
Geoinformatica
DOI 10.1007/s10707-014-0218-2

The TM-RTree: an index on generic moving objects
for range queries

Jianqiu Xu ·Ralf Hartmut Güting ·Yu Zheng

Received: 13 March 2013 / Revised: 25 April 2014 / Accepted: 12 August 2014
© Springer Science+Business Media New York 2014

Abstract Existing works on moving objects mainly focus on a single environment such as
free space and road network, and do not investigate the complete trip for humans who can
pass several environments, e.g., road network, pavement areas, indoor. In this paper, we con-
sider multiple environments and study moving objects with different transportation modes,
also called generic moving objects. We aim to answer a new class of queries supporting
three kinds of conditions: temporal, spatial, and transportation modes. To efficiently pro-
vide the result, we propose an index structure called TM-RTree, which takes into account
the feature of moving objects in different environments and has the capability of managing
objects on not only temporal and spatial data but also transportation modes. This property
is not maintained by existing indices for moving objects. Different cases on transportation
modes are supported. Correspondingly, several algorithms are developed. The TM-RTree
and related algorithms are developed in a real DBMS to have a practical and solid result
for applications. In the experiment, we conduct the performance evaluation using extensive
datasets and compare the proposed technique with the other two competitors, demonstrating
the efficiency and significant superiority of our solution in various settings.

Keywords Transportation modes · Range queries · Index structure

Most of the work is done when the author is a Ph.D student in FernUniversität in Hagen, Germany.

J. Xu (�)
Nanjing University of Aeronautics and Astronautics, Nanjing, China
e-mail: jianqiu@nuaa.edu.cn

R. H. Güting
FernUniversität in Hagen, Hagen, Germany
e-mail: rhg@fernuni-hagen.de

Y. Zheng
Microsoft Research Asia, Beijing, China
e-mail: yuzheng@microsoft.com

mailto:jianqiu@nuaa.edu.cn
mailto:rhg@fernuni-hagen.de
mailto:yuzheng@microsoft.com

Geoinformatica

1 Introduction

Moving objects databases have been extensively studied in the last decade due to their wide
applications such as location-based services and transportation networks. Recently, the topic
of moving objects with multiple transportation modes receives increasing attention in the
literature [33, 35]. Some researchers build an inference model to discover outdoor trans-
portation modes from raw GPS data (inactive for indoor) such as walking, cycling and bus,
e.g., Microsoft’s project Geolife [46, 47]. In a transportation system, advanced trip planning
[8] is provided so that the user can specify different modes and constraints for the path.
For example, find a trip by bus and walk fulfilling the condition: (i) two bus transfers in
maximum, and (ii) the walking distance is less than 300m.

In this context, different environments are considered for moving objects such as road
network, public transportation system and pavement areas. We target a complete trajectory
that contains not only the location data but also motion modes. In the meantime, pieces of
movements with different modes are distinguished and precisely represented. Consider two
example trips:

(1) Bobby moved from his office room to the building exit, then walked to the parking
place, and from there he went home by car.

(2) Bobby moved from his office room to the building exit, then walked to a fast food
shop for lunch, and came back to the office room.

Throughout the paper, we also use the term generic moving objects to refer to those
moving objects. Figure 1 depicts the two trips. Different line types are utilized to distinguish
movements with different transportation modes. The two generic moving objects can be
abstractly described as follows:

(1) mo1: <Indoor, Walk, Car>;
(2) mo2: <Indoor, Walk, Indoor>.

Instead of traveling by car, people can also choose the public transportation system and
then we can have a trip like <Indoor, Walk, Bus> or <Indoor, Walk, Taxi>. Most prior
research concentrated on a single environment such as free space [20, 34], road network

x

y

t

road segments

walking areas
buildings R

Car
Walk
Indoor

Q1Q2

Fig. 1 Moving objects with multiple transportation modes

Geoinformatica

[19, 21] and indoor [22], in which different data types and operators are proposed. But in
the real world, the trajectories for humans can cover multiple environments. The database
system should manage the complete trip instead of a subtrip limited to one environment.
Complete movements have to be maintained in a consistent framework in terms of accu-
rate locations and transportation modes in various environments. Fully recognizing motion
modes with location data can enrich the mobility with informative and context knowledge.
This is substantially meaningful to analyze travel patterns and behavior of mobile users.
In particular, by analyzing the historical movement, routes with high passenger flow can
be discovered. Therefore, the schedule in a public transportation system can be adjusted to
improve the traffic. In a recommendation or advanced service system, one could discover
friends based on location history [48]. This is to understand the correlation between people
and locations, and recommendation potential friends in a GIS community by measuring the
similarity of trajectories. The result will benefit from knowing precise transportation modes.

This imposes new challenges on database systems regarding the data management as
well as efficient query processing. The work of this paper does not start from scratch but
is based on [43]. There, a data model is presented to represent moving objects in different
environments, in which both outdoor and indoor movements are uniformly treated.

In this paper, we focus on moving objects with multiple transportation modes and provide
an efficient method to answer a novel category of queries, called RQTM (range queries with
transportation modes). Standard range query is one of the most studied problems in moving
objects databases, e.g., [28, 32]. The query contains a time windowQ.t and a spatial window
(a bounding box) Q.s, and returns all objects that pass through Q.s during Q.t . However,
existing techniques only handle a single environment without considering the complete trip
such as mo1 and mo2. As a result, transportation modes are not processed. In contrast, we
manage moving objects in different environments and aim to retrieve a list of trajectories
that fulfill not only temporal and spatial conditions but also transportation modes. Consider
two example queries below.

• Q1: Find all people walking through the specified area during [10am, 2pm] on
Saturday.

• Q2: Given a university area R, find all people who pass through R on Friday with the
following sequence of transportation modes: <Indoor, Walk, Car>.

Besides spatial and temporal parameters, one can issue queries on a particular transporta-
tion mode (Q1) and even imposes a particular order on a set of modes (Q2). In the example,
Q1 gets mo1 and mo2, assuming that the query region covers the walking area shown in the
figure. Suppose that buildings in Fig. 1 include R, Q2 only retrieves mo2 because mo1 does
not fulfill the condition on transportation modes. In comparison with previous work, RQTM
has two noticeable differences. First, a complete trip including several environments is rep-
resented and managed in a database system. Existing works focus on one environment and
only deal with a subtrip (e.g., the movement in a road network). Consequently, RQTM is
not supported. Second, besides time and spatial parameters, RQTM contains an additional
condition on transportation modes, which have different cases. Q1 includes one mode and
Q2 specifies a sequence of transportation modes. RQTM is useful and important to under-
stand users’ mobility, and the query result can be used to discover classical trajectories and
provide advanced trip plannings such as multiple transportation modes.

The brute-force approach to answering RQTM is to access each trajectory and check
spatial, temporal and transportation modes to see if they fulfill the query condition. Obvi-
ously, the performance is not acceptable for large datasets. To efficiently answer RQTM,

Geoinformatica

the key is to reduce the number of objects to be accessed, i.e., minimize the portion of the
dataset processed. Thus, an index structure for generic moving objects is essentially needed.
Despite the fact that there is a large amount of indices proposed for trajectories in the liter-
ature [9, 10, 23, 31], they only tackle the problem in one environment without addressing
transportation modes. However, the property of managing movements with transportation
modes is highly desired because the query condition in RQTM contains these pieces of
information. This calls for the development of a novel index that is equipped with the
capability of distinguishing movements in different environments and accessing them
efficiently when a complete trip is handled. To solve the problem, we develop an index
structure called TM-RTree (Transportation Mode RTree), which is able to group pieces of
movements on temporal, spatial and transportation modes. In other words, the three kinds
of data are managed in an integrated way by the TM-RTree.

Based on the proposed index structure, several algorithms are developed for different
query conditions, e.g., a single mode (Q1) and a sequence of modes (Q2). In general, the
query procedure is composed of two steps: filter and refinement. The former traverses the
TM-RTree to find candidate objects and the latter performs the searching step to get the
precise value. More importantly, we propose a method to let the index be capable of main-
taining the movement with not only a single mode but also a pair of modes following the
time order, leading to a more efficient method for answering the query for a sequence of
modes. The TM-RTree and related algorithms are implemented in an extensible and open
source database system SECONDO to have a practical result for real applications. We per-
form the experimental evaluation using extensive datasets to demonstrate the efficiency and
effectiveness of the proposed technique. The contribution of this paper is summarized as
follows:

• We formulate the problem of RQTM, supporting three kinds of queries on transporta-
tion modes: a single mode, multiple modes and a sequence of modes.

• An index structure called TM-RTree is developed in a system to efficiently manage
generic moving objects. We present how to derive the input data for a TM-RTree and
the procedure of building such an index.

• Employing the TM-RTree, several algorithms are proposed to answer different query
conditions on transportation modes. In particular, we propose a method that signifi-
cantly improves the performance for answering a sequence of modes. On average, our
method is 6 times faster than the other methods.

• We carry out extensive experiments to confirm the efficiency and effectiveness of the
proposed techniques. The results demonstrate that our method substantially outper-
forms the other three access methods, four or five times faster on average.

The rest of the paper is organized as follows: The related work is reviewed in Section 2.
We define the problem in Section 3. The TM-RTree is introduced in Section 4. Query
algorithms are presented in Sections 5, 6 and 7. Experimental evaluation is performed in
Sections 8 and 9 concludes the paper.

2 Related work

2.1 Transportation modes

Recently, researchers started to investigate the detection of transportation modes from GPS
data based on mobile phone devices. In Microsoft’s project GeoLife, the works [46, 47] aim

Geoinformatica

to discover and infer transportation modes from raw GPS trajectory data. By mining multi-
ple users’ location histories, one can discover the most interesting locations, classical travel
sequences and travel experts in a given geo-spatial region. The work in [33] is to deter-
mine the transportation modes of an individual outside where five transportation modes are
considered: stationary, walking, running, biking and in motorized transport (car, bus, train).
Only using GPS information might reduce the detection accuracy, thus the underlying trans-
portation networks are utilized to improve the result. An approach to inferring a user’s mode
is proposed in [35] where the method is based on the GPS sensor from the mobile device as
well as the knowledge of the underlying transportation network, e.g., bus stops and spatial
rails. A trip analysis system is proposed in [26] to support traffic operation planning and
transit system design. Such a system, consisting of mobile apps and a centralized analyzer,
automatically identifies the travel mode and purpose of the trips sensed by mobile devices.
Travel modes including driving, taking bus or on foot are detected by sensing the users’
movement using embedded GPS and accelerometer.

Advanced trip plannings with multiple transportation modes are studied. A data model
is proposed in [8] to provide a trip consisting of several transportation modes, e.g., <Walk,
Bus, Train>. The user can also specify the constraint on a specific mode such as less than
two bus transfers or the length of the walking path is 300 meters in maximum. An interest-
ing query is considered in [5] that computes isochrones in multimodal and schedule-based
transport networks. The goal is to find a set of points on a road network, and from them a
specific point of interest can be reached within a given time span. Two transportation modes
are supported: Walk and Bus.

Combining both outdoor and indoor movements, a data model is proposed in [43] to
model moving objects with different transportation modes. Accurate locations in multiple
environments are represented, including free space, road network, pavement areas, public
transportation system, and indoor. A general location representation is designed and several
data types are defined. A group of queries is formulated by an SQL-like language using
proposed operators in a relational interface. However, that work primarily focused on data
modeling, while range queries considering three factors (spatial, temporal and transportation
modes) are not processed and precisely defined. Additionally, there is no index structure for
generic moving objects.

2.2 Range queries and moving objects indices

Range queries [17, 24, 37, 39], representing the foundation queries in moving objects
databases, have been extensively investigated. Given a query window consisting of a spa-
tial region Q.s and a time interval Q.t , the result is a set of moving objects that are located
in Q.s during Q.t . In general, Q.t can also be a time instant. According to environments,
the definition of Q.s is different. In free space, a 2D region or a rectangle is used. In a
road network, Q.s is a set of road sections, each of which represents a set of disjoint and
ordered intervals on a road [13, 32]. Besides range monitoring in outdoor space, techniques
for indoor space are also proposed due to different distance functions and positioning tech-
nologies [27, 44]. Q.s in indoor space refers to the activation range of a device such as
RFID or Bluetooth, which detects and reports the observed objects at a high sampling rate.
The paper [40] deals with spatio-temporal range queries over trajectory data, but does not
consider transportation modes.

In the last decade, a substantial amount of index structures have been proposed to effi-
ciently access trajectories. A good survey on trajectory indexing and retrieval is given in
[25, 49]. Depending on the environment, indices can be classified into three categories: (1)

Geoinformatica

free space; (2) road network; and (3) indoor. In free space, two variations of the R-Tree for
polyline indexing are suggested in [31], TB-Tree and STR-Tree, assuming that the motion is
piecewise linear, where the TB-tree is to bundle segments from the same trajectory into leaf
nodes. The MV3R [36] is a structure combining a standard R-Tree and a variant of the par-
tially persistent R-Tree, supporting both time-stamp and time-interval queries. A two-level
indexing structure called SETI is proposed in [10], where the structure decouples the index-
ing of spatial and temporal dimensions. The paper [29] offers an indexing technique capable
of accurately capturing the past, present, and (near) future positions of moving objects. Prac-
tically, objects usually move on a pre-defined set of paths as specified by the underlying
network, thus a couple of indices for road network are proposed. Since the movement is con-
strained by the underlying road network, the combination of two-level R-Trees is employed
by [13, 16, 30] where the first level is for roads and the second is for trajectories. The paper
[32] proposed an index called T-PARINET, combining graph partitioning and a set of com-
posite B+-tree local indices for trajectory data flows. Recently, some index structures for
moving objects in a symbolic indoor space [23, 27] are also developed to support range and
nearest neighbor queries over indoor objects.

However, previous queries do not consider the condition on transportation modes and
those techniques deal with moving objects in one environment, i.e., a portion of the complete
movement is managed. The proposed indices only have the capability of grouping objects
on temporal and spatial dimensions, but do not manage transportation modes. As a result,
existing indices can not prune objects that do not fulfill the condition on transportation
modes, degrading the query performance for generic moving objects.

2.3 Spatial keywords search

Given a dataset O, each object o ∈ O is represented by a pair (loc, text) where o.loc is the
spatial location and o.text is the textual description showing the property of such a location,
e.g., restaurant, bank. A spatial keywords query q = (loc, text), consisting of a query area
and a set of keywords, returns a list of objects in O such that their distances to q.loc are
in ascending order and the descriptions contain the query keywords q.text. To efficiently
answer the query, several indices [11, 14, 41, 45] are proposed to manage both spatial and
textual data in an integrated way. The basic idea is to perform the query on a 2D R-Tree
extended with inverted files. In the IR-Tree [11], each leaf node contains a pointer to an
inverted file with text descriptions of the objects stored in the node. Each non-leaf node has
an identifier for a pseudo text description that is the union of all text descriptions in the
entries of the child nodes. Similarly, the entry of a non-leaf or leaf node in the IR2-Tree [14]
is extended to have an item showing the signature of the subtree or an object. The signature
is to denote the textual content of all spatial objects in the subtree rooted at the node. The
bR∗-tree [45] summarizes the keywords and stores the keyword MBR in the node to set up
more powerful pruning rules. Spatial keyword searching in trajectory databases is studied
in [12] in which trajectories contain text descriptions. The user gives a query location and a
set of keywords, and the result is a set of trajectories that cover the keywords and have the
shortest match distance.

We compare spatial keywords searching with our problem and point out the differences.
First, spatial keywords queries deal with spatial data and additional text information, i.e.,
the two kinds of data are represented separately. In contrast, we seamlessly integrate trans-
portation modes into moving objects and have a compact data representation. That is, the
data type for generic moving objects includes the transportation mode information. As a

Geoinformatica

Table 1 Notations for
environments Irn Road Network

Irbo Region-based Outdoor

Ibn Bus Network

Imn Metro Network

Iindoor Indoor

result, all data are managed by the index without additional structures while spatial key-
words searching needs an inverted file with text descriptions. Second, our queries include
several cases on transportation modes. The user can request the query on a certain mode or
multiple modes. Additionally, a particular order can be imposed on a set of modes. In spa-
tial keywords queries, there is no particular order on keywords. Third, Our index has the
capability to group objects on transportation modes and manage a pair of modes for two
continuous pieces of movements (keeping the time order). This property is not maintained
by the proposed indices for spatial keywords search.

3 Problem definition

3.1 Data representation

The problem setting aims to concisely capture the context of the data and queries. The core
content is the representation of moving objects with multiple transportation modes. First,
established environments are listed in Table 1 and we define a notation for each of them.1

Each environment consists of a set of geographic objects (GEOBs) representing available
places for moving objects. For example, streets and roads are for Irn, and pavement areas
represented by polygons are for Irbo. In the public transportation system, Ibn comprises bus
routes, bus stops and moving buses. Several data types are defined to represent GEOBs, e.g.,
line and region. In addition, each environment is related to certain transportation modes,
e.g., Car for Irn. We summarize all possible values in Def. 3.1.

Definition 3.1 Transportation Modes
TM = {Car,Bus,Walk, Indoor,Metro, T axi, Bike}

Due to different environment characteristics such as outdoor and indoor, network-
constrained and obstructed space, a general approach to representing the precise location in
all cases is proposed. The capability is achieved by means of referencing representation and
the method is as follows.

Definition 3.2 Generic Location
Dgloc = {(oid, (x, y))|oid ∈ Dint , x, y ∈ Dreal}

1we model the overall pedestrian area in a city as a large polygon with obstacles inside, denoting areas
covered by buildings and roads for vehicles.

Geoinformatica

The location is represented by two parts: (1) an identifier referencing to a GEOB; and
(2) the relative location according to that object. This representation has different semantics
according to the environment feature. For example, in a road network, oid is a road identifier
and (x,⊥) records the relative location on the road. Given a location in Irbo, we let oid map
to a polygon and (x, y) represent the local position inside the polygon. For the location of
a bus/metro passenger, one can simply use oid to reference the bus/metro that the traveler
takes.

Then, the location of a moving object is represented by a function fgloc: Dinstant →
Dgloc. In this paper, we focus on the complete historical movement. Using the method of
sliced representation [15], a generic moving object is represented by a sequence of temporal
units ordered by time, that is mo =< u1, u2, ..., un >. Each unit defines the movement
during a time interval as well as the transportation mode. In detail, we have

ui = (i, gl1, gl2, m)(gl1, gl2 ∈ Dgloc ∧ gl1.oid = gl2.oid,m ∈ TM),

where i denotes the time interval, gl1, gl2 are the start and end locations, respectively, and
m is the transportation mode. We assume that the object moves linearly during i so that the
positions between gl1 and gl2 are calculated by a linear function. Using the example trip
mo1 =< Indoor,Walk,Car > in the introduction, the units record ids for (1) rooms; (2)
pavement areas; (3) roads. The actual locations are identified by gl1 and gl2.

3.2 RQTM

To compare locations of different environments in a consistent system, we define an opera-
tor freespace: Dgloc → Dpoint that maps a general location to free space. The meaning of
such an operator depends on the environment, explained in the following. Given a location
(oid, (x,⊥)) in Irn, we map such a location to free space by a road line with the identi-
fier oid and the relative position x on that road. Similarly, the position on a bus route is
also mapped to free space. In Irbo, we transform the local position (x, y) in the referenced
polygon (with the oid) to the global space. For an indoor location, we omit the height value
above the ground floor and project the location into 2D free space.

Let M(mo,T) =< [m1, m2, ...,mk] > (mi ∈ TM, i ∈ [1, k]) return a sequence of
transportation modes for mo during a time interval T. The result can be one mode or several
modes. In the context of generic moving objects, the definition of range queries is given in
the following.

Definition 3.3 The query is described by Q(t , s, m) where t defines a time interval, s
denotes a 2D spatial bounding box, and m represents a set of transportation modes. The
result is a set of trajectories {mo1,mo2, ...,mon} where for each moi(i ∈ [1, n]) :

(i) |Q.m| = 1, then ∃T ⊆ Q.t such that M(moi, T) = Q.m and ∀t ′ ∈ T :
f reespace(fgloc(t

′)) ∈ Q.s;
(ii) |Q.m| ≥ 2, then ∀mi ∈ Q.m, ∃ T ⊆ Q.t such that M(moi, T) = mi and ∀t ′ ∈ T :

f reespace(fgloc(t
′)) ∈ Q.s;

(iii) Q.m =< [m1,m2, ...,ml] >, then exists T1 < T2 < ... < Tl such that ∀i ∈ [1, l] :
Ti ⊆ Q.t ∧M(moi, T1) = m1,M(moi, T2) = m2, ...,M(moi, Tl) = ml ∧ Ti, Ti+1
are continuous, and ∀t ′ ∈ Ti : f reespace(fgloc[(t ′)) ∈ Q.s.

Since the meanings of spatial and temporal parameters are straightforward, we give more
description about Q.m as several cases are involved. This parameter can be either one mode

Geoinformatica

Table 2 Summary of notations
Notation Description

Q.m query mode

Q.t query time

Q.s query spatial box

mo, moi a moving object

m a transportation mode

(case (i)) or several modes. If Q.m represents several modes, they can be specified by a
certain order (case (iii)) or without any order (case (ii)). We show examples for each case as
below.2

• Who rode a bicycle through the central park on Sunday?

– Q.t : Sunday
– Q.s: park area
– Q.m: Bike

• Find all people passing through the city center by bus and walking on Saturday.

– Q.t : Saturday
– Q.s: city center
– Q.m: {Bus,Walk}

• Who arrived by taxi at the university on Friday?

– Q.t : Friday
– Q.s: university area
– Q.m: <Taxi, Walk, Indoor>

Compared with traditional range queries, RQTM contains one more parameter on trans-
portation modes, the information of which is included by the data type for moving objects.
Therefore, the query performance can be improved if the index can manage the data. Based
on this motivation, we present the TM-RTree in the next section. For clarity, we summarize
main notations used in the paper in Table 2.

4 The TM-RTree

4.1 Input data

To efficiently answer RQTM, we develop an index based on a 3D R-tree [38]. The key
idea of R-tree is to group nearby objects and represent them with their minimum bounding
boxes in the next higher level of the tree. We intend to group pieces of movements with
the locality on three factors: temporal, spatial and mode. The proposed structure TM-RTree
is built on pieces of movements, each of which represents a subtrip of a generic moving
object and only includes one transportation mode. To achieve the goal, we create a set of

2more queries see Appendix A

Geoinformatica

so-called movement tuples for each generic moving object and repeat the same procedure
for all moving objects. Afterwards, the index is built on these movement tuples.

Definition 4.1 Movement Tuples
A movement tuple mt is derived from a subtrip of mo, represented by a three-tuple

(traj id , box, m) where traj id (∈ Dint) records the trajectory identifier, box stores a 3D
box built on temporal and spatial data, and m (∈ TM) refers to the transportation mode. The
subtrip includes only one mode.

We present how to retrieve movement tuples in the following. Recalling the representa-
tion ofmo, a unit ui (∈mo) records a subtrip where the location is represented by referencing
to a GEOB. One can simply build a movement tuple for each ui . However, this method
results in the spatial locality of tree nodes being not well maintained as the bounding box
sizes for different movement tuples have a large deviation. The spatial range for each ui
depends on the referenced GEOB. For example, ui can be a bus trip, a car movement or
an indoor trip. Some are in a small spatial range such as indoor trips or a short distance
walking, but others are in a large scale such as traveling on a long road or a bus trip.

To solve the problem, we develop a method to (i) minimize the deviation of spatial range
(good locality in TM-RTree nodes) and (ii) reduce the quantity of produced movement
tuples. Basically, the procedure is to access each unit in mo, collect one or several units as
one subtrip and build a movement tuple on the subtrip. Depending on transportation modes
(environments), the methods are different. We use U(mo,m) to denote a set of continuous
units from mo with the mode m (∈ TM) and Len(U(mo,m)) to show the path length of such
a subtrip, respectively.

• Irn: In this environment, we collect a set of units as one group U(mo,m)(m ∈
{Car, T axi, Bike}) fulfilling the condition that Len(U(mo,m)) does not exceed a
threshold l, e.g., 1000m. Then, a movement tuple is created on U(mo,m).

• Irbo: Using the same threshold l as Irn, we directly build a movement tuple on U(mo,
Walk) if Len(U(mo, Walk)) < l. Otherwise, a new movement tuple will be created.

• Ibn (Imn): Using the bus network, U(mo, Bus) references to a unit recording the bus id
as well as the start and end bus stops of such a trip. We split the movement into several
pieces, each of which represents the trip between two adjacent stops and is used to
create a movement tuple.

• Iindoor: Since the spatial range of a building is in a small scale, we create a movement
tuple on U(mo, Indoor), which represents a complete indoor trip such as first from the
office room to the corridor and then to the staircase. We perform the union on those
pieces and get the movement tuple.

A movement tuple manages temporal and spatial data as well as the transportation
mode. The value denotes either a piece of the complete trip or the union of several
pieces . We apply the procedure for all generic moving objects and get a set of move-
ment tuples, denoted by MT, to be the input for a TM-RTree. Using the example
trips mo1 and mo2, Fig. 2 shows the resulting movement tuples. To be concise, we
only show the mode in each mt and omit the other information. For mo1, we get
seven movement tuples: {mt1(Indoor),mt2(Walk), ...,mt7(Car)}. For mo2, we have
{mt ′1(Indoor),mt ′2(Walk),mt ′3(Indoor)}.

In order to have a good locality for TM-RTree nodes, before building the index we pro-
cess MT as follows. First, the time range for all movement tuples is divided into a set of
intervals and each mt is set an id for its time interval. For example, if all moving objects

Geoinformatica

road segments

walking areas
buildings

Car
Walk
Indoor

Fig. 2 MT on mo1 and mo2

represent one week movement, one can set 12 (or 24) hours as one interval. Second, the
space is partitioned into a set of equal size cells represented by rectangles, and each mt is
assigned two values cellx and celly to show x and y positions of the cell where mt is located.
Third, we sort movement tuples in the following order: (1) time interval id; (2) cellx, celly;
(3) mt.m, and these sorted movement tuples are the input for a TM-RTree.3

4.2 TM-RTree nodes

In addition to spatial and temporal boxes, each node in a TM-RTree maintains the
information of transportation modes. Thus, a node has the form:

1. MBR: the bounding box that contains temporal and spatial data in the subtree below.
2. ObjPtr: an array of entries pointing to child nodes or objects.
3. M: an integer indicating transportation modes represented by the subtree.

In a TM-RTree, entries in non-leaf nodes are pointers to subtrees. In a leaf node, an entry
references to a movement tuple. To preserve the proximity of transportation modes, we only
store movement tuples with the same mode in a leaf node. Correspondingly, M indicates
one transportation mode in such a node. In a non-leaf node, the value of M is the union
of modes contained by its sub-trees, denoting either a single mode (all son nodes have the
same mode) or a set of modes. The method of keeping modes in nodes benefits the query
processing because nodes that do not contain qualified transportation modes can be pruned
when traversing the index. In consequence, the following lemma is used.

Lemma 1 Given a node N in a TM-RTree, let tm(N.M) (⊆ TM) return the set of modes.
Then, tm(N.M) ∩Q.m = ∅ ⇒ N can be pruned.

3In the implementation, a movement tuple is developed to be a relational tuple containing three attributes
(traj id, box, m). In order to efficiently access the data in the future, we combine each movement tuple with
its corresponding subtrip in one relational tuple. The sub trip is represented by a moving object.

Geoinformatica

Table 3 Bit values for modes

Car: 0 Bus: 1 Walk:2 Indoor:3 Metro:4 Taxi:5 Bike: 6

Next, we introduce in detail how transportation modes are represented by M. A bit in M
is set for one mode, which is assigned a value as an index to locate the bit. We mark the
bit true indicating the existence of such a mode and false for nonexistence. Suppose that
the least significant (right-most) seven bits are used for the modes in Def. 3.1. We assign
0 for Car as the bit index, 1 for Bus, 2 for Walk and so on. Table 3 shows the bit value for
each mode. For example, mo1 containing modes {Indoor,Walk,Car} defines the value 11
(binary 0001101). This representation incurs little storage overhead and results in a fast
method of checking transportation modes due to the relatively high speed of bitmap
operations. Figure 3 shows an example of TM-RTree nodes using movement tuples in
Fig. 2.

4.3 Insertion algorithm

We build the TM-RTree by a bulkload method [6, 7], which works as follows. The index
retrieves a set of sorted movement tuples and puts them into a leaf node until one of the
following things occurs:

• the leaf node is full;
• the coming movement tuple contains a new transportation mode.

If the case happens, the current leaf node is inserted into a node at the higher level and
a new leaf node will be created. We do not consider the distance deviation between the
new box and the current bounding box of the leaf node when splitting a leaf node. The
reason is, when creating movement tuples, we already process the spatial and time ranges
for size controlling by defining the time interval for sorting and the threshold for splitting
the movement, see Section 4.1.

Following this procedure, the index is built in a bottm-up way. The method of inserting
movement tuples into the TM-RTree is shown in Algorithm 1. An important aspect is that

Fig. 3 Example of TM-RTree nodes

Geoinformatica

only movement tuples with the same transportation mode are maintained in a leaf node,
keeping the proximity of objects.

After inserting all movement tuples, we need to update the mode value, especially non-
leaf nodes. The reason is some operations such as splitting and adjusting are performed on
these nodes when building the TM-RTree and modes are changed after that. Algorithm 2
illustrates the pseudo code. The procedure is straightforward for a leaf node. For a non-leaf
node, the value depends on its son nodes. We iteratively call the same procedure for each
son node and perform the union to update M. The mode value is updated in a bottom-up
manner, and is returned when all son nodes are processed. To update the complete tree, we
call the function UpdateMode by taking the root node as input. Suppose that there are totally
n nodes in a TM-RTree, the time complexity of UpdateMode is O(n) as each node is visited
once.

5 Single transportation mode

We first consider a single mode in the query condition, case (i) in Def. 3.3. Applying the
TM-RTree, the query procedure follows a two-phase approach: filter and refinement. The
filter step accesses the TM-RTree to find candidate objects. In the refinement step, the accu-
rate value for each object is checked and a set of trajectory ids is returned as the result. We
give the pseudo code in Algorithm 3.

Geoinformatica

In the beginning, the filter step (Algorithm 4) is called. We create a 3D query box based
onQ.t and Q.s. Then, starting from the root node, we traverse the TM-RTree in breadth-first
search to examine nodes according to the query condition.

A list L is used to store TM-RTree nodes, initialized by the root node. Given a node
Ni , tm(Ni.M) (⊆ TM) returns the transportation modes that the node represents (Lemma 1
in Section 4.2). If Q.m ∈ tm(Ni.M), we open such a node and proceed to check spatial
and temporal conditions. For each entry in Ni , we check whether the box of the child node
intersects the query box. If Ni is a leaf node (only contains one mode), we insert qualified
pointers (tuple ids for movement tuples) into the candidate list CL. If Ni is a non-leaf node,
its child nodes will be inserted into L for further consideration if their boxes intersect the
query box. During the procedure, nodes that do not fulfill conditions on spatial, temporal
and modes are pruned.

Geoinformatica

In the refinement step, we use a binary tree Tr with the key traj id to hold the result.
The notation SubTrip(mt) is used to denote the subtrip that a movement tuple corresponds
to. For each candidate from CL, we get the movement tuple and check the precise value for
spatial and temporal data. The transportation mode is already determined in the filter step.
If SubTrip(mt) satisfies spatial and temporal conditions, we insert mt.traj id into Tr if such
an object does not exist in Tr. Otherwise, mt is ignored. A moving object includes a set of
movement tuples and several of them can fulfill the query condition. For example, assuming
Q.m = Car, {mt4, mt5,mt6, mt7} from mo1 (Fig. 2) are all located in Q.s during Q.t . It is
not necessary to access all of them if mo1 already satisfies the query condition. Finally, we
traverse Tr to collect the result.

6 Multiple modes

The goal is to find a list of trajectories, each of which contains all transportation modes
requested by Q.m. We also apply the filter and refinement method, and give the algorithm
in Algorithm 5. Since the filter step is similar as the procedure for answering a single mode,
we omit the algorithm RQMul Filter(TM-RTree, Q). The only exception is, as Q.m includes
multiple values, the filter step here needs to examine the existence of each mode contained
by Q.m. If a TM-RTree node includes one mode in Q.m, such a node has to be further
considered.

The refinement step is as follows. We use a binary tree Tr to hold candidates where the
node in Tr has the form (traj id, modebits). The first value is a key and the second is a
bitmap that marks corresponding bits for transportation modes. For each candidate mt, the
spatial and temporal conditions are first examined. Afterwards, we determine whether mt is

Geoinformatica

to be inserted into Tr or not. If the key mt.traj id does not exist in Tr, a new node is created
and inserted into Tr. For an existing object in Tr, there are two possibilities. Case (i): such
a trajectory already satisfies the query condition. That is, all bits of Q.m are marked true.
Then, this candidate does not have to be processed. Case (ii): if the corresponding bit for
mt.m is false, we mark the value. Finally, we traverse Tr to produce the result. For each
node ni in Tr, if |bitmap[ni]| = |Q.m|, such a trajectory satisfies the query condition and
is returned.

Figure 4 gives an example to illustrate the refinement step. For simplicity, we focus
on processing transportation modes. Assume that Q.m = {Walk, Indoor}. At the current
state there are some objects in Tr including mo1 (Fig. 4a), for which only the mode Indoor
(bitmap = 0001000) is found from the processed movement tuples. Suppose that the candi-
dates in CL are {mt2(Walk),mt ′1(Indoor),mt ′2(Walk),mt ′3(Indoor)}, and they all satisfy
spatial and temporal conditions. We explain how to process them regarding transportation
modes. First, mt2(Walk) is received from the list. As mo1 already exists in Tr, we check the
bitmap and mark the Walk bit. mo1 will be returned because all requested modes are found
(Fig. 4b). Second, we get mt ′1(Indoor)(∈ mo2), which is not in Tr. We insert a new node
(mo2, 0001000) into an appropriate position in the tree, see Fig. 4c. Next, another move-
ment tuple mt ′2 from mo2 is taken from CL. Correspondingly, the bit for Walk is marked
true and we have (mo2, 0001100), shown in Fig. 4d. Such a node fulfills the query condi-
tion and will be returned. Finally, we derive mt ′3(Indoor) (∈ mo2) and ignore it because the
trajectory already satisfies the condition.

7 A sequence of transportation modes

We proceed to consider the case that the user imposes a particular order on a set of modes.
First, we introduce the baseline method. Then, we develop a method to let the index be
capable of maintaining a pair of modes following the time order, resulting in a more efficient
method to answer the query.

7.1 Baseline method

Following the filter-refinement step, we can directly employ the TM-RTree to first prune
movements that do not contain transportation modes requested by Q.m. The filter step is the
same as the procedure for multiple modes. Given a node Ni in a TM-RTree, if Ni.M does
not contain any mode in Q.m, Ni is pruned. Next, we check the precise value of spatial and
temporal data for candidate objects. In comparison with the refinement step before, there
are some differences here. Since Q.m refers to a sequence of modes, we need to maintain
the time order on transportation modes. Assuming that Q.m =< Car,Walk, Indoor >,

Fig. 4 Example of the refinement step

Geoinformatica

movement tuples {mt1(Indoor),mt2(Walk),mt3(Walk),mt4(Car)} (from mo1) are in the
candidate list. Suppose that they are located in Q.s during Q.t . Although mo1 contains all
modes requested by Q.m, we need to check the time order on transportation modes to see
if they are equal to the query condition. In the example here, mo1 should not be returned
because from movement tuples we get the sequence M(mo1,Q.t) =<Indoor, Walk, Car>,
which is not equal to Q.m.

To maintain the time order, we propose the concept temporal mode, which stores
transportation modes with time intervals. The definition is given below.

Definition 7.1 Temporal Mode
UMode= {(i, m)|i ∈ Dinterval, m ∈ TM}
Dtmode = {< u1, u2, ..., un > |n ≥ 1, n ∈ Dint , and∀i ∈ [1, n], ui ∈ UMode}

The temporal mode consists of a sequence of units, each of which records a time inter-
val and a transportation mode. To keep candidate objects in the refinement, a binary tree
Tr is employed in which each node has the form (traj id, T Mode, s) (T Mode ∈ Dtmode,
s ∈ Dbool). The first is the key, the second maintains transportation modes following the
time order and the third records the status of such an object. For each mt from the candidate
list, after checking spatial and temporal conditions, we insert a new node into Tr if mt.traj id
does not exist. Otherwise, we update T Mode for the current mt. For the two elements in a
temporal mode unit, the time interval is from one dimension of mt.box and the transporta-
tion mode is from mt.m. Afterwards, we check whether T Mode satisfies Q.m. If yes, we
modify the status of such a node, s = true. Then, this node will be returned as a result and
movement tuples coming later with the same key do not have to be processed.

7.2 A pair of modes

According to the study in [46], the walk segment is an important part for moving objects
with multiple transportation modes as such a segment builds the connection between move-
ments with different motion modes. Usually people do not directly switch from Car to Bus
or from Indoor to Metro because a short distance walking is needed. The property of cap-
turing transportation modes following the time order in a TM-RTree is crucial to efficiently
process a sequence of modes. Motivated by this, we extend the semantic meaning of mt.m

(Def. 4.1) to represent not only a single mode but also a pair of modes < m1, m2 > (m1,
m2 ∈ TM and m1 �=m2). Such a pair fulfills the following condition: (i) the movement with
m1 appears before m2; and (ii) m1 = Walk or m2 = Walk. Since the number of modes
(Def. 3.1 in Section 3.1) is finite, we can determine the set for all possible pairs of modes.
That is, we combine Walk with another mode and treat them as one transportation mode.
As a consequence, two modes are kept in such a value and the time order on them is also
maintained. This results in a new and more efficient method to answer the query.

The method is as follows. We get a new mode set excludingWalk, TM ′ = TM\ {Walk}.
Depending on the time order, there are two cases for a pair of modes: (i) < Walk,m′ >
(m′ ∈ TM ′); and (ii) < m′,Walk > (m′ ∈ TM ′), e.g., < Walk,Car > or <

Walk,Bus >. For each kind of combinations, an integer bit is used to represent the value.
Let I (m)(m ∈ TM) return the bit for a single mode. In case (i), we let |TM| + I (m′)(m′ ∈
TM ′) be the bit for such a pair, and in case (ii) we let 2× |TM| + I (m′)(m′ ∈ TM ′) return
the bit. Plus the number of bit values for a single mode, we need 2×(|TM|−1)+|TM| = 19
values in total (<Walk, Walk> is not required). As we use a 32 bits integer, mt.m is
still available after the extension. Table 4 lists the bit for each mode value. For the pair

Geoinformatica

Ta
bl

e
4

B
it

va
lu

es
fo

r
m

od
es

:a
n

ex
te

ns
io

n

C
ar

:0
B
us

:1
W
al
k:

2
In
do
or

:3
M
et
ro

:4
Ta
xi

:5
B
ik
e:

6

<
W
al
k,
C
ar
>

:7
<
W
al
k,
B
us
>

:8
<
W
al
k,
In
do
or
>

:1
0

<
W
al
k,
M
et
ro
>

:1
1

<
W
al
k,
Ta
xi
>

:1
2

<
W
al
k,
B
ik
e>

:1
3

<
C
ar

,W
al
k>

:1
4

<
B
us

,W
al
k>

:1
5

<
In
do
or

,W
al
k>

:1
6

<
M
et
ro

,W
al
k>

:1
7

<
Ta
xi

,W
al
k>

:1
8

<
B
ik
e,
W
al
k>

:1
9

Geoinformatica

(Walk, Walk), we keep the bit to have a simple value assignment system. The definition of
transportation modes is extended and the new one is given in Def. 7.2.

Definition 7.2 Extended Transportation Modes
TM Ext = TM ∪{<Walk, m′ > |m′ ∈ TM ′} ∪ {< m′, Walk > |m′ ∈ TM ′}, where

TM ′ = TM \{Walk}

7.3 Revisit movement tuples

After the mode extension, the procedure of getting movement tuples is modified accord-
ingly. Besides movement tuples for a single mode, a pair of modes are to be represented.
As mentioned above, Walk is the only value connecting two different modes. Compared
with the previous procedure of getting movement tuples (introduced in Section 4.1), the
difference is that we merge two continuous units with different modes and represent
them as one movement tuple. Given a sequence of units < u1, u2, ..., un >, we cre-
ate a movement tuple for ui and ui+1 if (1) ui = m′(∈ TM ′) and ui+1 = Walk; or
(2) ui = Walk and ui+1 = m′(∈ TM ′). Using mo1 as an example, originally, the
movement tuples are {mt1(Indoor),mt2(Walk),mt3(Walk),mt4(Car), ...,mt7(Car)}.
Now, the new movement tuples are {mta(< Indoor,Walk >),mtb(< Walk,Car >

),mtc(Car),mtd(Car),mte(Car)}. The old four movement tuples {mt1, mt2,mt3, mt4} are
merged into two new movement tuples {mta,mtb}, each of which represents the movement
with a pair of modes. Several movement tuples with the mode Car are also created for mo1.
They are produced by the same method as before and fulfill the condition on the path length.

Considering mo2, before the extension we have {mt ′1(Indoor), mt ′2 (Walk), mt ′3(Indoor)}.
One can merge mt ′1 and mt ′2 as one movement tuple with the mode <Indoor, Walk>
and leave mt ′3 as another movement tuple. However, this causes that such a pair <Walk,
Indoor> (mt ′2 and mt ′3) is missing in the representation, leading to extra work in the
future to find such a sequence. To overcome the shortcoming, we split the walk move-
ment into two parts, each of which is combined with another movement. Therefore, we
have {mt ′a(< Indoor,Walk >),mt ′b(< Walk, Indoor >)} as new movement tuples.
If the walk movement is a long trip and represented by several units, we get the result
{mt ′a(< Indoor,Walk >),mt ′b(Walk),mt ′c(< Walk, Indoor >)} where the first and last
walk units are combined with another movement. The rest walking units are represented as
one movement tuple if the path length does not exceed the threshold. Otherwise, more than
one movement tuple are created.

Next, we discuss the procedure of building a TM-RTree that supports a pair of modes.
In total, there are three groups of transportation modes represented by movement tuples: (1)
m ∈ TM; (2) < Walk,m′ > (m′ ∈ TM ′); and (3) < m′,Walk > (m′ ∈ TM ′). For each
possible value, a unique integer is assigned and movement tuples are sorted according to
this value. We keep the property that a leaf node only contains movement tuples with the
same mode. Although we extend the semantic meaning of the mode integer and modify the
method of producing movement tuples, the algorithm of creating the index is the same as
before. The new feature is expressed by the mode integer in each TM-RTree node.

Due to the semantic extension, the query algorithms for a single mode and multiple
modes have to be modified, i.e., the procedure of transportation modes examination. In the
filter step, given a leaf node NL, if NL.M denotes a single mode (∈ TM), we can prune
the node if (i) tm(NL.M) �= Q.m for answering a single mode and (ii) tm(NL.M) /∈ Q.m

for answering multiple modes. However, if NL.M represents a pair of modes, we can only
prune NL if tm(NL.M)∩Q.m = ∅. In the refinement step, since the movement tuple may

Geoinformatica

correspond to a trip with two modes, one has to extract a part of the trip if only one mode is
requested by Q.m. Spatial and temporal checking is performed on the extracted part instead
of the whole trip.

7.4 The algorithm

We present the algorithm that uses the TM-RTree capable of maintaining a pair of modes.
First, the filter step is introduced. Given a node Ni , we compare the modes contained by
Ni.M with Q.m to see if Ni is to be pruned or not. Since Q.m =< m1,m2, ...,ml >

represents a sequence of modes, instead of checking the existence of each mi in Ni.M ,
we process Q.m as follows. Each two continuous modes are combined as a pair, that is
Q.m′ = {< m1, m2 >,< m2,m3 >, ...,< ml−1, ml >}. Then, for each node, we check
the existence of each pair in Q.m′. This can significantly improve the query performance.
Many leaf nodes containing a single mode are pruned, as only nodes containing a pair of
modes in Q.m′ are further considered. Some movement tuples recording a single mode may
contain one mode from Q.m, but such a value is included by another movement tuple with
a pair of modes.

For example, consider that leaf nodes {N1
L(< Indoor, Walk >),N2

L(Walk), N3
L(Walk,

Car)} are to be processed. Given that Q.m =< Indoor, Walk, Car >, we have Q.m′ = {<
Indoor, Walk >,< Walk, Car >}, then the leaf node N2

L is to be pruned. Remarkably, this
can prune many leaf nodes during the query processing (e.g., a node contains the mode
Car) and improve the performance. Applying Lemma 1 in Section 4.2, a function is used to
check the modes between Ni and Q.m′. If the result is true, Ni will be further considered.
Otherwise, Ni is pruned. We give the function in Algorithm 6. The filter step is almost the
same as Algorithm 4 except that line 6 is replaced by CheckMode.

We give the algorithm in Algorithm 7 where the detailed procedure of the filter step
is omitted. In the refinement step, a binary tree Tr is employed to store candidates. The
field T Mode in Tr is to maintain the time order on transportation modes. Definition 7.1 is
extended to include a pair of modes, that is

Definition 7.3 UMode = {(i, m)|i ∈ Dinterval, m ∈ TM Ext}

8 Performance evaluation

We report experimental results in this section. The implementation is developed in an exten-
sible database system Secondo [18] and programmed in C/C++. A standard PC (Intel(R)
Core(TM) i7-4770CPU, 3.4GHz, 8GB memory, 2TB hard disk) running Suse Linux 13.1
(32 bits, kernel version 3.11.6) is used.

Geoinformatica

8.1 Datasets

We utilize a tool called MWGen [42] to create generic moving objects. Such a tool takes
in roads and some public floor plans (e.g., office building [4], hotel [3]), then creates the
underlying environments including road network, pavement areas, bus network, metro net-
work and a set of buildings. Afterwards, moving objects are generated based on the result of
trip planning over different environments. In the experiment, we use road datasets of Berlin
[1] and Houston [2], shown in Fig. 5a, and eight floor plans in total (listed in [42]). Each
trip may contain several transportation modes and possible values are listed in Fig. 5b.

The whole time period for moving objects is four weeks and the statistics are reported
in Fig. 5c. We give a notation for each dataset describing the road data and the number of
moving objects. The notation B40K means 40k moving objects in Berlin, B200K means
200k moving objects in Berlin, and so on. The precise number of moving objects is provided
in the column Trips No. |MT | shows the number (millions) of produced movement tuples
from trajectories and |I | says the average number of units per trip. The size of disk storage
for moving objects is also given.

8.2 Competing methods

We compare the performance between the TM-RTree and the other three indices, AD-RTree
(Adaptive RTree), 3D-RTree and 4D-RTree. Correspondingly, the query algorithms emplo-
ying the AD-RTree, the 3D-RTree and the 4D-RTree are also implemented in the system.
The AD-RTree is based on a 3D-RTree and the structure adds a value in each node to store
transportation modes contained by its sons (or objects). Such an index simply stores the
data of transportation modes in a node, but does not group objects on transportation modes.

Geoinformatica

Fig. 5 The statistics of datasets

A leaf node does not hold the condition that only movement tuples with the same mode
are contained. Instead, objects with different transportation modes are inserted, which is dif-
ferent from the TM-RTree. In addition, a sequence of transportation modes is not maintained
by the AD-RTree.

The 3D-RTree manages spatial and temporal data without supporting transportation
modes. This index does not have the capability of pruning objects that do not contain
requested transportation modes, resulting in the weak pruning ability in the filter step. The
refinement step checks transportation modes for each candidate. The 4D-RTree treats trans-
portation modes as one dimension, and the mode is implemented by an integer. In order
to create a 4D bounding box on movement tuples, we employ an epsilon and represent the
transportation mode by an range instead of an integer. The bounding box is built on time,
x, y and mode, and the 4D-RTree is created in a bulkload way.

8.3 Experimental setup

In order to have a good shape of the index, we perform some experiments to set appropriate
values for the sizes of the time interval St and the spatial cell Sc, which are used to pro-
cess movement tuples before sorting. This experiment is conducted on datasets B500K and
H300K (not listed above), and several possible values are tested (e.g., St = 12 h or 24 h,
Sc = 4000.0 or 5000.0). From the result, we find that the following settings achieve the best
performance: (1) St = 24 h; and (2) Sc = 6000.0 for Berlin and Sc = 20000.0 for Houston.
In addition, the threshold l used for splitting outdoor movements (see Section 4.1) is also
determined by testing different values, and we get l = 1500.0 for Berlin and l = 2000.0
for the best performance. Therefore, we choose those values in the following experiments.
Investigating these values in a deep (theoretical) way is out of scope of this paper.

We report the settings of query parameters in Fig. 6. The values of temporal and spatial
parameters are set according to the overall range. The numbers in bold are standard set-
tings. When we vary the value of spatial (temporal) parameter to evaluate the impact on the

Geoinformatica

Fig. 6 Query parameters settings

performance, the other parameter is set as the standard value. A notation is defined for each
kind of Q.m, summarized in Table 5.

For the sake of easy description, we define a particular set of transportation modes.

Definition 8.1 Vehicle Transportation Modes
TMv = {Bus,Metro, T axi, Car,Bike}

The settings for transportation modes are shown in Fig. 6b. For Qsin, a mode from TM
is randomly selected for one query. If several modes are requested, we let |Q.m| be two or
three because usually a person does not have too many modes during his trip. If |Q.m| = 2,
we let the two values be randomly chosen among TM excluding the case that both modes are
vehicles. If |Q.m| = 3, we let the result be {Indoor, Walk} plus a vehicle. In the case Qseq ,
we define a set of possible combinations and randomly choose one of them for each query.

For each kind of queries (Qsin, Qmul and Qseq), we generate 100-500 cases and take
the average cost as the final result. In each case, Q.m is randomly chosen from its possible
values. Q.t and Q.m are set as standard values by default, and accurate values are randomly
generated within the possible set. We evaluate the performance in terms of CPU time and
I/O accesses.

8.4 Transportation modes in the index

Since both the TM-RTree and the AD-RTree maintain transportation modes, we compare the
average number of modes contained by a node between the two indices. Datasets B2M and
H1M are used for the evaluation. Figure 7 reports the numbers at different levels. We define
0 the root level, 1 the next level and so on. There are two extreme cases: root level and leaf
level. Both indices maintain the total number of modes at root level, 19 in total (according
to Def. 7.2). At leaf level, the TM-RTree only contains one but the AD-RTree includes more

Table 5 Notations for queries
Notation Description

Qsin A single mode

Qmul Multiple Modes

Qseq A sequence of modes

Geoinformatica

Level 0 1 2 3 4

TM-RTree 19 19 16 2 1

AD-RTree 19 19 18 18 10

(a) B2M

Level 0 1 2 3 4

TM-RTree 19 18 18 5 1

AD-RTree 19 18 18 18 10

(b) H1M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
v
g

.
#

 o
f

M
o

d
e

s
 i
n

 a
 N

o
d

e

Node Level

TM-RTree

AD-RTree

(c) B2M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
v
g

.
#

 o
f

M
o

d
e

s
 i
n

 a
 N

o
d

e

Node Level

TM-RTree

AD-RTree

(d) H1M

Fig. 7 Average number of modes maintained in a node

values. This factor has significant effect on the performance and we report the result in
the following subsections, see Figs. 8, 11 and 12. The reason is, the less number of modes
maintained in a node, the better the pruning ability of the index is. For example, root node
always has to be considered as it includes all modes. By observation, the event of pruning
unqualified nodes usually occurs when the traversing procedure goes into the low level as
nodes at the high level have large extent in terms of spatial, temporal and transportation
modes. Compared with the AD-RTree, nodes in TM-RTree keep much smaller number of
modes at the low level.

8.5 Scaling datasets

We report the result for different queries on transportation modes in Figs. 8, 9 and 10. Q.s

and Q.t are defined to be standard values. When the number of trips increases, the cost
of all indices rises proportionally. The TM-RTree is faster than the other three in all cases.
In particular, the deviation becomes large for the big dataset. Using B2M, on average TM-
RTree is 5 times faster than AD-RTree and 6 times faster than 3D R-Tree. This is because
when applying the AD-RTree and the 3D-RTree, the filter step does not efficiently prune

 0

 0.5

 1

 1.5

 2

 2.5

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

C
P

U
 t

im
e

(s
e

c
)

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 1000

 2000

 3000

 4000

 5000

 6000

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

I/
O

 A
c
c
e

s
s
e

s

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 8 Qsin: a single mode - scaling datasets

Geoinformatica

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

C
P

U
 t

im
e

(s
e

c
)

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

I/
O

 A
c
c
e

s
s
e

s

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 9 Qmul : multiple modes - scaling datasets

unqualified nodes, incurring much more CPU and I/O cost. The 3D-RTree does not maintain
transportation modes. Although the AD-RTree stores modes in a node, the index does not
group objects on transportation modes. A leaf node may contain several kinds of modes,
leading to the weak pruning ability and many nodes to be visited. Therefore, a large amount
of movement tuples will be accessed in the refinement step, resulting in more processing
time.

The time cost of the TM-RTree is better than the 4D-RTree for Qsin, while the I/O cost
is slightly worse. This is because the TM-RTree maintains a single mode as well as a pair
of modes. When only a single mode is requested, both nodes containing a single mode and
a pair of modes have to be investigated, leading to more I/O accesses. For Qmul and Qseq ,
the performance of the TM-RTree is superior to the 4D-RTree in both time and I/O cost.

We also observe that there is no obvious performance difference between the AD-RTree
and the 3D-RTree (see Figs. 8, 9 and 10), demonstrating that the effect of simply storing
modes in a node is not obvious for improving the query efficiency. The 4D-RTree treats
transportation modes as one dimension and its performance is better than the AD-TRee and
the 3D-RTree. We put the precise value of each query cost in Appendix B.

8.6 Varying spatial and temporal parameters

Using the dataset B2M, we perform the experiment on all kinds of query modes: Qsin,
Qmul and Qseq . In each case, two groups of results are reported. We evaluate the impact

 0

 0.5

 1

 1.5

 2

 2.5

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

C
P

U
 t
im

e
(s

e
c
)

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

Berlin40K

Berlin200K

Berlin400K

Berlin1M

Berlin2M

I/
O

 A
c
c
e

s
s
e

s

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 10 Qseq : a sequence of modes - scaling datasets

Geoinformatica

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
P

U
 t
im

e
(s

e
c
)

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

I/
O

 A
c
c
e
s
s
e
s

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 11 Qsin: a single mode - spatial

of spatial (temporal) parameter on the performance by keeping the standard value for the
other parameter. The performance of the TM-RTree is much better than the AD-RTree, the
3D-RTree and the 4D-RTree, especially when the size of the query box becomes large. On
average, TM-RTree is 5 times faster than the other three indices. Similar to the result in the
scaling experiment, there is a subtle difference between the performance of the TM-RTree
and the 4D-RTree for Qsin. Our index shows its advantages in Qmul and Qseq . Figures 11
and 12 report the result for Qsin, Figs. 13 and 14 report the result for Qmul , and Figs. 15
and 16 report the result for Qseq .

8.7 The capability of TM-RTree

In the end, we compare two kinds of TM-RTrees where one only supports the movement
with a single mode and the other manages both a single mode and a pair of modes. To
distinguish between them, we name the former TM-RTree sin. Two datasets are used, B2M
and H1M. The evaluation is performed on different transportation mode conditions. Spatial
and temporal parameters are set as standard values.

The results are different for the three cases, shown in Figs. 17 and 18. The TM-RTree sin
has better performance than the TM-RTree for Qsin. Although the CPU time is almost the
same, less I/O accesses are incurred for TM-RTree sin. The reason is, after the mode exten-
sion, the total number of modes increases. The TM-RTree maintains more transportation

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

C
P

U
 t
im

e
(s

e
c
)

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

I/
O

 A
c
c
e
s
s
e
s

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 12 Qsin: a single mode - temporal

Geoinformatica

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
P

U
 t
im

e
(s

e
c
)

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

I/
O

 A
c
c
e
s
s
e
s

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 13 Qmul : multiple modes - spatial

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

C
P

U
 t
im

e
(s

e
c
)

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 5000

 10000

 15000

 20000

 25000

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

I/
O

 A
c
c
e
s
s
e
s

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 14 Qmul : multiple modes - temporal

 0

 2

 4

 6

 8

 10

 12

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
P

U
 t
im

e
(s

e
c
)

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

I/
O

 A
c
c
e
s
s
e
s

Spatial Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 15 Qseq : a sequence of modes - spatial

Geoinformatica

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

C
P

U
 t
im

e
(s

e
c
)

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(a) CPU (sec)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

I/
O

 A
c
c
e
s
s
e
s

Temporal Box Size

TM-RTree

AD-RTree

3D-RTree

4D-RTree

(b) I/O accesses

Fig. 16 Qseq : a sequence of modes - temporal

modes than the TM-RTree sin, i.e., different pairs of modes. Given a mode m (m �= Walk),
the procedure only has to consider leaf nodes containing m for TM-RTree sin. However,
using the TM-RTree we also have to process nodes containing the mode < m,Walk > or
< Walk,m >. In addition, there exists an extreme case for Walk which builds the connec-
tion between different modes, resulting in many cases to be included, e.g., <Walk, Bus>
and <Indoor, Walk>. As a result, the TM-RTree incurs more nodes to be accessed.

The performance is almost the same between the TM-RTree and the TM-RTree sin for
Qmul . In Qseq , as expected, the TM-RTree is significantly better than the TM-RTree sin
(see in Figs. 17 and 18). On average, the former is 6-7 times faster than the latter, and I/O
accesses by the TM-RTree are about 1/3 as the TM-RTree sin.

8.8 Discussion

We discover some behaviors based on the experimental result and give a summary. First,
the performance is significantly improved when the index manages spatial, temporal and
transportation modes in an integrated way. On average, the TM-RTree is 5 times faster
than AD-RTree, 3D-RTree and 4D-RTree. Second, the 4D-RTree is superior to the AD-
RTree and the 3D-RTree. Especially, if a single mode is requested, the performance of a

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Qsin Qmul Qseq

C
P

U
 t

im
e

(s
e

c
)

TM-RTree

TM-RTree_sin

(a) CPU (sec)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Qsin Qmul Qseq

I/
O

 A
c
c
e

s
s
e

s

TM-RTree

TM-RTree_sin

(b) I/O accesses

Fig. 17 B2M: TM-RTree and TM-RTree sin

Geoinformatica

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Qsin Qmul Qseq

C
P

U
 t

im
e

(s
e

c
)

TM-RTree

TM-RTree_sin

(a) CPU (sec)

 0

 500

 1000

 1500

 2000

Qsin Qmul Qseq

I/
O

 A
c
c
e

s
s
e

s

TM-RTree

TM-RTree_sin

(b) I/O accesses

Fig. 18 H1M: TM-RTree and TM-RTree sin

4D-RTree is even close to or slightly better than the TM-RTree. Third, in comparison
with the TM-RTree sin which only supports a single mode, the TM-RTree incurs more
I/O accesses for Qsin, but is much faster for Qseq . The performance of the TM-RTree sin
decreases substantially for Qseq as the index does not maintain the time order on trans-
portation modes. In the end, regarding the three kinds of transportation modes, Qmul needs
more CPU time and I/O accesses than the other two cases. Between Qsin and Qseq , the
performance for Qseq is even better than that for Qsin when employing the TM-RTree.

9 Conclusions

In this paper, we study range queries for moving objects with multiple transportation modes
and consider three query cases: a single mode, multiple modes and a sequence of modes.
An index structure called TM-RTree is proposed to efficiently manage moving objects with
transportation modes. Such a structure manages not only spatial and temporal data but also
transportation modes. The TM-RTree has the capability of maintaining the movement with
a single mode as well as a pair of modes following the time order. Several algorithms are
developed to efficiently answer queries. A comprehensive experimental study is reported to
verify the performance of our solution in terms of efficiency and scalability.

Acknowledgments This work is supported in part by NSFC under grants 61300052, the Fundamental
Research Funds for the Central Universities under grants NZ2013306 and Natural Science Foundation of
Jiangsu Province of China under grants BK20130810.

Appendix – A Range Query Examples

• Who passed the room No. 123 in the university on Tuesday afternoon?

– Q.t : Tuesday afternoon
– Q.s: room No. 123 in the university
– Q.m: Indoor

Geoinformatica

• Find all taxis passing through Alexender street on Saturday.

– Q.t : Saturday
– Q.s: Alexender street
– Q.m: Taxi

• Find out all people walking through zone A and moving around in a shopping mall on
Saturday between 10am and 3pm.

– Q.t : [10am, 3pm] on Saturday
– Q.s: a region + a building
– Q.m: {Walk, Indoor}

• Find all people who pass room No. 34 at the office building between 9:00am and
12:00am on Monday, and then take a bus to the train station.

– Q.t : [9am, 12am] on Monday
– Q.s: a region covering the building and the station
– Q.m: <Indoor, Walk, Bus, Walk, Train>

• Find all people who drive through the area A and then walk to the building X on
Monday between [8am, 9am].

– Q.t : [8am, 9am] on Monday
– Q.s: a region including A and X
– Q.m: <Car, Walk, Indoor>

Appendix– B Experimental Statistics

Tables 6, 7, 8, 9, 10, 11, and 12

Table 6 Scaling experiments: Qsin

TM-RTree AD-RTree 3D-RTree 4D-RTree

(a) CPU Time (sec)

B40K 0.01 0.04 0.04 0.02

B200K 0.05 0.20 0.19 0.07

B400K 0.09 0.39 0.37 0.13

B1M 0.20 0.97 1.10 0.31

B2M 0.43 2.16 2.48 0.6

(b) I/O Accesses

B40K 228.06 180.95 181.175 108.99

B200K 475.92 578.83 581.09 208.73

B400K 677.52 1097.36 1100.82 324.75

B1M 1097.71 2561.275 2577.3 649.05

B2M 1683.62 5585.04 5636.63 1064.85

Geoinformatica

Table 7 Scaling experiments: Qmul

TM-RTree AD-RTree 3D-RTree 4D-RTree

(a) CPU Time (sec)

B40K 0.02 0.06 0.05 0.05

B200K 0.12 0.38 0.27 0.29

B400K 0.23 0.74 0.73 0.57

B1M 0.59 1.94 1.91 1.43

B2M 0.88 3.0 3.04 1.96

(b) I/O Accesses

B40K 238.36 190.16 190.16 191.86

B200K 655.02 725.02 725.02 657.83

B400K 1031.43 1388.73 1388.73 1208.73

B1M 1932.99 3282.19 3314.15 2798.16

B2M 2456.38 5001.62 5001.62 3855.9

Table 8 Scaling experiments: Qseq

TM-RTree AD-RTree 3D-RTree 4D-RTree

(a) CPU Time (sec)

B40K 0.01 0.04 0.04 0.06

B200K 0.04 0.15 0.15 0.24

B400K 0.08 0.30 0.37 0.47

B1M 0.17 0.76 0.92 1.18

B2M 0.41 1.98 2.37 2.31

(b) I/O Accesses

B40K 215.89 178.46 179.1 191.59

B200K 305.1 470.31 475.53 485.49

B400K 380.64 876.79 884.05 869.69

B1M 525.49 2038.58 2053.7 1983.27

B2M 819.02 5125.36 5157.24 3882.36

Geoinformatica

Ta
bl

e
9

V
ar

yi
ng

sp
at

ia
la

nd
te

m
po

ra
lp

ar
am

et
er

s:
Q

s
in

Q
s

Q
t

10
%

15
%

20
%

30
%

40
%

0.
15

%
1.

5%
3.

57
%

7.
14

%
17

.8
5%

(a
)

C
PU

T
im

e
(s

ec
)

T
M

-R
T

re
e

0.
11

0.
23

0.
35

0.
9

1.
0

0.
04

7
0.

16
0.

32
0.

86
1.

90

A
D

-R
T

re
e

0.
82

1.
27

1.
66

3.
95

5.
36

0.
30

1.
03

1.
89

3.
9

9.
36

3D
-R

T
re

e
0.

99
1.

50
1.

88
4.

58
6.

62
0.

31
1.

16
2.

04
4.

4
11

.2
2

4D
-R

T
re

e
0.

16
0.

32
0.

44
1.

21
1.

31
0.

06
0.

25
0.

48
1.

11
2.

38

(b
)

I/
O

A
cc

es
se

s

T
M

-R
T

re
e

67
4.

07
10

01
.3

2
14

29
.2

6
30

16
.4

39
12

.0
7

28
7

84
1.

83
16

79
.2

34
78

.6
7

76
18

.9

A
D

-R
T

re
e

25
70

.9
5

36
19

.0
41

22
.5

2
99

58
.4

15
36

0.
47

94
8.

1
32

82
.4

57
41

.4
7

97
40

.7
3

25
17

9.
8

3D
-R

T
re

e
25

89
.2

36
64

.3
4

41
64

.5
7

10
01

1.
3

15
54

4.
1

95
5.

47
33

04
.2

57
70

.5
7

98
26

.2
7

25
52

7.
55

4D
-R

T
re

e
38

4.
29

62
4.

1
83

1.
34

19
72

.5
4

20
69

.6
7

17
5.

63
50

8.
57

10
69

.9
21

95
.8

45
56

.7

Geoinformatica

Ta
bl

e
10

V
ar

yi
ng

sp
at

ia
la

nd
te

m
po

ra
lp

ar
am

et
er

s:
Q

m
u
l

Q
s

Q
t

10
%

15
%

20
%

30
%

40
%

0.
15

%
1.

5%
3.

57
%

7.
14

%
17

.8
5%

(a
)

C
PU

T
im

e
(s

ec
)

T
M

-R
T

re
e

0.
27

0.
56

0.
79

1.
89

3.
16

0.
09

0.
87

1.
14

1.
71

4.
66

A
D

-R
T

re
e

1.
05

2.
07

2.
95

5.
75

9.
62

0.
31

2.
21

3.
47

6.
70

13
.2

3

3D
-R

T
re

e
1.

07
2.

07
2.

96
5.

77
9.

72
0.

23
2.

20
3.

46
6.

55
13

.6
0

4D
-R

T
re

e
0.

66
1.

39
1.

92
3.

86
7.

28
0.

14
1.

59
2.

45
4.

46
9.

10

(b
)

I/
O

A
cc

es
se

s

T
M

-R
T

re
e

10
66

.4
3

18
39

.1
6

24
46

.1
45

58
.4

5
69

61
.9

5
29

6.
66

17
22

.4
8

28
39

.9
5

52
66

.5
10

71
5.

25

A
D

-R
T

re
e

22
33

.3
7

38
88

.4
2

51
31

.5
6

91
34

.5
5

13
97

3.
25

64
9.

12
34

37
.4

8
52

97
11

12
5.

7
22

34
5.

45

3D
-R

T
re

e
22

33
.3

7
38

88
.4

2
51

31
.5

6
91

34
.5

5
13

97
3.

25
64

9.
12

34
37

.4
8

52
97

11
12

5.
7

22
34

5.
45

4D
-R

T
re

e
15

02
.1

1
28

80
.9

8
40

22
.3

66
72

.7
12

28
6.

3
31

0.
76

27
78

.2
6

44
43

.3
94

35
.8

15
42

9.
9

Geoinformatica

Ta
bl

e
11

V
ar

yi
ng

sp
at

ia
la

nd
te

m
po

ra
lp

ar
am

et
er

s:
Q

s
e
q

Q
s

Q
t

10
%

15
%

20
%

30
%

40
%

0.
15

%
1.

5%
3.

57
%

7.
14

%
17

.8
5%

(a
)

C
PU

T
im

e
(s

ec
)

T
M

-R
T

re
e

0.
11

0.
25

0.
49

0.
97

1.
68

0.
05

0.
4

0.
51

0.
8

1.
14

A
D

-R
T

re
e

0.
72

1.
47

2.
46

3.
76

7.
0

0.
23

1.
75

2.
71

3.
47

5.
16

3D
-R

T
re

e
0.

94
1.

91
3.

07
4.

61
8.

45
0.

28
1.

91
3.

37
4.

4
6.

62

4D
-R

T
re

e
0.

77
1.

87
3.

32
5.

43
11

.1
7

0.
22

1.
86

3.
77

4.
28

7.
10

(b
)

I/
O

A
cc

es
se

s

T
M

-R
T

re
e

38
0.

65
57

0.
3

93
5.

8
14

00
.8

5
21

72
.3

5
18

5.
9

64
7

10
40

.3
14

04
.7

23
03

.9
5

A
D

-R
T

re
e

23
44

.8
7

44
84

.8
2

69
60

.7
94

31
.7

5
15

89
1.

85
73

1.
2

36
70

.4
5

72
98

.5
95

72
.9

14
57

9.
9

3D
-R

T
re

e
23

58
.4

6
45

11
.2

70
82

.2
5

95
36

.4
5

15
94

6.
8

78
3.

1
36

73
.3

74
12

.2
5

97
37

.5
5

14
73

2.
7

4D
-R

T
re

e
17

55
.4

8
34

06
.8

61
81

.4
82

40
.6

5
13

23
0

48
0.

5
30

06
.8

60
28

.2
72

68
.8

5
11

11
8.

7

Geoinformatica

Table 12 Compare the performance between the TM-RTree and the TM-RTree sin

B2M H1M

Qsin Qmul Qseq Qsin Qmul Qseq

(a) CPU Time (sec)

TM-RTree 0.32 0.89 0.31 0.21 0.46 0.15

TM-RTree sin 0.25 0.85 1.23 0.17 0.46 0.85

(b) I/O Accesses

TM-RTree 1485.77 2724.42 738.18 949.96 1484.77 552.34

TM-RTree sin 1034.77 2708.93 2624.69 664.76 1389.33 1290.49

References

1. http://www.bbbike.de/cgi-bin/bbbike.cgi (2012)
2. http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html (2012)
3. http://www.edenresort.com/home (2012)
4. http://www.modulargenius.com/default.aspx (2012)
5. Bauer V, Gamper J, Loperfido R, Profanter S, Putzer S, Timko I (2008) Computing isochrones in multi-

modal, schedule-based transport networks. In: ACM GIS, Demo, p 78
6. Berchtold S, Böhm C, Kriegel HP (1998) Improving the query performance of high-dimensional index

structures by bulk load operations. In: EDBT, pp 216–230
7. Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional index

structures. In: VLDB, pp 406–415
8. Booth J, Sistla P, Wolfson O, Cruz IF (2009) A data model for trip planning in multimodal transportation

systems. In: EDBT, pp 994–1005
9. Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD,

pp 599–610
10. Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with seti. In: CIDR
11. Cong G, Jensen CS, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects.

PVLDB 2(1):337–348
12. Cong G, Lu H, Ooi BC, Zhang D, Zhang M (2012) Efficient spatial keyword search in trajectory

databases. CoRR, abs/1205.2880
13. de Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. GeoInfor-

matica 9(1):33–60
14. Felipe ID, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, pp 656–665
15. Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving

objects databases. In: SIGMOD, pp 319–330
16. Frentzos E (2003) Indexing objects moving on fixed networks. In: SSTD, pp 289–305
17. Gedik B, Liu L (2004) Mobieyes: distributed processing of continuously moving queries on moving

objects in a mobile system. In: EDBT, pp 67–87
18. Güting RH, Almedia V, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M (2005)

Secondo:an extensible dbms platform for research prototyping and teaching. In: ICDE, Demo Paper, pp
1115–1116

19. Güting RH, de Almeida VT, Ding ZM (2006) Modeling and querying moving objects in networks.
VLDB J 15(2):165–190

20. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A
foundation for representing and querying moving objects. ACM TODS 25(1):1–42

21. Hage C, Jensen CS, Pedersen TB, Speicys L, Timko I (2003) Integrated data management for mobile
services in the real world. In: VLDB, pp 1019–1030

22. Jensen CS, Lu H, Yang B (2009) Graph model based indoor tracking. In: MDM, pp 122–131
23. Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space.

In: SSTD, pp 208–227

http://www.bbbike.de/cgi-bin/bbbike.cgi
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
http://www.edenresort.com/home
http://www.modulargenius.com/default.aspx

Geoinformatica

24. Kollios G, Papadopoulos D, Gunopulos D, Tsotras VJ (2005) Indexing mobile objects using dual
transformations. VLDB J 14(2):238–256

25. Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003–2010). IEEE Data
Eng Bull 33(2):46–55

26. Li M, Dai J, Sahu S, Naphade MR (2011) Trip analyzer through smartphone apps. In: GIS, pp 537–
540

27. Lu H, Cao X, Jensen CS (2012) A foundation for efficient indoor distance-aware query processing. In:
ICDE, pp 438–449

28. Mokbel MF, Xiong X, Aref WG (2004) Sina: scalable incremental processing of continuous queries in
spatio-temporal databases. In: SIGMOD Conference, pp 623–634

29. Pelanis M, Saltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of
moving objects. ACM TODS 31(1):255–298

30. Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: GIS, pp 25–32
31. Pfoser D, Jensen CS (2000) Novel approaches in query processing for moving object trajectories. In:

VLDB, pp 395–406
32. Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. VLDB J

20(5):643–669
33. Reddy S, Mun M, Burke J, Estrin D, Hansen MH, Srivastava MB (2010) Using mobile phones to

determine transportation modes. TOSN 6(2)
34. Sistla P, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: ICDE,

pp. 422–432
35. Stenneth L, Wolfson O, Yu P, Xu B (2011) Transportation Mode Detection using Mobile Devices and

GIS Information. In: ACM SIGSPATIAL, pp 54–63
36. Tao Y, Papadias D (2001) Mv3r-tree: A spatio-temporal access method for timestamp and interval

queries. In: VLDB, pp 431–440
37. Tao Y, Papadias D, Sun J (2003) The TPR*-Tree: an optimized spatio-temporal access method for

predictive queries. In: VLDB, pp 790–801
38. Theodoridis Y, Vazirgiannis M, Sellis TK (1996) Spatio-temporal indexing for large multimedia

applications. In: ICMCS, pp 441–448
39. Wang H, Zimmermann R (2011) Processing of continuous location-based range queries on moving

objects in road networks. IEEE Trans Knowl Data Eng 23(7):1065–1078
40. Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale

gps track retrieval. In: MDM, pp 1–8
41. Wu D, Yiu ML, Cong G, Jensen CS (2012) Joint top-k spatial keyword query processing. IEEE Trans

Knowl Data Eng 24(10):1889–1903
42. Xu J, Güting RH (2012) MWGen: a mini world generator. In: MDM, pp 258–267
43. Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–

172
44. Yang B, Lu H, Jensen CS (2009) Scalable continuous range monitoring of moving objects in symbolic

indoor space. In: CIKM, pp 671–680
45. Zhang D, Chee YM, Mondal A, Tung AKH, Kitsuregawa M (2009) Keyword search in spatial databases:

Towards searching by document. In: ICDE, pp 688–699
46. Zheng Y, Chen Y, Xie X, Ma WY (2010) Understanding transportation mode based on GPS data for

Web application, vol 4
47. Zheng Y, Xie X, Ma WY (2010) GeoLife: A collaborative social networking service among user,

location and trajectory. Invited paper. IEEE Data Eng Bull 32(2):32–40
48. Zheng Y, Zhang L, Ma Z, Xie X, Ma WY (2011) Recommending friends and locations based on

individual location history. TWEB 5(1):5
49. Zheng Y, Zhou X (2011) Computing with spatial trajectories, Springer

Geoinformatica

Jianqiu Xu got his bachelor and master degree from Nanjing University of Aeronautics and Astronautics in
2005 and 2008, respectively. Then, he studied the Ph.D supervised by Prof. Dr. Ralf Hartmut Güting between
2008.9 and 2012.10 from FernUniversität in Hagen, Germany, focusing on moving objects databases and
spatial databases. In 2013.1, he joined Nanjing University of Aeronautics and Astronautics in China as an
assistant professor, and became an associate professor since 2013.6.

Ralf Hartmut Güting has been a full professor in Computer Science at the University of Hagen, Germany,
since 1989. He received his Diploma and Dr. rer. nat. degrees from the University of Dortmund in 1980
and 1983, respectively, and became a professor at that university in 1987. From 1981 until 1984 his main
research area was Computational Geometry. After a one-year stay at the IBM Almaden Research Center
in 1985, extensible and spatial database systems became his major research interests; more recently, also
spatio-temporal or moving objects databases. He has been an associate editor of the ACM Transactions on
Database Systems and an editor of the VLDB Journal and is on the Editorial Board of GeoInformatica. He
has published two German text books on data structures and algorithms and on compilers, respectively, and
an English text book on moving objects databases, as well as around eighty journal and conference articles.
His group has built prototypes of extensible and spatio-temporal database systems, the Gral system and the
SECONDO system.

Geoinformatica

Yu Zheng is a lead researcher from Microsoft Research Asia. He is an IEEE senior member and ACM
senior member. His research interests include location-based services, spatio-temporal data mining, ubiqui-
tous computing, and mobile social applications. He has published over 50 referred papers as a leading author
at high-quality international conferences and journals, such as SIGMOD, SIGKDD, AAAI, ICDE, WWW,
Ubicomp, IEEE TKDE, and ACM TWEB. He has received 3 best paper awards from UIC10, ACM SIGSPA-
TIAL GIS11, and ADMA’11 as well as 1 best paper nominee from Ubicomp11. He is also an editorial board
of 4 international journals, such as GeoInformatica and Journal of Location Based Services. In 2008, he was
recognized as the Microsoft Golden Star. He joined MSRA in July 2006 right after received his Ph.D. degree
in communication & information systems from Southwest Jiaotong University.

	The TM-RTree: an index on generic moving objects for range queries
	Abstract
	Introduction
	Related work
	Transportation modes
	Range queries and moving objects indices
	Spatial keywords search

	Problem definition
	Data representation
	RQTM

	The TM-RTree
	Input data
	TM-RTree nodes
	Insertion algorithm

	Single transportation mode
	Multiple modes
	A sequence of transportation modes
	Baseline method
	A pair of modes
	Revisit movement tuples
	The algorithm

	Performance evaluation
	Datasets
	Competing methods
	Experimental setup
	Transportation modes in the index
	Scaling datasets
	Varying spatial and temporal parameters
	The capability of TM-RTree
	Discussion

	Conclusions
	Acknowledgments
	Appendix: – A Range Query Examples
	Appendix– B Experimental Statistics
	Appendix: – B Experimental Statistics
	References

