: COUNT aggregate
(z=2, f=1%,W-SEL-GB-100)
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STRAT vs. FIXED: We compare STRAT (with δ = 0.99 and γ =
0.01) with FIXED for the given workload (i.e., on the training set)
to illustrate the benefits of our deterministic solution. Note that
the setting of δ and γ imply that we expect queries that are very
similar to the given workload. We use the W-SEL-GB-100
workload, sampling fraction f=0.2%, and varied the data skew; we
report errors for the COUNT aggregate. We found that across all
data skew values, FIXED gives significantly lower error
(difference in error varied between 13%-29%) since the
deterministic method is able to exploit the greater freedom it has
in optimizing the samples (see Section 4). We note that (a) unlike
STRAT, FIXED has the drawback that we cannot report a
standard error for the estimate, (b) for higher sampling fractions
STRAT also approaches near-zero errors (Figures 7).

Quality vs. Data Skew: In this experiment we compared the
quality of the different methods as the skew of the data (z) is
varied between 1 and 3, keeping the workload (W-SEL-GB-100)
and sampling fraction (1%) fixed, for the SUM aggregate. We
found that for moderately skewed to highly skewed data (z > 1) ,
STRAT gives significantly lower errors than other methods (by
about 20%). For low skew data (z=1), the other methods are
comparable to STRAT.
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Error vs. Lifting parameters
(SUM aggregate, W-SEL-GB-100, f=1%)

Automatically determining the lifting parameters δδδδ and γγγγ: For
a given workload W-SEL-GB-100 and sampling fraction of 1%,
Figure 10 shows how the error for the test set varies with δ and γ
(see Sections 5, 9.1). We see that the error varies gradually, which
indicates that our grid search approach is promising.

Comparison on a real data set: We compare the quality of
various approaches on a real data warehouse within our
organization, used to track sales of products. We used δ = 0.90

Figure 7. COUNT Aggregate – Training Set

Figure 6. SUM Aggregate – Test Set

Figure 8. GROUP BY only workload. COUNT
Aggregate – Test Set

Figure 9. Varying overlap between training set and test set.

Figure 10. Error vs. lifting parameters for test Set.



and γ=0.01 for STRAT. We used a portion of the database of
approximately 0.84 million rows; training and test sets of 25 real
queries used by the application each. These queries typically
contained 3-6 GROUP BY columns and 2-5 selection conditions
per query. Figure 11 shows that for the test set, STRAT performs
consistently better than other methods for this real data set.

Error Vs. Sampling Fraction: SUM Aggregate
(Real data set, Workload = Test Set)
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Comparison of time for building samples: We compare the time
to build the sample for WSAMP, OTLIDX, and STRAT for three
different workloads of 100 queries each. We report numbers for
the 100 MB database, data skew z=2. Figure 12 shows that the
additional time (relative to WSAMP) taken by STRAT to tag the
database (Section 7.3.1) for the given workload is small. The
difference between the tagging for WSAMP and STRAT is that in
STRAT we additionally need to record the query id information
(and for GROUP BY queries, the group information). Finally, for
a 1% sample, we report that the time to actually pick the sample
after tagging was 15 sec, 70 sec, and 36 sec respectively for
WSAMP, STRAT and OTLIDX for the W-SEL-GB-100
workload. Thus, the total time to build a sample is dominated by
the time taken to tag the relation for the given workload.

Cost of Tagging (z=2)
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10 SUMMARY
In this paper, we present a comprehensive solution to the problem
of identifying samples for approximately answering aggregation
queries, and show how it can be implemented on a database
system. Using a novel technique for lifting a workload, we make
our solution robust enough to work well even for workloads that
are similar but not identical to the given workload. Our solution
handles the problems of data variance, heterogeneous mixes of
queries, GROUP BY and foreign-key joins.
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