
Noname manuscript No.
(will be inserted by the editor)

Online Maintenance of Very Large Random Samples
on Flash Storage

Suman Nath · Phillip B. Gibbons

Received: January 2009 / Revised: July 2009 / Accepted: date

Abstract Recent advances in flash storage have made
it an attractive alternative for data storage in a wide

spectrum of computing devices, such as embedded sen-

sors, mobile phones, PDA’s, laptops, and even servers.
However, flash storage has many unique characteristics

that make existing data management/analytics algo-

rithms designed for magnetic disks perform poorly with
flash storage. For example, while random reads can be

nearly as fast as sequential reads, random writes and in-

place data updates are orders of magnitude slower than

sequential writes. In this paper, we consider an impor-
tant fundamental problem that would seem to be par-

ticularly challenging for flash storage: efficiently main-

taining a very large random sample of a data stream
(e.g., of sensor readings). First, we show that previous

algorithms such as reservoir sampling and geometric file

are not readily adapted to flash. Second, we propose B-

File, an energy-efficient abstraction for flash storage to

store self-expiring items, and show how a B-File can be

used to efficiently maintain a large sample in flash. Our

solution is simple, has a small (RAM) memory foot-
print, and is designed to cope with flash constraints in

order to reduce latency and energy consumption. Third,

we provide techniques to maintain biased samples with
a B-File and to query the large sample stored in a

B-File for a subsample of an arbitrary size. Finally,

Suman Nath
Microsoft Research
Tel.: +1-425-706-8072
Fax: +1-425-936-7329
E-mail: sumann@microsoft.com

Phillip B. Gibbons
Intel Labs Pittsburgh
Tel.: +1-412-297-4114
Fax: +1-412-297-4110
E-mail: phillip.b.gibbons@intel.com

we present an evaluation with flash storage that shows
our techniques are several orders of magnitude faster

and more energy-efficient than (flash-friendly versions

of) reservoir sampling and geometric file. A key finding
of our study, of potential use to many flash algorithms

beyond sampling, is that “semi-random” writes (as de-

fined in the paper) on flash cards are over two orders
of magnitude faster and more energy-efficient than ran-

dom writes.

Keywords flash storage · random sample · sensor

networks · semi-random writes

1 Introduction

Recent technological trends in flash storage have made

it an attractive choice for non-volatile data storage in a

wide spectrum of computing devices such as PDA’s,
mobile phones, MP3 players, embedded sensors, etc.

The success of flash storage for these devices is due

mainly to its superior characteristics such as smaller

size, lighter weight, better shock resistance, lower power
consumption, less noise, and faster read performance

than disk drives [3,8,20]. While flash has been the pri-

mary storage media for embedded devices from the very
beginning, many market experts expect that it will soon

dominate the market of personal computers too [13].

Indeed, several companies including Samsung and Dell
have already launched new lines of laptops contain-

ing only flash storage [11]. Several companies including

SimpleTech and STec offer 512GB flash-based 3.5 inch

solid state disk (SSD) drives with claims of 200× perfor-
mance over 15K RPM enterprise hard drives and better

reliability [21,33]. Several Internet service companies

are planning to use SSDs in high-end servers, for SSD’s

2

higher throughput, higher energy efficiency, and lower

cooling cost in data centers hosting the servers [27].

Flash storage has fundamentally different read/write

characteristics than magnetic disks. For example, read-
ing pages at random is nearly as fast as reading pages

sequentially, unlike magnetic disks where seek times

and rotational latencies make random disk reads many
times slower than sequential disk reads (which are in

turn many times slower than any flash read). On the

other hand, flash writes are immutable and one-time—

once written, a data page must be erased before it can
be written again. Moreover, the unit of erase often spans

a block of 32–64 pages—if any of the other pages in the

block contain useful data, that data must be copied
to new pages before the block is erased. (We will dis-

cuss flash characteristics in more detail in Section 2.1.)

For this reason, it is well-known that in-place update,
i.e., overwriting a page that has already been written

since the last erase, is very slow on flash storage. Ef-

forts to overcome this limitation (such as via a Flash

Translation Layer (FTL) [12]) suffer from another well-
known problem: random writes are very slow [3]. In-

deed, the latency and bandwidth (and energy-efficiency)

of both random page writes and in-place page updates
are over two orders of magnitude worse than sequential

page writes.

In this paper, we consider an important fundamen-

tal problem that would seem to be particularly chal-

lenging for flash storage: efficiently maintaining a very

large (i.e., at least an order of magnitude larger than
the available main memory) random sample of a stream

of data items. Such very large random samples are use-

ful in a variety of applications. For example, consider
a sensor network where each sensor node collects too

many readings to store them all locally (because its on-

board and attached flash storage is limited) or to trans-
mit them all to a base station (because doing so would

rapidly deplete its limited battery). Having each sensor

node maintain a random sample of its readings, perhaps

biased towards more recent readings, is an attractive
approach for addressing the limits of both storage and

battery life. Queries can be pushed out to the sensor

nodes, and answered (approximately) using the sam-
ple points falling within a specified time window. Sim-

ilarly, random samples are often required in data min-

ing, approximate query answering, statistical analysis,
machine learning, and various other streaming applica-

tions, which may run in SSD equipped servers. Note

that, in all these applications, a very large sample is

often required in order to have highly-accurate answers
with high-confidence. Specifically, whenever the under-

lying data has high variance, the query predicate is

highly selective, and/or the query contains joins (which

can amplify variance), the sample size needs to be in the

GBs [15].

There are a number of existing algorithms for main-

taining a bounded-size random sample of a stream of
data items. Unfortunately, these algorithms were not

designed for the unique characteristics of flash stor-

age and hence, not surprisingly, they are ill-suited for

flash. For example, reservoir sampling [9,29] and geo-
metric file [15] are state-of-the-art algorithms for main-

taining a large fixed-size sample in memory and on

magnetic disk, respectively. However, both rely heav-
ily on in-place updates and/or random writes (details

in Sections 3 and 8.2). Moreover, simple optimizations

of these algorithms in order to make them more flash-
friendly are unable to overcome their flash-unfriendly

structure (details in Section 3.3). Indeed, intuitively,

maintaining a bounded-size sample seems challenging

for flash because new items that are selected for the
sample must replace random items currently in the sam-

ple; this can entail both in-place updates and random

writes.

In this paper, we present the first flash-friendly al-

gorithm for maintaining a large bounded-size random

sample of a stream of data items. Our algorithm is
based on an efficient abstraction, called B-File (Bucket

File), for flash storage to store self-expiring items. A

B-File consists of multiple buckets, and each item in-
cluded in the sample is stored in a random bucket ac-

cording to a distribution dependent (in a non-trivial

way) on both the desired sample properties (uniform,
biased, etc.) and various overhead trade-offs. When the

size of the B-File grows to reach the maximum avail-

able flash storage, the B-File automatically shrinks by

discarding the largest bucket.

The main efficiency of B-File comes from three

properties. First, it always appends data to existing
buckets, instead of overwriting any existing data on

flash—appending data is far more efficient than updat-

ing in place. Second, although these writes are not se-

quential (because they jump from bucket to bucket),
the buckets are structured so that the writes conform

to a “semi-random” pattern (where blocks can be se-

lected in any order, but individual pages within blocks
are written sequentially from the start of the block;

more details in Section 4). A key finding of our study,

of potential use to many flash algorithms beyond sam-
pling, is that “semi-random” writes on flash cards are

over two orders of magnitude faster and more energy-

efficient than random writes. Third, it solves the above

“random replace” problem by storing sampled items
in buckets according to a preselected random replace-

ment order, so that later all the items in a bucket can

be deleted at the same time (i.e., the items are self-

3

expiring). Moreover, B-File’s bucketing strategy en-

sures there are no sub-block deletions.
Another key feature of B-File is that, like reservoir

sampling, B-File is effective even when the amount of

main memory (RAM) available to the algorithm is very
small (e.g., tens of KBs for a 1 GB sample). This con-

trasts with geometric file, which performs poorly for a

1 GB sample on flash even with 1–10 MBs of RAM.
Because embedded devices typically have very limited

RAM (e.g., the iMote and SunSpot sensor nodes have

32 KBs and 512 KBs of RAM, respectively), and this

RAM must be shared across all sensor node functional-
ities, B-File’s small memory footprint is critical to its

suitability for a range of embedded devices.

We also provide efficient techniques to maintain bi-
ased samples with a B-File, and to query the large

sample stored in a B-File for the sample points within

an arbitrary time window.
Our evaluation with flash storage from several ven-

dors shows that our sampling techniques are three or-

ders of magnitude faster and more energy-efficient than

previous techniques, including our flash-friendly vari-
ants of reservoir sampling and geometric file.

In summary, this paper makes the following contri-

butions.

1. We propose B-File, an energy-efficient abstraction

for flash storage to store self-expiring items, and
show how B-File can be used to efficiently main-

tain a large uniform random sample (in particular,

a simple random sample) in flash. Our solution has

a small (RAM) memory footprint, and is designed
to cope with flash constraints in order to reduce la-

tency and energy consumption. We determine sev-

eral important parameters of B-File that optimize
the performance of our algorithm.

2. We define the notion of a semi-random write, and

show that such writes are over two orders of mag-
nitude more efficient on flash cards than completely

random writes. This is an important refinement to

the conventional wisdom that random writes are

slow on flash, and is a key enabler for B-File.
3. We show how our techniques can be extended to

(weighted and age-decaying) biased samples. We also

present (flash-friendly, skip-list-based) subsampling
techniques for answering ad hoc time-range queries.

4. Using a variety of flash storage, we evaluate our B-

File algorithm versus existing state-of-the-art algo-
rithms. Our results show that B-File is three orders

of magnitude faster and more energy-efficient than

existing techniques. Moreover, the number of I/Os

and block erases are close to the idealized optimal.

The rest of the paper is organized as follows. Sec-

tion 2 discusses flash characteristics and design prin-

(FTL)

Flash Chip

Flash Translation Layer

Applications

Fig. 1 A flash-based storage system

ciples for flash-friendly algorithms. Section 3 describes

related work. Section 4 discusses semi-random writes.

Section 5, 6, and 7 present our basic sampling algo-

rithm, querying algorithm, and several extensions to
basic algorithm, respectively. We present evaluation re-

sults in Section 8 and conclude in Section 9.

2 Flash Preliminaries

In this section, we discuss flash storage characteris-

tics and present several well-known design principles

for flash-friendly algorithms.

2.1 Flash Characteristics

Figure 1 shows the architecture of a flash-based system.

The system consists of flash chips, an optional Flash
Translation Layer (FTL), and applications.

2.1.1 Flash Chips

Flash chips are primarily of two types: NOR and NAND.

While NOR flash has faster and simpler access proce-

dures, its storage capacity is lower and hence it is used
primarily for program storage. NAND flash offers sig-

nificantly higher storage capacity (e.g., 4GB in a single

chip) and is more suitable for storing large amounts of
data.

The key properties of NAND flash that directly in-

fluence storage design are related to the method in
which the media can be read or written, and are dis-

cussed in [23]. In summary, all read and write oper-

ations happen at page granularity (or for some chips
down to 1

8 th of a page granularity), where a page is typ-

ically 512–2048 bytes. Pages are organized into blocks,

typically of 32 or 64 pages. A page can be written only
after erasing the entire block to which the page be-

longs. However, once a block is erased, all the pages in

the block can be written once with no further erasing.

Page write cost (ignoring block erase) is typically higher
than read, and the block erase requirement makes some

writes even more expensive. In particular, for an in-

place update, before the erase and write can proceed,

4

any useful data residing in other pages in the same block

must be copied to a new block; this internal copying in-
curs a considerable overhead, e.g., a two orders of mag-

nitude slowdown in our experiments in Section 2.2. A

block wears out after 10,000–100,000 repeated writes,
and so the write load should be spread out evenly across

the chip. Because there is no mechanical latency in-

volved, random read/write is almost as fast (and con-
sumes as much energy) as sequential read/write (as-

suming the writes are for erased pages).

2.1.2 Flash Cards and the FTL

Portable flash packages such as solid state disks (SSDs),

compact flash (CF) cards, secure digital (SD) cards,
mini SD cards, micro SD cards and USB sticks provide

a disk-like ATA bus interface on top of flash chips. The

interface is provided through a Flash Translation Layer
(FTL) [12], which is implemented within the micro-

controller of the device. Many embedded devices such

as cell phones use internal flash chips instead of FTL
equipped packages. In such cases, the operating system,

e.g. Windows Mobile, implements the FTL in software.

FTL emulates disk-like in-place update for a (logi-

cal) address L by writing the new data to a different
physical location P , maintaining a mapping between

each logical address (L) and its current physical ad-

dress (P), and marking the old data as invalid for later
garbage collection. Thus, although FTL enables disk-

based applications to use flash without any modifica-

tion, it needs to internally deal with flash character-
istics (e.g., erasing an entire block before writing to

a page). Many recent studies have shown that FTL-

equipped flash devices, although a great convenience,

suffer many performance problems. In particular, both
random writes and in-place updates are very slow, typ-

ically two orders of magnitude slower than sequential

writes to an erased page [3] (see also Section 2.2). Sim-
ilar to previous work [16,23], our algorithms address

performance problems in today’s FTL-equipped flash

devices. If future FTL technology eliminates such prob-
lems, the algorithms may need to be revisited.

2.2 Design Principles for Flash Algorithms

Because of the above characteristics of flash storage,
algorithms designed for flash should follow three key

well-known design principles. For completeness, we here

present a series of experiments supporting the principles

through concrete measurements on both flash chips and
flash cards.

The flash chip experiments report measurements on

a 128MB Toshiba TC58DVG02A1FT00 NAND flash

Table 1 Costs of different types of I/Os in a Lexar CF card

Access Pattern Latency/page (ms) Energy/page (µJ)
Read Write Read Write

Sequential 0.408 0.425 12.7 13.7

Random 0.594 127.1 26.4 7854

Semi-Random 0.463 0.468 13.5 14.9

chip [20]. We report only energy numbers here; however,
because different micro-ops on a flash chip draw approx-

imately the same amount of current, the energy costs

are approximately proportional to the latencies. Each
page is 2KBs and each block contains 64 pages. The

flash card experiments report energy and latency mea-

surements on a 2GB Lexar compact flash (CF) card.
We also experimented with a few other flash cards from

Kingston and SanDisk, flash chips from FujiFilm XD

cards, as well as SSD drives from Samsung and San-

Disk, and the conclusions were identical; hence we omit
results for those cards and drives here. For concrete-

ness, we assume that the data of interest is comprised

of a collection of 32-byte records.

Principle P1: Avoid in-place updates. Flash does not

allow updating data in place. Updating some in-flash
data d involves several steps: (a) all other data d′ from

the flash block b containing d first needs to be moved to

other locations, (b) the page containing d is read and
modified in memory, (c) block b is erased, and (d) d′ and

the modified d are written back to b. (The last step can

be avoided by using an FTL.) In contrast, appending

data to flash is cheap, because it can be done by erasing
a block and sequentially writing to it until the block

is full, without requiring any data movement. With

the Toshiba flash chip, overwriting a 32-byte record
costs 8554.76µJ , while appending a record costs only

1.17µJ , nearly four orders of magnitude cheaper. With

the Lexar CF card, the costs are 7880.4µJ and 0.21µJ ,
respectively, over four orders of magnitude difference.

Principle P2: Avoid random writes in flash cards. A

flash chip is a purely electronic device and thus has no
mechanically moving parts like disk heads in a mag-

netic disk drive. Therefore, a raw flash memory chip

can provide similar sequential and random access speed.
Therefore, one may think that it is not essential to avoid

random writes in flash, as many algorithms designed for

magnetic disks try to do [15].

However, the situation is different in flash cards and
SSD drives (or flash chips with a software FTL driver):

such devices provide very poor random write perfor-

mance. As shown in Table 1, random writes on the

5

 0.01

 0.1

 1

 10

 100

 1000

 1024 128 16 2 1

C
os

t/b
yt

e(
uJ

)

Allocation size (KB)

Page size Block size

Fig. 2 Allocation/deallocation cost on a Toshiba flash chip

Lexar CF card is over two orders of magnitude more ex-
pensive than sequential writes. The performance prob-

lem stems from an artifact of the FTL design, as dis-

cussed in Section 4. In that section, we will introduce

semi-random writes, which can be almost as efficient as
sequential writes, and show that this design principle

should be modified as follows: Principle P2’: Avoid

random writes unless they are semi-random.

Principle P3: Avoid sub-block allocations and sub-block

deletions. Possible choices for an allocation/dealloca-
tion size include: (i) sub-page granularity, where frac-

tions of a single flash page are allocated independently

(i.e., the same flash page can contain multiple inde-

pendent data units), (ii) page granularity, where each
entire page is allocated independently, and (iii) block

granularity, where each entire flash block is allocated

independently.

Our experiments using sub-page and page-based al-
location show that they suffer from high overhead, for

the following reason. As allocated units are deallocated,

storage space is freed up. However, reusing deallocated
space requires an erase operation on flash. In sub-page

and page-level allocations, other data units that reside

within a page or the erase block may still contain valid

data, and thus, must be moved elsewhere before the
entire block can be erased and reused. Figure 2 shows

the cost of deallocating and allocating a random data

unit on flash of different sizes. It shows that alloca-
tion/deallocation at block granularity is two orders of

magnitude more efficient than at page or sub-page gran-

ularity.

A similar effect arises when an algorithm wishes to
delete data without an explicit deallocation. Deleting

data in a flash requires a block erase operation. Be-

fore erasing a block, valid data in the block needs to

be copied to some other location, which requires read-
ing and writing all the valid data. The amortized cost

of deleting an item can be made orders of magnitude

smaller by deleting multiple items with a single erase

 0.0001
 0.001
 0.01

 0.1
 1

 10
 100

 1000

 768 640 512 384 256 128 0

C
os

t/b
yt

e
(u

J)

Batch size (KB)

Fig. 3 Random and batch deletion cost on a Toshiba flash chip

operation. This can be done by clustering data that will
be deleted together in the same block.

Figure 3 shows the deletion cost per byte when mul-

tiple records are clustered and deleted together in a
batch (with the minimum number of erase operations).

The per-byte cost is highest (261µJ) when only one

32-byte record is deleted, and lowest (0.0005µJ) when
all the records in an entire block are deleted together.

Even if the total size of records to be deleted in a batch

is not a multiple of the 128KB block size, the deletion
cost per byte is very small (< 0.013µJ) compared to

the maximum cost of deleting only one record within a

block. This result implies that if an application needs to

delete, say 1000 32-byte records, clustering them into a
minimum number of blocks and deleting them in batch

can be several orders of magnitude cheaper than delet-

ing them independently.

Additional Goal: Minimize (DRAM) memory foot-

print. In addition to achieving the design principles
mentioned above, we add a further goal that our sam-

pling algorithm should minimize its memory footprint.

Today’s flash-based computing platforms vary widely
in the size of available memory (DRAM)—from as few

as several kilobytes (e.g., low-end embedded sensors)

to many megabytes (e.g., high-end sensors, PDAs) to
several gigabytes (e.g., laptops). For generality, an algo-

rithm should optimize for stringent memory constraints,

but should be able to exploit greater memory availabil-

ity in order to improve latency and energy-efficiency.

3 Related Work

In this section, we first present related work, and then

show how the most relevant previous work on sampling

can be made somewhat more flash-friendly.

6

3.1 Algorithms for Flash

Recent studies [1,3,16] have proposed application-in-

dependent techniques to improve application perfor-

mance, by optimizing the FTL itself, e.g., to improve
the performance of random writes. However, this is quite

challenging given that the FTL typically needs to run

in a memory-constrained environment (e.g., within a
micro-controller), to be sufficiently general to support

multiple applications, and to provide fast recovery after

a crash [1]. Moreover, in most practical scenarios, ap-
plication developers do not have access to the FTL (it

is either within the micro-controller, or in a proprietary

software module), and therefore, the only feasible ap-

proach is to optimize the application to use algorithms
that perform well on flash. We take this latter approach

in this paper. Although, in general, the effort to opti-

mize must be applied to each application, the perfor-
mance benefits from restructuring an application’s al-

gorithm are often orders of magnitude larger than the

benefits of application-independent optimizations.
Recent work has shown the feasibility of running

a full database system on flash-only computing plat-

forms [19] and running a light-weight database system

on flash-based embedded computing devices [7,23] or
smartcards [4]. Several other studies have proposed ef-

ficient data structures and algorithms for flash stor-

age, including flash-optimized B trees [23], R-trees [32],
stacks [20], queues [20], and hash tables [34]. These al-

gorithms seek to follow the Design Principles P1, P2

and P3 discussed in Section 2.2, but they neither study
our sampling problem nor propose anything analogous

to the key ideas in this paper: B-File, semi-random

writes, and a skip-list-based search structure. Moreover,

most of these works are designed solely for memory-
constrained embedded systems with raw flash chips,

whereas our algorithm is also optimized for higher-end

flash devices (e.g., CF cards or SSDs), where applica-
tions must access the flash through an FTL.

3.2 Sampling Algorithms

Because no prior work addressed the problem of main-
taining a (bounded-size) random sample on flash, we

discuss work related to maintaining bounded-size sam-

ples on disk. We omit previous work that deals with
using a sample (e.g., [2,6]) instead of maintaining one,

as well as existing streaming algorithms that maintain

small random samples in main memory (e.g., [10]).

The fastest streaming algorithm for maintaining a
large fixed-size random sample on a magnetic disk is due

to Jermaine et al. [15]. The algorithm uses an abstrac-

tion called the Geometric File. The algorithm collects

sample items in an in-memory buffer, randomly per-

mutes the items in the buffer, and then divides them
into segments of geometrically decreasing size. Larger

segments are flushed to disk such that each flushed seg-

ment overwrites an on-disk segment of the same size.
Smaller segments are maintained in memory to avoid

small writes. The efficiency of geometric file comes from

reducing the number of expensive random writes on
disk: only one random access is required per segment

and all items within a segment are written sequentially.

However, because each new segment overwrites an ex-

isting segment, these in-place updates are expensive on
flash (see Section 8). Moreover, in addition to the al-

gorithm being more complex than our proposed algo-

rithm, it has a higher in-memory footprint because (i)
small segments and segment overflow stacks are main-

tained in memory, and more importantly, (ii) a large

in-memory buffer is required for the algorithm to be ef-
fective (a smaller buffer implies smaller segments, which

increases the number of random writes).

In [15], the authors also propose using multiple ge-
ometric files in parallel for reducing the number of disk

head movements. While this scheme eliminates some of

the problems of basic geometric file, it introduces ad-
ditional overheads for maintaining a large number of

files. Moreover, compared to a single geometric file, it

has a bigger memory footprint for small segments and

overflow stacks for all files and a higher space over-
head due to higher internal fragmentation and special

dummy segments.

Reservoir sampling [9,29] is a popular algorithm for

maintaining a fixed-size sample of a stream of unknown

size. In the basic version of the algorithm, a reservoir

R is filled with the first n items (where n is the target
size), and after that, the i’th item is selected for R with

probability n/i. The selected item overwrites a random

item in R. Many optimizations have been proposed to
improve the performance of the basic algorithm [15,30].

Although the original algorithm is implicitly designed

to maintain a sample in memory, it can be implemented
on secondary storage. However, all variants of reservoir

sampling require overwriting random sample items in

R, and such overwrites are expensive in flash (see Sec-

tion 8).

Olken and Rotem [24] present techniques for con-

structing samples in a database environment. However,
in addition to not being designed for flash storage, the

techniques assume we are sampling from disk-resident,

indexed data. Single pass streaming is generally not

the goal. When it is, the sample itself is assumed to
be stored in main memory during the single pass—

avoiding issues of efficiently maintaining the sample on

disk. Several I/O efficient index structures such as LSM

7

Trees [25] and Y-Trees [14] can be used to maintain a

large random sample on disk. However, like geometric
file, they also require frequent in-place updates, making

them unsuitable for flash. Moreover, as shown in [15],

they require more random writes and hence perform
worse than geometric file. Therefore, we do not con-

sider them in the rest of the paper.

3.3 Adapting the Previous Algorithms to Flash

As neither geometric file nor reservoir sampling were

designed for flash, it is natural to consider whether they

can be readily modified to be more flash-friendly. We
consider each in turn, and show how to improve their

flash performance, at the cost of some extra space on

the flash.

Geometric file The original geometric file algorithm (de-

scribed above) can be adapted as follows for more ef-
ficient implementation in flash. First, to avoid copying

valid data from a block before each erase, a flash block

should store data for only a single segment. In this way,

an on-flash segment can be overwritten (by erasing en-
tire blocks and writing data to them), without moving

data of other segments to other locations. This will in-

troduce internal fragmentation in some blocks, because
the last block of a segment can be partially full. How-

ever, we can trade additional space for performance

in many situations. Second, to reduce fragmentation,
very small segments should not be stored in individ-

ual blocks. In platforms where memory is limited, all

these small segments cannot be maintained in mem-

ory. Therefore, these small segments can be stored as
append-only log entries in flash. When the log becomes

too big, they can be compacted by discarding segments

which are supposed to be overwritten by newer seg-
ments.

Reservoir sampling The basic reservoir algorithm can

be made more efficient by using some extra space E
in addition to the reservoir R. Suppose the reservoir R

contains a random sample of all the data items seen

so far, and a newly-arriving item v gets selected to be
added to R, replacing a random item w in R. Instead

of overwriting w with v, which would be expensive, we

cheaply append v as a log entry in E, deferring the
selection of a random w. When the space E becomes

full, we need to apply the log entries accumulated in E

to R. Note that while the last entry in E must be in R,

the second-to-last entry in E must be in R only if the
last entry in E is not selected to overwrite it, and so on.

In general, the i’th entry in E can be discarded without

inserting it to R if any of the (|E|− i) subsequent items

Time.
... ...

Block 1 Block 2 Block 3 Block 10

Page writes

...

Fig. 4 Semi-random writes

in E is selected to overwrite it, which has a probability

(1−p|E|−i), p = (|R|−1)/|R|. By avoiding the insertion

of items that get selected by subsequent items in the
log, we save expensive replacement operations for them.

More precisely, for each |E| items, we incur an expected

cost of |E|/l× (cr + cw)+ (1−p|E|)
(1−p) × (cr + cw) instead of

|E| × (cr + cw). Here, l is the number of log entries in a
flash page, and cr (cw) is the cost of reading (writing)

a page. Given a sufficiently large E, the savings can be

significant.

The bottom line The above two sampling algorithms

and their adapted versions still require frequent in-place
updates. In Section 8, we will show that the adapted

algorithms perform better than the original algorithms;

however, our algorithm based on B-File can be three

orders of magnitude more efficient than the adapted
algorithms.

4 Semi-Random Writes

In addition to sequential and random writes, we have

also investigated a semi-random write pattern where
blocks can be selected in any order, but individual pages

within blocks are written sequentially from the start of

the block. We call the blocks currently selected for write
as open blocks. Thus, in a semi-random write pattern,

multiple sequential writes to open blocks are interleaved

with one another. Figure 4 shows an example of a semi-
random write pattern, indicated by a sequence of (block

id, page id) pairs: (1,1), (1,2), (10,1), (3,1), (1,3), (3,2),

(10,2), etc. This pattern has three open blocks with id

1, 3, and 10.

Interestingly, our experiments show that while ran-

dom writes perform very poorly in existing FTL-equip-
ped devices, semi-random writes perform very close to

sequential writes. As shown in Table 1, random writes

on a Lexar 2GB CF card are well over two orders of
magnitude more expensive than sequential writes, while

semi-random writes (with 16 open blocks) are almost

as efficient as sequential writes. Similar results hold for

several other flash cards and SSDs we tried. The re-
sult can be explained by the algorithms used in ex-

isting FTLs. The FTL maintains a mapping table be-

tween logical addresses and physical addresses. If this

8

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024

I/O
 L

at
en

cy
 (

m
s)

of Open Blocks

Semi-Random Writes
Semi-Random Reads

Fig. 5 Effect of number of open blocks in a Lexar CF card

table were to map logical pages to physical pages, the

mapping table for a 2GB flash with a 2KB page size

and 64 pages/block would be 64MB! Instead, existing
flash packages maintain a mapping from logical blocks

to physical blocks; for a 2GB flash, this reduces the

mapping table to 1MB [3]. For all but the low-end plat-

forms, this enables the mapping table to be stored in
memory, which is crucial because its typical access pat-

tern (frequent, random reads and in-place updates, at

a word granularity) is very ill-suited for flash. Unfortu-
nately, with a block-level mapping, even when a single

page is modified, the entire logical block needs to be

written to a new physical block, resulting in poor ran-
dom write performance.

The performance benefits of semi-random writes are
a result of several optimizations within existing FTLs.

Many existing FTLs optimize write costs by being lazy;

when the i’th logical page of a block is written, the FTL
copies and writes the first i pages (instead of all the

pages in the block) to a newly allocated block, leaving

subsequent (unmodified) pages in the old block; later,

when page j > i is modified, pages (i + 1) to j are
moved and written to the new block, and so on [3].

Semi-random writes do not require moving any unmod-

ified page to the newly allocated block, resulting in a
performance comparable to sequential writes. In many

other existing FTLs, modified pages are temporarily

maintained in logs; logged pages, along with unmodified
pages in the same block, are later copied to newly allo-

cated blocks [17,18]. With this strategy as well, semi-

random writes do not require copying any unmodified

pages across blocks, resulting in superior performance.

The performance of a semi-random write pattern,
however, depends on the number Nopen of open blocks.

This is shown in Figure 5, which shows the average la-

tency of a semi-random write operation on a Lexar CF

card, as a function of Nopen. The result shows that semi-
random write is efficient for a relatively small Nopen ≤

32; using a large Nopen ≥ 256 can make semi-random

writes as expensive as random writes. Therefore, algo-

rithms exploiting semi-random write patterns should

limit Nopen to a small number. For example, an appli-
cation can benchmark its target flash device to generate

a graph like Figure 5, pick a value NMaxOpen that gives

the maximum tolerable performance of semi-random
writes, and then limit NOpen ≤ NMaxOpen.

The inefficiency of a semi-random write pattern with

a large value of Nopen can be explained as follows. In
the aforementioned lazy or log-based FTL algorithms,

the first write to an open (logical) block goes to a newly

allocated physical block, since flash does not allow in-

place update of the old physical block. Thus, an open
logical block occupies two physical blocks: Bold contain-

ing old pages and Bnew containing newly written pages

of the logical block. Valid pages from Bnew and Bold

are later consolidated into one physical block mapped

by the logical block. In both lazy and log-based algo-

rithms, Bnew is allocated from a limited pool of log
blocks that are dedicated to the FTL algorithm and are

not exposed to applications. Semi-random writes are

efficient when the Nopen blocks fit within this pool of

log blocks, because then the log blocks can be writ-
ten to sequentially and consolidation is done by simply

discarding old blocks for their later reuse as log blocks.

However, if Nopen is larger than the available pool of log
blocks, a log block may need to be shared by multiple

open blocks, which results in more frequent consolida-

tion, e.g., after only a fraction of a logical block is up-
dated. Moreover, this early consolidation is expensive,

because an old physical block may contain valid pages

that must be copied to the log block during consolida-

tion. The frequency and cost of consolidation increases
as the value of Nopen increases. Similar results have

been recently reported for solid state disks as well [5].

The good performance of semi-random writes is also
likely to hold for applications directly accessing flash

chips. Most such applications will maintain a block-level

mapping between logical and physical addresses, result-
ing in performances similar to existing FTLs. Some ap-

plications may decide to maintain a page-level map-

ping, at the cost of a very large memory footprint and

crash-recovery overheads [1]; however, this extreme case
will make semi-random (and random) writes perform

almost the same as sequential writes, as modified pages

will be written sequentially irrespective of the write pat-
tern.

In summary, the orders of magnitude performance

benefits of semi-random writes hold across a broad range

of flash configurations, including commercial offerings
and research prototypes. However, in order to use semi-

random writes, algorithms need to know where the block

boundaries are, and hence what the block size is—the

9

Table 2 Notation used in this paper

N Number of individual B-File buckets

BT The tail B-File bucket (a log)

Bi, i = 1 · · ·N The i’th individual B-File bucket

L Current minimum active level
S′ Data stream seen so far
S Sample, i.e., ∪N

i=1Bi ∪BT

smin Expected minimum sample size

smax Guaranteed maximum sample size

α smin/smax

v, lv A stream item and its assigned level

p Probability of heads in each coin toss
Nopen Number of open blocks

NMaxOpen Performance threshold for Nopen

R, W Avg. cost to read/write an item in flash

block size can be readily obtained by querying the flash

driver or the FTL.

5 Maintaining Samples on Flash

In this section, we describe our main algorithm and how
it can be implemented with our B-File data structure.

We will use the notation summarized in Table 2.

5.0.1 Algorithm Overview

At a high level, there are three salient aspects of our
algorithm (see Algorithm 1). First, as in the adapted

algorithms in Section 3.3, Algorithm 1 will incur some

additional storage overhead beyond the sample itself,
in order to improve performance. In our case, we allow

the sample size to range between a specified expected

lower bound (smin) and a specified hard upper bound
(smax). This flexibility is useful because it enables us to

decouple the addition of a new item to the sample from

the deletion of an existing item (to make room). The

difference between smax and smin represents the addi-
tional flash storage overhead incurred by our algorithm,

in order to ensure (on expectation) a sample of size at

least smin. On the other hand, because the maintained
sample is always a simple random sample (without re-

placement), any extra sample points beyond smin are

not really wasted, as they can be put to good use by
applications.

Second, when an item is selected for the sample, we
immediately determine its relative priority for deletion

compared to other sample points (i.e., we preselect its

random relative replacement order), and then store the

item with sample points of the same priority. Specif-
ically, each item selected for the sample is randomly

assigned to one of a logarithmic number of “levels” (by

the “Level” function in line 4 of Algorithm 1, details

Algorithm 1 Sample(smin, smax, N)
Require: Minimum and maximum sample sizes smin and smax,

number of B-File buckets N (not counting the tail bucket)

1: L← 1 {L is the current minimum active level}
2: bfile← new B-File(N)

3: for each stream item v do
4: lv ← Level(v, smin, smax) {compute the level}
5: if lv ≥ L {if v selected for the sample} then

6: bfile.AddItem(v, lv−L+1) {append v to Blv−L+1}
7: if |bfile| = smax {if sample size at its max} then
8: bfile.DiscardBucket(1) {discard the items in B1}
9: bfile.LeftShift() {rename each Bi+1 to be Bi}

10: L← L + 1 {increment the minimum active level}
11: end if
12: end if
13: end for

below). This partitions the sampled items into equiv-

alence classes; all items in the same equivalence class
are stored in the same “bucket” and will later get dis-

carded at the same time. This allows block-wise erasure

(as opposed to random overwrite) of data, and is the
key behind the efficiency of our algorithm. We use our

new B-File data structure (described in Section 5.2)

to store the buckets.

Third, we use the same Level function and a rising

threshold L to determine whether an item is selected for

the sample. Consider the main loop of Algorithm 1. An
item v is selected if its level lv (computed in line 4) is at

least the current threshold L (line 5). A selected item

is added to the bucket for its level (line 6). Whenever
the sample size reaches smax (line 7), we make room

by discarding all the sample points in the first bucket

B1 (line 8), i.e., discarding all items with level L but

retaining all items with level L+1 or above. Conceptu-
ally, we then shift all the buckets to the left, so that the

buckets containing sample points are always numbered

starting at 1 (line 9). As we are no longer including in
our sample any items with level L, but require at least

level L + 1, we increment the threshold (line 10).

Our algorithm is reminiscent at a high level of the
sampling component of a previous algorithm for count-

ing the number of 1’s in the union of distributed data

streams [10], with modest changes. However, at the next
level of detail, the previous algorithm (which is designed

for main memory and not flash) violates Design Princi-

ples P1–P3 from Section 2.2. Thus, our contribution is

in (i) designing flash-friendly techniques in support of
each step of the algorithm (finding the right data orga-

nization, etc.), and (ii) exploring how various parameter

choices optimize performance.

10

5.1 Assigning Levels to Items to Obtain Overall

Guarantees

The properties of the sample obtained by Algorithm 1

depend on the level function (Level()) in line 4. We say
a level function generates independent and identically

distributed (i.i.d.) levels if each invocation returns a

random value according to the same probability distri-
bution as the others, independent of all the others. We

will show that i.i.d. levels imply that Algorithm 1 gen-

erates a simple random sample (without replacement),
i.e., a random sample such that all samples of the given

size are equally likely.

Lemma 1 Consider any run of Algorithm 1 using a
level function generating i.i.d. levels on a stream S′ seen

so far. Let S be the items currently in B-File buckets

after processing S′ and m be the number of items in
S. Then S is a simple random sample (without replace-

ment) of size m of the items in S′.

Proof We must show that all subsets of size m of the
items in S′ are equally likely. Let n be the number of

items in S′, and let k be the current value of L in Al-

gorithm 1 after processing S′. Because the levels are
i.i.d., each item v in S′ has a level lv ≥ k with the

same probability (call it P), independently of all other

items. Let T be an arbitrary subset of size m of the
items in S′. T is selected as the sample if and only if

each item in T is assigned a level at least k and each

item in S′ but not in T is assigned a level less than k.

Because levels are assigned independently, this proba-
bility is Pm(1 − P)n−m, which is independent of the

choice of T . Thus, all such T are equally likely. ⊓⊔

In order to have only a logarithmic number of lev-

els, we focus on geometrically distributed i.i.d. levels,

i.e., where the probability of level i decreases exponen-
tially with i. Such a random level can be obtained, for

example, by tossing a biased coin—the level is deter-

mined by the number of tosses required to get the first

head. Let p be the probability of heads on any given
coin toss. An item is assigned level i (≥ 1) with proba-

bility p(1 − p)i−1.

Lemma 1 implies that we can maintain a simple ran-
dom sample using any value of p ∈ (0, 1). However, the

value of p determines how the sample size fluctuates,

because it determines the expected number of items
that are assigned to the current level L (i.e., it deter-

mines |B1|) at the point that the total sample size hits

the upper bound smax. Because B1 is discarded at this

point, we have that the expected value of smin is smax

minus the expected value of |B1|. The following lemma

provides a means to select p in order to keep the sample

size within a target range.

Lemma 2 Setting p = 1 − α, where α = smin/smax,

ensures that the expected sample size is at least smin

(the sample size is always at most smax).

Proof Suppose at a given point of time, the sample has

been computed over a total of n data items. Then, on

expectation, (1 − p)i−1p · n of these items are assigned
to level i, and are placed in the (i − L + 1)’th bucket

B(i−L+1). This gives, on expectation, |Bk| = (1−p)k−1 ·

|B1| and hence smax =
∑w

k=1 |Bk| = |B1|
∑w

k=1(1 −
p)k−1 = |B1|/p. Plugging this into our goal that, on

expectation, |B1| = smax − smin, we get (1 − p)smax =

smin, i.e., p = 1 − α, where α = smin/smax. ⊓⊔

5.2 B-File Design

In this section, we present our main new data structure:
the B-File. From the perspective of an application us-

ing B-File, a B-File consists of a potentially large set

of buckets ∪iBi stored on flash storage; denote these
buckets as application buckets. Physically, however, a

B-File stores these buckets in a collection of N indi-

vidual buckets holding the first N application buckets

and one tail bucket holding all the remaining (typically
very small) buckets; denote these (individual and tail)

buckets as B-File buckets. The use of a tail B-File

bucket is a key optimization for flash, as discussed be-
low.

From the application perspective, the B-File sup-

ports the following operators:

– new B-File(N): Create a new B-File with N indi-
vidual B-File buckets plus one tail B-File bucket.

– AddItem(v,i): Add item v to application bucket Bi.

Application buckets can be of arbitrary size.
– size and size(i): Return the number of items in the

entire B-File or in application bucket Bi. (In Al-

gorithm 1, we use “|bfile|” as a shorthand for the
size operator.)

– DiscardBucket(i): Discard the items in application

bucket Bi, and reclaim the space.

(Algorithm 1 also depicts a LeftShift operator, which is

used only to simplify the notations and explanations in

this paper.)

When used for our sampling algorithm, the sizes of
individual application buckets exponentially decrease,

with the first bucket B1 being the largest. At any point

of time, the contents of all the buckets represent a sim-

ple random sample S over the entire data stream S′

seen so far (Lemma 1). Figure 6 depicts a snapshot of

a B-File as used by Algorithm 1.

Before explaining the B-File in further detail, it

is useful to motivate its design by considering its use

11

L+
N

+
1

1 BTB3 BNB2

L
L+1

L+2

L+
N

−
1

L+
N

B

Fig. 6 A snapshot of B-File. Solid bars represent application

buckets, text above a bar represents the level of the items in the
bucket, and text below a bucket represents the B-File bucket
number. The tail B-File bucket BT contains items with level at

least L + N .

in our sampling algorithm. Using the B-File enables

the steps of the algorithm to be supported in a flash-

friendly way, for the following reasons. First, new items
are always appended into the appropriate buckets (ei-

ther the tail bucket or the corresponding individual

bucket)—we avoid in-place updates. Moreover, the B-

File maintains an in-memory page of the most recently

inserted items for each B-File bucket, which, when full,

gets appended to a block associated with the bucket

(as discussed in Section 5.2.1). These page flushes fit
a semi-random access pattern, as defined in Section 4,

with Nopen = N + 1 open blocks. Namely, while the

next flushed page can be for any of the N + 1 B-File

buckets, the pages within a bucket’s block are written

sequentially. Thus, according to Design Principles P1

and P2′, the write operations are highly-efficient, pro-
vided we set N < NMaxOpen.

Second, the algorithm clusters items with the same

level together into application buckets. The first such
bucket is mapped to the first individual B-File bucket.

As we shall see, individual B-File buckets are stored

using as few blocks as possible. According to the Design

Principle P3, this enables highly-efficient deletion of B1.

Third, the B-File maintains only a few (N) large

application buckets as individual B-File buckets. Note

that when we use geometrically distributed i.i.d. lev-
els, the size of the application buckets exponentially

decreases with level number. Thus, application buck-

ets with higher levels contain very few items. Because
storage on flash is best allocated in granularity of a

block, allocating a whole block for those small applica-

tion buckets would be wasteful. Instead, they are rolled

into the tail B-File bucket.

Finally, the parameter N provides a tunable control

over not only the number of open blocks (as discussed

above) but also the B-File’s (RAM) memory footprint.
The number of memory words used by the B-File (and

hence by the sampling algorithm) is linear in N , and

otherwise constant. Thus, RAM-constrained embedded

1 B1B2 B2 BT

Free Lists

D
R

A
M Page Buffer Block Pointer

Bucket 1 Bucket 2 Bucket T

F
la

sh

Block
B1 B

Fig. 7 Physical layout of the buckets in a B-File

devices can use the algorithm with smaller values of N .

On the other hand, as we show in Section 5.2.2, the I/O
cost of maintaining buckets decreases with increasing

N ; hence, less constrained devices can take advantage

of the larger available RAM by using larger values of
N .

5.2.1 Bucket Layout and Maintenance

Figure 7 depicts the physical layout of B-File buckets.

The top half shows the in-memory portion. For each

B-File bucket Bi (including the tail bucket), we main-
tain an in-memory data structure called Bi.header. The

header contains a page buffer that can temporarily hold

one flash page worth of data, and a block pointer that

points to the first flash block and page containing the
items in that bucket. When an item is added to a bucket,

it is temporarily put in its page buffer. When the page

buffer holds one page worth of data, the buffer is flushed
to the next available page, which is next to the page and

within the block pointed to by the block pointer. Search

or retrieval of items in a bucket starts with the block
pointer.

To cope with the unique properties of flash, the

physical layout of the buckets on the flash must be

carefully designed in order to obtain high efficiency.
Consider the following alternatives. If pages of a sin-

gle block were used by different buckets, discarding a

bucket would violate Design Principle P3, and hence
be expensive in terms of energy and latency. Thus, in-

stead, all pages of a block are dedicated to a single B-

File bucket, as shown in the bottom half of Figure 7,
where each shaded (pink) rectangle in the bottom half

depicts a block and is labeled with its associated bucket

name. Unshaded rectangles in the bottom half depict

free blocks.

There is also a crucial choice as to how all the blocks

for a bucket are organized. In RAM or magnetic disk,

there are a variety of possible organizations (array, stack,

12

queue, singly- or doubly-linked list, etc.) that may be

desirable depending on the context. However, on flash,
certain organizations can be extremely expensive to

maintain. For example, suppose a bucket were orga-

nized as a data structure with forward pointers (i.e.,
pointers from older elements to newer elements), such

as a queue or a doubly-linked list. Older elements on

the flash cannot be modified to point to newer elements
without incurring high costs (Design Principle P1). An

array, although efficient, is not a suitable choice be-

cause the precise size of a bucket cannot be determined

a priori (see [15] for a discussion on the complexities
of handling sampling variance in geometric file). A flat

in-memory table that maps blocks to buckets is not at-

tractive either, for its large memory footprint and inef-
ficient bucket to block mapping. Thus, instead, we will

chain the blocks of a bucket together with backward

pointers (i.e., newer blocks point to older blocks), as
depicted in the figure.

B-File uses two modules to maintain this layout,

described next.

Bucket manager The Bucket Manager (BM) writes in-

memory buffers to flash pages. When the buffer holds
one page worth of data, the buffer is flushed to the

next available page within the block h, as indicated by

the block pointer. When no empty page is available in
that block h, a new block h′ is allocated by the Storage

Manager (described below). A pointer to the block h

is stored with the last page of block h′ and the block
pointer is updated to h′. Thus the blocks in a bucket

are chained together with backward pointers and the

address of the last block is maintained in the block

pointer.

Storage manager The Storage Manager (SM) tracks
the available blocks and allocates them to the Bucket

Manager (BM) on demand. When BM discards a bucket,

the block pointer of the bucket is returned to SM. More-
over, when the tail bucket BT is unrolled (described in

Section 5.2.2), the blocks used by BT are also reclaimed

by SM. When BM requests a new block, SM pops a

block from a discarded bucket, erases it, and returns it
to BM.

Note that because blocks are allocated dynamically

to individual buckets, B-File can handle variable-size
records. However, to simplify our cost analyses and pa-

rameter optimizations, we consider fixed-size records in

the rest of this paper.

5.2.2 Maintaining the Tail Bucket

Note that the tail B-File bucket BT is essentially a

log of items with different levels, all of which are larger

than the item levels in individual B-File buckets. Be-

cause items are discarded one level at a time, at some
point the log must be scanned in order to separate out

items with certain levels. We call this process unrolling

BT . For example, suppose N = 10 and L = 3. Then,
all the items with level ≥ 13 are kept in BT . The rea-

son we decide to maintain these levels in one bucket is

that very few items so far have these levels (with geo-
metrically distributed i.i.d. levels, the numbers decrease

exponentially with the level), and so maintaining a sep-

arate bucket (which must be at least one block in the

flash) for each such level is wasteful. However, as more
items arrive, level 13 becomes more frequent within BT

and at some point it may make sense to maintain a sep-

arate bucket for level 13. Separating level 13 items from
BT would make it easier to discard the level 13 items

when L = 13 and |bfile| = smax. Note that after un-

rolling, separated buckets can be accommodated within
the individual buckets, because at least one individual

bucket is discarded between any two unrollings.

Unrolling BT requires reading all its items, writ-
ing items to be separated out into their appropriate

buckets, writing the remaining items into a new BT ,

and then freeing the old BT . (We cannot update BT

in place since flash does not allow it.) This is the only

occasion where we write the same item more than once

to flash—there is no other such copying overheads in

Algorithm 1.

One important design decision is when to unroll BT

in order to separate out one or more buckets from it.
This decision can significantly affect the performance of

the sampling algorithm. After each unrolling, all N + 1

buckets contain items. Now, on the one hand, BT can be

unrolled every time B1 is discarded. This is feasible be-
cause discarding B1 gives free space that can be used to

unroll BT . This has the advantage that BT cannot grow

very long before unrolling, keeping the cost of scanning
it small. On the other hand, BT can be unrolled lazily.

In the extreme, it can be unrolled only when necessary,

e.g., when discarding items of the lowest level in BT ,
or when processing queries involving items in BT . This

has the advantage that BT can be unrolled very infre-

quently, which may save the unrolling cost.

In general, suppose the algorithm maintains at most

N + 1 buckets and BT is unrolled after every u times

B1 is discarded; i.e., just before unrolling BT , there are
(N − u) individual B-File buckets. (The two extreme

scenarios above correspond to u = 1 and u = N). We

now study the following optimization question: What

values of N and u optimize the cost of maintaining the
sample? This analysis will assume a level function that

generates geometrically distributed i.i.d. levels, with α

set according to Lemma 2.

13

Cost analysis Suppose the costs of reading and writ-

ing a data item to flash are R and W , respectively.
For example, if y items can be stored in a flash page,

the cost of writing a flash page is cw, a block contains

z pages, and the cost of erasing a block is ce, then
W = (cw + ce/z)/y. Suppose, the expected size of the

largest bucket B1 before it is discarded is s1, and hence

on expectation, s1 items are inserted into the sample
between two successive bucket discards. Thus, u · s1

items are inserted into the sample between two log un-

rolls. For these us1 items, we incur the following I/O

costs.1

1. All us1 items are written (to individual buckets or

to BT), incurring a cost of c′ = us1 · W .

2. The whole BT needs to be read during unroll. Note
that, just before unroll, there will be N − u ac-

tive buckets, and the expected size of BT will be

sT =
∑∞

i=N−u s1α
i = s1α

N−u/(1 − α), where α =
smin/smax as before. Hence, reading BT will incur

a cost of c′′ = sT · R

3. The items in BT need to be written back, either to

individual buckets or to a new BT , incurring a cost
of c′′′ = sT ·W . In the special case u = N , the items

with the smallest level in BT can be discarded, and

hence the cost would be c′′′ = (sT − s1) · W

Thus the total cost per item included in the sample

is

C =
c′ + c′′ + c′′′

us1
= W +

(R + W)αN−u

u(1 − α)

Optimal values of N and u The above equation shows

that the cost of maintaining the buckets decreases with

increasing N . Intuitively, having a large N implies a
smaller BT and a small log unrolling cost. Therefore,

it is preferable to have N be as large as possible. How-

ever, the size of the data structures in memory increases

linearly with N . Moreover, the write performance de-
grades whenever Nopen = N + 1 > NMaxOpen. Hence,

in practice, N is upper bounded based on these two

considerations.

The cost equation also shows that, for a given N ,

the above cost function is convex in terms of u. Hence,
the cost is minimized when the derivative dC/du = 0.

This yields the following lemma.

Lemma 3 Consider Algorithm 1 run with geometri-

cally distributed i.i.d. levels such that its B-File main-
tains at most N individual buckets and BT is unrolled

1 We here ignore the CPU cost of our algorithm because first,
it is negligible compared to the flash I/O cost, and second, it does
not affect the key parameters we seek to optimize.

after every u times that B1 is discarded. Then the cost

of maintaining the buckets is minimized when

u = −1/ ln(α) ,

where α = smin/smax.

Our B-File implementation uses the above result
to determine how often the tail bucket BT is unrolled.

5.2.3 B-File Sizes

The size of a B-File ranges between two user-specified
bounds smin and smax. Interestingly, there exists a non-

trivial interaction between the cost of maintaining sam-

ples in a B-File, and the difference δ = smax − smin.

Consider a fixed N . Intuitively, a large value of δ is
not desirable, since buckets are discarded less frequently

and more items are added to the B-File (some of which

are discarded later). A small value of δ is not desirable
either, because then the tail bucket contains a large

number of items, increasing the cost of log unroll. If a

user has the freedom to choose a value of smax (or smin)
for a given smin (or smax, respectively), the value must

be chosen carefully to balance the trade-off.

We here briefly outline how to determine the opti-

mal smax given an smin (or vice versa) if the stream
size |S′| (or an approximation of the size) is known a

priori. As before, we assume geometrically distributed

i.i.d. levels. Suppose the B-File is configured to main-
tain N individual buckets. Then, it is possible (applying

Lemma 3) to compute

– t: the expected number of times the tail bucket is

unrolled,

– sT : the expected size of the tail bucket just prior to
an unroll, and

– a: the expected number of items added to the B-

File,

all as functions of smin, smax, |S′|, and N . Then, the
total cost of maintaining the sample can be computed

numerically as C = a · W + t · sT · (R + W), where R

and W are as defined in Section 5.2.2.

One can use the above cost function to search the
design space of smin and smax for combinations that

minimize the total cost. Our experiments show that for

a given smin, the cost function is convex with a single
minima, thus the optimal smax can be found by a simple

binary search.

The cost function depends only logarithmically on

the stream size |S′|. Thus, a very loose approximation
of |S′| suffices. Note also that, if desired (e.g., when |S′|

is not known a priori), one can increase smax on-the-fly

as the algorithm runs without sacrificing correctness:

14

Algorithm 2 GetNext()
1: while true do

2: r = RAND(1, N + 1) {Select a random bucket}
3: j = RAND(1, b∗) {b∗ is the size of the largest bucket}
4: if j ≤ |Br| then
5: Return the j’th item in Br

6: end if
7: end while

As long as p is unchanged (which implies smin also in-

creases), the assignment to levels is unchanged and the

sample will eventually grow to the new smax using the
current L.

6 Querying the Sample

In this section, we describe efficient techniques for ex-

tracting a subsample Q from the sample S generated
by Algorithm 1, under two important scenarios. First,

in Section 6.1, we seek a smaller random sample of the

data stream than the one generated by Algorithm 1.
When they suffice for the estimation problem at hand

(e.g., the variance is low), smaller random samples are

preferred because they cost less time and energy to
transmit and process. Second, in Section 6.2, we seek a

random sample of the portion of the data stream that

arrived during an arbitrary query-specified time win-

dow. Such queries are common when remotely querying
energy-constrained sensor nodes. In both scenarios, the

key parameter—the sample size or the time window—is

specified only at query time.

Caveat: As in all query processing scenarios that rely
on a single stored sample to answer queries, the answers

across queries (with overlapping time windows) will be

correlated because they are all based on the same stored

sample.

6.1 Random Subsampling

We first present techniques for choosing a simple ran-

dom sample Q (of some target size m) from the on-flash

sample S such that m < |S|. The most obvious way to
implement such a sampling would be to use a reservoir

sampling algorithm to draw a sample of size m from S.

However, although simple, this naive algorithm has two
major drawbacks. First, it would require scanning the

entire sample S, which can be several gigabytes or more.

Second, it would require O(m) space in the memory,

which may not be feasible in many memory-constrained
devices. Instead, we develop techniques that exploit the

randomized bucket structure of the B-File generated

by Algorithm 1.

6.1.1 Iterative Sampling

We first consider iterative sampling, where we extract a

single sample point from S at a time (i.e., |Q| = 1), with
replacement. An estimator can use iterative sampling

until a sufficiently high accuracy is achieved, adapt-

ing to the variance in the sampled data (the lower the
variance, the smaller the required sample size). Algo-

rithm 2 shows an iterative algorithm that uses an ac-

ceptance/rejection test, like [24], to produce a random

sample from a B-File. Although many loops may be
required before an acceptance, accessing the flash is

required only on an acceptance (assuming the N + 1

bucket sizes are cached in memory). Note that to access
the selected item in flash (line 5), one must traverse the

chain of blocks of the corresponding bucket. We later

discuss techniques to reduce the number of pointers re-
quired to follow in order to locate the selected item

(Section 6.2), and the number of page reads required to

extract the pointers (Section 7.3).

6.1.2 Batch Sampling

Because of the low efficiency of iterative sampling, how-
ever, we also consider batch sampling (i.e., m = |Q| ≫

1), which is less adaptive (the estimator must com-

mit a priori to a batch size) but far more efficient.
Each batch is a simple random sample. One possible

approach would be to adapt Olken and Rotem’s pro-

cedure of batch sampling from a hashed file [24]. The
basic idea is first to determine how many samples need

to be drawn from each bucket (using a multinomial dis-

tribution), and then to draw the target number of sam-

ples from each bucket with the acception/rejection al-
gorithm or the reservoir sampling algorithm. However,

this approach suffers from the overheads of extracting

random items from each bucket. For example, when the
expected number of sample points per page is around

1, then often entire pages are read from flash in order

to extract a single sample point from the page. Instead,
we can exploit our randomized bucket structure to de-

velop an approach that uses all the sample points on

most of the pages it reads from flash, as described next.

Consider Algorithm 1 run with a level function that

generates i.i.d. levels. Let B be an arbitrary set of one or

more B-File buckets. Then the items in B are a simple
random sample Q of the data stream S′. If we can find a

set of buckets that added together have the desired size

|Q| = m, we can return the items in those buckets. On

the other hand, if we must take only part of one bucket
in the set in order to achieve size m, then we must

be careful to ensure that the part is indeed random.

Taking a prefix will not work, because the items in a

15

single bucket are in arrival time order. Instead, we use

reservoir sampling on that one bucket, as follows.

1. Select a few buckets {Bi1 , Bi2 , . . . , Bik
}, where each

ij ∈ [1, N + 1] is a distinct integer, such that

∑k
j=1 |Bij

| ≥ m and
∑k−1

j=1 |Bij
| < m. (1)

That is, only a fraction of the last bucket Bik
needs

to be selected to have m items in all. The bucket

selection must be done independently of which par-

ticular items are in which buckets.
2. Sample Q′, a random set of (m−

∑k−1
j=1 |Bij

|) items,

from Bik
, using reservoir sampling. Return Q =

∪k−1
j=1Bij

∪ Q′ as the target subsample.

Lemma 4 Consider the B-File buckets produced by
an arbitrary run of Algorithm 1 using a level function

generating i.i.d. levels on a stream S′ seen so far. Con-

sider any run of the above batch sampling algorithm on

these buckets, with a target sample size m (smaller than
the sum of the B-File bucket sizes). Then Q is a sim-

ple random sample (without replacement) of size m of

the items in S′.

Proof We must show that our combination of sampling
procedures yields a simple random sample (SRS). Let

n be the number of items in S′. Let B = {Bi1 , . . . , Bik
}

be the buckets selected in step 1 of the batch sampling

algorithm. Let A be the union of the items in B, and
let m′ = |A|. Let X be the items in Bik

that are not

selected for Q′, i.e., Q = A − X.

First, note that because items are assigned to buck-

ets independently (i.i.d. levels) and buckets are selected

for B (and specifically as Bik
) independently of which

particular items are assigned to a bucket, we have (i) A
is an SRS of S′ of size m′, and (ii) Bik

is an SRS of A.

Second, because reservoir sampling outputs an SRS,
the complement of its output is also an SRS. Thus, (iii)

X is an SRS of Bik
of size m′ − m.

Third, because an SRS of an SRS of a set is itself
an SRS of the set, it follows from (ii) and (iii) that (iv)

X is an SRS of A of size m′ − m.

Finally, we consider the probability of returning a

given Q. Set Q is returned if and only if A is a su-

perset of Q and X = A − Q. There are

(
n − m
m′ − m

)

supersets of Q of size m′. By (i), each occurs with

probability 1/

(
n

m′

)
. By (iv), the precise X such that

X = A − Q for the choice of A occurs with probability

1/

(
m′

m′ − m

)
. Thus, Q is returned with probability

(
n − m

m′ − m

)

(
n

m′

)(
m′

m′ − m

) =
1(
n

m

) ,

which completes the proof. ⊓⊔

The cost of the above algorithm depends on the size

of bucket Bik
selected in step 1, because the reservoir

sampling in step 2 takes |Bik
| time. Thus, one would

like to select the smallest bucket that satisfies the in-

equalities in (1). We use a greedy heuristic for selecting

buckets in step 1: we consider all B-File buckets in
increasing order of their size, including them until the

inequalities in (1) are satisfied, then removing the small-

est buckets as long as (1) remain satisfied, and finally,

designating the smallest remaining selected bucket to
be Bik

. Under the experimental setup described in Sec-

tion 8, the size of the smallest bucket selected by this

approach is, on average, within 12% of the size of the
smallest B-File bucket. The size of the smallest bucket

is clearly a lower bound on the cost for the best possible

bucket selection.

One caveat is that because the greedy heuristic se-

lects buckets for Q deterministically, the same subsam-

ple (up to the random choice of items from Bik
) is se-

lected each time the procedure is called for a given m.

When m ≪ |S|, this issue can be mitigated somewhat

by altering the heuristic to consider buckets in a ran-
dom order, at a potential cost of increasing the size of

Bik
.

6.2 Samples Within a Time Window

Given arbitrary t1 and t2 at query time, t1 < t2, our

goal is to return a simple random sample of the items

in the part of the original stream that arrived within
the time window [t1, t2]. For the purposes of this sec-

tion, we assume that each item in S is labeled with its

timestamp. It is easy to show that all the items in S

whose arrival timestamps are in [t1, t2] satisfy our goal.

A naive approach to find the desired subset of items

is to scan all the buckets in the B-File and return the
items with the desired timestamps. However, we can

do much better by exploiting the fact that B-File fills

page buffers and flushes them to flash in such a way

that scanning through the chained set of blocks in a
bucket visits the items in descending timestamp order.

Therefore, we just require a suitable data structure to

locate, for each bucket, its most recent item I0 with

16
H

ea
de

r

N
U

LL

359−513 248−341 173−238 119−165 1−1012−2730−5051−7680−110

Fig. 8 Blocks of a bucket are organized as a skip list. Solid rectangles are blocks and the text within each solid block denotes the
time window of the items stored in that block. Items are stored in descending timestamp order.

Algorithm 3 InsertBlock(Block f b, Bucket m bkt)

Require: m bkt.header.forward[i] initialized to NULL for all
i ∈ [1, MaxLevel]; m bkt.level initialized to 0

1: lvl← RandLevel()

2: if lvl > m bkt.level then
3: m bkt.level← lvl
4: end if

5: for i = 1 to lvl do
6: f b.forward[i] = m bkt.header.forward[i]
7: m bkt.header.forward[i] = f b.address
8: end for

a timestamp ≤ t2. We can then sequentially scan the
bucket for as long as we find items with timestamps

≥ t1.

To facilitate quickly locating I0, we organize blocks

within a bucket as a skip list [26]. A skip list is an or-
dered linked list with additional forward links, added in

a randomized way with a geometric/negative binomial

distribution, so that a search in the list may quickly

skip parts of the list. In terms of efficiency, it is com-
parable to a binary search tree (O(log n) average time

for most operations, under the standard RAM model).

Figure 8 shows an example bucket as blocks organized
as a skip list.

Implementing a general skip list, which allows in-

serting items in the middle of the list, would be ex-

pensive in flash. For example, consider inserting a node
(a block) with time range [112, 117] into the skiplist in

Figure 8. This would require changing forward pointers

of some of the existing skip list nodes. Because these

pointers cannot be updated in place, these nodes, with
pointers to the new node, must be written to new lo-

cations. However, this would require updating forward

pointers of nodes that point to the updated nodes, and
so on. Thus, recursively, many nodes would be required

to be written to new locations due to a single insertion

operation. Similarly, a deletion operation can be very
expensive.

Fortunately, blocks in a bucket of B-File are al-

ways inserted at the front of the bucket and inserting

a new node at the front of a skip list can be efficiently

implemented in flash. Algorithm 3 depicts the steps to
insert a new block at the front of a bucket. In memory,

each bucket maintains a header that keeps maxLevel

number of forward pointers. (Here, “level” refers to the

Algorithm 4 Search(Bucket m bkt, Time t1, Time t2)
1: x← m bkt.header
2: for i = m bkt.level downto 1 do
3: while the first item in block x.forward[i] has timestamp

> t2 do

4: x← x.forward[i]
5: end while
6: end for

7: x← x.forward[1]
8: Binary search block x for the page p containing the item I0

with the largest timestamp ≤ t2
9: Sequentially read the bucket starting from page p, for as long

as the timestamp is ≥ t1; if needed jump to the next block
by using forward[1] of the current block

skip list pointers, and is not to be confused with the no-

tion of level in Algorithm 1.) To insert a block into the
list, a level, lvl, is generated for it such that all blocks

have level ≥ 1, and a fraction p (a typical value for p

is 1
2) of the nodes with level ≥ i have level ≥ (i + 1).

(See [26] for more details.) For each level i, the bucket

header maintains the most recent block with level ≥ i.

For each level i up to lvl, the new block copies the level

i pointer from the bucket header into its level i pointer
and then writes a pointer to itself as the new level i

pointer in the bucket header. Thus, inserting a block

requires writing to just the bucket header and the first
page of a new block, both of which are in memory. This

takes constant time.

Searching for items having timestamps within a time
window uses a combination of skip search and binary

search (Algorithm 4). Skip search is used to locate the

block containing I0 in logarithmic time, as follows. Start-

ing from the header of the bucket, we search for a block
by traversing forward pointers that do not overshoot

the block containing the item with timestamp t2 (re-

call that items are sorted in descending order of times-
tamps). When no more progress can be made at the

current level of forward pointers, the search moves down

to the next level. When we can make no more progress
at level 1, we must be immediately in front of the block

that contains the desired item (if it is in the list). The

green/gray curvy line in Figure 8 shows the search path

for locating the block containing timestamp 90. After
we locate the block, we use binary search to locate the

page that contains the most recent item with times-

tamp ≤ t2. After locating the page, subsequent pages

17

are read sequentially from the same block. If the last

page of the block does not contain a timestamp < t1,
the read continues from the first page of the next block

of the bucket (the pointer forward[1] of a block gives

the next block of the bucket). The scan halts as soon
as a timestamp < t1 is encountered.

7 Extensions to the Basic Algorithm

In this section, we present a few extensions to our basic

sampling algorithm with B-File.

7.1 Weighted Sampling

Thus far, we have described how the B-File can be

used to efficiently maintain a very large unbiased ran-

dom sample. Our algorithm guarantees that each item
produced by the stream has an equal probability of be-

ing sampled. In many applications, however, the rela-

tive importance of the data items to be sampled is not
uniform, in which case the random sample should over-

represent the more important records. Such weighted

sampling is desirable in many sensor network applica-
tions where different sensed events have different im-

portance. The database literature also contains many

applications of weighted sampling [2,6].

In this setion we present a weighted sampling al-
gorithm where each item i in the stream has a weight

wi ≥ 1, and at a given point in time, the probability

that the item is included in the sample is proportional
to wi. Interestingly, to ensure this property, the only

thing we need to change in Algorithm 1 is how the level

of an item is generated—the rest of the algorithm re-
mains the same.

Recall that, for unbiased sampling, the level func-

tion must generate i.i.d. levels, and we use a coin tossing

experiment to generate levels according to a geometric
distribution. Let p be the probability of heads and let l̂u
be the outcome of the coin tossing experiment (i.e., the

number of coin tosses required to get the first head).
Then, if we assign l̂u + log1/(1−p) wi as the level of an

item i with weight wi, the level function has the follow-

ing desired weighting property:

Lemma 5 Suppose each item i is assigned a level l̂w =
l̂u + log1/(1−p) wi, where wi ≥ 1 is the weight of item i

and l̂u is an independent, geometrically distributed ran-

dom variable with parameter p. Then for all items i
and all levels L ≥ 1, Pr {l̂w ≥ L} = wi(1 − p)L−1,

independent of all other items.

Proof Pr {l̂w ≥ L} = Pr {l̂u ≥ L − log1/(1−p) wi} =

(1 − p)(L+log(1−p) wi−1) = wi(1 − p)L−1. ⊓⊔

Thus, Algorithm 1 with this level function main-

tains a sample S such that at any point in time, the
probability that the item i is in S is proportional to wi.

Note that when wi = 1, we have l̂w = l̂u, and hence the

level function is the same as in unbiased sampling.
One caveat is that the level of an item must be an

integer. This is achieved if the weights are restricted

to powers of z = 1
1−p , i.e., 1, z, z2, z3, etc. Otherwise,

l̂w may be fractional. A heuristic for dealing with such

cases is to probabilistically round each wi up or down

to the next power of z, so that the expectation of its
weight is wi. More precisely, let j = ⌊logz wi⌋, so that

zj ≤ wi < zj+1. We round up to zj+1 with probability

(wi − zj)/(zj+1 − zj), and otherwise we round down to

zj .

7.2 Age-Decaying Sampling

Another important type of sampling is where the prob-

ability of an item to be included in the sample decays

with its age; i.e., at any point in time, the sample in-
cludes more newer items than older items. Consider,

for example, the problem of sensor data management—

most queries will be over recent sensor readings. An-
other example is sampling-based techniques for network

intrusion detection where recent events are more impor-

tant than older events.
We here present a sampling algorithm where the

most recent item is always in the sample and the prob-

ability that an item is included in the sample decays

exponentially with its age. We define age agei of an
item i as the number of items in S′ that arrived after

i.2 In our algorithm, the inclusion probability of items

decays in discrete steps. More precisely, the inclusion
probability of items stays the same for every s1 item

arrivals, where s1 is the expected size of B1 in B-File.

Thus, the inclusion probability of an item i exponen-
tially decreases with the number of item groups of size

s1 that arrived after i. Although this does not provide

a smooth decay, this is acceptable in many practical

scenarios. For example, it is perfectly fine for many ap-
plications to maintain a sample where all the items that

arrived today have the same inclusion probability p0, all

the items that arrived yesterday have the same prob-
ability p1 < p0, and so on. In such a case and with a

constant daily arrival rate, our algorithm can be used

with a value of s1 such that s1 items arrive each day.

2 This is in contrast to the definition of age in terms of time
elapsed after the item i has arrived. Within our sampling frame-

work, techniques for exponentially-decayed sampling with time-
based age is still open. One can use weighted sampling with
weight = arrival time, but as timestamps grow large, the decay
becomes very slow.

18

Table 3 Generating levels for different sampling algorithms

Sampling scheme Level of new item

Unbiased sampling l̂u = # tosses of a p-biased
(simple random sample) coin to get the first head

Weighted sampling l̂w = l̂u + log1/(1−p) w

Exponentially decayed l̂e = l̂u + L− 1

Weighted + Decayed l̂we = l̂u + log1/(1−p) w + L− 1

As before, this sampling algorithm also requires gen-
erating the levels of newly arrived items in a special

way, while everything else of Algorithm 1 remains the

same. Now, on arrival of an item i, we assign it a level

l̂e = l̂u + Li, where l̂u is the level generated by the
coin toss experiment for unbiased sampling, and Li is

the minimum active level at the time of the arrival of

item i. Then the following lemma shows that our ba-
sic algorithm maintains a sample where the inclusion

probability decreases exponentially.

Lemma 6 Suppose an item i is assigned a level l̂e =
l̂u+Li−1, where l̂u is an independent, geometrically dis-

tributed random variable and Li is the minimum active

level at the time of the arrival of item i. Then Algo-
rithm 1 maintains a sample S such that at any point in

time, (i) item i is in the sample if L = Li and (ii) the

probability that item i is in the sample decreases expo-
nentially with (L−Li) if L > Li, where L is the current

minimum active level.

Proof Let p be the parameter of the geometric distri-
bution (for the coin tossing experiment, p would be the

bias on the coin). Suppose the current minimum ac-

tive level is L. Then, Pr {i ∈ S} = Pr {l̂e ≥ L} =

Pr {l̂u ≥ L − Li + 1} = (1 − p)(L−Li), as required. ⊓⊔

Note that the above two sampling techniques can

be combined to maintain a sample where, at any point
in time, the inclusion probability of an item is propor-

tional to its weight and the probability decreases expo-

nentially based on its age. Table 3 summarizes the level

generation algorithms for different sampling schemes.

7.3 Optimizations with More Memory

We now propose three optimizations that can be used

when more memory is available.
The first optimization reduces the cost of maintain-

ing the sample, by using more buckets. As we mentioned

in Section 5.2.2, the cost of maintaining the samples de-

creases monotonically with increasing number of buck-
ets. This is due to the fact that with increasing number

of buckets, fewer items are stored in the tail bucket, re-

ducing the cost of log unrolling. However, each bucket

Table 4 Costs of different types of I/Os in a Fujifilm XD card
flash chip

Operation Latency (ms) Energy (µJ)

Page read 0.203 34.3

Page write 0.209 34.8

Block erase 3.136 2904

maintains a page buffer, and hence more buckets will

have a bigger memory footprint.

The cost of maintaining the sample can further be
reduced by using our second optimization: maintaining

part of the tail bucket in memory. Since unrolling the

tail bucket requires expensive flash I/O, keeping part

of the bucket in memory can reduce this overhead.
Our third optimization reduces the cost of subsam-

pling. In our original proposal in Section 6.2, skip point-

ers are stored in the last pages of individual blocks.
Hence, if we need to retrieve and follow n skip point-

ers to locate the first record within the specified time

window, we need to read n flash pages. This cost can
be reduced by maintaining the skip lists in separate

flash pages. In other words, we can pack skip point-

ers of successive blocks of a bucket in separate pages,

instead of storing them in the end of every block. Be-
cause a flash page is large enough to hold several hun-

dred skip pointers, and all of them can be read with a

single flash page read, this optimization can reduce the
number of page reads required to locate the first record.

Note that this benefit comes at the cost of using a big-

ger memory footprint: because pages containing skip
pointers must be written in flash at a page granularity,

every bucket needs to maintain a page-sized in-memory

buffer, in addition to its page buffer, for accumulating

skip pointers before writing them to flash. The buffer
can be flushed to the bucket’s currently open block so

that a flash block may contain pages having only skip-

pointers and pages having only samples. Because the
optimization affects neither the total number of writes

nor the total number of open blocks for the B-File, its

benefit for subsampling queries comes without increas-
ing the time (or energy) for collecting/maintaining the

overall sample.

8 Evaluation

In this section we experimentally compare our B-File-

based sampling algorithm with a few existing algorithms

and also study the impact of different parameters of a

B-File. Most of our results are obtained by running
the algorithms on an Intel P4 1.7 GHz PC. We also

evaluate a B-File prototype on a resource-constrained

embedded device in Section 8.8.

19

0.1
1

10
102
103
104
105
106
107
108

 0 200 400 600 800 1000 1200 1400 1600

E
ne

rg
y

(J
)

Size of datastream (Million items)

Res GeoFile

A-Res
A-GeoFile

B-File

0.1
1

10
102
103
104
105
106
107
108

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
(s

)

Size of datastream (Million items)

Res GeoFile

A-Res A-GeoFile

B-File

(a) Energy with FlashChip (b) Time with FlashChip

0.1
1

10
102
103
104
105
106
107
108

 0 200 400 600 800 1000 1200 1400 1600

E
ne

rg
y

(J
)

Size of datastream (Million items)

Res GeoFile

A-Res

A-GeoFileB-File

0.1
1

10
102
103
104
105
106
107
108

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
(s

)

Size of datastream (Million items)

Res
GeoFile

A-Res
A-GeoFile

B-File

(c) Energy with FlashCard (d) Time with FlashCard

Fig. 9 Energy and time consumed by a flash chip and a flash card for each algorithm, under varying stream sizes

8.1 Experimental Setup

Flash Devices Unless otherwise stated, we use a smax

= 1.2GB flash device to maintain a smin = 1GB sample

(≈ 32 million items) from a data stream consisting of

1.5 billion 32-byte records. We use two flash devices for

our experiments: (1) FlashChip: a Fujifilm 2GB XD
card flash chip, and (2) FlashCard: a Lexar 2GB CF

card. Each flash page is 2KB and each block contains

64 pages. To measure energy, we connect the flash de-
vices, through a CF Extend 180 Extender Card [28], to

the PCMCIA slot of the PC. We then connect a low

ohmage (1 Ohm) current sense resistor in series with
the extender card and measure the current with an os-

cilloscope. Table 1 and Table 4 show the energy con-

sumption and latency of both these flash devices. We

also studied a few other flash cards from Kingston and
SanDisk, flash chips from Toshiba [20], and SSD drives

from Samsung (mode: MCBQE32G5MPP-0VA00) and

SanDisk (mode; SDS5C-016G-000010), and the conclu-
sions were identical; hence we omit results for those

cards and drives here.

Workload We use a datastream coming from a set of
sensors deployed in a large Microsoft datacenter, al-

though the performance of a sampling algorithm does

not depend on the content of the data items. We syn-

thetically generate the weights of data items for biased

sampling and the subsample lengths for subsampling
experiments, as we will describe in Sections 8.5 and

8.6.

Algorithms Compared We evaluate the following five
algorithms: (1) Reservoir (Res): the original reser-

voir sampling algorithm [29]. (2) Adapted Reservoir

(A-Res): the adapted reservoir algorithm described in

Section 3.3. (3) Geometric File (GeoFile): the orig-
inal geometric file based sampling algorithm [15]. How-

ever, to reduce its memory footprint, small segments

are maintained in flash as a log, instead of in mem-
ory. (4) Adapted Geometric File (A-GeoFile): the

adapted geometric file based algorithm described in Sec-

tion 3.3. Lastly, (5) B-File (B-File): the main algo-
rithm described in this paper. Based on our analysis in

Section 5.2.2, we select u = 5. Note that, Res does not

use any extra flash storage; i.e., 1GB space is used to

maintain a 1GB sample. All other algorithms use the
extra space (smax − smin) to maintain logs and/or to

accommodate internal fragmentation.

Memory footprint We configure the B-File to use 15
buckets, and it incurs a memory footprint of 31KB. For

Res and A-Res, we use a 2KB (= size of a flash page)

buffer to temporarily hold samples before writing them

20

to the flash. (Increasing the footprint 100-fold has only

a few percentage points performance impact.) GeoFile

and A-GeoFile require a large in-memory buffer; we

use 1MB and later discuss the impact of using an even

larger buffer.

8.2 Cost of Maintaining Samples

Figure 9 shows the energy consumed and time elapsed
to maintain a random sample from a data stream of

varying length with FlashChip and FlashCard, us-

ing the different algorithms. Note that the relative per-
formance of different algorithms with FlashChip and

FlashCard is the same; moreover, the time consumed

by different algorithms is proportional to the energy
consumed. Therefore, we restrict our discussion below

to energy consumption for FlashCard (Figure 9(c));

our conclusions will also hold for energy for FlashChip

and for time for both FlashChip and FlashCard.

Figure 9(c) makes several important points. First,

the per-item energy consumed by all algorithms de-
creases exponentially with the stream size. This is due

to the fact that we are maintaining an unbiased sample

and fewer new records are included into the existing
sample as the stream size increases. Second, compared

to Res, A-Res reduces energy consumption by ≈ 10%,

which comes from the fact that some of the samples
that need to overwrite random records in Res are dis-

carded directly from the log in A-Res, avoiding ex-

pensive overwrite operations. Third, compared to Ge-

oFile, A-GeoFile reduces energy consumption by ≈
13%, highlighting the benefit of allocating entire blocks

for individual segments. The last two points demon-

strate the benefit of our adapted algorithms. However,
their performance improvements look insignificant com-

pared to the performance improvement of B-File. For

a stream of size 1.5 billion records, B-File is 3 orders
of magnitude more efficient than the best of all the

other algorithms considered. Benefits of similar magni-

tude are observed for the time elapsed to maintain the

sample, and with FlashChip instead of FlashCard.

8.3 Micro-benchmark Results

To better understand the relative performance of dif-

ferent algorithms, we show in Table 5 the total count of

various primitive I/O operations incurred by different

algorithms after sampling from 1.5 billion data items.
A hypothetical optimal algorithm OPT would incur at

least the cost of sequentially writing the minimum num-

ber of pages required to hold all the data items ever

Table 5 Number, in millions, of basic operations for mainte-
nance (Seq: sequential, Rnd: random, S-Rnd: semi-random)

Read Write Erase

Seq Rnd Seq Rnd S-Rnd

Res 0 8160 0.52 8160 0 128

A-Res 1.89 7120 2.5 7121 0 111

GeoFile 2880 0 799 4.7 0 10.2

A-GeoFile 2747 0 511 0 0 12.6

B-File 0.4 0 0 0 3.42 0.048

OPT 0 0 2.7 0 0 0.032

added to the sample and erasing the minimum num-

ber of blocks required to hold all the items ever deleted
(to make space for new items) from the sample. OPT ’s

cost is shown in the last row of the table; this cost is

a lower bound for any algorithm. In practice, the lower

bound may not be achieved due to the following over-
heads: C1) random writes; C2) sub-block granularity

deletion or in-place update, which require backing up

valid data before and copying it back after the required
block erase operation; and C3) multiple writes of a data

item, because of log compaction. Both C2 and C3 in-

creases the number of sequential reads and writes.

Table 5 shows that B-File performs very close to
OPT (note that semi-random and sequential writes have

similar costs), because it follows our three design prin-

ciples for flash. The additional reads and writes (com-
pared to OPT) are due to C3 overheads incurred while

maintaining the tail bucket. In contrast, other algo-

rithms incur significantly high overheads, even when

they are allowed to use more memory than B-File. In
the rest of the section, we point out the causes behind

such inefficiencies of these algorithms.

Res performs poorly because of high C1 and C2

overheads. A-Res improves upon Res by reducing C1

and C2, at a cost of a small C3 overhead, as shown in

Table 5 by A-Res’s fewer random and slightly higher

sequential I/Os than Res. GeoFile and A-GeoFile

improve upon Res or A-Res by nearly eliminating C1.

However, they still significantly suffer from other over-

heads, as explained below.

Ideally, a GeoFile would perform close to OPT if i)
most of its segments are multiples of flash blocks (thus,

avoiding C2), and ii) the total size of segments smaller

than a block is small (thus, reducing C3, or completely
avoiding it by buffering all small segments in RAM).

This can be made possible only with a small decay rate

α for its segments. Unfortunately, GeoFile does not

allow one to arbitrarily choose a suitable value of α;
rather the value of α is fixed as (1 − ρ), where ρ is the

ratio of the amount of main memory and the size of the

sample. A small value of α is possible with a relatively

21

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y/

ite
m

 (
uJ

)

Batch size

Fig. 10 Effect of batch unroll of BT

large memory size. However, when the target sample

size is several orders of magnitude larger than the main

memory (i.e., a small ρ), applications are forced to use
large values of α. For example, in our experiments, we

use 1 MB of RAM for maintaining a 1GB of sample,

giving a decay rate of α = 0.999. A GeoFile with such
a large α has a lot of different segment sizes, with most

or all of them being not multiples of a block size. This

results in segments being not aligned with flash block
boundaries. In our experimental setup, we found that

> 90% of the reads and writes of GeoFile are due

to C2. GeoFile also incurs C3 overheads, since the

limited RAM of our experimental setup does not allow
buffering small segments and overflow stacks associated

with each segment in RAM; so they are maintained as

a log.

As mentioned in Section 3.2, there is a variant of

GeoFile that uses multiple geometric files in parallel.

This variant enables using arbitrarily small values of α,
and hence can reduce the overhead due to C2. However,

with limited memory, each file will need to maintain

small segments and segment overflow stacks as a log.

Maintaining such logs for multiple files together will
significantly increase the C3 overhead. Moreover, the

implementation of this approach is too complicated for

resource constrained devices. Due to these reasons, we
did not implement or evaluate this approach.

Table 5 also shows that A-GeoFile improves Ge-

oFile by reducing C2. However, because allocating

space at a block granularity in A-GeoFile may waste
space and we use only (smax − smin) = 0.2GB of extra

space, it is not possible to allocate entire blocks to all

segments in A-GeoFile. Therefore, A-GeoFile can-
not completely eliminate C2. Our experiments show

that to significantly eliminate C2 in A-GeoFile, we

need to allocate full blocks to a large number of seg-
ments; and to afford the resulting internal fragmenta-

tion, we need to use smax = 10GB instead of 1.2GB.

Note that the performance of both GeoFile and A-

GeoFile can be improved by using a larger in-memory

 40

 45

 50

 55

 60

 65

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

(J
)

Max Size (GB)

Fig. 11 Effect of smax

buffer; our experiments show that by using a 10MB

memory, instead of our default 1MB memory, the per-
formance can be improved by around 10%. In other

words, significantly improving the performance of A-

GeoFile requires using both a very large (e.g., 10×

the sample size) flash and and a large memory (e.g.,
> 1% of the sample size).

8.4 B-File Parameters

Figure 10 shows the effect of doing log unroll in batch

(unless otherwise noted, from this point on we use en-

ergy measure as the cost and FlashCard as the flash
storage). As discussed in Section 5.2.2, the cost per

sampled item depends on how many unrolls, u, are

batched together and there is an optimal value for u.
For our particular experimental setup, our analysis in

Section 5.2.2 gives uopt = 5, same as what we see from

our experiment (Figure 10).

Figure 11 shows the effect of different smax with a

fixed smin = 1GB. As explained in Section 5.2.3, the

cost is optimized for a certain value of smax, and for our
experimental setup, the optimal value is ≈ 1.5GB. The

numerical analysis outlined in Section 5.2.3 also gives

the value 1.5GB. Note as well that using smax = 1.5GB
improves the performance of our B-File algorithm by

33% over the default smax = 1.2GB studied in Figure 9.

8.5 Biased Sampling

Figure 12 shows the cost of maintaining different types

of random biased samples on a B-File. For the weighted
samples, the weights of individual records have a Gaus-

sian distribution with mean 3 and variance 1 (negative

weights are replaced with zero weight). As shown, the

cost of maintaining a weighted sample is slightly higher
than maintaining an unbiased sample; moreover, the

per-item cost exponentially decreases with stream size

because fewer items are included into the sample as

22

 0
 100
 200
 300
 400
 500
 600
 700

 0 300 600 900 1200 1500

E
ne

rg
y

(J
)

Size of datastream (Million items)

Weighted+Decaying
Decaying
Weighted
Unbiased

Fig. 12 Biased sampling

 0.0001

 0.001

 0.01

 0.1

 1

 10

102 103 104 105 106 107 108 109

E
ne

rg
y

(J
)

Substream size

Sequential scan
Skip list

Separate skip list

Fig. 13 Energy consumed to subsample

the stream size grows. However, maintaining an age-
decaying sample is expensive, because every new record

needs to be added to the sample (and possibly discarded

later as the record grows older). The effect is that the
cost increases linearly with stream size, as shown by the

Decaying and the Weighted+Decaying curves in Fig-

ure 12. Note that the performance difference for B-File

and other algorithms (e.g., A-Res and A-GeoFile)

will be even greater for age-decaying sampling than for

unbiased sampling; all algorithms will add roughly the

same number of records into the sample, but adding a
new record is much cheaper in B-File than in the other

algorithms.

8.6 Subsampling

To evaluate subsampling cost, we first construct a 1GB

random unbiased sample from 1.5 billion records, with
exponentially distributed inter-arrival times. We then

measure the energy consumed to extract all the records

in the sample that arrived within a time window [t1, t1+
length], where t1 is uniformly randomly distributed in

the window [0, 1.5× 109 − length]. Figure 13 shows the

energy consumed for different values of length. We con-

sider three alternatives to locate the first record (≥ t1)
in each bucket: sequentially scanning the bucket, using

skip lists with pointers stored at the end of data blocks,

and using skip lists with pointers stored in separate

No Sampling
Unbiased

Weighted Decaying

Weighted+Decaying130

135

140

145

T
im

e/
ite

m
 (

m
s)

Fig. 14 Cost of subsampling queries concurrent to sampling

Unbiased
Weighted Decaying

Weighted+Decaying0

0.01

0.02

0.03

0.04

T
im

e/
ite

m
 (

m
s)

Without Queries
With Queries

Fig. 15 Cost of sampling concurrent to subsampling queries

pages (recall Section 7.3). The results show that the

cost of extracting subsamples increases with the sub-
stream size length (which is proportional to subsample

size). For smaller substreams (< 105), using skip lists

provides roughly an order of magnitude greater energy
savings than sequential scan, and using the skip lists in

separate pages provides roughly another order of mag-

nitude greater energy savings. The benefit comes from
the small number of page reads required to locate the

first record in the subsample. However, the benefit di-

minishes as the subsample is taken over a longer sub-

stream, as the cost of locating the first record becomes
insignificant compared to the cost of reading subsequent

records in the subsample.

8.7 Concurrent Sampling and Querying

So far we have evaluated our sampling and subsam-
pling algorithms in isolation. Now, we consider them to-

gether; i.e., we query (subsample) the sample on a flash

device at the same time the sample is being collected.
Because a flash device can support a limited number of

concurrent I/Os, concurrently sampling and querying

the sample may affect the performance (especially the

latency) of both operations. We consider the following
scenario: data items arrive at the maximum rate that

our most expensive sampling scheme (Weighted + De-

caying) can handle, and we run one sampling thread

23

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10

P
ow

er
 (

m
W

)

Time (sec)

Fig. 16 Energy measurement for the Tmote Sky sensor platform. The graph shows power drawn by a Tmote device in the first 10

seconds of an unroll operation. The white, green (darkly shaded), and blue (lightly shaded) backgrounds denote times when B-File

performs read, write, and erase operations on flash, respectively.

Fig. 17 The Tmote Sky embedded sensor platform

to maintain the sample on flash and 10 query threads

each of which continuously asks for random subsamples

of size 10, 000 items. For the sampling thread, we report
the average cost after seeing 100 million(M) data items;

the cost would decrease with additional items. (Note

that the flash device can hold around 40M items, so
even after 100M items, the sampling cost per arriving

item is reasonably high.)

Figure 14 shows the average subsampling cost re-
ported by the query threads when the sampling thread

uses different sampling schemes. It shows that the im-

pact of concurrent sampling on query latency is very
small (< 5%). In contrast, as shown in Figure 15, the

impact is more significant on sampling latency (up to

35%). This is because with concurrent reads and writes

on flash, write performance suffers more than read per-
formance [1].

8.8 B-File on an Embedded Device

To demonstrate the feasibility of using our B-File al-

gorithm in resource-constrained embedded devices, we
have implemented the algorithm on a Moteiv Tmote

Sky sensor platform [22], shown in Figure 17, running

TinyOS 2.1. The device is suitable for very low power,

high data-rate sensor network applications. It has inte-
grated sensors, radio, microcontroller, 10KB RAM, and

programming capabilities. The device is also equipped

with an ST Microelectronics M25P family flash chip
of size 1MB. Each flash page is 512B and each block

contains 64 pages. Our prototype is implemented us-

ing approximately 500 lines of code in nesC, a version

of the C language designed for programming embed-
ded systems. The prototype has around a 14KB ROM

footprint and a 1.5KB RAM footprint. It captures data

from Tmote’s on-board temperature sensor and stores
samples in the local flash chip.

TinyOS provides several abstractions to store data

in a local flash chip. The LogStorage abstraction al-
lows sequentially appending data to a log, while the

BlockStorage abstraction allows accessing random flash

blocks. TinyOS also allows the local flash chip to be
statically divided into multiple volumes, so that differ-

ent volumes can store different types of data with differ-

ent storage abstractions. The simplicity of B-File en-

ables us to implement it using the LogStorage abstrac-
tion: We statically divide the local flash into multiple

volumes and use each volume as a separate bucket of

B-File. Within each volume, we use the LogStorage
abstraction to append data to existing buckets. In this

experiment, we use a B-File with 8 buckets; using more

buckets is not useful, since the flash chip contains only
32 blocks. Each record (i.e., sensor reading) is 4 bytes

and we use smax = 1024KB and smin = 800KB.

Our key findings are as follows. First, a block erase,
a page read, and a page write consume 15.7mJ , 0.32mJ ,

and 0.78mJ , respectively. The latencies of these three

operations are 1.18s, 0.06s, and 0.09s, respectively. Sec-

ond, unrolling the tail bucket takes around 86 seconds,
and consumes ≈ 758mJ . Figure 16 shows the timeline

of energy consumed in the first 10 seconds of an un-

roll operation. It shows different flash I/O operations,

24

as well as the power drawn for those operations. More

precisely, the unroll operation starts by reading records
from the tail bucket (time 0s to 0.23s in Figure 16)

and writing them to other buckets. Writing to other

buckets may first require erasing a block; in Figure 16,
time 0.24s to 1.41s represents erasing a block, and time

1.42s to 1.50s represents writing a page in that block.

Figure 16 also shows that an erase operation has longer
latency and it requires more power than write and read

operations.

The unroll operation may appear expensive; but an

unroll operation happens only when the B-File runs
out of space, and therefore it is an infrequent opera-

tion. More precisely, the above experimental setup re-

quires only 8 unroll operations to collect samples from a
stream of 1.5 billion records. Thus, the amortized cost

(including costs for adding sampled records to buck-

ets and unrolling the tail bucket) per record is only
0.0126µJ . For our three types of biased samples, us-

ing the parameter settings of Section 8.5, the cost per

record is 0.014µJ , 0.115µJ , and 0.183µJ for weighted,

decaying, and weighted+decaying, respectively. We have
also implemented Res on a Tmote node; the cost per

record is 139.69µJ , which is five orders of magnitude

more expensive than the B-File implementation. We
have not considered implementing GeoFile on a Tmote

as the algorithm is not useful with Tmote’s limited

RAM.
The large overhead of an unroll operation in this

experiment also comes from our use of a small num-

ber of buckets. As mentioned in Section 5.2.2, the cost

of maintaining samples increases monotonically with a
decreasing number of buckets. Intuitively, with a small

number of buckets, the tail bucket accumulates a large

number of records before an unroll operation, thus, in-
creasing the unrolling overhead. To demonstrate this,

we have also run experiments with a B-File with five

buckets and found that its unroll operation takes 171
seconds and consumes 1475mJ , which is almost twice

as expensive as an unroll operation of a B-File with

eight buckets. The amortized cost per record is 0.02µJ ,

which is 58% higher than the cost with eight buckets.

9 Conclusion

In this paper, we have presented the first flash-friendly
algorithm for maintaining a very large (100 MBs or

more) random sample of a data stream. We proposed

B-File, an energy-efficient abstraction for flash media

to store self-expiring items and showed how B-File can
be used to efficiently maintain a large sample in flash.

We also provided techniques to maintain biased samples

with a B-File and to query the large sample stored in a

B-File for a subsample of an arbitrary size. Evaluation

with flash media shows that our techniques are three
orders of magnitude (or more) faster and more energy-

efficient than existing techniques.

We believe that the B-File is a general abstraction

and can be used for many purposes other than sam-

pling. For example, it can be used to archive data and
to automatically age it, based on arrival time or priority

of the data, to reclaim storage space for newly-arriving

data (e.g., on a sensor node). Moreover, our study re-
vealed an important subclass of random writes, which

we called semi-random writes, that defy the common

wisdom to avoid all random writes. We believe that
semi-random writes can also be used for many pur-

poses, e.g., it is the write pattern for external memory

distribution sort [31]. Moreover, for some algorithms,

sufficient write-buffering and scheduling might be able
to transform most of the random writes to flash into

semi-random writes. Exploring other uses for B-File

and semi-random writes is part of our future work.

Acknowledgement

We thank Dimitrios Lymberopoulos for his assis-

tance with our Tmote Sky experiments, Shimin Chen
for interesting discussions on flash, and the anonymous

reviewers for their detailed comments that helped to

improve the paper.

References

1. N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for SSD per-

formance. In USENIX Annual Technical Conference, 2008.

2. B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample se-
lection for approximate query processing. In ACM SIGMOD
International Conference on Management of Data, 2003.

3. A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. SIGOPS Oper. Syst. Rev.,
41(2), 2007.

4. C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez.
PicoDBMS: Scaling down database techniques for the smart-

card. In International Conference on Very Large Data Bases
(VLDB), 2000.

5. L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP: Under-
standing flash IO patterns. In Fourth Biennial Conference
on Innovative Data Systems Research (CIDR), 2009.

6. S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. R.

Narasayya. Overcoming limitations of sampling for aggre-

gation queries. In IEEE International Conference on Data
Engineering (ICDE), 2001.

7. Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy. Rethink-
ing data management for storage-centric sensor networks. In
Third Biennial Conference on Innovative Data Systems Re-

search (CIDR), 2007.

8. F. Douglis, R. Cáceres, F. Kaashoek, K. Li, B. Marsh, and
J. A. Tauber. Storage alternatives for mobile computers.

In USENIX Conference on Operating Systems Design and
Implementation (OSDI), 1994.

25

9. C. T. Fan, M. E. Muller, and I. Rezucha. Development of
sampling plans by using sequential (item by item) selection
techniques and digital computers. American Statistical As-

sociation Journal, June 1962.

10. P. B. Gibbons and S. Tirthapura. Estimating simple func-

tions on the union of data streams. In ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 2001.

11. M. Hachman. New Samsung note-

book replaces hard drive with flash.
http://www.extremetech.com/article2/0,1558,1966644,00.asp,
May 2006.

12. Intel-Corporation. Understanding the
Flash Translation Layer (FTL) specification.
www.embeddedfreebsd.org/Documents/Intel-FTL.pdf,
1998.

13. J. Janukowicz and D. Reinsel. SSDs: The other primary

storage alternative. IDC White Paper, 2008.

14. C. Jermaine, A. Datta, and E. Omiecinski. A novel index

supporting high volume data warehouse insertion. In In-
ternational Conference on Very Large Data Bases (VLDB),
1999.

15. C. Jermaine, A. Pol, and S. Arumugam. Online maintenance
of very large random samples. In ACM SIGMOD Interna-
tional Conference on Management of Data, 2004.

16. H. Kim and S. Ahn. BPLRU: a buffer management scheme
for improving random writes in flash storage. In USENIX
Conference on File and Storage Technologies (FAST), 2008.

17. J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A
space-efficient flash translation layer for compact flash sys-
tems. IEEE Transactions on Consumer Electronics, 48(2),
2002.

18. J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J. Choi, D. Lee,
and S. H. Noh. Block recycling schemes and their cost-based
optimization in NAND flash memory based storage system.
In ACM/IEEE International Conference on Embedded Soft-

ware (EMSOFT), 2007.

19. S.-W. Lee and B. Moon. Design of flash-based DBMS: an

in-page logging approach. In ACM SIGMOD International
Conference on Management of Data, 2007.

20. G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Cap-

sule: an energy-optimized object storage system for memory-
constrained sensor devices. In ACM International Con-
ference on Embedded Networked Sensor Systems (SenSys),

2006.

21. P. Miller. SimpleTech announces 512GB and 256GB 3.5-inch
SSD drives. http://www.engadget.com/2007/04/18/, April
2007.

22. Moteiv Corporation. Tmote sky platform.

http://www.moteiv.com/community/Tmote Sky Downloads,
2007.

23. S. Nath and A. Kansal. FlashDB: dynamic self-tuning
database for NAND flash. In ACM/IEEE International
Conference on Information Processing in Sensor Networks
(IPSN), 2007.

24. F. Olken, D. Rotem, and P. Xu. Random sampling from hash
files. SIGMOD Rec., 19(2), 1990.

25. P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-
structured merge-tree (LSM-tree). Acta Inf., 33(4), 1996.

26. W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM, 33(6), 1990.

27. D. Reinsel and J. Janukowicz. Datacenter SSDs:
Solid footing for growth. Samsung white paper.
www.samsung.com/global/business/semiconductor/prod-
ucts/flash/ssd/pdf/datacenter ssds.pdf, January 2008.

28. SyCard. CF extend 180 CompactFlash Flexible Extender
Card. http://www.sycard.com/cfext180.html, 2008.

29. J. S. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1), 1985.

30. J. S. Vitter. An efficient algorithm for sequential random

sampling. ACM Trans. Math. Softw., 13(1), 1987.
31. J. S. Vitter. External memory algorithms and data struc-

tures. ACM Comput. Surveys, 33(2), 2001.

32. C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient R-
tree implementation over flash-memory storage systems. In
ACM International Symposium on Advances in Geographic
Information Systems (GIS), 2003.

33. Yahoo!-Finance. Zeus-IOPS solid state drives surge
to 512GB. http://biz.yahoo.com/pz/070418/117663.html,
April 2007.

34. D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,

and W. A. Najjar. Microhash: an efficient index structure for
flash-based sensor devices. In USENIX Conference on File
and Storage Technologies (FAST), 2005.

