

gNOSIS: A Board-level Debugging and Verification Tool

Md. Ashfaquzzaman Khan

Boston University

Richard Neil Pittman

Microsoft Research

Alessandro Forin

Microsoft Research

July 2010

Technical Report

MSR-TR-2010-106

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

gNOSIS: A Board-level Debugging and Verification Tool

Md. Ashfaquzzaman Khan

Department of Electrical & Computer Engineering

Boston University

Boston, MA, USA

azkhan@bu.edu

Richard Neil Pittman, Alessandro Forin

Microsoft Research

Redmond, WA, USA

{pittman, sandrof}@microsoft.com

Abstract— It is notoriously hard to verify and debug the final,

board-level implementation of FPGA designs. The task

involves manual intervention and creativity, unpredictable

time costs, and it is further complicated by side-effects of the

monitoring circuits inserted into the Design Under Test (DUT).

In this paper, we introduce gNOSIS, an automated tool for

board-level debugging and verification of FPGA designs.

gNOSIS uses the Capture/Readback features of the FPGA to

checkpoint the entire state of the circuit with little or no

modification to the DUT. The tool then correlates the design

registers provided in the netlist with their state in the FPGA

configuration memory, and with the expected state. If the

states match, execution proceeds by restoring the state of the

FPGA and continuing execution for a set number of cycles.

When an error is encountered, the time and location of the

error is reported and the last good checkpoint is used for

further debugging. gNOSIS eliminates the manual labor and

long wait times required by currently available tools (e.g.

Chipscope). It provides much greater visibility at a lower cost.

More importantly, it provides the required infrastructure for

fully automated debugging using more intelligent offline tools.

Keywords-FPGA; debugging; verification; board; circuit;

netlist; state; checkpoint; automation; simulation; design; DUT;

I. INTRODUCTION

The process of verifying and debugging the final, board
level implementation of FPGA designs has changed little
since the advent of the first FPGAs. Most of the research has
focused on the earlier steps, in pursuit of a correct-by-
construction ideal tool flow [15]. Commercially available
tools such as Xilinx Chipscope and Altera SignalTap [8, 9]
today provide very limited visibility inside the circuit, and
yet require hours of manual labor and wait time. Designers
use their intuition to select the interesting signals to monitor,
and the tool inserts a logic analyzer (ILA) and a
communication circuit into the design. At runtime, the
designer can select sophisticated trigger conditions for
tracing, but based only on the selected signals. The captured
trace data is saved in Block RAMs and the user can study it
extensively using offline tools [10].

The core problem with these tools is that the designer
intuition as to what signals are most relevant can be quite
wrong. Indeed, if we knew where to look we would already
have a pretty good idea of what the error is, which is the
goal, not the assumption here. This circularity in the
approach leads to a time-consuming, unbounded cycle in the
debugging process. Since the tools provide no information

about which signals to select for probing, the designers must
rely exclusively on their experience and good fortune.
Further complications are due to the additional components
added by these tools into the DUT. These components vary
with design and choice of signals and they cause variant
changes in timing/placing/routing and make it difficult,
sometimes impossible, to find bugs that are placing/routing
dependent.

Previous work on this debugging problem can be divided
into two categories: Scan-chain based and Readback based.
The former inserts additional circuit elements, either by hand
or by some tool, to implement a scan-chain inside the user
design [1, 2, 6]. Although this facilitates viewing the entire
state of the circuit, the area penalty and change in timing
behavior is significant.

The latter uses the Readback feature provided by some
FPGA vendors [3, 4, 7]. This feature allows reading back the
entire configuration bitstream of a design out of the FPGA
[11]. We follow this latter approach in our own work. By
capturing the state values before reading back, it is possible
to retrieve the entire state of the circuit at a given time. The
BYU work uses this feature, but requires the designer to use
JHDL [3].

Here we introduce gNOSIS, an automated board-level
debugging/verification tool that allows the designers to see
the entire state of the circuit and provides precise
information about the timing and location of bugs. gNOSIS
correlates the design registers provided in the netlist to their
locations in the configuration memory and the simulated
instance. It then uses the Capture/Readback features of the
FPGA to retrieve the entire state of the circuit after a given
number of cycles. The retrieved values are then used to
verify the behavior of the circuit, currently by comparing
against simulation. A complete match is saved as a
checkpoint, allowing verification to continue. Any mismatch
is reported along with its precise location and time, thus
providing the designer with a great entry point into the
board-level debugging problem. The verification by gNOSIS
is automatic and the user does not have to worry about which
signals to probe. The user does not have to stay in front of
the computer, gNOSIS runs unsupervised and for as long as
necessary to find the error(s). We are not aware of any other
tool that provides this much visibility to the developer
without severely impacting the DUT.

The improved visibility of gNOSIS also opens the doors
to smarter debugging techniques. For example, we can insert
assertion checking circuits in the design [17] and when they

trigger, let gNOSIS retrieve/analyze data to find the reason.
Although the current version of gNOSIS uses simulation
results for verification, it can use any kind of checks/analysis
in software, since it has access to the entire state of the
circuit. We can also use gNOSIS to run a design to a certain
point in the hardware, then checkpoint and resume execution
in simulation. This is especially helpful when the simulation
time required to reach our point of interest is prohibitively
long.

In contrast to the previous works, gNOSIS does not
require any change in the design flow and does not change
the DUT significantly. In the following sections we will
describe how our tool uses the input/output of existing tools
(Xilinx ISE [9], Mentor Graphics Modelsim [12]) to realize
such automatic board-level verification with little or no
change to the DUT.

II. GNOSIS OVERVIEW

The goal of gNOSIS is to provide hardware developers
with a more complete way to debug and verify their board-
level FPGA designs. More specifically, (1) the designers
should be able to maintain their design flow and languages;
(2) changes required to the DUT should be minimal or none;
(3) the tool should tell the designers precisely where the error
is; (4) unlike with Chipscope, the process should be
automatic and designers should not have to stay in front of
the computer during the entire verification process; (5) the
tool should be extensible and allow for additional
automation.

Figure 1. Design flow using gNOSIS.

The initial implementation of gNOSIS targets the Xilinx
FPGA and Development Environment (ISE), Modelsim
Simulator and Verilog HDL. As show in Figure 1, it only
adds an optional path in the existing design flow. From the
user‟s perspective, the work flow is as follows.

The user first designs in Verilog and inserts the (fixed)
gNOSIS probe. Then the user generates the configuration
data (bitstream) in a regular fashion, making sure that the
following files are also generated: <design_name.ngc>,
<design_name>.ll, and a post-synthesis simulation file. This
can be done with a few additional mouse clicks. The .ngc file

contains the netlist information for the synthesized design.
The .ll file contains the location of the state variables in the
bitstream [11]. The user then creates a testbench and
performs simulation and dumps the simulation result in .vcd
(Value Change Dump) file. The gNOSIS-specific part of the
flow is as follows.

The user first feeds the bitstream, the .ll and the .ngc files
to the gNOSIS preprocessor, which extracts the netlist
information and maps it to the location information found in
.ll file. The output of this step is a plain text file that
contains FlipFlop (FF) names, their location in the bitstream
and their initial values. In an ideal case, the .ll file should be
sufficient, but we need to verify some information (see later).

The preprocessor also generates a help file that contains
the signal names that must be dumped from simulation to
compare with the board level implementation. The user may
optionally choose to use this help file to reduce the size of
the .vcd file from simulation.

The second step is to feed the bitstream file, post-
synthesis simulation file, simulation result (.vcd file) and
output of the pre-processor to the main program of the tool.
The tool uses these inputs to repeatedly execute the design
on the FPGA board and compare the result against the data
from the .vcd file. If the current simulation is not long
enough gNOSIS automatically performs a new simulation
step. A successful match is saved as a checkpoint and
execution proceeds. A mismatch is reported with its precise
time (number of cycle) and place of occurrence. Once a
mismatch is found, the most recent checkpoint is used to
launch a Modelsim simulation instance for further
debugging.

 In addition to the debugging flow mentioned above, we
can also use the tool to run a design to a certain point in the
hardware then checkpoint and resume execution in
simulation. This allows us to perform additional verification
in simulation by reducing the time required to get to events
of interests. This was especially useful for identifying a
design error that only manifested itself after running the
NetBSD operating system in multi-user mode on top of the
eMIPS processor.

Figure 2. Overview of how gNOSIS works.

III. HARDWARE BLOCKS

The hardware portion gNOSIS consists of two parts, the
Server/Monitor and the Probe inserted into the DUT. The
Server/Monitor would ideally be implemented in a separate
FPGA so that the DUT placing & routing is minimally
impacted by the insertion of the probe. The probe itself only
implements a counter, ICAP (internal configuration access
port), capture and startup primitives. However, currently we
have implemented both modules in a single FPGA (Xilinx
Virtex 5: xc5vlx110t-2ff1136) to allow us to focus on the
hardware/software interface and tool flow.

Figure 3. Current implementation for probing by gNOSIS.

Our implementation of the Server/Monitor circuit has
two parts: (1) SIRC, the module that supports
communication with PC through Ethernet [14], and (2)
Analyzer, the module that implements the control for the
Readback and allows the user to actually communicate with
the DUT FPGA through the probe. The Analyzer supports
writing batch commands from PC. The Analyzer stores
command templates or sequences of configuration
commands to perform actions such as read and write to
configuration memory with fields such as starting address
and word count that can be set by the control logic in order
to execute a specified action. The Analyzer sends these
commands over a communication channel to the Probe in the
DUT.

The Probe facilitates capturing and reading back the state
of the FPGA by instantiating a CAPTURE_VIRTEX5 block
and an ICAP_VIRTEX5 block [11], since Xilinx tools don‟t
provide this feature anymore [16]. There is an up-counter in
the DUT clock domain which keeps track of the number of
cycle that the DUT has run after RESET. When its value
matches another set of registers, Counter_Max, the state of
the FPGA is captured using the CAPTURE_VIRTEX5. By
changing the value of Counter_Max, we can control when
the capture occurs. Once the FPGA state is captured, it can
be read back to PC through the ICAP_VIRTEX5 block.

The Probe receives commands from Analyzer through
the communication channel. Those commands for the
configuration logic and memory are passed to the ICAP
while other bits in the command stream control the reset and
clock state of the DUT. The user can, through the software

interface, update Counter_Max, read back the captured
configuration data, reset DUT and so on.

Figure 3 shows the block diagram of our implementation.
For clarity, the internal connections are not shown. The
ICAP_VIRTEX5 instance is also not shown. In this
implementation, the communication channel is realized as a
pair of FIFOs designed to isolate the logic and clocking of
the Server/Monitor and the DUT/Probe. In future
implementations the Server/Monitor and the DUT/Probe
would be in separate FPGAs and the channel would be a
physical channel between them, as shown in Figure 4.

Figure 4. Ideal setup for probing by gNOSIS.

If we can send RESET/Capture signal to DUT,
synchronize user clock and read configuration data back
using ICAP, then the DUT can be entirely separated from
gNOSIS by moving the larger components of the Probe to
the Server/Monitor FPGA. The most significant of these is
the large up-counter on the DUT clock that is used to control
the timing of capture. In any case, the DUT FPGA will still
have to accommodate CAPTURE_VIRTEX5 and
ICAP_VIRTEX5 blocks. If the external pins are accessible,
the ICAP could be replaced by the SELECTMAP interface
[11], but the Capture has no such external interface except
through a command to the SELECTMAP which is
imprecise. The advantage of our design is that, unlike
Chipscope, where configuration changes every time your
signals of interest or trigger conditions change, the change
required in the DUT will be uniform no matter what your
design is or which signals you want to monitor.

To read back captured data from a Xilinx FPGA, a series
of commands need to be sent to the ICAP. These commands
include variables such as the start address, word count etc.
The Analyzer implements this feature in the form of
command-script. The user is allowed to write batch
commands, through SIRC, to the Analyzer which saves those
commands in Block RAM. The user then sends execute
command, which executes the command in Block RAM.
Value of the variables in the command scripts are inserted
from registers, which also can be updated by the user at any
point. This flexible construction enables an easy and
compact implementation of the Readback feature.

While (curr_num_cycle <= MAX_NUM_CYCLE){

 Update timer info with curr_num_cycle (number of
cycle after RESET, after which states will be captured);

 Reconfigure FPGA using iMPACT;
 DUT Reset/Run;

 Update simulation file and run simulation;
 Update values of FF from .vcd file;

 Wait long enough for capture to occur in FPGA;

 Read back configuration data from FPGA;
 Update values of FF from Readback data;

 Compare FF values from simulation and FPGA;
 if (PASSED){
 Update checkpoint and continue verification;

Increase CUR_INTERVAL (optional);
curr_num_cycle += CUR_INTERVAL;

 }
 Else{
 If curr_num_cycle was already 1 clock away from

the latest checkpoint, then we have found the exact timing
of error. Print all error information, invoke Modelsim and
Exit;

 Otherwise, Rollback to the most recent checkpoint
state and continue verification, but this time with finer
interval (e.g. CUR_INTERVAL /= 2;)

 curr_num_cycle = latest checkpoint time +
CUR_INTERVAL;

 }
}//end while

IV. GNOSIS PRE-PROCESSING

gNOSIS pre-processing converts <design_name.ngc> to
<design_name.ndf> using Xilinx utility „ngc2edif‟. The
result is a netlist level description of the design in EDIF 2 0 0
format [13], which is then parsed. Next, the
<design_name.ll> file is parsed to find FF location in the
bitstream.

In an ideal case the parsing the .ll file should be
sufficient. It is supposed to contain enough information to
identify the FFs of the design and their positions in the
bitstream. However, we have found that in some cases some
flip-flops in the netlist are missing. If they are not present,
the user needs to be aware of its impact on verification and
vendors need to be informed of this as well.

Figure 5. Example of a .ll file.

In addition, we also wanted to verify the frame addresses
of the FFs in configuration data, since we will use them
while reading back configuration data from the Probe using a
limited size buffer.

Figure 6. Cofigurtion Frame Address of Xilinx Virtex 5.

As shown in Figure 6, the frame address of a Xilinx
device depends on that particular device and hence is not
continuous [11]. While configuring a device using iMPACT,
the frame address is set to 0 and all data is sent to the device
at once. Frame address is increased inside the device
automatically to make sure data goes to the right place.
Although there‟s no documentation on how the address is
incremented, by generating and studying the configuration
data in debug mode, it is possible to retrieve that information
[5]. That‟s how we determined the sequence of increase of
frame address for our target device.

To be specific, in debug mode, data of every frame in the
bitstream is preceded by its frame address. This can be found
by searching for 0x30010001 commands in the bitstream.
This command is followed by the frame address. For our
target device, this was ultimately converted into an array of
structures consisting of the discrete increment of addresses.
Below is the example of first few entries of that array. The
frame address starts from 0 and increases by 1 till 53. The
next address is 128. Then it again increases by 1 till 163. The
frame address after 163 is 256.

incrementalAdr incrAdrOriginal[] = {

{53, 128}, // (for XC5VLX110t)
{163, 256},
{291, 384},
….

After verifying the FF existence and correct position in

the bitstream, the list is sorted according to the ascending
order of their absolute position in the bitstream. This makes
it faster to read data from the FPGA later. The sorted and
verified FF info is then printed for use in the main
verification process.

In addition, a help file containing the essential signal
names is generated so that the user may use it to reduce the
size of the .vcd dump file from simulation.

V. VERIFICATION BY GNOSIS

The main program of gNOSIS is where actual
verification takes place. It first reads the sorted FF info and
maps them to the symbols used in the .vcd file. Signals in the
.vcd file are given a small symbol of one or more characters
to reduce the size of the file. gNOSIS then creates an
instance of SIRC to start communication with the FPGA. It
then runs the main verification loop of Figure 7.

Figure 7. Main verification loop of gNOSIS.

A. Updating Timer & Capturing Data

The timer value (Counter_Max) is updated in the
bitstream and loaded into the FPGA using iMPACT. A Reset
signal, which also sets the counter in the DUT clock domain
to zero, is then sent to the DUT. Once the reset is de-
asserted, the DUT execution begins. When the counter
reaches the timer value, capture signal is asserted and current
state of the FPGA is saved in the configuration data. It is
essential to make sure that the captured data is not
overwritten (e.g. due to the counter completing another timer
cycle) before it is read by the PC. This is done by using the
“ONE_HOT” feature of the CAPTURE_VIRTEX5 and by
using a guard register, which goes from „0‟ to „1‟ when the
capture signal is asserted, and remains „1‟ until the DUT is
reset again.

B. Running Modified Simulation and Retrieving State

The post-synthesis simulation file generated by ISE
contains netlist level information of the DUT. By
manipulating the type of FF used in the design, we can
control how the circuit behaves when RESET is applied. For
example: to reset a FF to 1, we change it to FDS; to reset a
FF to 0, we change it to FDR. This is how gNOSIS updates
the simulation file for any given point of time and performs
simulation. We assume that RESET is performed only once
in the beginning of the execution.

The simulation is run using the command line options of
Modelsim and through some simple .do files which are
executable scripts for the Modelsim simulator. The results
are dumped in a .vcd file which is parsed to retrieve
simulated values.

C. Reading Back Captured Data and Retrieving State

After updating/performing simulation, gNOSIS waits
long enough for the capture to occur in FPGA. The exact
wait time is calculated from timer and DUT frequency. The
configuration data are then read back to PC through SIRC,
Probe and ICAP. Every call to Probe is made with a frame
address and number of frames to read consecutively from
that address. Since the increase of frame address is not
continuous all along, an array of addresses is maintained to
handle the discrete increases. To increase the bandwidth of
Readback, as many as 40 consecutive frames are read at a
time when there are enough consecutive frames. This is also
limited by the data buffer size in the Probe. Otherwise the
number is limited to the maximum number of consecutive
frames available from the current frame address.

The Readback data is saved in a binary file which is then
read to retrieve the state of the FFs in the design. Not every
word of the binary file is read. Instead, only the places of
interest are directly read by manipulating the file pointer.

D. Comparing Simulation and Readback Values

After updating the data from simulation and board-level
execution, the expected values from simulation are compared
against observed values from board-level execution. If all the
values match, we assume that the design has worked
correctly up to current time. This state is then saved as
checkpoint and the next timer value is decided. The increase

in timer value can be of any precision, e.g. by 1 cycle, by a
fixed number of cycles or by any other incremental value
decided by the user to reduce verification time.

If there is a mismatch between expected and observed
data, the state is restored to the latest checkpoint. If the
checkpoint interval was only 1 cycle we have found the
exact time when the error occurs. At this point gNOSIS
reports all mismatches in a text file and invokes Modelsim
simulation from the point of the most recent checkpoint.

E. Data Structure

Data structure to store FF data is a singly linked list of
structure that basically contains FF name, net name,
simulation value, board-level value, checkpoint value,
position in bitstream and symbol in .vcd file. Checkpoint
time and checkpoint file pointer position (for the .vcd file) is
stored separately.

VI. TEST CASE AND PERFORMANCE

We have verified the functional correctness of gNOSIS
using a simple counter circuit. The counter was simulated in
Modelsim and executed on the FPGA in parallel. Values at
different time points were compared by gNOSIS to verify the
correct behavior. An error was introduced artificially by
pressing a switch to disable the counter, to see if gNOSIS
can catch it. In all cases, errors were successfully reported
with the precise number of cycle and name and values of the
incorrect registers.

There are three areas where performance can be
compared with Chipscope or other approaches: (1)
Area/Resource overhead, (2) Preparation time and (3)
Usability.

The area/resource overhead is the increase in resource
utilization compared to the original design. We found that
with gNOSIS the overhead is small; it is constant for any
design and for any number of signals of interest. The
gNOSIS overhead is shown in Table III. In contrast, Table I
and Table II show that the area overhead of Chipscope is
large and depends on the design and signals of interest.
Overhead data for Chipscope was collected using gNOSIS
itself and an embedded processor design (eMIPS) which uses
18,268 slice registers and 21,237 slice LUTs of a Xilinx
xc5vlx110t, at 26% and 30% utilization respectively. The
area overhead for scan-chain based solutions also varies with
design and can go up to 100% [1, 2, 6].

TABLE I. OVERHEAD IN CHIPSCOPE (EMIPS EXAMPLE)

Signal Count

(ILA x Signal)

Area Time (Min)

Registers (%) LUTs (%)

8 (1 x 8) 230 (1.3) 254 (1.2) 55

32 (1 x 32) 311 (1.7) 301 (1.4) 62

128 (1 x 128) 612 (3.4) 450 (2.1) 56

256 (2 x 128) 1203 (6.6) 846 (4.0) 59

TABLE II. OVERHEAD IN CHIPSCOPE (GNOSIS EXAMPLE)

Signal Count

(ILA x Signal)

Area Time(mm:ss)

FFs (%) LUTs (%)

8 (1 x 8) 230 (7) 250 (6) 10:03

16 (1 x 16) 260 (8) 267 (8) 9:20

32 (1 x 32) 311 (10) 296 (7) 9:07

64 (1 x 64) 410 (13) 347 (8) 9:48

128 (1 x 128) 605 (19) 444 (10) 9:45

256 (2 x 128) 1182 (37) 394 (9) 12:26

TABLE III. OVERHEAD IN GNOSIS

Signal

Count

Area (ICAP+capture+64 bit counter) Time (Min)

Registers LUTs

Any 201 160 0

In terms of preparation time, Chipscope must go through

the implementation phase which includes translation,
mapping, PAR, and through the bitstream generation phase
every time a setting is changed. For the eMIPS design case
shown in Table I, it takes about one hour to get a new
bitstream generated on a 3GHz PC, Intel Core 2 duo. This
does not include the time required to select the signals
manually or to reconfigure the FPGA. In gNOSIS, this time
is reduced to nearly zero. The user will still have to copy a
few files and run gNOSIS!

In terms of usability, Chipscope has a superior interface
with a nice GUI. But the user still needs to decide which
signals she/he wants to monitor and under what conditions.
This trial and error continues until the bug is found,
demanding large amounts of manual labor and time. In
contrast, gNOSIS tells the exact time and location of the bug,
enabling the designer to focus on the details of the bug once
it is found. And since the process is automated, the user can
run gNOSIS and be engaged in other work while gNOSIS
continues verification. Additionally, multiple instances of
gNOSIS could run in parallel, all unsupervised, verifying
different portions of a large project.

The runtime of a single iteration for the gNOSIS
verification loop is shown in Table IV. The Dependency
column indicates if the time is device dependent (e.g. the size
of bitstream file), or design dependent (e.g. number of FFs in
the design).

TABLE IV. RUNTIME PER ITERATION OF GNOSIS

Action Time (sec) Dependency

Update Timer 0.083 Device

Reconfigrure using iMPACT 16.152 Device

Simulation Update + Run
[Execution on FPGA in parallel]

0.031+ 1.688 Design

Parse .vcd File 0.245 Design

Action Time (sec) Dependency

Readback from FPGA (3MB) 0.233 Device

Parse Readback Data 0.001 Design

Compare 0.595 Design

Total 18.448

VII. CURRENT LIMITATIONS OF GNOSIS

The current version of gNOSIS works only for the cases
where the errors are identically reproducible for every run of
the design. It also compares FFs only; Block RAMs and I/Os
are not yet incorporated. Another assumption is that „Reset‟
is applied only once, in the beginning of the execution.

Currently gNOSIS only works for Verilog designs
targeting Xilinx Devices. The supported simulator is
Modelsim only. The design must be synthesized using Xilinx
ISE with „keep hierarchy‟ option set to „No‟, because
otherwise <design_name.ll> file may have duplicate names
for wires in different instances of similar modules. The
configuration data must be generated without CRC data or
encryption.

VIII. CONCLUSION

We have reported the initial implementation of gNOSIS,
a board-level debugging/verification tool for Xilinx FPGAs.
gNOSIS uses the Capture/Readback features of the FPGA to
retrieve the state of the entire FPGA at a given time and
verifies it against simulation data. Using gNOSIS is pleasant
because it never requires repeated changes in the design or in
the design flow. In addition to improving the efficiency of
board-level debugging, gNOSIS also opens the door for
exploring smarter debugging techniques. For example, we
can insert assertion check circuits in the design and on
failure, trigger gNOSIS to retrieve/analyze data to find the
reason. We can also use gNOSIS to run a design to a certain
point in the hardware then checkpoint and resume execution
in simulation. This allows us to perform additional
verification in simulation by reducing the simulation time
required to get to the events of interests. .

Using the netlist connectivity information along with the
information that gNOSIS provides, it is also possible to
provide the user with the name of signals that may have
caused the error.

Immediate future works include incorporating Block
RAMs and I/O in the verification process and eliminating
iMPACT from the main verification loop. By supporting
user defined triggers while maintaining complete visibility of
the circuit, we can find the bugs that are not identically
reproducible. Implementing the write configuration feature
in the monitor circuit will also speed up the verification
process and allow checking what-if cases, such as loading an
intermediate state in the FPGA and see how it works.

ACKNOWLEDGMENT

We thank Ken Eguro for the SIRC API which we used as
the hardware/software interface for gNOSIS.

REFERENCES

[1] D. Koch, C. Haubelt, and J. Teich, “Efficient hardware
checkpointing: concepts, overhead analysis, and implementation,”
Proc. International Symposium on Field Programmable Gate Arrays
2007 (FPGA 2007), pp. 188-196.

[2] A. Tiwari and K. A. Tomko, “Scan-chain based watch-points for
efficient run-time debugging and verification of FPGA designs,”
Proc. Asia and South Pacific Design Automation Conference 2003
(ASP-DAC 2003), pp. 705-711.

[3] B. L. Hutchings and B. E. Nelson, “Unifying Simulation and
Execution in a Design Environment for FPGA Systems,” VLSI
Systems, vol. 9, Feb 2001, pp. 201-205.

[4] B. L. Hutchings et. al., “A CAD Suite for High-Performance FPGA
Design,” Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines 1999 (FCCM 1999).

[5] J. B. Note and E. Rannaud, “From the bitstream to the netlist,” Proc.
International Symposium on Field Programmable Gate Arrays 2008
(FPGA 2008).

[6] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-
Level Scan to Improve FPGA Design Observability and
Controllability for Functional Verification,” Proc. Field-
Programmable Logic and Applications 2001 (FPL 2001), pp. 483-
492.

[7] W. J. Landaker, M. J. Wirthlin, and B. L. Hutchings, “Multitasking
Hardware on the SLAAC1-V Reconfigurable Computing System,”
Proc. Field-Programmable Logic and Applications 2002 (FPL 2002),
pp. 75-84.

[8] Altera webpage: http://www.altera.com.

[9] Xilinx webpage: http://www.xilinx.com.

[10] http://www.xilinx.com/products/software/chipscope/chipscope_ila_tu
t.pdf.

[11] http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

[12] http://model.com/.

[13] Crawford John D. ,“An Electronic Design Inter-change Format,”,
Format”, Proc. ACM/IEEE Design Automation Conference 1984
(DAC 1984), pp. 683- 685

[14] Ken Eguro,” SIRC: An Extensible Reconfigurable Computing,” Proc.
IEEE Symposium on Field-Programmable Custom Computing
Machines 2010 (FCCM 2010).

[15] http://www.mathworks.com/fpga-design/.

[16] http://www.xilinx.com/products/jbits/.

[17] http://www.cadence.com/rl/Resources/datasheets/incisive_enterprise_
verifier_ds.pdf.

APPENDIX

In addition to the works/features reported in the main
body of the report, we have also implemented „restore‟
feature in the FPGA. By using this feature we can restore the
FPGA to any previously captured or reconfigured state,
bypassing the reset every time. However, we have not yet
implemented any use-case example of this feature. The main
hurdle is the use of same FPGA for Monitor/Server and
DUT. Restoring the DUT also restores the Monitor/Server,
which we don‟t want to happen.

Another feature that is implemented but not tested
thoroughly yet is the capability of using „reset‟ to capture

data again and again. The purpose is to eliminate iMPACT,
the most time consuming portion right now, from the main
verification loop. We have implemented a sub-command that
will set the timer value (Counter_Max) without having to re-
configure. However, we haven‟t yet been able to make
CAPTURE_VIRTEX5 capture multiple times (without
reconfiguring the FPGA) with “ONE_HOT” set to “true”. It
does capture multiple times when “ONE_HOT” is set to
“false” (we assert the enable signal for one cycle only every
time), but the capture timing sometimes seems to be off by
one cycle. This results in inconsistency with simulation data
and hence hasn‟t been incorporated in the final version.

While determining the frame address of the FPGA using
debug-mode bitstream, some of the frame addresses were
missing! So, we have assumed a continuous increase for
those addresses. So far, that hasn‟t caused any trouble. We
have run as large design as eMIPS through the pre-processor
of gNOSIS, and it ran without any trouble.

The .ll file sometimes doesn‟t have information about
some of the registers that are present in the EDIF netlist. The
exact reason is not known yet. The preprocessor generates
message if such cases exist.

The rule checker for the parser of EDIF was generated
using BISON in cygwin.

How to run gNOSIS:
Step1: Generate bitstream and configure FPGA. Be sure

to have .ll and post-synthesis verilog file generated too. The
design should be synthesized with „keep hierarchy‟ set to
„No‟. The bitstream should not be in debug mode and should
not have CRC or encryption data.

Step2: Copy .bit, .ngc, .ll to the pre-processor folder.
Step3: Run pre-processor with the design name as the

argument.
Step4: Copy the resulting output file „output_FF.txt‟ to

the folder of the main verification program.
Step5: Set simulation files and run the main verification

program.

