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Abstract— It is notoriously hard to verify and debug the final, 

board-level implementation of FPGA designs. The task 

involves manual intervention and creativity, unpredictable 

time costs, and it is further complicated by side-effects of the 

monitoring circuits inserted into the Design Under Test (DUT). 

In this paper, we introduce gNOSIS, an automated tool for 

board-level debugging and verification of FPGA designs. 

gNOSIS uses the Capture/Readback features of the FPGA to 

checkpoint the entire state of the circuit with little or no 

modification to the DUT. The tool then correlates the design 

registers provided in the netlist with their state in the FPGA 

configuration memory, and with the expected state. If the 

states match, execution proceeds by restoring the state of the 

FPGA and continuing execution for a set number of cycles. 

When an error is encountered, the time and location of the 

error is reported and the last good checkpoint is used for 

further debugging. gNOSIS eliminates the manual labor and 

long wait times required by currently available tools (e.g. 

Chipscope). It provides much greater visibility at a lower cost. 

More importantly, it provides the required infrastructure for 

fully automated debugging using more intelligent offline tools. 

Keywords-FPGA; debugging; verification; board; circuit; 

netlist; state; checkpoint; automation; simulation; design; DUT; 

I.  INTRODUCTION 

The process of verifying and debugging the final, board 
level implementation of FPGA designs has changed little 
since the advent of the first FPGAs. Most of the research has 
focused on the earlier steps, in pursuit of a correct-by-
construction ideal tool flow [15]. Commercially available 
tools such as Xilinx Chipscope and Altera SignalTap [8, 9] 
today provide very limited visibility inside the circuit, and 
yet require hours of manual labor and wait time. Designers 
use their intuition to select the interesting signals to monitor, 
and the tool inserts a logic analyzer (ILA) and a 
communication circuit into the design. At runtime, the 
designer can select sophisticated trigger conditions for 
tracing, but based only on the selected signals. The captured 
trace data is saved in Block RAMs and the user can study it 
extensively using offline tools [10].  

The core problem with these tools is that the designer 
intuition as to what signals are most relevant can be quite 
wrong. Indeed, if we knew where to look we would already 
have a pretty good idea of what the error is, which is the 
goal, not the assumption here. This circularity in the 
approach leads to a time-consuming, unbounded cycle in the 
debugging process. Since the tools provide no information 

about which signals to select for probing, the designers must 
rely exclusively on their experience and good fortune. 
Further complications are due to the additional components 
added by these tools into the DUT. These components vary 
with design and choice of signals and they cause variant 
changes in timing/placing/routing and make it difficult, 
sometimes impossible, to find bugs that are placing/routing 
dependent.  

Previous work on this debugging problem can be divided 
into two categories: Scan-chain based and Readback based. 
The former inserts additional circuit elements, either by hand 
or by some tool, to implement a scan-chain inside the user 
design [1, 2, 6].  Although this facilitates viewing the entire 
state of the circuit, the area penalty and change in timing 
behavior is significant.  

The latter uses the Readback feature provided by some 
FPGA vendors [3, 4, 7]. This feature allows reading back the 
entire configuration bitstream of a design out of the FPGA 
[11]. We follow this latter approach in our own work. By 
capturing the state values before reading back, it is possible 
to retrieve the entire state of the circuit at a given time.  The 
BYU work uses this feature, but requires the designer to use 
JHDL [3]. 

Here we introduce gNOSIS, an automated board-level 
debugging/verification tool that allows the designers to see 
the entire state of the circuit and provides precise 
information about the timing and location of bugs. gNOSIS 
correlates the design registers provided in the netlist to their 
locations in the configuration memory and the simulated 
instance. It then uses the Capture/Readback features of the 
FPGA to retrieve the entire state of the circuit after a given 
number of cycles. The retrieved values are then used to 
verify the behavior of the circuit, currently by comparing 
against simulation. A complete match is saved as a 
checkpoint, allowing verification to continue. Any mismatch 
is reported along with its precise location and time, thus 
providing the designer with a great entry point into the 
board-level debugging problem. The verification by gNOSIS 
is automatic and the user does not have to worry about which 
signals to probe. The user does not have to stay in front of 
the computer, gNOSIS runs unsupervised and for as long as 
necessary to find the error(s). We are not aware of any other 
tool that provides this much visibility to the developer 
without severely impacting the DUT.  

The improved visibility of gNOSIS also opens the doors 
to smarter debugging techniques. For example, we can insert 
assertion checking circuits in the design [17] and when they 



   

 

 

trigger, let gNOSIS retrieve/analyze data to find the reason. 
Although the current version of gNOSIS uses simulation 
results for verification, it can use any kind of checks/analysis 
in software, since it has access to the entire state of the 
circuit. We can also use gNOSIS to run a design to a certain 
point in the hardware, then checkpoint and resume execution 
in simulation. This is especially helpful when the simulation 
time required to reach our point of interest is prohibitively 
long. 

In contrast to the previous works, gNOSIS does not 
require any change in the design flow and does not change 
the DUT significantly. In the following sections we will 
describe how our tool uses the input/output of existing tools 
(Xilinx ISE [9], Mentor Graphics Modelsim [12]) to realize 
such automatic board-level verification with little or no 
change to the DUT.  

II. GNOSIS OVERVIEW 

The goal of gNOSIS is to provide hardware developers 
with a more complete way to debug and verify their board-
level FPGA designs. More specifically, (1) the designers 
should be able to maintain their design flow and languages; 
(2) changes required to the DUT should be minimal or none; 
(3) the tool should tell the designers precisely where the error 
is; (4) unlike with Chipscope, the process should be 
automatic and designers should not have to stay in front of 
the computer during the entire verification process; (5) the 
tool should be extensible and allow for additional 
automation. 

Figure 1.  Design flow using gNOSIS. 

The initial implementation of gNOSIS targets the Xilinx 
FPGA and Development Environment (ISE), Modelsim 
Simulator and Verilog HDL. As show in Figure 1, it only 
adds an optional path in the existing design flow. From the 
user‟s perspective, the work flow is as follows.  

The user first designs in Verilog and inserts the (fixed) 
gNOSIS probe. Then the user generates the configuration 
data (bitstream) in a regular fashion,  making sure that the 
following files are also generated: <design_name.ngc>, 
<design_name>.ll, and a post-synthesis simulation file. This 
can be done with a few additional mouse clicks. The .ngc file 

contains the netlist information for the synthesized design. 
The .ll file contains the location of the state variables in the 
bitstream [11]. The user then creates a testbench and 
performs simulation and dumps the simulation result in .vcd 
(Value Change Dump) file. The gNOSIS-specific part of the 
flow is as follows. 

The user first feeds the bitstream, the .ll and the .ngc files 
to the gNOSIS preprocessor, which extracts the netlist 
information and maps it to the location information found in 
.ll file.  The output of this step is a plain text file that 
contains FlipFlop (FF) names, their location in the bitstream 
and their initial values. In an ideal case, the .ll file should be 
sufficient, but we need to verify some information (see later).  

The preprocessor also generates a help file that contains 
the signal names that must be dumped from simulation to 
compare with the board level implementation. The user may 
optionally choose to use this help file to reduce the size of 
the .vcd file from simulation.  

The second step is to feed the bitstream file, post-
synthesis simulation file, simulation result (.vcd file) and 
output of the pre-processor to the main program of the tool. 
The tool uses these inputs to repeatedly execute the design 
on the FPGA board and compare the result against the data 
from the .vcd file. If the current simulation is not long 
enough gNOSIS automatically performs a new simulation 
step. A successful match is saved as a checkpoint and 
execution proceeds. A mismatch is reported with its precise 
time (number of cycle) and place of occurrence. Once a 
mismatch is found, the most recent checkpoint is used to 
launch a Modelsim simulation instance for further 
debugging. 

 In addition to the debugging flow mentioned above, we 
can also use the tool to run a design to a certain point in the 
hardware then checkpoint and resume execution in 
simulation.  This allows us to perform additional verification 
in simulation by reducing the time required to get to events 
of interests.  This was especially useful for identifying a 
design error that only manifested itself after running the 
NetBSD operating system in multi-user mode on top of the 
eMIPS processor. 

 

Figure 2.  Overview of how gNOSIS works. 



   

  

III. HARDWARE BLOCKS 

The hardware portion gNOSIS consists of two parts, the 
Server/Monitor and the Probe inserted into the DUT. The 
Server/Monitor would ideally be implemented in a separate 
FPGA so that the DUT placing & routing is minimally 
impacted by the insertion of the probe. The probe itself only 
implements a counter, ICAP (internal configuration access 
port), capture and startup primitives. However, currently we 
have implemented both modules in a single FPGA (Xilinx 
Virtex 5: xc5vlx110t-2ff1136) to allow us to focus on the 
hardware/software interface and tool flow.  

Figure 3.  Current implementation for probing by gNOSIS. 

Our implementation of the Server/Monitor circuit has 
two parts: (1) SIRC, the module that supports 
communication with PC through Ethernet [14], and (2) 
Analyzer, the module that implements the control for the 
Readback and allows the user to actually communicate with 
the DUT FPGA through the probe. The Analyzer supports 
writing batch commands from PC.  The Analyzer stores 
command templates or sequences of configuration 
commands to perform actions such as read and write to 
configuration memory with fields such as starting address 
and word count that can be set by the control logic in order 
to execute a specified action.  The Analyzer sends these 
commands over a communication channel to the Probe in the 
DUT. 

The Probe facilitates capturing and reading back the state 
of the FPGA by instantiating a CAPTURE_VIRTEX5 block 
and an ICAP_VIRTEX5 block [11], since Xilinx tools don‟t 
provide this feature anymore [16]. There is an up-counter in 
the DUT clock domain which keeps track of the number of 
cycle that the DUT has run after RESET. When its value 
matches another set of registers, Counter_Max, the state of 
the FPGA is captured using the CAPTURE_VIRTEX5. By 
changing the value of Counter_Max, we can control when 
the capture occurs. Once the FPGA state is captured, it can 
be read back to PC through the ICAP_VIRTEX5 block. 

The Probe receives commands from Analyzer through 
the communication channel. Those commands for the 
configuration logic and memory are passed to the ICAP 
while other bits in the command stream control the reset and 
clock state of the DUT. The user can, through the software 

interface, update Counter_Max, read back the captured 
configuration data, reset DUT and so on.   

Figure 3 shows the block diagram of our implementation. 
For clarity, the internal connections are not shown. The 
ICAP_VIRTEX5 instance is also not shown. In this 
implementation, the communication channel is realized as a 
pair of FIFOs designed to isolate the logic and clocking of 
the Server/Monitor and the DUT/Probe.  In future 
implementations the Server/Monitor and the DUT/Probe 
would be in separate FPGAs and the channel would be a 
physical channel between them, as shown in Figure 4. 

Figure 4.  Ideal setup for probing by gNOSIS. 

If we can send RESET/Capture signal to DUT, 
synchronize user clock and read configuration data back 
using ICAP, then the DUT can be entirely separated from 
gNOSIS by moving the larger components of the Probe to 
the Server/Monitor FPGA. The most significant of these is 
the large up-counter on the DUT clock that is used to control 
the timing of capture. In any case, the DUT FPGA will still 
have to accommodate CAPTURE_VIRTEX5 and 
ICAP_VIRTEX5 blocks.  If the external pins are accessible, 
the ICAP could be replaced by the SELECTMAP interface 
[11], but the Capture has no such external interface except 
through a command to the SELECTMAP which is 
imprecise. The advantage of our design is that, unlike 
Chipscope, where configuration changes every time your 
signals of interest or trigger conditions change, the change 
required in the DUT will be uniform no matter what your 
design is or which signals you want to monitor.  

To read back captured data from a Xilinx FPGA, a series 
of commands need to be sent to the ICAP. These commands 
include variables such as the start address, word count etc. 
The Analyzer implements this feature in the form of 
command-script. The user is allowed to write batch 
commands, through SIRC, to the Analyzer which saves those 
commands in Block RAM. The user then sends execute 
command, which executes the command in Block RAM. 
Value of the variables in the command scripts are inserted 
from registers, which also can be updated by the user at any 
point. This flexible construction enables an easy and 
compact implementation of the Readback feature. 



   

 

 
While (curr_num_cycle <= MAX_NUM_CYCLE){ 

  Update timer info with curr_num_cycle (number of 
cycle after RESET, after which states will be captured); 

  Reconfigure FPGA using iMPACT; 
  DUT Reset/Run; 
 
  Update simulation file and run simulation; 
  Update values of FF from .vcd file; 
 
  Wait long enough for capture to occur in FPGA; 
 
  Read back configuration data from FPGA; 
  Update values of FF from Readback data; 
 
  Compare FF values from simulation and FPGA; 
  if (PASSED){ 
 Update checkpoint and continue verification; 

Increase CUR_INTERVAL (optional); 
curr_num_cycle += CUR_INTERVAL; 

  } 
  Else{ 
 If curr_num_cycle was already 1 clock away from 

the latest checkpoint, then we have found the exact timing 
of error. Print all error information, invoke Modelsim and 
Exit; 

 Otherwise, Rollback to the most recent checkpoint 
state and continue verification, but this time with finer 
interval (e.g. CUR_INTERVAL /= 2;) 

  curr_num_cycle = latest checkpoint time + 
CUR_INTERVAL; 

  } 
}//end while 

IV. GNOSIS PRE-PROCESSING 

gNOSIS pre-processing converts <design_name.ngc> to 
<design_name.ndf> using Xilinx utility „ngc2edif‟. The 
result is a netlist level description of the design in EDIF 2 0 0 
format [13], which is then parsed. Next, the 
<design_name.ll> file is parsed to find FF location in the 
bitstream.  

In an ideal case the parsing the .ll file should be 
sufficient. It is supposed to contain enough information to 
identify the FFs of the design and their positions in the 
bitstream. However, we have found that in some cases some 
flip-flops in the netlist are missing. If they are not present, 
the user needs to be aware of its impact on verification and 
vendors need to be informed of this as well.  

Figure 5.  Example of a .ll file. 

In addition, we also wanted to verify the frame addresses 
of the FFs in configuration data, since we will use them 
while reading back configuration data from the Probe using a 
limited size buffer.  

Figure 6.  Cofigurtion Frame Address of Xilinx Virtex 5. 

As shown in Figure 6, the frame address of a Xilinx 
device depends on that particular device and hence is not 
continuous [11]. While configuring a device using iMPACT, 
the frame address is set to 0 and all data is sent to the device 
at once. Frame address is increased inside the device 
automatically to make sure data goes to the right place. 
Although there‟s no documentation on how the address is 
incremented, by generating and studying the configuration 
data in debug mode, it is possible to retrieve that information 
[5]. That‟s how we determined the sequence of increase of 
frame address for our target device. 

To be specific, in debug mode, data of every frame in the 
bitstream is preceded by its frame address. This can be found 
by searching for 0x30010001 commands in the bitstream. 
This command is followed by the frame address. For our 
target device, this was ultimately converted into an array of 
structures consisting of the discrete increment of addresses. 
Below is the example of first few entries of that array. The 
frame address starts from 0 and increases by 1 till 53. The 
next address is 128. Then it again increases by 1 till 163. The 
frame address after 163 is 256. 

incrementalAdr incrAdrOriginal[] = { 

{53, 128}, // (for XC5VLX110t) 
{163, 256}, 
{291, 384}, 
…. 
 
After verifying the FF existence and correct position in 

the bitstream, the list is sorted according to the ascending 
order of their absolute position in the bitstream. This makes 
it faster to read data from the FPGA later. The sorted and 
verified FF info is then printed for use in the main 
verification process.  

In addition, a help file containing the essential signal 
names is generated so that the user may use it to reduce the 
size of the .vcd dump file from simulation. 

V. VERIFICATION BY GNOSIS 

The main program of gNOSIS is where actual 
verification takes place. It first reads the sorted FF info and 
maps them to the symbols used in the .vcd file. Signals in the 
.vcd file are given a small symbol of one or more characters 
to reduce the size of the file. gNOSIS then creates an 
instance of SIRC to start communication with the FPGA. It 
then runs the main verification loop of Figure 7.  

Figure 7.  Main verification loop of gNOSIS. 



   

A. Updating Timer & Capturing Data 

The timer value (Counter_Max) is updated in the 
bitstream and loaded into the FPGA using iMPACT. A Reset 
signal, which also sets the counter in the DUT clock domain 
to zero, is then sent to the DUT. Once the reset is de-
asserted, the DUT execution begins. When the counter 
reaches the timer value, capture signal is asserted and current 
state of the FPGA is saved in the configuration data. It is 
essential to make sure that the captured data is not 
overwritten (e.g. due to the counter completing another timer 
cycle) before it is read by the PC. This is done by using the 
“ONE_HOT” feature of the CAPTURE_VIRTEX5 and by 
using a guard register, which goes from „0‟ to „1‟ when the 
capture signal is asserted, and remains „1‟ until the DUT is 
reset again.  

B. Running Modified Simulation and Retrieving State 

The post-synthesis simulation file generated by ISE 
contains netlist level information of the DUT. By 
manipulating the type of FF used in the design, we can 
control how the circuit behaves when RESET is applied. For 
example: to reset a FF to 1, we change it to FDS; to reset a 
FF to 0, we change it to FDR. This is how gNOSIS updates 
the simulation file for any given point of time and performs 
simulation. We assume that RESET is performed only once 
in the beginning of the execution.  

The simulation is run using the command line options of 
Modelsim and through some simple .do files which are 
executable scripts for the Modelsim simulator. The results 
are dumped in a .vcd file which is parsed to retrieve 
simulated values. 

C. Reading Back Captured Data and Retrieving State 

After updating/performing simulation, gNOSIS waits 
long enough for the capture to occur in FPGA. The exact 
wait time is calculated from timer and DUT frequency. The 
configuration data are then read back to PC through SIRC, 
Probe and ICAP. Every call to Probe is made with a frame 
address and number of frames to read consecutively from 
that address. Since the increase of frame address is not 
continuous all along, an array of addresses is maintained to 
handle the discrete increases. To increase the bandwidth of 
Readback, as many as 40 consecutive frames are read at a 
time when there are enough consecutive frames. This is also 
limited by the data buffer size in the Probe. Otherwise the 
number is limited to the maximum number of consecutive 
frames available from the current frame address. 

The Readback data is saved in a binary file which is then 
read to retrieve the state of the FFs in the design. Not every 
word of the binary file is read. Instead, only the places of 
interest are directly read by manipulating the file pointer.   

D. Comparing Simulation and Readback Values 

After updating the data from simulation and board-level 
execution, the expected values from simulation are compared 
against observed values from board-level execution. If all the 
values match, we assume that the design has worked 
correctly up to current time. This state is then saved as 
checkpoint and the next timer value is decided. The increase 

in timer value can be of any precision, e.g. by 1 cycle, by a 
fixed number of cycles or by any other incremental value 
decided by the user to reduce verification time.  

If there is a mismatch between expected and observed 
data, the state is restored to the latest checkpoint. If the 
checkpoint interval was only 1 cycle we have found the 
exact time when the error occurs. At this point gNOSIS 
reports all mismatches in a text file and invokes Modelsim 
simulation from the point of the most recent checkpoint.  

E. Data Structure 

Data structure to store FF data is a singly linked list of 
structure that basically contains FF name, net name, 
simulation value, board-level value, checkpoint value, 
position in bitstream and symbol in .vcd file. Checkpoint 
time and checkpoint file pointer position (for the .vcd file) is 
stored separately. 

VI. TEST CASE AND PERFORMANCE 

We have verified the functional correctness of gNOSIS 
using a simple counter circuit. The counter was simulated in 
Modelsim and executed on the FPGA in parallel. Values at 
different time points were compared by gNOSIS to verify the 
correct behavior.  An error was introduced artificially by 
pressing a switch to disable the counter, to see if gNOSIS 
can catch it. In all cases, errors were successfully reported 
with the precise number of cycle and name and values of the 
incorrect registers. 

There are three areas where performance can be 
compared with Chipscope or other approaches:  (1) 
Area/Resource overhead, (2) Preparation time and (3) 
Usability. 

The area/resource overhead is the increase in resource 
utilization compared to the original design. We found that 
with gNOSIS the overhead is small; it is constant for any 
design and for any number of signals of interest. The 
gNOSIS overhead is shown in Table III. In contrast, Table I 
and Table II show that the area overhead of Chipscope is 
large and depends on the design and signals of interest. 
Overhead data for Chipscope was collected using gNOSIS 
itself and an embedded processor design (eMIPS) which uses 
18,268 slice registers and 21,237 slice LUTs of a Xilinx 
xc5vlx110t, at 26% and 30% utilization respectively. The 
area overhead for scan-chain based solutions also varies with 
design and can go up to 100% [1, 2, 6].  

 

TABLE I.  OVERHEAD IN CHIPSCOPE (EMIPS EXAMPLE) 

Signal Count 

(ILA x Signal) 

Area Time (Min) 

Registers (%) LUTs (%)  

8 (1 x 8 ) 230 (1.3) 254 (1.2) 55 

32 (1 x 32 ) 311 (1.7) 301 (1.4) 62 

128 (1 x 128 ) 612 (3.4) 450 (2.1) 56 

256 (2 x 128 ) 1203 (6.6) 846 (4.0) 59 

 
 



   

TABLE II.  OVERHEAD IN CHIPSCOPE (GNOSIS EXAMPLE) 

Signal Count 

(ILA x Signal) 

Area Time(mm:ss) 

FFs (%) LUTs (%)  

8 (1 x 8 ) 230 (7) 250 (6) 10:03 

16 (1 x 16 ) 260 (8) 267 (8) 9:20 

32 (1 x 32 ) 311 (10) 296 (7) 9:07 

64 (1 x 64 ) 410 (13) 347 (8) 9:48 

128 (1 x 128 ) 605 (19) 444 (10) 9:45 

256 (2 x 128 ) 1182 (37) 394 (9) 12:26 

 
 

TABLE III.  OVERHEAD IN GNOSIS 

Signal 

Count 

Area (ICAP+capture+64 bit counter) Time (Min) 

Registers LUTs  

Any 201 160 0 

 
In terms of preparation time, Chipscope must go through 

the implementation phase which includes translation, 
mapping, PAR, and through the bitstream generation phase 
every time a setting is changed. For the eMIPS design case 
shown in Table I, it takes about one hour to get a new 
bitstream generated on a 3GHz PC, Intel Core 2 duo. This 
does not include the time required to select the signals 
manually or to reconfigure the FPGA. In gNOSIS, this time 
is reduced to nearly zero. The user will still have to copy a 
few files and run gNOSIS!  

In terms of usability, Chipscope has a superior interface 
with a nice GUI. But the user still needs to decide which 
signals she/he wants to monitor and under what conditions. 
This trial and error continues until the bug is found, 
demanding large amounts of manual labor and time. In 
contrast, gNOSIS tells the exact time and location of the bug, 
enabling the designer to focus on the details of the bug once 
it is found. And since the process is automated, the user can 
run gNOSIS and be engaged in other work while gNOSIS 
continues verification. Additionally, multiple instances of 
gNOSIS could run in parallel, all unsupervised, verifying 
different portions of a large project. 

The runtime of a single iteration for the gNOSIS 
verification loop is shown in Table IV. The Dependency 
column indicates if the time is device dependent (e.g. the size 
of bitstream file), or design dependent (e.g. number of FFs in 
the design).  

TABLE IV.  RUNTIME PER ITERATION OF GNOSIS 

Action Time (sec) Dependency 

Update Timer 0.083 Device 

Reconfigrure using iMPACT 16.152 Device 

Simulation Update + Run 
[Execution on FPGA in parallel] 

0.031+ 1.688 Design 

Parse .vcd File 0.245 Design 

Action Time (sec) Dependency 

Readback from FPGA (3MB) 0.233 Device 

Parse Readback Data 0.001 Design 

Compare 0.595 Design 

Total 18.448  

  

VII. CURRENT LIMITATIONS OF GNOSIS 

The current version of gNOSIS works only for the cases 
where the errors are identically reproducible for every run of 
the design. It also compares FFs only; Block RAMs and I/Os 
are not yet incorporated. Another assumption is that „Reset‟ 
is applied only once, in the beginning of the execution. 

Currently gNOSIS only works for Verilog designs 
targeting Xilinx Devices. The supported simulator is 
Modelsim only. The design must be synthesized using Xilinx 
ISE with „keep hierarchy‟ option set to „No‟, because 
otherwise <design_name.ll> file may have duplicate names 
for wires in different instances of similar modules. The 
configuration data must be generated without CRC data or 
encryption.  

VIII. CONCLUSION 

We have reported the initial implementation of gNOSIS, 
a board-level debugging/verification tool for Xilinx FPGAs. 
gNOSIS uses the Capture/Readback features of the FPGA to 
retrieve the state of the entire FPGA at a given time and 
verifies it against simulation data. Using gNOSIS is pleasant 
because it never requires repeated changes in the design or in 
the design flow. In addition to improving the efficiency of 
board-level debugging, gNOSIS also opens the door for 
exploring smarter debugging techniques. For example, we 
can insert assertion check circuits in the design and on 
failure, trigger gNOSIS to retrieve/analyze data to find the 
reason. We can also use gNOSIS to run a design to a certain 
point in the hardware then checkpoint and resume execution 
in simulation. This allows us to perform additional 
verification in simulation by reducing the simulation time 
required to get to the events of interests. .  

Using the netlist connectivity information along with the 
information that gNOSIS provides, it is also possible to 
provide the user with the name of signals that may have 
caused the error. 

Immediate future works include incorporating Block 
RAMs and I/O in the verification process and eliminating 
iMPACT from the main verification loop. By supporting 
user defined triggers while maintaining complete visibility of 
the circuit, we can find the bugs that are not identically 
reproducible. Implementing the write configuration feature 
in the monitor circuit will also speed up the verification 
process and allow checking what-if cases, such as loading an 
intermediate state in the FPGA and see how it works. 
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APPENDIX 

In addition to the works/features reported in the main 
body of the report, we have also implemented „restore‟ 
feature in the FPGA. By using this feature we can restore the 
FPGA to any previously captured or reconfigured state, 
bypassing the reset every time. However, we have not yet 
implemented any use-case example of this feature. The main 
hurdle is the use of same FPGA for Monitor/Server and 
DUT. Restoring the DUT also restores the Monitor/Server, 
which we don‟t want to happen. 

Another feature that is implemented but not tested 
thoroughly yet is the capability of using „reset‟ to capture 

data again and again. The purpose is to eliminate iMPACT, 
the most time consuming portion right now, from the main 
verification loop. We have implemented a sub-command that 
will set the timer value (Counter_Max) without having to re-
configure. However, we haven‟t yet been able to make 
CAPTURE_VIRTEX5 capture multiple times (without 
reconfiguring the FPGA) with “ONE_HOT” set to “true”. It 
does capture multiple times when “ONE_HOT” is set to 
“false” (we assert the enable signal for one cycle only every 
time), but the capture timing sometimes seems to be off by 
one cycle. This results in inconsistency with simulation data 
and hence hasn‟t been incorporated in the final version. 

While determining the frame address of the FPGA using 
debug-mode bitstream, some of the frame addresses were 
missing! So, we have assumed a continuous increase for 
those addresses. So far, that hasn‟t caused any trouble. We 
have run as large design as eMIPS through the pre-processor 
of gNOSIS, and it ran without any trouble. 

The .ll file sometimes doesn‟t have information about 
some of the registers that are present in the EDIF netlist. The 
exact reason is not known yet. The preprocessor generates 
message if such cases exist. 

The rule checker for the parser of EDIF was generated 
using BISON in cygwin. 

 
How to run gNOSIS: 
Step1: Generate bitstream and configure FPGA. Be sure 

to have .ll and post-synthesis verilog file generated too. The 
design should be synthesized with „keep hierarchy‟ set to 
„No‟. The bitstream should not be in debug mode and should 
not have CRC or encryption data. 

Step2:  Copy .bit, .ngc, .ll to the pre-processor folder. 
Step3: Run pre-processor with the design name as the 

argument. 
Step4: Copy the resulting output file „output_FF.txt‟ to 

the folder of the main verification program.  
Step5: Set simulation files and run the main verification 

program. 
 


