
Trinity File System (TFS)
Specification V0.8

Jiaran Zhang (v-jiarzh@microsoft.com), Bin Shao (binshao@microsoft.com)

1. Introduction
Trinity File System (TFS) is a distributed file system designed to run on machines inside the

local network. TFS is a HDFS1 clone on Windows (R). It depends on Trinity.Core, especially

Trinity’s message passing mechanism. TFS provides high throughput access to data and achieves

fault tolerance on commodity hardware.

2. Deployment
TFS adopts the master/slave architecture. TFSNameNode based on Trinity Slave is the

master of TFS while TFSDataNode dependent on Trinity Proxy is the slave of TFS. As Trinity does,

we should use the command edit_config or modify the file trinity.xml to configure the

Trinity/TFS cluster.

TFSDataNode:

Proxy

TFSClient:

Client
MetaData ops

DiskDisk

TFSDataNode:

Proxy

DiskDisk

TFSDataNode:

Proxy

DiskDisk

Read or Write

TFSNameNode:

Slave

LogLog

Mem

(metadata)

Read or Write Read or Write

Apart from that, some TFS parameters could be set in the class Trinity.TrinityConfig. We pick

out some important members to demonstrate.

a. REPLICA_NUM: the replica number of blocks

1 HDFS Architecture Guide. http://hadoop.apache.org/docs/stable/hdfs_design.html

b. BLOCK_SIZE: the size of blocks (default 64MB)

c. TRANSFERRED_BLOCK_SIZE: the size of data transmission message (default 1MB)

d. …

After the configuration, the application should be deployed to multiple machines by the

command cluster_deploy.

3. Startup
In the normal startup, we should start all TFSDataNodes firstly by command start

TrinityFileSystem.exe –p. If TFS are deployed on different nodes but under the same path, we

can be benefit from the command cluster_exec -p XXX\TrinityFileSystem.exe –p.

When all TFSDataNodes are ready, TFSNameNode starts. We could start TFSNameNode by

the command start TrinityFileSystem.exe –s.

Some details about the startup are listed as follows:

a. All TFSDataNodes start firstly, but do nothing. (In fact, the proxy would try to

connect the slave.)

b. TFSNameNode starts and enters the safe mode. During the safe mode, TFS rejects

all client requests.

a. Trinity heartbeat mechanism works.

b. Maybe it takes a long time to deal the log.

c. TFSNameNode begins to count down to exit the safe mode.

d. TFSNameNode sends the message to each TFSDataNode.

c. When TFSDataNodes receive the message, they send their block reports back.

a. Regular block report mechanism works.

d. If TFSNameNode receives the reports from all the TFSDatanodes, it would exit the

safe mode immediately and TFS could response to client request. Otherwise, it

would exit the safe mode after 30s (it can be configured at Trinity.TrinityConfig),

those TFSDataNodes, whose reports are not received, are regard as the “dead”

nodes.

If we want to get a “clean” file system, we can clear the historical data under the directory

TFSData of TFSNameNode and each TFSDataNode. Or we can just clear TFSNameNode and TFS

would delete other unwanted data later.

4. Shutdown
We just need kill TFSNameNode. All TFSDataNodes would exit automatically if they cannot

connect with TFSNameNode after a time. Never kill any TFSDataNode firstly. TFSNameNode

would treat it as a “dead” node and exclude it from the cluster.

5. Recovery
If one TFSDataNode has a failure and has been fixed, we can rejoin this node into the cluster

by the command start TrinityFileSystem.exe –n. This command is different from the previous. It

uses “-n” instead of “-p”. Under this situation, TFSDataNode would send the report on its own

initiative rather than wait for TFSNameNode’s message.

If TFSNameNode crashes, all the TFSDataNodes would exit automatically. We just need start

the cluster up again to recover the data.

6. Interface
All the TFS entities and operations for users are in the namespace Trinity.IO.Client. There

are two public classes so far. TFSFile presents the file stored in TFS while TFSDirectory collects

some methods about the directory.

 public class TFSFile
{
 public TFSFile(string path, TFSFileAccess access);

public void Close();
public long Position;
public long Seek(long position, TFSSeekOrigin seekOrigin);
public int Read(byte[] buffer, int offset, int count);
public void Write(byte[] buffer, int offset, int count);

 public void ParallelWrite(byte[] buffer, int offset, int count);
public static bool RemoveFile(string path);
public static bool Exists(string path);
public static long GetFileSize(string path);

 }
 public enum TFSFileAccess : byte
 {
 Read, Write, Append
 }

 public enum TFSSeekOrigin : byte
 {
 Begin, Current, End

}
 public class TFSDirectory
 {
 public static List<string> GetPathList();
 /// <summary>
 /// Test function for developers.
 /// It prints all the file paths, all the blocks and their TFSDataNodes.
 /// </summary>
 public static void Details();

}

TFS supports random read and append write. You cannot use Seek in the write or append

access mode. If you violate this rule, TFSFile would throw an exception. TFS allows multiple

readers but only one writer on one file at any time.

The difference between Write and ParallelWrite is illustrated in the chapter High

Throughput.

6.1 Reading Data
A reading data sample:

void read()
{

TFSFile readFile = new TFSFile(@"\a", TFSFileAccess.Read);
FileStream writeLocalFile = new FileStream("A - 1", FileMode.OpenOrCreate);
byte[] buffer = new byte[10 * 1024 * 1024];
int size = 0;
while ((size = readFile.Read(buffer, 0, buffer.Length)) != 0)
{

writeLocalFile.Write(buffer, 0, size);
}
writeLocalFile.Close();
readFile.Close();

}

6.2 Writing Data
A writing data sample:

void write()
{

FileStream readLocalFile = new FileStream("A", FileMode.Open);
TFSFile writefile = new TFSFile(@"\a", TFSFileAccess.Write);
byte[] buffer = new byte[10 * 1024 * 1024];
int size = 0;
while ((size = readLocalFile.Read(buffer, 0, buffer.Length)) != 0)
{

writefile.Write(buffer, 0, size);
}
readLocalFile.Close();
writefile.Close();

 }

7. Fault Tolerance
TFS achieves fault tolerance on commodity hardware. We summarize this character as the

below list:

a. Any TFSDataNode’s failure does not affect data validity and system availability. TFS can

handle this failure in the background automatically. If the broken TFSDataNode has

been fixed, it can be rejoined to TFS cluster.

b. TFSNameNode can recover from unpredictable breakdown. It will take some time to

handle the logs. The recovery time lies on the size of the log file.

c. Write is an atomic operation. Those unsuccessful writes are usually caused by the

disconnected connections between TFS and clients or users’ wrong usage on TFS API.

TFS will roll back them.

8. Data Integrity & Replication
Each file stored on TFS is divided into fixed-size block besides the tail. These blocks are

distributed stored on different TFSDataNodes. Each block would exist as a single file with a GUID

(e.g. 4cc8fccb-863c-4466-ada9-f57c481d0942) as its file name. To validate data, every block has

a checksum file of the same name (e.g. 4cc8fccb-863c-4466-ada9-f57c481d0942.checksum).

Every 1MB data unit in the block file owns a 16-byte (128-bit) MD5 checksum in the

corresponding checksum file. When a client reads data, it also gets the checksum. The corrupted

data can be prevented by this transparent verification.

To achieve fault tolerance on commodity hardware, TFS stores multiple replications for each

block. TFSNameNode keeps a mapping from the blocks to their TFSDataNodes in the memory.

TFSDataNode sends the block report, which contains of a list of all the blocks on this node, to

TFSNameNode periodically. On the basis of these block reports, TFSNameNode can be master of

the replica number to match the configured figure.

9. High Throughput
Since files are divided into blocks and stored on different TFSDataNodes, TFS tries to support

parallel operation involved multiple TFSDataNodes. In the reading data, multiple blocks of one

file are read parallel from different nodes. About the writing data, multiple replicas of one block

are written to different nodes parallel in the function Write while multiple replicas of multiple

blocks are written to different nodes parallel in the function ParallelWrite.

10. Persistence of TFS Metadata
TFS metadata are kept under the directory TFSData on TFSNameNode. File TFSImage stores

entire file system namespace. It is the snapshot of TFSNameNode when it starts. File TFSEditLog

is a transaction log to record every change that occurs to file system metadata.

When TFSNameNode starts, it handles TFSImage and TFSEditLog as follows:

a. load namespace TFSImage

b. apply logs in TFSEditLog

c. save new namespace to TFSImage.new

d. delete TFSImage and TFSEditLog

e. rename TFSImage.new to TFSImage

11. TFSNameNode
As the master of TFS cluster, TFSNameNode need to maintain the global information,

manage nodes in the cluster and regulate the client access to data.

11.1 File System Namespace
Each file stored on TFS is divided into fixed-size blocks. Therefore, the file is only recorded as

a sequence of block IDs while the block content is stored on the TFSDataNodes. TFS Namespace

mainly maintains the file set and provides the service for data position request. It is constituted

by the below four classes.

 class TFSBlockInfo
 {
 int blockSize;
 /// <summary>
 /// stores the tfsdatanode numbers which own this block.
 /// </summary>
 List<int> nodeList;

}
 class TFSBlockDictionary
 {
 static Dictionary<string, TFSBlockInfo> blocks;

}
 class TFSFileInfo

{
 /// <summary>
 /// stores the blockIDs which make up this file.
 /// </summary>
 List<string> blockIDList;
 bool isUnderConstruction;

}
 class TFSFileInfoCollection
 {
 static Dictionary<string, TFSFileInfo> files;
 }

TFS File System Namespace includes three logic parts, which consists of the above four

classes.

a. File Set. TFSFileInfoCollection contains all file information. Compared with the general

directory tree, we just have implemented this flat structure so far.

b. File – Block mapping. TFSFileInfo stores the IDs (implemented by a GUID string) of blocks

which make up this file.

c. Block – TFSDataNode mapping. To get the concrete data, we must acquire blocks’

positions. TFSBlockDictionary and TFSBlockInfo provide this query by the known block ID.

11.2 Lease Management
TFS adopts the lease method to regulate the clients’ concurrent access to data. No matter

read or write, users should apply a lease before opening a file, update the lease during the

operation and delete the lease after closing the file. Through the lease, TFS could manage the

exclusive read and write. Besides that, if a user is lost during read or write, then his lease would

not be updated anymore and eventually overdue. TFS would find those overdue write lease and

roll back those write operations.

 class LeaseManager
 {
 private static Dictionary<string, ReadLeaseDictionary> read_lease_table;
 private static Dictionary<string, WriteLease> write_lease_table;
 }
 class ReadLeaseDictionary
 {
 /// <summary>
 /// Dictionary<handleID, ticks>
 /// </summary>
 private Dictionary<long, long> readLease;
 }
 internal class WriteLease
 {
 long handleID; //session ID
 long time; //ticks
 }

Since one file only allows be either read or written at the same time, the read lease and the

write lease on the same file are mutually exclusive. TFS allows multiple readers but only one

writer on one file at any time; therefore, multiple read leases, which are distinguished by

different handleIDs (session ID), could be added on the same file.

11.3 Task Dispatcher
To balance the cluster overhead, TFS uses a class called TaskDispatcher to trace the jobs on

different TFSDataNodes. With this information, TFSNameNode always assigns the task to the

TFSDataNode which has not been assigned a job for the longest time. Therefore, the timestamp

is like the penalty.

 class TaskDispatcher
 {
 /// <summary>
 /// Dictionary<tfsdatanodeID, Ticks>
 /// </summary>
 private static Dictionary<int, long> tasks;

}

In the writing data, clients need multiple TFSDataNodes to write the same block.

TaskDispatcher would choose the top N idlest nodes and update their timestamps. But in the

reading data, TaskDispatcher would choose the idlest one from those nodes which contains the

specific block and update its timestamp.

11.4 Block Report Management
Each TFSDataNode would send its block report, including all the block file names and block

sizes to TFSNameNode periodically. TFSNameNode has a class named BlockReportManager to

keep these reports. If the block in the report exists in TFSBlockDictionary, and its size in report is

no less than the size in TFSBlockInfo, BlockReportManager would add this block or update its

timestamp. We must clearly point out that why the block size in report is must no less than the

size in TFSBlockInfo. When we write a new block, we first create a 0-byte block and add it into

TFSBlockDictionary. If the client has written all the replicas of this block, it would send a

message to TFSNameNode to update this block size. Similarly, if the client appends some data to

Apart from that, TFSDataNode would send the block report to TFSNameNode.

Trinity.IO.DataNode.BlockReportSender has a countdown timer to control the block report

sending. The timer is always set to TrinityConfig.BLOCK_REPORT_PERIOD again after sending the

block report. But if a new block file is created on the TFSDataNode, BlockReportSender would

send the block report immediately and set the timer to TrinityConfig.BLOCK_REPORT_PERIOD.

TFSDataNode
BlockReportSender

--Count

A new block file is created.

Count > 0s

While(true)
 Sleep(1s);

Count = 60s;
Send Block Report;

Count <= 0s

The immediate block report confirms BlockReportManager can own the real-time reverse

index. Supposing one TFSDataNode is lost just after writing one block, BlockReportManager

does not keep it but TFSBlockDictionary owns. We delete those blocks according to the lost

TFSDataNode ID and the reverse index, so this block would not be found. The immediate block

report is sent when the new empty block file is created; therefore, BlockReportManager could

get the real-time information.

13. Data Flow

13.1 Anatomy of a File Read

TFSDataNode:

Proxy

 TFSClient:

 Client

2.AddReadLease

3.GetFileInfo

5.GetBlockInfo

8.DeleteReadLease

DiskDisk

TFSDataNode:

Proxy

DiskDisk

TFSDataNode:

Proxy

DiskDisk

TFSNameNode:

Slave

LogLog

Mem

(metadata)

6.Read

1.TFSFile(path)

4.Read()

…

7.Close()

6.Read

13.2 Anatomy of a File Write

TFSDataNode:

Proxy

 TFSClient:

 Client

2.AddWriteLease

3.Backup

4.CreateFileInfo

6.CreateBlockInfo

9.DeleteBackup

10.DeleteWriteLease

DiskDisk

TFSDataNode:

Proxy

DiskDisk

TFSDataNode:

Proxy

DiskDisk

TFSNameNode:

Slave

LogLog

Mem

(metadata)

7.Write

1.TFSFile(path)

5.Write()

…

8.Close()

7.Write 7.Write

14. Data Renovation
The block files or checksum files on TFSDataNodes may be corrupted due to many reasons,

so TFS builds a mechanism to renovate those corrupted blocks.

If a client finds that the data cannot match the corresponding checksum in the reading data,

it would try to read data from other TFSDataNodes and submit a data validation request. An

object on TFSNameNode called DataValidator would add this request to its list and execute

these requests in the background thread. DataValidator sends the data validation to the

TFSDataNode which owns the “suspected” block. If TFSDataNode confirms the data cannot

match the checksum, TFSNameNode would delete this replica. ReplicateBlockManager would

copy another replica later.

 struct SuspectedBlock
 {
 internal string blockID;
 internal int tfsdatanode;
 internal int blockSize;
 }
 class BlockValidator
 {
 private static List<SuspectedBlock> list;

 }

Every 1MB data unit in the block file owns a 16-byte (128-bit) MD5 checksum in the

corresponding checksum file, but the tail data unit which is less than the fixed size also has a

checksum. When clients append data to files, clients should verify the tail unit’s checksum and

rewrite its checksum after appending. If clients find the tail unit cannot match its checksum, it

would ignore it and write other replicas first. If all the replicas cannot match their checksums,

clients would throw exceptions; otherwise, clients would send requests to TFSNameNode to

delete wrong replicas and copy right replicas which are appended successfully.

15. Transaction
TFS supports the atomic write operation. Write failures could be caused by many reasons,

and we classify them into two types:

a. Clients’ failure, like the client is disconnected during the writing; the client crashes and

so on.

b. TFSNameNode’ failure, like TFSNameNode loses the power, the TFSNameNode crashes

and so on.

 We also work out the below roll back strategy:

a. Failure in writing a new file: Delete the unfinished file.

b. Failure in overwriting a file: Recover to the original file.

c. Failure in appending an existing file: Recover to the original file.

15.1 Backup
Before the overwriting and appending, TFS needs to store a backup of the original file. The

backup is quite easy for overwrite. TFSNameNode just renames the original file FileName to the

backup file FileName~. Then overwriting becomes writing a new file. But for append, it is more

complex. As shown of the below figure, TFSNameNode firstly requests the TFSDataNodes, which

own the tail block 4, to duplicate the tail block. Then TFSNameNode creates a backup file called

FileName-, which shares the blocks with the original file FileName except the tail one. The new

data would be appended to the file FileName and we can copy the fewest data to implement

the backup.

5

5...21

4...21

4Copy2

FileName-

FileName

764...21FileName

44

If rollback
 delete FileName
 rename FileName- to FileName
 delete 4, 6, 7
Else
 delete FileName-
 delete 5

15.2 Normal Procedure
The below figure illustrates a normal procedure for write, overwrite or append. There is a

property called isUnderConstruction in class TFSFileInfo to record whether the file has been

written completely. The normal procedure can confirm at least one of backup and original files is

available.

Client TFSNameNode

Add Write Lease

Success

Backup file

Backup file
(overwrite) Construct a new file(file’s isUnderConstruction is true)
 (append) Set the original file’s isUnderConstruction to true

Write(byte[])

Success

Success

…

Delete Write Lease

Set isUnderConstruction to false
Delete backup
Delete write lease

Success

…

15.3 Rollback
The rollback happens in two situations.

For the clients’ failure, LeaseManager would find the file’s overdue write leases.

a. If the file’s isUnderConstruction is true, TFSNameNode would recover it if its backup file

exists or just delete it if its backup file does not exist.

b. If the file’s isUnderConstruction is false, TFSNameNode would try to delete its backup

file if its backup file exists. In this case the probability of occurrence is low.

For the TFSNameNode’s failure, TFSNameNode would check each file’s isUnderConstruction

property when it restarts.

a. If the file’s isUnderConstruction is true, TFSNameNode would recover it if its backup file

exists or just delete it if its backup file does not exist.

b. If the file’s isUnderConstruction is false, TFSNameNode would try to delete its backup

file if its backup file exists. In this case the probability of occurrence is very low.

c. If a backup file exists but the original file does not exist, TFSNameNode would try to

recover the file. In this case the probability of occurrence is very low.

16. Failure
Trinity.Core provides two failure handlers: connection failure handler and machine failure

handler. The connection failure handler means the real-time handling while the machine failure

handler would be invoked after N fail connections.

If one TFSDataNode cannot be connected once, a connection failure handler would be

invoked at the client. The client’s ConnectionFailureManager would record this TFSDataNode

and time. When the client reads the data, it would verify whether the data source is in the

ConnectionFailureManager. If the data source is added a moment ago

(TrinityConfig.OVERDUE_CONNECTION_LIMIT), this read’s data may come from Trinity’s buffer

rather than TFSDataNode, so the client would read from other TFSDataNode again. If the

TFSDataNode is lost eventually, TaskDispatcher would remove it and never assign the task to it

anymore; at the same time, TFSNameNode would remove its block report from

BlockReportManager and find all the blocks on this node according to its block report to delete

those blocks from TFSBlockDictionary later.

To catch the TFSNameNode’s failure, TFSDataNode and the client both register the machine

failure handlers. Trinity.IO.DataNode.TFSNameNodeFailureManager let the TFSDataNode exit

automatically while Trinity.IO.Client.MachineFailureManager makes the client throw the

Trinity.IO.TFSNameNodeException.

